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Abstract
We consider N particles in the plane, influenced by a general external potential, that are
subject to the Coulomb interaction in two dimensions at inverse temperature β. At large
temperature, when scaling β = 2c/N with some fixed constant c > 0, in the large-N limit
we observe a crossover fromGinibre’s circular law or its generalisation to the density of non-
interacting particles at β = 0. Using Ward identities and saddle point methods we derive
a partial differential equation of generalised Liouville type for the crossover density. For
radially symmetric potentials we present some asymptotic results and give examples for the
numerical solution of the crossover density. These findings generalise previous results when
the interacting particles are confined to the real line. In that situation we derive an integral
equation for the resolvent valid for a general potential aswell, and present the analytic solution
for the density in the case of a Gaussian plus logarithmic potential.

Keywords 2D Coulomb gases · Normal random matrices · High temperature crossover

1 Introduction andMain Results

Particle systems that interact logarithmically—the Coulomb repulsion in two dimensions
(2D)—and that are subject to a confining potential, at temperature T parametrised by β−1 =
kBT , enjoy an intimate relationship with RandomMatrix Theory, see e.g., [31,32]. Here, one
has to distinguish two cases.
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When the N particles are constrained to the one-dimensional real line (1D) or a subset
of it, such systems can be realised as eigenvalues of random N × N matrices whose entries
follow a Gaussian or more general distribution. In that case, the inverse temperature β takes
the specific values 1, 2 and 4 for self-adjoint matrices with real, complex or quaternionic
entries, and we refer to [46] for a discussion of these classical Gaussian ensembles. For
general β > 0—the so-called β-ensembles—other realisations exist, such as tri-diagonal
matrices [27] or in terms of Dyson’s Brownian motion [3], generalising Dyson’s original
proposal [29] for β = 1, 2, see also [5] for an invariant realisation. While for large N on a
global scale, the limiting spectral density is given by Wigner’s semi-circle for all β > 0 for
ensembles with Gaussian potential, on a local scale the statistics strongly depends on β. For
the classical ensembles the local statistics of particles (or eigenvalues) is verywell understood
and known to be universal, (see e.g., [1, Chap. 6]), whereas progress forβ-ensembles has been
rather recent, cf. [15,16,56]. For general β the statistics can be described in terms of different
stochastic differential operators in the bulk and at the edges, and we refer to [49,54,55].

Turning to the case when the particles move into the plane, thus representing a true 2D
Coulomb gas, much less is known for general β > 0. First, for matrices with complex Gaus-
sian entries without further symmetry—the complex Ginibre ensemble—the corresponding
complex eigenvalues yield a standard Coulomb gas at β = 2. For real or quaternionic matrix
entries one obtains point processes of Pfaffian type [30,35,44] that differ from the standard
2D Coulomb gas at β = 1 or 41. Only normal random matrices with complex or quater-
nionic entries provide realisations at β = 2 and 4, see e.g., [22] and [37], respectively. The
eigenvalue statistics of complex normal and complex Ginibre matrices happen to agree, but
not their eigenvector statistics [21]. Again, on a global scale the limiting spectral density is
given by Girko’s circular law for all β > 0 for a Gaussian potential. Relatively little is known
about the local statistics beyond β = 2. Only at the particular value β = 2 the point process
is determinantal, and local universality has been shown for invariant (see e.g.,[2,9,12,36,39])
andWigner ensembles [53]. For general β the low temperature limit corresponding to β � 1
is subject of ongoing research (see e.g.,[7]), due to the conjectured condensation on the so-
called Abrikosov lattice, and we refer to [52] for a recent review and references. For other
mechanisms of spontaneous symmetry breaking see [24].

Recently, the opposite high temperature limit β → 0 has been studied for β-ensembles
with real [3,5,28] or real positive eigenvalues [4]. Here, β is not kept fixed in the large-N
limit, and a different scaling β = 2c

N with a constant c ∈ (−1,∞), was identified in [3].
There, for a Gaussian potential the solution for the limiting global density ρc(x) was given
in terms of parabolic cylinder functions and was shown to interpolate between Wigner’s
semi-circle distribution at large c � 1 and a Gaussian one at c = 0. Furthermore, allowing
for a weakly attracting interaction c < 0 that can lead to a condensation of eigenvalues, it is
believed [3] to converge towards a Dirac delta when c ↓ −1.

In this article we will study the corresponding limit for genuine 2D Coulomb gases in
the plane, with a general confining potential. The possibility of taking such a limit, leading
to a crossover between the circular law and a Gaussian density for a Gaussian potential,
was already mentioned in [13,20]. We will find an extended parameter range c ∈ (−2,∞)

compared to 1D, with convergence to a Dirac delta when c ↓ −2. The latter was already
observed and in fact proven for a Gaussian plus linear potential in [18,19]. There, the limiting
behaviour of so-called vortex systems in the planewas analysed and the existence of a solution
for the limiting global density was shown. The fact that both for d = 1, 2 dimensions a lower

1 For an interpretation of these real and quaternionic Ginibre ensembles as a multi component Coulomb gas
we refer to [33].
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The High Temperature Crossover 2D Coulomb Gases 1045

bound for c > −d exists, follows from the requirement of the finiteness of the partition
function.

Before giving more details let us summarise our main results and the methods used. We
first derive an integral equation valid for a finite number of N particles in 2D, that relates the
1- and 2-point correlation functions among these, see Theorem 1. It is shown to follow from
Ward identities also called loop-equations, and the same statement can be formulated in 1D.
When scaling β = 2c

N we use heuristic saddle point methods in the large-N limit to derive
a non-linear differential equation for the limiting global density of particles ρc, formulated
in (11) in Theorem 2. This technique illuminates the order of the contributions from energy,
entropy and self-energy as functions of N , β and dimension. The same result follows from
Theorem 1 when assuming factorisation of correlation functions. Asymptotic features of the
solution of (11) for radially symmetric potentials as well as examples for numerical solutions
thereof are presented. In 1D we slightly generalise the results of [3] to general potentials and
present an analytic solution for the corresponding density for a Gaussian plus logarithmic
potential.

