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Abstract
The Koopman operator induced by a dynamical system is inherently linear and provides an
alternate method of studying many properties of the system, including attractor reconstruc-
tion and forecasting. Koopman eigenfunctions represent the non-mixing component of the
dynamics. They factor the dynamics, which can be chaotic, into quasiperiodic rotations on
tori. Here, we describe a method through which these eigenfunctions can be obtained from
a kernel integral operator, which also annihilates the continuous spectrum. We show that
incorporating a large number of delay coordinates in constructing the kernel of that operator
results, in the limit of infinitely many delays, in the creation of a map into the point spec-
trum subspace of the Koopman operator. This enables efficient approximation of Koopman
eigenfunctions in systems with pure point or mixed spectra. We illustrate our results with
applications to product dynamical systems with mixed spectra.

Keywords Koopman operators · Delay-coordinate maps · Point spectrum · Koopman
eigenfunctions · Kernel methods · Galerkin approximation

Mathematics Subject Classification 37A10 · 37E99 · 37G30

1 Introduction

The tasks of dimension reduction and forecasting of time series are very common in physical
and engineering sciences, where the time-series studied are often partial observations of a
nonlinear dynamical system. A classical example of such time series is data collected from
the Earth’s climate system, where many of the active degrees of freedom are difficult to
access via direct observations (e.g., subsurface ocean circulation). Moreover, the available
observations typically mix together different physical processes operating on a wide range of
spatial and temporal scales. For instance, in the climate system, the seasonal cycle and the El
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Niño Southern Oscillation (the latter, evolving on interannual timescales) both have strong
associated signals in sea surface temperature [63]. In such applications, identifying dynam-
ically important, coherent patterns of variability from the data can enhance our scientific
understanding and predictive capabilities of complex phenomena.

Ergodic theory, and in particular its operator-theoretic formulation [15,23], provides a
natural framework to address these objectives. In this framework, the focus is on the action
of the dynamical system on spaces of observables (functions of the state), as opposed to the
dynamical flow itself. The advantage of this approach, first realized in the seminal work of
Koopman [37], is that the action of a general dynamical system on spaces of observables
is always linear. As a result, with appropriate regularity assumptions, the problem of iden-
tification and prediction of dynamically intrinsic coherent patterns can be formulated as an
estimation problem for the spectrum of a linear evolution operator. In addition, for systems
exhibiting ergodic behavior, spectral quantities such as eigenvalues and eigenfunctions can
be statistically estimated from time-ordered data without prior knowledge of the state space
geometry or the equations of motion. However, at the same time, spaces of observables are
also infinite dimensional, so the issue of finite-dimensional approximation of (potentially
unbounded) operators becomes relevant.

Starting from the techniques proposed in [22,47,48], the operator-theoretic approach to
ergodic theory has stimulated the development of a broad range of techniques for data-
driven modeling of dynamical systems. These methods employ either the Koopman or the
Perron–Frobenius (transfer) operators, which are duals to one another in appropriate function
spaces. The goal common to these techniques is to approximate spectral quantities for the
operator in question, such as eigenvalues, eigenfunctions, and spectral projections, from
measured values of observables along orbits of the dynamics. To that end, a diverse range
of approaches has been employed, including state space partitions [21,22,22,27], harmonic
averaging [20,47,48], iterative methods [51,53], dictionary/basis representations [30,34,38,
59,64], delay-coordinate embeddings [3,14,30,34], and spectral-moment estimation [39].

Compared to observables identified by spectral analysis of kernel integral operators that
do not depend on the dynamics (e.g., covariance [4,36] or heat operators [6,10,16], the latter
of which have been popular in manifold learning applications), eigenfunctions of evolution
operators are likely to offer higher physical interpretability and predictability, as they are
determined from an operator intrinsic to the dynamical system. In particular, one of the key
properties of Koopman or Perron–Frobenius eigenfunctions for measure-preserving, ergodic
dynamical systems is that they evolve periodically and with a single frequency (even if the
underlying dynamical system is aperiodic), and thus have high predictability. This and a
number of other attractive properties motivate the identification of such eigenfunctions from
data.

Yet, for systems of sufficient complexity, Koopman and Perron–Frobenius operators have
significantly more complicated spectral behavior than kernel integral operators, generally
exhibiting a continuous spectral component and/or non-isolated eigenvalues, which presents
challenges to the construction of data-driven approximation techniques with spectral conver-
gence guarantees. Indeed, to our knowledge, spectral convergence results for the data-driven
approximation of Koopman eigenvalues and eigenfunctions have been limited to special
cases such as quasiperiodic rotations on tori [30], or systems observed through measurement
functions lying in finite-dimensional invariant subspaces [3].