Let us set the stage for the 2D Coulomb gas. We study an ensemble of N charged particles
in the plane, that interact logarithmically under the influence of an external confining potential
Q. Labelling the particle’s positions in the plane by ζ = (ζ1, . . . , ζN ) ∈ C

N , the associated
Gibbs measure at inverse temperature β is given by

dPN (ζ ) = pN (ζ )

N∏

j=1

d A(ζ j ) , pN (ζ ) = 1

ZN

N∏

j>k=1

|ζ j − ζk |βe−m
∑N

j=1 Q(ζ j ). (1)

Here, d A is the area measure (i.e., 2-dimensional Lebesgue measure divided by π), pN (ζ ) is
the joint density of particles, and ZN stands for the normalising partition function. The choice
of the scaling parameter m, that may depend on N and β, determines the limiting behaviour
of our ensemble. In order to distinguish it from N counting the number of particles, and to
emphasise the analogy to the semi-classical expansion, several authors call m an “inverse
Planck constant” 1/�, see e.g. [57]2. Throughout this article, we assume that Q is smooth and
sufficiently large near infinity (e.g., Q(z) − log |z|2 → ∞ as |z| → ∞), so that ZN < ∞.

The quantities determining the system ζ = {ζ j }nj=1 are the following k-point correlation
functions defined as the expectation values EN with respect to the Gibbs measure (1):

RN ,k(z1, . . . , zk) := Nk EN

⎛

⎝
k∏

j=1

ρN (z j )

⎞

⎠ , for k = 1, . . . , N , (2)

when all arguments are mutually distinct, zi �= z j , ∀i, j = 1, . . . , k, and zero for any pair of
arguments coinciding. Here,

ρN (z) = 1

N

N∑

j=1

δ(z − ζ j ) (3)

is the normalised counting function. We remark that once properly normalised, the
RN ,k(z1, . . . , zk) can be interpreted as the probability to find k particles at given positions
z1, . . . , zk .

We are now ready to state our first result valid at finite-N .

2 Note that these and several other authors [9] use a different convention, denoting β = 2β̃.
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1046 G. Akemann , S.-S. Byun

Theorem 1 Given Gibbs measure (1) with a C2-smooth potential Q, the following relation
between 1- and 2-point correlation functions holds for every finite N:

β

2

∫

C

RN ,2(ζ, η)

ζ − η
d A(η) = m(∂ζ Q(ζ ))RN ,1(ζ ) + ∂ζ RN ,1(ζ ). (4)

Equation (4) can be used as a starting point for a systematic expansion in the large-N
limit, cf. [57] for earlier work. While we will use Ward identities to prove it, alternatively
Itô’s stochastic calculus could be used, under slightly stronger assumptions. Let us introduce
the connected 2-point correlation function

Rconn
N ,2 (ζ, η) := RN ,2(ζ, η) − RN ,1(ζ )RN ,1(η) . (5)

For a non-vanishing RN ,1(ζ ) �= 0 we can then rewrite Eq. (4) as follows

β

2

∫

C

RN ,1(η) − BN (ζ, η)

ζ − η
d A(η) = m∂ζ Q(ζ ) + ∂ζ log[RN ,1(ζ )] . (6)

Here, BN (ζ, η) := −Rconn
N ,2 (ζ, η)/RN ,1(ζ ) is defined such that it corresponds to the Berezin–

kernel at β = 2. While this is a well-studied object at β = 2, little is known for general
β > 0, see however some remarks in [9]. In order to arrive at the mean field Eq. (11) below,
that determines the limiting density in the particular large-N limit that we consider, we would
have to show that the connected 2-point function (5) is sub-leading. This is equivalent to show
the factorisation of the 2-point function on the global level—a property sometimes called
mean field or propagation of chaos [18]—and we expect it to hold up to order O(N−2), from
the experience with 1D at β = 1, 2, 4 [6,40].

Let us turn to the large-N behaviour of (1) in the high temperature regimeβ → 0. It is clear
that this regime implies weaker correlations among particles. In the extreme case β ≡ 0, the
particles become independent from each other, their k-point correlation functions trivially
factorise and become proportional to

∏k
j=1 e

−Q(ζ j ), normalised with respect to the area
measure. Our main purpose in this paper is to investigate the crossover phenomenon between
fixed and vanishing β. For instance, in the case of a Gaussian potential Q(ζ ) = |ζ |2, we
study the smooth interpolation between Ginibre’s circular law and the Gaussian distribution.
The possibility of such a crossover regimewas alreadymentioned in [13]. The precise scaling
we have to impose in (1) is to set

m = 1 and β = 2c

N
for fixed c ∈ (−2,∞). (7)

Here, c is kept fixed when N → ∞, and we can allow for a weakly attracting interaction
with negative c as well. The same scaling (7) was found on the real line in one dimension
[5], with fixed c ∈ (−1,∞).

On the other hand, for the more standard scaling

m = β

2
N , (8)

Chafaï, Hardy and Maïda showed on a non optimal scale, using concentration of measure in
Wasserstein distance, that if β is bigger than β0 log N/N for some constant β0, there is no
such crossover phenomenon, and the limiting global density follows from (15) below, see
[20]. We expect from the saddle point method that as long as 1/m = o(1) this remains true.
In the following we will keep β fixed when taking the scaling limit (8).

In Sect. 3, we will heuristically calculate the free energy functional F[ρ] in terms of the
probability density function ρ, that is associated to the Gibbs measure (1). Here, we will
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The High Temperature Crossover 2D Coulomb Gases 1047

utilise the saddle point method in the large-N limit. In the high temperature regime (7) we
obtain the following formula

F ≡ Fc[ρ] =
∫

C

Q(ζ )ρ(ζ )d A(ζ ) − c
∫

C2
log |ζ − η|ρ(ζ )ρ(η)d A(ζ )d A(η)

+
∫

C

ρ(ζ ) log ρ(ζ )d A(ζ ).

(9)

While the first line can be easily seen to follow from the energy in (1), the second line is the
so-called entropy contribution. The saddle point condition

0 = δFc[ρ]
δρ(ζ )

= Q(ζ ) − 2c
∫

C

log |ζ − η|ρ(η)d A(η) + log ρ(ζ ) + 1 , (10)

is imposed in order to extremise the free energy. Whether it is a minimum or a maximum is
determined by a second functional derivative of Fc[ρ]. Equation (10) has the limiting density
ρc(ζ ) = limN→∞ 1

N RN ,1(ζ ) as its solution. Applying the Laplace operator Δ = ∂∂̄ to (10)
and using that its Green’s function is the logarithm, we obtain that the crossover density ρc
satisfies (11) below. This leads us to propose the following extension of [18, Theorem 6.1]
for a general potential.

Theorem 2 The limiting density function ρc minimises (resp., maximises) the free energy
functional Fc[ρ] given in (9) for c > 0 (resp., < 0), and solves the following mean field
equation:

0 = ΔQ(ζ ) − c ρc(ζ ) + Δ log ρc(ζ ). (11)

We wish to emphasise that we currently do not have a complete proof for this statement.
However, if the factorisation or mean field property of the 2-point correlation function (5)
holds, in the sense that for any continuous, bounded function f (ζ, ζ ′) on C

2,

lim
N→∞

1

N 2

∫

C2
f (ζ, ζ ′)RN ,2(ζ, ζ ′)d A(ζ )d A(ζ ′) =

∫

C2
f (ζ, ζ ′)ρc(ζ )ρc(ζ

′)d A(ζ )d A(ζ ′),

(12)

themean field equation (11) follows from (4) in Theorem 1. Namely, imposing the scaling (7)
on (4) and normalising the 1-point function RN ,1(ζ ) by 1

N , the anti-holomorphic derivative
∂̄ζ of the limit of (4) directly leads to (9), when neglecting the contribution from the limit of
BN in the sense of (12). For the minimising (maximising) property we only have heuristic
arguments.

Remark 1 For the choice of potential

Q(z) ≡ QN (z) := λ|z|2 + 1

2N
(ηz̄ + η̄z) , with fixed λ > 0, η ∈ C, (13)

the joint distribution (1) can be identified with the system of stationary states of N vortices
in the plane, cf [18]. In [18, Theorem 6.1] in the limit (7) (using different conventions for our
constant c) the free energy functional of vortices (9) was rigorously derived for potential (13).
The mean field equation (11) for this potential was proven, including the existence and the
minimising (maximising) property for c > 0(< 0) of its solution. The authors also showed
convergence towards the Dirac measure in the limit c ↓ −2, see [19].

We now compare the above free energy (9) and resulting mean field equation (11) to the
standard large-N scaling limit (8), which is well understood, see [52] for a recent review.
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1048 G. Akemann , S.-S. Byun

Here, only the first line in (9) will contribute in this limit, leading to the weighted-logarithmic
energy functional

F[ρ] =
∫

C

Q(ζ )ρ(ζ )d A(ζ ) −
∫

C2
log |ζ − η|ρ(ζ )ρ(η)d A(ζ )d A(η) , (14)

and under some regularity and growth assumptions on Q, the one particle distribution ρ

weakly converges toward the equilibrium measure minimising F[ρ], see e.g. [48,51]. More-
over, by standard logarithmic potential theory

0 = ΔQ(ζ ) − ρ(ζ ) (15)

is valid on the limiting support of the measure S which has to be compact and is called the
droplet. For Gaussian potential Q(z) = |z|2 for example, this gives the circular law, with a
constant density on the unit disc. Note that (15) also can be obtained from (14) by requiring
a saddle point condition as in (10). We emphasize that the standard choice of scaling (8)
makes the droplet and density ρ independent of the inverse temperature β. Notice that in our
derivation under the scaling (7) we do not make any assumption about the compactness of
the support, see also [18]. For the saddle point method in 1D using the resolvent see however
the discussion in Sect. 3.3.

We turn to the discussion of features of the solution of the mean field equation (11).
Defining ψc := log ρc, it is rewritten as follows

c eψc(ζ ) = ΔQ(ζ ) + Δψc(ζ ), (16)

which is a differential equation of generalised Liouville type. In case that ΔQ ≡ 0 would
hold, the Eq. (16) reduces to the standard Liouville equation whose explicit solutions are
well-known, see e.g., [23]. However, also in view of the result (15) in the standard scaling
limit, we cannot assume that ΔQ is small or even negligible in any sense. For that reason
we have been unable to provide an explicit solution for (11), or equivalently (16), even in
the Gaussian case. We are unaware of a deeper relation between Liouville’s equation and
Dyson’s Brownian motion in general in 2D. However, let us mention [25] where methods
fromGaussianmultiplicative chaos were utilised in the renormalisation of Liouville quantum
gravity.

Let us discuss now several special cases. For the choice of a radially symmetric potential
we can provide the asymptotic behaviour of the limiting density for large r = |z|. In this
case we can explicitly check the interpolating property of the solution to (11) in the limits
c → 0 and c � 1, as we will further exemplify for monic so-called Freud potentials, that are
a special case of Mittag–Leffler potentials named in [10]. In addition, we will present two
examples for a numerical solution of (11), for a Gaussian and quartic monic potential.

1.1 Radially Symmetric Potentials

Suppose that the external potential is radially symmetric, i.e., there exists a function f :
R+ → R satisfying

f (r) = f
(√

x2 + y2
)

:= Q(z), with z = x + iy. (17)

Let us denote the radial part of crossover density ρc by

gc(r) = gc
(√

x2 + y2
)

:= 1

π
ρc(z) . (18)
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Here, the factor 1/π comes from the fact that ρc(z) is a density function with respect to the
area measure. By definition, we have

∫ ∞

0
r gc(r)dr = 1

2π
(19)

for the normalisation. Notice that the 2D Laplace operator Δ acts on the radial density as

Δ = 1

4

(
∂2x + ∂2y

)
= 1

4

(
∂2r + 1

r
∂r

)
. (20)

Combining (11) and (20), we obtain following ordinary differential equation for the radial
crossover density:

4πc gc(r) = f ′′(r) + 1

r
f ′(r) + g′′

c (r)gc(r) − (
g′
c(r)

)2

gc(r)2
+ 1

r

g′
c(r)

gc(r)
, (21)

where we have put the density on the left-hand side. The asymptotic behaviour of gc for large
radii,

gc(r) = r2ce− f (r)+o(log r), as r → ∞ , (22)

can be easily seen. Multiplying (21) by r and integrating it using the normalisation (19), we
obtain

2c = [
r f ′(r) + r (log gc(r))

′]∞
0 , (23)

from which (22) follows. In fact the function r2ce− f (r) solves the “homogeneous” equation
(21), where the left-hand side is set to zero. However, due to the non-linearity of the equation,
the solution is not given by this “homogeneous” solution plus a special solution.