The main contribution of our work is the construction of a data-driven approximation
scheme for Koopman eigenvalues and eigenfunctions that provably converges for a broad
class of ergodic dynamical systems and observation maps, encompassing many of the appli-
cations encountered in the physical and engineering sciences. Our approach is based on a
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combination of ideas from delay-coordinate maps of dynamical systems [52], kernel inte-
gral operators for machine learning [6,8,10,16,62], and Galerkin approximation techniques
for variational eigenvalue problems [5]. Using these tools, we will construct a compact ker-
nel integral operator that commutes with the Koopman operator in an asymptotic limit of
infinitely many delays, and employ the finite-dimensional common eigenspaces of these
operators as Galerkin approximation spaces for the Koopman eigenvalue problem. It will be
shown that orthonormal bases of these spaces can be stably and efficiently approximated from
finitely many measurements taken near the attractor, and the resulting data-driven Galerkin
schemes converge in the asymptotic limit of large data. We will demonstrate our results with
applications to low-dimensional, mixed-spectrum systems, with the structure of a product of
a circle rotation and a mixing system.

2 Assumptions and Statement of Main Results

A common underlying assumption in the statistical modeling of dynamical systems is ergod-
icity. This assumption encapsulates the working principle that the global statistical properties
(with respect to an invariant measureμ) of an observable F can be obtained from a time series
for F , namely, F(x0), . . . , F(xN−1), where x0, . . . , xN−1 is an unobserved trajectory on the
state space of the dynamical system. Moreover, ergodicity implies that L2(μ) inner products
between observables can be approximated by time-correlations. Also, our methods rely on
integral operators, and these can be approximated as matrices under the ergodic hypothesis.
We now make our assumptions more precise.

Assumption 1 Let M be a metric space, equipped with its Borel σ -algebra. Φ t : M → M ,
t ∈ R, is a continuous flow on M with an ergodic, invariant, Borel probability measure
μ with a compact support X not equal to a single point. F : M → R

d is a continuous
measurement function through which we collect a time-ordered data set consisting of N
samples F(x0), F(x1), . . . , F(xN−1), each F(xn) lying in d-dimensional data space. Here,
xn = Φn Δt (x0), and Δt is a fixed sampling interval such that the map ΦΔt is ergodic for the
invariant measure μ.

The Koopman operator Central to all our following discussions will be the concept of the
Koopman operator. Koopman operators [15,23,49] act on observables by composition with
the flow map, i.e., by time shifts. The space L2(X , μ) of square-integrable, complex-valued
functions on X will be our space of observables. Given an observable f ∈ L2(X , μ) and
time t ∈ R, Ut : L2(X , μ) → L2(X , μ) is the operator defined as

(Ut f ) : x �→ f
(
Φ t (x)

)
, for μ-a.e. x ∈ X .

Ut is called the Koopman operator at time t associated with the flow. For measure-preserving
systems,Ut is unitary, and has a well-defined spectral expansion consisting in general of both
point and continuous parts lying in the unit circle [47]. The problems of mode decomposi-
tion and non-parametric prediction can both be stated in terms of the Koopman operator
[30]. We will now describe an important tool for studying Koopman operators, namely their
eigenfunctions.

Koopman eigenfunctions Every eigenfunction z of Ut satisfies the following equation for
some ω ∈ R:

Ut z = exp(iωt)z. (1)
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Koopman eigenfunctions are particularly useful for prediction and dimension reduction in
dynamical systems. This is because, as seen in (1), the knowledge of an eigenfunction z at
time t = 0 enables accurate predictions of z up to any time t , since Ut operates on z as
a multiplication operator by a time-periodic, single-frequency multiplication factor. More-
over, it is possible to construct a dimension reduction map, sending the high-dimensional
data F(x) ∈ R

d to the vector (z1(x), . . . , zl(x)) ∈ C
l , where l � d , and the z1, . . . , zl are

Koopman eigenfunctions corresponding to rationally independent frequencies ω1, . . . , ωl

[30,34,47]. In this representation, the z j can be thought of as “coordinates” correspond-
ing to distinct periodic processes operating at the timescales 2π/ω j . Also of interest (and
in some cases easier to compute) are the projections of the observation map F onto the
Koopman eigenfunctions, called Koopman modes [47]. Data-driven techniques for com-
puting Koopman eigenvalues, eigenfunctions, and modes that have been explored in the
past include methods based on generalized Laplace analysis [47,48], dynamic mode decom-
position (DMD) [51,53,54,59], extended DMD (EDMD) [38,64], Hankel matrix analysis
[3,14,59], spectral moment estimation [39], and data-driven Galerkin methods [30,31,34].
The latter approach, as well as the related work in [12], additionally address the problem of
nonparametric prediction of observables and probability densities.