Example A particular realisation of a rotationally invariant potential is given by the mono-
mials, so-called Freud or Mittag–Leffler potentials (cf. [10])

Q(z) = 1

2
|z|2α, α ≥ 1. (24)

In this case we obtain for r times (21)

4πc r gc = 2α2r2α−1 + (
r (log gc)

′)′ . (25)

Note that for these homogeneous potentials, the different scalings of the ensemble (1), m =
βN/2 and m = 1, can be related by simple rescaling of the point particles. Therefore, by
(15), it is easy to calculate the radial density in the limit when c → ∞. As a result, the
extremal cases of the solutions of (11) including their normalisations are given by

gc(r) ∼

⎧
⎪⎪⎨

⎪⎪⎩

1

π 21/α Γ (1 + 1/α)
exp

(
−1

2
r2α

)
as c → 0;

α2

2πc
r2α−2 1[0,(2c/α)1/2α ] as c → ∞.

(26)

These are of course just special cases for gc(r) ∼ e− f (r) for c → 0 and gc(r) ∼ Δ f (r)1S

for c → ∞ on the corresponding droplet S.

We present now two examples for numerical solutions of (25) at specific values of c. In
Fig. 1 below the case α = 1 of a Gaussian and in Fig. 2 of a quartic potential with α = 2 are
shown. We obtain the numerical solutions not only for positive c but also for negative c. The
conjecture is that as c goes to its critical (negative) value −2, the ensemble collapses at the
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1050 G. Akemann , S.-S. Byun

Fig. 1 The numerical solution for our interpolating radial density gc(r) in 2D (full blue line) of our mean field
equation (25) is shown for the Gaussian potential Q(z) = |z|2/2, with parameter c decreasing from c = 200
to c = −1.9. What is also shown is the limiting circular law from (26) for large c (two top plots, dotted lines)
as well as the limiting Gaussian density (dashed orange lines) for c = 0. Note that the normalisation is with
respect to the radial measure 2π r in 2D, see (19). For that reason the area under the curves does not agree

origin, i.e., the one particle density converges towards a Dirac delta. While for α = 1 this is
known [19] we observe that a similar behaviour occurs for α = 2.

123
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Fig. 2 The same plots as in Figure 1 are shown for a quartic potential Q(z) = |z|4/2. Here, for large c the

limiting circular law is replaced by a parabola, and for c = 0 the Gaussian by e−r4/2, see (26). The approach
to the conjectured Dirac delta looks similar to the previous figure at c = −1.9

The remainder of this article is organised as follows. Section 2 is devoted to the proof of
Theorem 1 using Ward identities. In Sect. 3, we will introduce the saddle point method in a
heuristic way. In Sect. 3.1 the two different scalings (7) and (8) leading to the respective free
energies (9) and (14) will become evident. This leads to the different mean field equations

123



1052 G. Akemann , S.-S. Byun

Fig. 3 The plot displays the interpolating density ρc(λ) in 1D against λ ∈ R. It is illustrating the analytic result
(70) for a = 1

2 with parameter c decreasing from c = 10 to c = −0.9. The figure indicates the logarithmic
repulsion at the origin. For large c the density converges to the semi-circle and this repulsion only becomes
visible on a local scale. Here and below in Fig. 5 the normalisation constant of the density is determined
numerically. The convergence to the conjectured Dirac delta at c = −1 is also visible

Fig. 4 The same plot as in Fig. 3 for a = 0, reproducing the findings of [3]. It shows the progressive transition
from Wigner’s semi-circle (c = ∞) through the Gaussian distribution (c = 0) to the conjectured Dirac delta
(c = −1)

in 2D given above as shown in Sect. 3.2. In Sect. 3.3 in the 1D case we derive a mean field
equation for the resolvent for a general potential, slightly generalising [3].

For completeness we also illustrate the example in 1D for a Gaussian plus logarithmic
potential from Sect. 3.3

Va(x) = 1

2
x2 − a log |x | , a > −1 , (27)

in Figs. 3, 4 and 5. The associated resolvent equation can be solved, following [4] closely. The
resulting interpolating density ρc(λ) is then given by Kummer’s (confluent) hypergeometric
function, see (70), with special cases shown below.
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The High Temperature Crossover 2D Coulomb Gases 1053

Fig. 5 The same plot as in Fig. 3 for a = − 1
2 , representing a logarithmic attraction towards the origin

2 Ward Identities and Proof of Theorem 1

In this section, we discuss Ward identities for 2D Coulomb gases. They have been utilised
already to derive the equation for the density function (15) for 2D Coulomb gases, with
standard scaling (8), see [57] and [1, Chap. 39]. We adapt the proof presented in [8,9] to
derive the appropriate Ward identity for the 2D Coulomb gas distributed according to (1).
For an alternative proof using so-called integration by parts see also [10,11], and for the
general form of Ward identities we refer the reader to [42, Appendix 6]. The proof for the
Ward identities in 1D follows along the very same lines, leading the Eq. (4) without factor
1/2 on the left hand side, and we will not give further details here.

For a test function ψ ∈ C∞
0 (C) and ζ = (ζ1, . . . , ζN ), let us denote

IN [ψ](ζ ) = 1

4

N∑

j,k: j �=k

ψ(ζ j ) − ψ(ζk)

ζ j − ζk
,

IIN [ψ](ζ ) = m
N∑

j=1

∂Q(ζ j )ψ(ζ j ),

IIIN [ψ](ζ ) =
N∑

j=1

∂ψ(ζ j ),

(28)

and define Ward’s (stress energy) functional W+
N as

W+
N [ψ] = β IN [ψ] − IIN [ψ] + IIIN [ψ]. (29)

Fromnowon, wewriteEN for the expectationwith respect to (1).We first prove the following
form of Ward’s identity:

Lemma 1 For the definitions (28) and (29) the following expectation value holds:

ENW
+
N [ψ] = 0. (30)
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1054 G. Akemann , S.-S. Byun

Proof By definition, the partition function ZN is given as

ZN =
∫

CN
exp

⎡

⎣β

N∑

j>k=1

log |η j − ηk | − m
N∑

j=1

Q(η j )

⎤

⎦
N∏

j=1

d A(η j ).

For a fixed sequence ζ = (ζ1, . . . , ζN ) and a positive constant ε, let us denote

η := (η1, . . . , ηN ), η j := ζ j + ε

2
ψ(ζ j ). (31)

Then as ε → 0, we have

log |η j − ηk | = log |ζ j − ζk | + ε

2
Re

ψ(ζ j ) − ψ(ζk)

ζ j − ζk
+ O(ε2),

thus leading to

β

N∑

j>k=1

log |η j − ηk | = β

N∑

j>k=1

log |ζ j − ζk | + εβ Re
[
IN [ψ](ζ )

]
+ O(ε2).

Since we assume that Q is C2-smooth, we have

m
N∑

j=1

Q(η j ) = m
N∑

j=1

Q(ζ j ) + εRe
[
IIN [ψ](ζ )

]
+ O(ε2).

Note that due to the fact that the Jacobian of (31) is given as

d A(η j ) =
(∣∣∣1 + ε

2
∂ψ(ζ j )

∣∣∣
2 −

∣∣∣
ε

2
∂̄ψ(ζ j )

∣∣∣
2
)
d A(ζ j )

=
(
1 + εRe ∂ψ(ζ j ) + O(ε2)

)
d A(ζ j ),

we have
N∏

j=1

d A(η j ) =
(
1 + εRe

[
IIIN [ψ](ζ )

]
+ O(ε2)

) N∏

j=1

d A(ζ j ).

Combining all the above equations, we obtain

ZN =
∫

Cn

N∏

j>k=1

|ζ j − ζk |βe−m
∑N

j=1 Q(ζ j )
(
1 + εRe

[
W+

N [ψ](ζ )
] + O(ε2)

) N∏

j=1

d A(ζ j ).

Observe that since the partition function ZN does not depend on ε, the coefficient of ε in the
right-hand side of above identity is zero, i.e., ReENW

+
N [ψ] = 0. Now (30) follows by the

same argument with iψ . �
Next we prove Theorem 1 equation (4) using the previous Lemma 1 equation (30).

Proof Suppose that the point ζ ∈ C. Recall that RN ,k is the k-point correlation function (2)
for the 2D Coulomb gas given by (1). Let ψ ∈ C∞

0 (C) be an arbitrary test function. By
definition, we have
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EN IN [ψ] = 1

4

∫

C2

ψ(ζ ) − ψ(η)

ζ − η
RN ,2(ζ, η)d A(ζ )d A(η)

= 1

2

∫

C

ψ(ζ )

∫

C

RN ,2(ζ, η)

ζ − η
d A(η)d A(ζ ),

EN IIN [ψ] = m
∫

C

ψ(ζ )∂Q(ζ )RN ,1(ζ )d A(ζ ),

EN IIIN [ψ] =
∫

C

∂ψ(ζ )RN ,1(ζ )d A(ζ ) = −
∫

C

ψ(ζ )∂RN ,1(ζ )d A(ζ ).

Therefore (30) is rewritten as

β

2

∫

C

ψ(ζ )

(∫

C

RN ,2(ζ, η)

ζ − η
d A(η)

)
d A(ζ ) =

∫

C

ψ(ζ )
(
m∂Q(ζ )RN ,1(ζ ) + ∂RN ,1(ζ )

)
d A(ζ ).

Since ψ is an arbitrary test function, (4) follows. �

3 The Saddle Point Method in 2D and 1D

In this section our approach will be more heuristic. First, we will calculate the free energy
functional FN [ρN ] for large but finite N , both for the 1D and 2D case together. In this way
it will become clear, how the respective dimension d = 1, 2 enters. Furthermore, we will
see how imposing the different scaling limits (7) and (8) leads to different limiting free
energies (9) and (14), respectively, that arise from a different order in N . Only after imposing
the saddle point condition upon the limiting free energy functionals, we have to specify the
dimension d . In 2D (d = 2) we can use the Laplace operator to directly obtain an equation for
the limiting density. In contrast, in 1D (d = 1) we have to first pass over to the resolventG(z)
or Stieltjes transform of the limiting density, to find a closed form equation that determines
it, and then finally obtain the limiting density by taking the discontinuity along its support.
We refer the reader to [45, Chaps. 4, 5] for the general concepts of the saddle point method
in 1D and to [57] in 2D.

3.1 The Free Energy in 2D and 1D

We begin by writing down the partition function for the Gibbs measures (1) for 2D and for
1D in a unified way,

ZN =
∫ N∏

j>k=1

|ζ j − ζk |βe−m
∑N

j=1 Q(ζ j )
N∏

j=1

dμd(ζ j ). (32)

Here, for d = 2 we integrate over C
N and dμ2 = d A is the area measure, that is the 2D

Lebesgue measure over π , whereas for d = 1 we integrate over R
N and dμ1(ζ ) = dζ is the

flat Lebesgue measure in 1D. Clearly, the integrand can be written as the exponential of the
following energy function EN [ζ ]

EN [ζ ] := m
N∑

j=1

Q(ζ j ) − β

N∑

j>k=1

log |ζ j − ζk | . (33)
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Our first goal is to change variables from the particle positions ζ j=1,...,N to the normalised
one-point counting function ρN (z) from (3)

ρN (z) = 1

N

N∑

j=1

δ(d)(z − ζ j ) , (34)

such that we can write

ZN =
∫

exp[−EN [ρN ]]JN [ρN ]D[ρN ] =
∫

exp[−FN [ρN ]]D[ρN ]. (35)

Here, FN [ρN ] is the free energy functional for large but finite N we seek for, D[ρN ] is the
integration over the counting measure, and JN [ρN ] is the Jacobian that formally reads

JN [ρN ] =
∫

δ

⎛

⎝ρN (z) − 1

N

N∑

j=1

δ(d)(z − ζ j )

⎞

⎠
N∏

k=1

dμd(ζk) . (36)

Its contribution to the free energy is called entropy. By standard thermodynamic arguments the
ensemble will converge towards to the limiting density (equilibriummeasure) that minimises
or maximises the free energy, depending on the sign of β.

We begin by expressing the energy (33) in terms of the counting function (34). For the
first term we simply have

m
N∑

j=1

Q(ζ j ) = N
∫

ρN (z)Q(z)dμd(z) .

For the second term in (33) we can write, after symmetrising,

−β

2

N∑

j,k: j �=k

log |ζ j − ζk | = − N 2 β

2

∫
ρN (z)ρN (z′) log |z − z′|dμd(z)dμd(z

′)

+ N
β

2

∫
ρN (z) log �(z)dμd(z).