Let D be the closed subspace of L2(X , μ) spanned by the eigenfunctions of Ut , and D⊥
its orthogonal complement. As is well known [35], and will be discussed in more detail
in Sect. 3, the subspaces D and D⊥ represent the quasiperiodic and weak-mixing (chaotic)
components of the dynamics, respectively. Moreover, they are both invariant under Ut for
every time t ∈ R, thus inducing an invariant splitting [47]

L2(X , μ) = D ⊕D⊥. (2)

Systems for which D contains non-constant functions and D⊥ is non-zero are called mixed-
spectrum systems.

Kernel integral operators The method that we will describe in this paper relies heavily
on kernel integral operators. A kernel is a function k : M × M → R, measuring the
similarity between pairs of points on M . Kernel functions can be of various designs, and are
meant to capture the nonlinear geometric structures of data; see for example [6,16,55]. One
advantage of using kernels is that they can be defined so as to operate directly on the data
space, e.g., k(x, y) = κ(F(x), F(y)) for some function κ : Rd × R

d → R of appropriate
regularity. Defined in this manner, k can be evaluated usingmeasured quantities F(x)without
explicit knowledge of the underlying state x . Associated with a square-integrable kernel
k ∈ L2(X × X , μ×μ) is a compact integral operator K : L2(X , μ) → L2(X , μ) such that

K f (x) :=
∫

X
k(x, y) f (y) dμ(y). (3)

In some cases, we will make the following assumptions on kernels.

Assumption 2 The kernel k : M × M → R is (i) symmetric and continuous; (ii) strictly
positive-valued.

Overview of approach We will address the eigenvalue problem for Ut by solving an eigen-
value problem for a kernel integral operator PQ indexed by Q ∈ N, which is accessible
from data, and in the limit of Q →∞ commutes with Ut . Since commuting operators have
common eigenspaces, this will allow us to compute eigenfunctions ofUt through expansions
in eigenbases obtained from PQ . The operators PQ have Markov kernels pQ : M ×M → R
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(i.e., pQ ≥ 0 and
∫
X pQ(x, ·) dμ = 1, for μ-a.e. x ∈ M), whose construction begins from a

family of distance-like functions dQ : M × M → R, defined by

d2Q(x, y) = 1

Q

Q−1∑

q=0

∥
∥F(Φq Δt (x))− F(Φq Δt (y))

∥
∥2 . (4)

Here, Q is a positive integer parameter, and ‖·‖ the canonical 2-norm on R
d . Intuitively,

dQ(x, y) assigns a distance-like quantity between points x and y equal to the root-mean
square distance between Q consecutive “snapshots” of the observable F , measured along
dynamical trajectories starting from x and y. In other words, dQ corresponds to a distance
between data in delay-coordinate space with Q delays. Several of our results will depend on
the asymptotic behavior of dQ as Q →∞, which we will study in detail.

Composing dQ with a continuous shape function h : R → R, leads to a kernel kQ :
M × M → R, kQ = h ◦ dQ , assigning a pairwise measure of similarity between points in

M . In this paper, we will nominally work with Gaussian shape functions, h(s) = e−s2/ε ,
parameterized by a bandwidth parameter ε > 0, so that

kQ(x, y) = e−d
2
Q (x,y)/ε

. (5)

Such kernels satisfy Assumption 2. They are popular in manifold learning applications [6,
10,16] due to their localizing behavior as ε → 0 and their ability to approximate heat
kernels. However, our results also hold for many other kernel choices; e.g., [28]. Having
constructed kQ , the kernel pQ associated with the integral operator PQ is obtained via a
Markov normalization procedure [10,16], described in Sect. 4.3. With these definitions, we
are ready to state our main results.

Theorem 1 Under Assumption 1, there exists a real, self-adjoint, ergodic, compact Markov
operator P : L2(X , μ) → L2(X , μ), which commutes with Ut , and is a limit of operators
P1, P2, . . . (also real, self-adjoint, ergodic, compact, andMarkov) in the L2(X , μ) operator-
norm topology. The operators PQ have Markov kernels pQ : M × M → R satisfying
the conditions in Assumption 2, and determined from delay-coordinate mapped observations
F(x), F(ΦΔt (x)), . . . , F(Φ(Q−1)Δt (x))with Q delays. Moreover, the kernel p : M×M →
R of P lies in L∞(X × X , μ×μ), and pQ converges to p in L p(X × X , μ×μ) norm with
1 ≤ p < ∞.

The operator-norm convergence of the compact operators PQ to P leads to the following
spectral convergence result (e.g., Sect. 7 in [5] and [2]).

Corollary 2 (spectral convergence) Under the assumptions of Theorem 1, the following hold:

(i) For every nonzero eigenvalue λ of P with multiplicity α and every neighborhood S ⊂ R

of λ such that spec(P) ∩ S = {λ}, there exists Q0 ∈ N0 such that for all Q > Q0,
spec(PQ) ∩ S contains α elements converging as Q →∞ to λ.