Because the sum does not contain points at equal argument we have to subtract the diag-
onal contribution which is divergent. As we are only interested in the density on a global,
macroscopic scale which is much larger than the mean particle distance, we have introduced
a short-distance cut-off �(z) which may be position-dependent. This term is also called self-
energy, and because the mean particle distance depends on the dimension d , in the bulk of
the spectrum we have for large N

�(z) �
(

1

NρN (z)

)1/d

, with d = 1, 2 , (37)

see e.g., [45] for d = 1 and [57, Sect. 2] for d = 2. Clearly this argument is not rigorous.
The last ingredient we miss is the Jacobian (36) which for large-N follows from Sanov’s
Theorem, cf. [17,26]:

JN [ρN ] = exp

[
−N

∫
ρN (z) log ρN (z)dμd(z) − N log N + γd N + o(N )

]
. (38)

Here, γd is some constant, see [57, Eq. (2.15)] for d = 2, which is apparently unknown for
d = 1 [45]. Collecting all contributions we obtain the following result for the free energy
functional at large-N :
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FN [ρN ] ≈ mN
∫

Q(z)ρN (z)dμd(z) − β

2
N 2

∫
ρN (z)ρN (z′) log |z − z′|dμd(z)dμd(z

′)

+ N

2d
(2d − β)

∫
ρN (z) log ρN (z)dμd(z) + Cd

(∫
ρN (z)dμd(z) − 1

)
.

(39)

We have added a term that ensures the correct normalisation of the density, and the constant
Cd is called Lagrange multiplier. For simplicity we have suppressed all other constants and
o(N ) terms here, as they will not play any rôle later.

Notice that for β = 2 in d = 1 and for β = 4 in d = 2 the term in the second line of
(39) is absent, see e.g. [6,40,57], respectively. For these particular values of β the free energy
(and the resolvent to be defined later) can be recursively expanded in powers of 1/N 2 also
called genus expansion, whereas the expansion is in powers of 1/N in all other cases. For
recent mathematical work in 1D and 2D see [14] and [34,43], respectively.

Let us now discuss the two different scaling large-N limits (7) and (8) of the free energy
(39), starting with the more standard limit (8).

(i) First, let m = βN/2 and β = O(1) be fixed according to (8) which is the standard
scaling limit for β-ensembles. Then the leading contribution of the free energy (39) is of
order N 2 (from the first line) and results from the contribution of the energy terms only.
Assuming that the Lagrange multiplier Cd is of order unity we obtain

F[ρ] = lim
N→∞

2FN [ρN ]
βN 2

=
∫

Q(ζ )ρ(ζ )dμd(ζ ) −
∫

log |ζ − η|ρ(ζ )ρ(η)dμd(ζ )dμd(η) .

It agreeswith the functional (14). The equation determining the densityρ∗, thatminimises
the free energy, is given by the saddle point equation, a necessary condition to have an
extremum.We therefore require the functional derivative of F to vanish at the equilibrium
density ρ∗:

0 = δF(ρ)

δρ(ζ )

∣∣∣
ρ=ρ∗

= Q(ζ ) − 2
∫

log |ζ − η| ρ∗(η) dμd(η) , (40)

the compactly supported Frostman equilibrium measure. From a heuristic point of view
we can easily see that thisminimises the free energy. Taking a second functional derivative
that we regularise by choosing ξ slightly away from ζ , we have

δ2F(ρ)

δρ(ζ )δρ(ξ)

∣∣∣
ρ=ρ∗

= −2 log |ζ − ξ | > 0 , (41)

which is clearly positive and thus is a minimum, as for ξ ≈ ζ the logarithm becomes
negative. We refer to standard literature [51] for a rigorous derivation of the solution of
(40). For the relation to a Coulomb gas in d = 1, 2 we also refer to [41] and [38,48],
respectively.

(ii) Second, letm = 1 and β = 2c/N for some c ∈ (−d,∞)which agrees with our proposed
scaling (7) for d = 2, and with [3] for d = 1. In this case we have that both energy and
entropy contribute, and the leading order in (39) is now rather N . Therefore we obtain
instead
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Fc[ρ] = lim
N→∞

FN [ρN ]
N

=
∫

Q(ζ )ρ(ζ )dμd(ζ ) − c
∫

log |ζ − η|ρ(ζ )ρ(η)dμd(ζ )dμd(η)

+
∫

ρ(ζ ) log ρ(ζ )dμd(ζ ) ,

which agrees with the free energy claimed in (9). Here, the corresponding saddle point
equation reads

0 = δFc(ρ)

δρ

∣∣∣
ρ=ρc

= Q(ζ ) − 2c
∫

log |ζ − η| ρc(η) dμd(η) + log ρc(ζ ) + 1. (42)

The second functional derivative that decides whether we have aminimum or amaximum
leads to

δ2Fc(ρ)

δρ(ζ )δρ(ξ)

∣∣∣
ρ=ρc

= −2c log |ζ − ξ | + δ(d)(ζ − ξ)

ρc(ζ )
. (43)

Due to our regularisation ξ ≈ ζ the logarithm becomes negative and, ignoring the
second term at this scale, we obtain a minimum for c > 0 and a maximum for c < 0.
This statement has been made rigorous for the Gaussian plus linear potential for d = 2
in [18]. For c = 0 we do not have an extremum, and the solution of (42) for c = 0 leads
to ρc=0(ζ ) ∼ exp[−Q(ζ )], as is expected for non-interacting particles.

Let us also comment on the phenomenon of negative values of c and on the existence of a
lower bound, both for 2D and 1D. Because a negative value of c corresponds to a (weakly)
attractive Coulomb interaction, it is not surprising that at some critical value the eigenvalues
all collapse to the origin, the minimum of the potential Q, as illustrated in Sect. 1, cf. [3] for
a discussion of 1D. A more quantitative analysis of the partition function ZN in 2D shows
that it diverges at c = −2. Namely, integrating (1) over N complex variables ζ j = x j + iy j
can be written as a single integral over the 2N -dimensional vector R = (x1, y1, . . . , xN , yN )

of length |R|2 = ∑N
j=1 |ζ j |2. Choosing polar coordinates for R and extracting powers of

radius |R| from the Vandermonde determinant, it is easy to see that the radial integral ceases
to exist at the origin for sufficiently large N when the exponent in |R|N (c+2)−(c+1) becomes
too negative, that is at c = −2. A similar calculation in 1D yields a critical value c = −1
there.

3.2 Saddle Point Equation for the Density in 2D

If we want to transform the saddle point equation into a closed differential equation for ρc
we have to distinguish now the cases d = 1 and d = 2. While d = 1 is considerably more
complicated, passing through the resolvent as explained in the next subsection, d = 2 is in
principle very simple. This is due to the fact that the Laplacian acting on the logarithm gives
a Dirac delta, which in our convention (20) reads Δ log |z| = π

2 δ(2)(z). In the limit (i) above
we thus obtain from (40) that

ΔQ(ζ ) − ρ∗(ζ ) = 0 , (44)

which holds on the limiting support that has to be compact, the droplet, as claimed in (15).
For the limit (ii) from (42) we get

ΔQ(ζ ) − c ρc(ζ ) + Δ log ρc(ζ ) = 0 , (45)
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which is supported a priori on the entire complex plane. This is the mean field equation
(11). As already explained in the introduction we have been unable to solve this equation
analytically. We refer again to the numerical solution for two examples presented there for
radially symmetric potentials, to which we turn now.

For simplicity, we focus on the potentials Q(z) = |z|2α/2, where α ≥ 1. Recall that the
radial part gc(|z|) := ρc(z)/π of the crossover density satisfies

4πc r gc(r) = 2α2r2α−1 + (
r (log gc(r))

′)′ . (46)

Based on this it is not difficult to see the asymptotic behaviour in c for c → ∞ and c → 0
as quoted in (26). Namely, for c → ∞ in order to get a finite answer on left- and right-hand
side we need that gc(r) ∼ 1/c. Neglecting the last term in (46), which self-consistently leads
from (45) to (44), we are lead to

gc(r) ∼ α2

2πc
r2α−2 .

The limiting support on a disc of radius b simply follows by imposing the normalisation
condition

1

2π
=
∫ b

0
drrgc(r) = α

4πc
b2α ,

which leads to b = (2c/α)1/(2α) as claimed in (26).
For c → 0 we then obtain gc(r) ∼ k exp[−r2α/2] and we simply have to compute the

normalisation constant k from

1

2π
=
∫ ∞

0
dr r k exp(−r2α/2) = k2

1
α
−1Γ (1 + 1/α) ,

this time supported on the entire plane. This implies k = 1/(π21/αΓ (1 + 1/α)) as claimed
in (26). Of course, the statement gc(r) ∼ k exp[−Q(r)] holds for more general radially
symmetric potentials in the limit c → 0, with the difficulty to determine the normalisation
constant k for a given Q.

When stating our main results we have derived already the asymptotic behaviour (22) for
radially symmetric potentials for large radii r → ∞. Let us add a few remarks here about
a possible expansion for small r . Assuming that gc(0) �= 0, which will be true for c not too
large, let us denote

gc(r) : = gc(0) exp

⎛

⎝
∞∑

j=1

a j r
2 j

⎞

⎠ , (47)

in order to obtain an expansion for small r . By inserting the above expression in (46) and
comparing the coefficients, one can iteratively express the a j through gc(0), thus leading to

a1 =
{

πcgc(0) − 1
2 if α = 1

πcgc(0) if α = 2
,

a2 =
{

1
4 (πcgc(0))

2 − 1
8πcgc(0) if α = 1

1
4 (πcgc(0))

2 − 1
2 if α = 2

.

(48)

We can immediately compare this to what we have obtained in the previous paragraph for
c → 0, where we found gc=0(0) = 1/(π21/αΓ (1+ 1/α)). Therefore cgc=0(0) is vanishing
in the limit c → 0 and we have
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gc(r) =
{
gc(0)

(
1 − 1

2r
2 + O(r6)

)
if α = 1

gc(0)
(
1 − 1

2r
4 + O(r6)

)
if α = 2

, (49)

which agrees with gc=0(r) = gc=0(0) exp(−r2α/2). In fact it is not difficult to see that for
c → 0 all other coefficients vanish and a j = − 1

2 δ j,α . For c → ∞ the assumption gc(0) �= 0
breaks down unless α = 1, where we obtain gc(0) ∼ 1

2πc .
This ends our short survey on the asymptotic behaviour of the solution of (46) in c and

radius r for α = 1, 2.

3.3 Saddle Point Equation for the Density in 1D

Wewill now discuss the saddle point equation in 1D where we will focus on the second limit
(ii) above, using (42). It turns out that in order to determine the solution for the density it
is more convenient to pass through the resolvent to be defined in (51) below, and we will
illustrate this through an example.

Denoting the particle positions by λ ∈ R (instead of ζ ), the real potential Q by V , and
writing ρc for the limiting density function on R, we may differentiate (42) with respect to
λ:

0 = V ′(λ) − 2c Pr
∫

R

ρc(λ
′)

λ − λ′ dλ′ +
(
log ρc(λ)

)′
. (50)

Here, we have to take the principal value (Pr) of the real integral. Let us denote by Gc(z) the
Stieltjes transformation (or resolvent) of the limiting density ρc. It is given as

Gc(z) :=
∫

R

ρc(λ)

λ − z
dλ, z ∈ C \ R. (51)

From the normalisation of the density we can see that at large argument it behaves asGc(z) ∼
− 1

z . Our next goal is to derive a closed formequation for the resolvent. To that aimwemultiply
equation (50) by ρc(λ)/(λ − z) and integrate over the real line, to obtain

0 =
∫

R

V ′(λ)ρc(λ)

λ − z
dλ − 2c Pr

∫

R2

ρc(λ)

λ − z

ρc(λ
′)

λ − λ′ dλ′dλ +
∫

R

ρ′
c(λ)

λ − z
dλ. (52)

The last term can be most easily rewritten, after using integration by parts:
∫

R

ρ′
c(λ)

λ − z
dλ = Gc

′(z). (53)

For the second term with the double integral we use the identity

1

λ − z

1

λ − λ′ = −
(

1

λ − z
− 1

λ − λ′

)
1

λ′ − z
,

to observe that

Pr
∫

R2

ρc(λ)

λ − z

ρc(λ
′)

λ − λ′ dλ′dλ = −
(∫

R

ρc(λ)

λ − z
dλ

)2

+ Pr
∫

R2

ρc(λ)

λ − λ′
ρc(λ

′)
λ′ − z

dλ′dλ,

after dropping the principal value in the first term on the right-hand side. Observing that both
integrals agree after a change of variables, we thus obtain

Pr
∫

R2

ρc(λ)

λ − z

ρc(λ
′)

λ − λ′ dλ′dλ = −1

2
G2

c(z). (54)
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For the remaining first term in (52) we have to make a further approximation. In the
standard scaling limit (8) for particles on R the limiting density has compact support, for
sufficiently confining potentials. Then, one can easily define a contour in the complex plane
that encircles the support, but not the point z ∈ C \ R. In our case only for large c we
know that the limiting support localises on the semi-circle or its generalisation. But also for
small c the density typically decreases exponentially for large arguments, e.g. for the class of
Freud potentials. We therefore assume that we may truncate the integral on a large interval J ,
making an exponentially small error. At the end of the calculation we can then take the limit
J → R. Note that we can allow V ′ to have poles on the real line, as in one of our examples
below, but not to have a cut that extends to infinity.