(ii) Let Π be any projector to the eigenspace Wλ of P at eigenvalue λ. Let also ΠQ be
any projector to the union of the eigenspaces of PQ corresponding to the eigenvalues
in spec(PQ) ∩ S. Then, as Q → ∞, ΠQ converges strongly to Π . Moreover, the gap
(distance) between Wλ and ranΠQ, defined as in [5], converges to zero.

Theorem 3 below is a continuation of Theorem 1, and can be used to conclude some useful
properties of the operator P .
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Theorem 3 LetΦ t be ameasurable flowona compactmetric space X supporting an invariant
ergodic probability measure μ, and T be a kernel integral operator with a real-valued,
symmetric kernel τ ∈ L2(X × X , μ× μ) such that T commutes with Ut (e.g., T = P from
Theorem 1). Then:

(i) τ lies in the tensor product subspace D ⊗D, and is invariant under the flow Ut ×Ut .
(ii) D andD⊥ are invariant under T . Moreover, ran T is a subspace ofD,D⊥ is a subspace

of ker T , and both ran T and ker T are invariant under Ut .

In addition, if ran T contains non-constant functions:

(iii) There exists a measurable map π : X → T
D for some D ∈ N, whose components

consist of joint eigenfunctions of T and Ut , such that π factors Φ t into a rotation on
the torus by a vector ω ∈ R

D, i.e., π(Φ t (x)) = π(x)+ ωt mod 2π for μ-a.e. x ∈ X.
(iv) If the point spectrum of Ut has a set of m generating eigenfrequencies, then there is an

integer D ≤ m, and a symmetric kernel τ̂ ∈ L2(TD × T
D,Leb) on the D-torus, such

that τ(x, y) = τ̂ (π(x), π(y)) for μ× μ-a.e. (x, y) ∈ X × X.

The concept of generating eigenfrequencies will be described in Sect. 3. Note that The-
orems 1 and 3 hold for operators acting on L2 spaces only. To be able to say more about
the behavior of these operators on spaces of continuous functions, an additional assumption
on the Koopman eigenfunctions and the observation map will be needed. In what follows,
FD : M → R

d will be the map given by orthogonally projecting each of the d components
of F onto the quasiperiodic subspace D from (2).

Assumption 3 All Koopman eigenfunctions, as well as the quasiperiodic component of the
observation map FD , are continuous.

Although we explicitly assume that FD is continuous, we are not aware of a counter-
example where the observation map F is continuous (in accordance with Assumption 1),
the Koopman eigenfunctions z are continuous, but FD is not continuous. In particular, the
examples that we study in Sect. 8 are Cartesian products of two dynamical systems for
which D⊥ and D, respectively, are trivial. We formally state in Corollary 28(ii) why such
systems satisfy Assumption 3. On the other hand, smooth dynamical systems on smooth
manifolds with discontinuous Koopman eigenfunctions (and in fact, pure point spectra) are
known to exist, in both discrete- [1] and continuous-time settings [19]. This indicates that
the continuity requirement on Koopman eigenfunctions in Assumption 3 is complementary
to the assumed continuity of the dynamical flow in Assumption 1. The following theorem
establishes a number of properties of P under these additional continuity assumptions.

Theorem 4 Let Assumptions 1 and 3 hold. Then, the kernel p of the operator P from Theo-
rem 1 is uniformly continuous on a full-measure, dense subset of X × X. As a result:

(i) P maps L2(X , μ) into the space of μ-a.e. continuous functions on X.
(ii) P compactly maps C0(X) into itself.
(iii) The norms of the operators P in (i) and (ii) are bounded above by ‖p‖L∞(X×X).
(iv) For every f ∈ C0(X), PQ f is a sequence of continuous functions converging μ-a.e. to

P f .

Remark The class of integral operators PQ studied in this work has previously been used
for dimension reduction and mode decomposition of high-dimensional time series (e.g.,
[11,32,33,56]). In these works, a phenomenon called in [11] “timescale separation” was
observed; namely, it was observed that at increasingly large Q the eigenfunctions of PQ cap-
ture increasingly distinct timescales of a multiscale input signal. Theorems 1 and 3 provide
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an interpretation of this observation from the point of view of spectral properties of Koopman
operators; in particular, from the fact that PQ has, in the limit Q →∞, common eigenfunc-
tions with Ut and the latter capture distinct timescales associated with the eigenfrequencies
ω. Even though in this work we focus on the class of Markov operators PQ , analogous results
also hold for other classes of integral operators for data analysis that employ delays, including
the covariance operators used in singular spectrum analysis (SSA) [13,50,61] and the related
Hankel matrix analysis [3,14,59]. Collectively, these results establish a connection between
two major branches of data analysis techniques for dynamical systems, namely those based
on Koopman operators, and those based on kernel integral operators.