Let us therefore define a contour CJ that encircles J in counter-clockwise fashion and
does not contain the point z ∈ C \ R. We can then use the residue theorem to arrive at

∫

R

V ′(λ)ρc(λ)

λ − z
dλ ≈

∫

J
ρc(λ)

∮

CJ

1

w − λ

V ′(w)

w − z

dw

2π i
dλ

=
∮

CJ

Gc(w)
V ′(w)

w − z

dw

2π i

=
∮

∞
Gc(w)V ′(w)

w − z

dw

2π i
+ Gc(z)V

′(z) .

(55)

In the second step we have interchanged integrations, to obtain an expression depending
only on the resolvent. In the last step we have pulled the contour to infinity, picking up the
contribution from the pole at z. Here nothing depends any more on the regularising integral
J . Combining all the above Eqs. (53), (54) and (55) we obtain the following closed form
equation, assuming that our prescribed cut-off procedure can be made rigorous:

0 =
∮

∞
Gc(w)V ′(w)

w − z

dw

2π i
+ Gc(z)V

′(z) + c G2
c(z) + Gc

′(z). (56)

The remaining contribution at infinity is not easily evaluated for a general potential V . In the
standard limit (8) at fixed β an ansatz can be made for the compact support to consist of a
finite union of intervals.

Example 1 Here, we consider the Gaussian potential VG(w) = w2/2, cf. [3]. In that case we
may exploit the behaviour of the resolvent (51) at infinity, Gc(w) ∼ −1/w, to evaluate the
contour integral in (56) at infinity to give unity. We thus have

0 = 1 + Gc(z)z + c G2
c(z) + Gc

′(z) . (57)

which agrees with the equation found in [3]. There, the derivation of (57) could be made
rigorous using [50]. In [3] this equation was solved for the density ρc by taking the disconti-
nuity of Gc along the real line, see (69) below. We will illustrate this procedure with a more
general example below. Consequently, the authors of [3] found the following explicit formula
for the crossover density ρc, expressed in terms of the parabolic cylinder function D:

ρc(λ) = 1√
2π Γ (1 + c)

|D−c(iλ)|−2. (58)

Example 2 We now slightly extend the previous example by considering a Gaussian potential
with an additional logarithmic singularity. A similar case was considered on R+ in [4]. For
any real parameter a > −1, let us consider the potential

Va(x) = 1

2
x2 − a log |x | . (59)
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The contour integral in (56) at infinity can be solved as in the previous example, as the pole
of V ′

a does not contribute there. Therefore, the resolvent Gc,a satisfies the following Riccati
type equation

0 = 1 + Gc,a(z)

(
z − a

z

)
+ c G2

c,a(z) + Gc,a
′(z) . (60)

Let us denote

Gc,a(z) =: 1
c

(
log u(z)

)′
. (61)

Then, the ODE (60) can be rewritten in terms of the new function u(z) as

0 = cu(z) + (z − a/z)u′(z) + u′′(z) . (62)

A further change of variables to w = −z2/2, with u(z) =: f (−z2/2 = w), casts this into
the form of Kummer’s differential equation

w f ′′(w) +
(
1 − a

2
− w

)
f ′(w) − c

2
f (w) = 0. (63)

Moreover, since Gc,a(z) ∼ −1/z near infinity, we have u(z) ∼ |z|c and thus
f (w) ∼ |w|−c/2, |w| → ∞ . (64)

It is well-known that the solution of (63) satisfying (64) is uniquely determined (up to a
multiplicative constant) and reads

f (w) = U

(
c

2
,
1 − a

2
, w

)
, (65)

see e.g., [47, p. 322]. Here,U is Kummer’s (confluent) hypergeometric function given as the
analytic continuation of the integral representation

U (α, γ, z) = 1

Γ (α)

∫ ∞

0
e−zt tα−1(1 + t)γ−α−1dt, (Re α > 0). (66)

Now let us introduce

y(z) := ez
2/4z−a/2u(z), (67)

which, upon using (62), leads to

y′′(z) +
[
c − 1

2
+ a

2
− 1

4
z2 −

(
a2

4
+ a

2

)
1

z2

]
y(z) = 0. (68)

By the inversion formula, the crossover density ρc,a(λ) is given as

ρc,a(λ) = 1

π
lim
ε→0

Im
[
G(λ − iε)

]

= 1

cπ

1

|y(λ)|2
(
Im[y′(λ)]Re[y(λ)] − Im[y(λ)]Re[y′(λ)]

)
,

(69)

for λ ∈ R. Observe here that by (68), the term (Imy′ Rey − Imy Rey′) is constant along the
real line, having a vanishing derivative. Therefore, by (65), we finally conclude that

ρc,a(λ) = 1

Z(c, a)
e− 1

2 λ2+a log |λ|
∣∣∣∣U

(
c

2
,
1 − a

2
,−λ2

2

)∣∣∣∣
−2

, (70)
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where Z(c, a) is a normalisation constant. This is the solution for the crossover density
for the potential (59). Unfortunately we have been unable to determine the normalisation
analytically for general parameter values a and c, except for c = 0 or a = 0 as shown
below. For that reason, in the plots presented at the end of Sect. 1 the normalisation has been
computed numerically.

In the particular case c = 0 we observe that

U (0, γ, z) ≡ 1, (71)

see [47, p. 327]. Therefore, we obtain the expected extremal case that

ρ0,a(λ) = 1

2(1+a)/2 Γ ( 1+a
2 )

e− 1
2 λ2+a log |λ|, (72)

with the density being proportional to e−V . On the other hand, if a = 0, we can recover the
density in [3], due to the identity (see e.g., [47, p. 328])

D−c(i z) = 2−c/2 ez
2/4U

(
c

2
,
1

2
,− z2

2

)
. (73)

In Sect. 1 in Fig. 3 (resp., Fig. 5) we show an example for the crossover density (70)
with a = 1/2 (resp., a = −1/2). For comparison in Fig. 4 the known case a = 0 from [3],
interpolating between Gauss’ and Wigner’s semi-circular distribution, is also given.
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