Theorems 1–4 are proved in Sect. 5. A result analogous to Theorem 1, but restricted to
smooth manifolds, smooth observation maps, and Koopman operators with pure point spec-
trum and smooth eigenfunctions, was presented in [30]. Theorem 1 generalizes this result to
non-smooth state spaces and Koopman operators with mixed spectra. The spectral conver-
gence of kernel integral operators was also studied in [62], but in the setting of continuous
kernels. In contrast, here we consider an L2 limit of a family of continuous kernels, which
may not (and generally, will not) be continuous. The convergence properties of this family
are related to the ergodic properties of the underlying dynamical system, and this link with
the dynamics is a new feature.

With these results, the eigenvalues and eigenfunctions of PQ consistently approximate
those of P , and the latter can be used to construct orthonormal bases ofKoopman eigenspaces.
The availability of such bases is useful in many applications, including approximation tech-
niques for the eigenvalues and eigenfunctions ofUt or its generator (defined in Sect. 3 ahead).
One such technique will be presented in Sect. 6, utilizing the eigenvalues and eigenfunctions
of P to perform diffusion regularization of the generator, and then solving the eigenvalue
problem for the generator via a Petrov–Galerkin method. Note that theMarkov property of P
is not trivial; for instance, it does not hold for covariance kernels. The commutativity between
Ut and P , in conjunction with the Markov property, lead to well posedness of these schemes
despite the presence of a continuous spectrum of the generator.

Physical measures A point x ∈ M is said to be in the basin of the measure μ with respect
to the discrete-time map ΦΔt if

lim
N→∞

1

N

N−1∑

n=0
f (Φn Δt (x)) =

∫

X
f (y) dμ(y), ∀ f ∈ C0(M). (6)

The basin Bμ of an invariant ergodic measure μ always includes μ-a.e. point in the support
of μ (in this case, X ), and is a forward-invariant set. An important property that we need
the invariant measure μ to have is that it is physical [65]. Moreover, we will require that the
dynamics has a suitable absorbing ball property. These assumptions can be summarized as
follows:

Assumption 4 The set Bμ of points satisfying (6) has positive Lebesgue measure, i.e., the
measure μ is physical. Moreover, there exists a subset V ⊆ Bμ, also of positive Lebesgue
measure, such that for every x0 ∈ V there exists a compact set U (which may depend on x0,
and necessarily includes X ), such that the orbit xn = Φn Δt (x0) enters U and never leaves it.

Examples where Assumption 4 is satisfied include: (i) ergodic flows on compact manifolds
with Lebesgue absolutely continuous, fully supported, invariant measures, in which case
U = V = Bμ = M = X ; (ii) certain classes of dissipative flows on potentially noncompact
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manifolds [e.g., the Lorenz 63 (L63) system on M = R
3 [43] studied in Sect. 8 ahead]; and

(iii) certain classes of dissipative partial differential equations possessing inertial manifolds
and physical measures [42,44].

The following result shows that under Assumptions 1–4, the nonzero eigenvalues of PQ
and the corresponding (continuous) eigenfunctions can be approximated to any degree of
accuracy by data-driven operators PQ,N , acting on the finite-dimensional Hilbert space
L2(U, μN ) associated with the sampling probability measure μN = ∑N−1

n=0 δxn/N . These
operators are constructed from time-ordered measurements F(x0), . . . , F(xN−1) of the
observable F analogously to (3)–(5), replacing throughout integrals with respect to the invari-
ant measure μ by integrals with respect to the sampling measure μN . Moreover, because
PQ and PQ,N act on different Hilbert spaces, we will approach the problem of comparing
their eigenvalues and eigenfunctions through integral operators P ′′Q : C0(U) → C0(U) and

P ′′Q,N : C0(U) → C0(U), defined analogously to PQ and PQ,N , respectively, but acting
on the same Banach space of continuous functions on U . A complete description of these
constructions will be made in Sect. 7.

Theorem 5 Let Assumptions 1–4 hold. Then, for any initial point x0 ∈ 300 V:
(i) Every eigenfunction of PQ (PQ,N ) at nonzero eigenvalue extends to a continuous eigen-

function of P ′′Q (P ′′Q,N ), corresponding to the same eigenvalue.
(ii) As N →∞, P ′′Q,N converges in spectrum to P ′′Q in the sense of Corollary 2.

Theorem 5 will be proved in Sect. 7. There is some similarity between our methods and
papers on spectral convergence of kernel algorithms, e.g., [7,58,62], but our assumptions
distinguishes Theorem 5 from previously studied cases. In particular, we do not assume
an i.i.d. sequence of observed quantities, or that the sampled sequence (xn)

N−1
n=0 lies on the

support X of the invariantmeasure (as assumed in [7,62]). Finally, X need not have amanifold
structure (as assumed in [7,58] and other manifold learning algorithms).

Figure 1 shows numerical eigenfunctions of PQ,N obtained from data generated by
two mixed-spectrum dynamical systems, described in (39) and (40), respectively. In both
examples, we start with a C∞ vector field V on a smooth manifold M . In the first exam-
ple, M = X = T

4, so U = X = M ; in the second example, M = R
3 × S1 and

X = XLor× S1 ⊂ M , where XLor is the Lorenz 63 attractor embedded inR3. Eigenfunctions
of the operator PQ,N are then computed using a large number of delays, Q = 2000.

Using the eigenvalues and eigenfunctions of PQ,N , we will also construct data-driven
Galerkin schemes for the eigenvalue problemof the generator, which are structurally identical
to its counterparts formulated in terms of the eigenvalues and eigenfunctions of P . Because
we do not assume a priori knowledge of the vector field of the dynamics and/or closed-form
expressions for the eigenfunctions of PQ,N , these schemes will estimate the action of the
generator on eigenfunctions through finite-difference approximations at the sampling interval
Δt . In effect,Δt will play the role of an additional asymptotic approximation parameter, such
that the data-driven solutions converge in a suitable joint limit of vanishing sampling interval
(Δt → 0), large data (N → ∞), infinitely many delays (Q → ∞), and infinite Galerkin
approximation space dimension. This convergence result, along with minimal regularity
requirements on the dynamical flow and the kernel, will be stated in a precise manner in
Proposition 26 andAssumption 6, respectively.Note that, intuitively, our data-drivenGalerkin
framework for the generator V requires Δt as an additional approximation parameter over
methods that approximate the Koopman subgroup generated byUΔt at a fixed time step Δt ,
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Fig. 1 Representative eigenfunctions of PQ,N and the associated matrix representation of the generator V
from (7) for the torus-based flow Φt

T3
×Φt

ω in (39) (top panels) and the L63-based flow Φt
Lor ×Φt

ω in (40)
(bottom panels). The eigenfunctions φi have been computed using a large number of delays, Q = 2000, and
plotted as a time series along an orbit. These time series are near-sinusoidal, with frequencies close to integer
multiples of the rotation frequency ω. Moreover, each frequency has multiplicity 2, and the corresponding
time series are phase-shifted by π/2. The left-hand panels show the absolute values |Vi j | = |〈φi , Vφ j 〉| of
the matrix representation of the generator in the {φi } basis. Note that Vji ≈ −Vi j , which is consistent with
the fact that V is a skew-adjoint operator. Since the first eigenfunction φ0 of PQ,N is the constant function
and Vφ0 = 0, the first column and row only have zero entries. Together, the 2× 2 block-diagonal form of the
matrix representations of V and the structure of the eigenfunction time series indicate that each of the pairs
(φ1, φ2), (φ3, φ4), . . . spans an eigenspace of V , which is consistent with Theorems 1, 3–5 and Corollary 2

since V encodes the information of the entire Koopman group, parameterized by the real
time parameter t .

Outline of the paper In Sect. 3, we review some important concepts from the spectral theory
of dynamical systems. In Sect. 4, we construct the integral operator PQ , which is the key
tool of our methods and is also the operator described in Theorems 1, 3, and 4. Next, we
prove these theorems and Corollary 2 in Sect. 5. In Sect. 6, we present a Galerkin method
for the eigenvalue problem for the Koopman generator, with a small amount of diffusion
added for regularization, formulated in the eigenbasis of P . In Sect. 7, we introduce the
data-driven realization PQ,N of PQ , and establish the spectral convergence properties stated
in Theorem 5, along with the convergence properties of the associated data-driven Galerkin
scheme for the generator. In Sect. 8, the methods are applied to two mixed-spectrum flows,
followed by a discussion of the results.
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3 Overview of Spectral Methods for Dynamical Systems

In this section, we review some concepts from the spectral theory of dynamical systems
and establish basic facts about Koopman eigenfunctions. Henceforth, we use the notations
〈 f , g〉 = ∫

X f ∗g dμ and ‖ f ‖ = 〈 f , f 〉1/2 to represent the inner product and norm of
L2(X , μ), respectively.

Generator of a flow By continuity of the flow Φ t , the family of operators Ut is a strongly
continuous, 1-parameter group of unitary transformations of the Hilbert space L2(X , μ). By
Stone’s theorem [57], any such family has a generator V , which is a skew-adjoint operator
with a dense domain D(V ) ⊂ L2(X , μ), defined as

V f := lim
t→0

1

t

(
Ut f − f

)
, f ∈ D(V ). (7)

The operators Ut and V share the same eigenfunctions; in particular, z ∈ D(V ) and ω ∈ R

satisfy Ut z = eiωt z for every t iff

V z = iωz.

In light of (7) and the above relation, we can interpret the quantity ω ∈ R as a frequency
intrinsic to the dynamical system (which we sometimes refer to as an “eigenfrequency”).

Vector fields as generators If we start with a vector field V on a C1 manifold M , then under
appropriate regularity conditions (for example,V is locally Lipschitz continuous and satisfies
suitable growth bounds at infinity), this vector field induces a C1 flow Φ t : M → M defined
for all t ∈ R. Suppose that there is a compact invariant set X ⊆ M supporting an ergodic
invariant measure μ. This set X is not necessarily a submanifold, and may not even have any
differentiability properties. Nevertheless, (X , Φ t , μ) is an ergodic dynamical system with an
associated strongly-continuous, unitary group of Koopman operators Ut . Acting on C1(M)

functions restricted to X , the generator V of this group coincides with the vector field V, the
latter viewed as an operator V : C1(M) → C0(M). For example, in quasiperiodic systems,
X = M = T

m , V generates a rotation, and μ is equivalent to the Lebesgue volume measure.
On the other hand, for the Lorenz attractor (see (38)), M = R

3, V is smooth and dissipative,
X is a compact subset with non-integer fractal dimension [46], and μ is supported on X .

Eigenfunctions as factormaps Westate the following properties of aKoopman eigenfunction
z of a measure-preserving, ergodic dynamical system.

1. If z corresponds to a nonzero eigenfrequency ω, then it has zero mean with respect to the
invariant measure μ. This can be concisely expressed as 〈1, z〉 = 0.

2. The flow Φ t is semi-conjugate to the irrational rotation by ωt on the unit circle, with z
acting as a semiconjugacy map. This follows directly from (1). Since the eigenfunctions
are L2 equivalence classes, the semiconjugacy is measure-theoretic (holds μ-a.e.), but
would be Cr if the eigenfunctions have a Cr representation.

3. Normalized eigenfunctions with ‖z‖ = 1 have |z(x)| = 1 for μ-a.e. x ∈ X , by (1). As a
result, the map z can now be viewed as a projection onto a circle in a measure-theoretic
sense, i.e., z(x) ∈ S1 for μ-a.e. x ∈ X .

Eigenfunctions form a group Another important property of Koopman eigenfunctions for
ergodic dynamical systems is that they form a group undermultiplication. That is, the product
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of two eigenfunctions of Ut is again an eigenfunction, because of the following relation:

Ut zi = exp(i tωi )zi , i ∈ {1, 2},
�⇒ Ut (z1z2) = (Ut z1)(U

t z2) = exp(i t(ω1 + ω2))z1z2.

Moreover, an analogous relation holds for the eigenfunctions and eigenvalues of V . The fact
that products of Koopman eigenfunctions are Koopman eigenfunctions leads to the following
result about products of elements of D with elements of D⊥.
Lemma 6 Let Φ t be a measure-preserving, ergodic flow on a probability space (X , μ) such
that U t has a mixed spectrum. Then, for every f ∈ D and g ∈ D⊥ for which f g ∈ L2(X , μ),
f g lies in D⊥.
The eigenvalues of V are closed under integer linear combinations. A finite set of eigen-

values iω1, . . . , iωm will be called a generating set if they are rationally independent, and
every eigenvalue of V is of the form iωa = i

∑m
j=1 a jω j for some a = (a1, . . . , am) ∈ Z

m .
In such a case, the corresponding eigenfunction is given by

za =
m∏

j=1
za11 · · · zamm , (8)

where z j is the eigenfunction at eigenvalue iω j . By virtue of (8) the evolution of every
observable f ∈ D under Ut has the closed-form expression

Ut f =
∑

a∈Zm

f̂ae
iωa t za, f̂a = 〈za, f 〉, (9)

which can be evaluated given knowledge of finitely many generating eigenfunctions and
eigenfrequencies. The following is a generalization of Property 2 of Koopman eigenfunctions
listed above.

Proposition 7 Given an arbitrary collection {za1 , za2 , . . . , zal } of l Koopman eigenfunctions,
there exists a map π : X → C

l with

π(x) = (za1(x), . . . , zal (x)), forμ-a.e. x ∈ X ,

such that:

(i) The image π(X) is a torus of dimension D ≤ min{m, l}, where m is the number of
generating frequencies. If ωa1 , . . . , ωal are rationally independent, then D = l.

(ii) The flow (Φ t , μ) on X is semi-conjugate to an ergodic rotation (Ω t ,Leb) on T
D (i.e.,

π ◦ Φ t = Ω t ◦ π , μ-a.e.) associated with a frequency vector whose components are a
subset of {ωa1 , . . . , ωal }.

(iii) Every Koopman eigenfunction z whose corresponding eigenfrequency is a linear combi-
nation of theωa1 , . . . , ωal satisfies z(x) = ζ(π(x)) forμ-a.e. x ∈ X,where ζ ∈ C∞(TD)

is a smooth Koopman eigenfunction of the ergodic rotation on the D-torus corresponding
to the same eigenfrequency.

Remark If m > 1, the set of eigenvalues {iωa}a∈Zm is dense on the imaginary axis. This
property adversely affects the stability of numerical approximations of Koopman eigenval-
ues and eigenfunctions even in systems with pure point spectrum, necessitating the use of
regularization [30]. We will return to this point in Sect. 6.
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Lemma 8 ([47], Sect. 2.3) LetΔt > 0 be as in Assumption 1. Then, the orthogonal projection
πω f of an observable f ∈ L2(X , μ) onto the eigenspace of UΔt corresponding to the
eigenvalue eiω Δt of UΔt is given by

πω f = lim
N→∞

1

N

N−1∑

n=0
e−iωn ΔtUn Δt f .

Moreover, πω ≡ 0 if iω is not an eigenvalue of the generator. Otherwise, UΔtπω f =
eiω Δtπω f .

Mixing and weak-mixing An observable f ∈ L2(X , μ) is said to be mixing if
for all g ∈ L2(X , μ), limt→∞〈g,Ut f 〉 = 0; it is said to be weak-mixing if
limt→∞ t−1

∫ t
0 |〈g,Us f 〉| ds = 0. The latter, is equivalent to the requirement that for

Lebesgue almost every Δt ∈ R, limN→∞ N−1
∑N−1

n=0 |〈g,Un Δt f 〉| = 0. The flow Φ t is
said to be (weak-) mixing if every f ∈ L2(X , μ) is (weak-) mixing. It is known that every
f ∈ D⊥ is weak-mixing (see, e.g., Mixing Theorem, p. 45 in [35]), whereas no observable in
D is weak-mixing. Thus, the component D, often called the quasiperiodic subspace, shows
no decay of correlation, unlike its complementD⊥, which represents the chaotic component
of the dynamics. In addition, weak-mixing observables in D⊥ and observables in D have a
useful pointwise decorrelation property:

Lemma 9 Let f ∈ D⊥ and g ∈ D. Then, for μ-a.e. x, y ∈ X,

lim
N→∞

1

N

N−1∑

n=0
g∗(Φn Δt (x)) f (Φn Δt (y)) = 0.

Proof Without loss of generality, we may assume that g is an eigenfunction of UΔt with
eigenvalue eiω Δt . Then,

lim
N→∞

1

N

N−1∑

n=0
g∗(Φn Δt (x)) f (Φn Δt (y)) = g∗(x) lim

N→∞
1

N

N−1∑

n=0
e−inω Δt f (Φn Δt (y)),

which is equal to g∗(x)πω f (y) by Lemma 8. The latter is equal to zero since f ∈ D⊥. ��

4 Kernel Integral Operators fromDelay-Coordinate Mapped Data

4.1 Choice of Kernel

Consider a kernel integral operator of the class (3) associatedwith an L2 kernel k : M×M →
R. Then, under the assumed compactness of X , the following properties hold [e.g., [25,26]]:

1. K is a Hilbert-Schmidt, and therefore compact, operator on L2(X , μ), with operator
norm bounded by ‖k‖L2(X×X).

2. If k is symmetric, then K is self-adjoint.
3. If k is C0, then K f is also C0 for every f ∈ L2(X , μ).
4. If M is a Cr manifold and k is Cr , then K f is also Cr for every f ∈ L2(X , μ).
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As stated in Sect. 2, we will work with kernels of the form

kQ(x, y) = h(dQ(x, y)), (10)

where h is a continuous shape function on R, and dQ : M × M → R0 is the distance-
like function on M from (4), parameterized by the number of delays Q. Kernels of this
class are sometimes referred to as stationary kernels [28], as they only depend on distances
between data points. For example, in (5), we used a Gaussian shape function, which is
popular in manifold learning and other related geometrical data analysis techniques. Note
that dQ is symmetric, non-negative, and satisfies the triangle inequality, but depending on
the properties of F and the number of delays it may vanish on distinct points. That is, dQ is
a pseudo-distance on M , induced from delay-coordinate mapped data with Q delays.

The kernels in (10) satisfy Assumption 2(i), and the associated kernel integral operators
KQ have all four properties listed above. In addition, if h is strictly positive, kQ satisfies
Assumption 2(ii). The behavior of integral operators associated with other classes of kernels,
e.g., the covariance operators employed in SSA and Hankel matrix analysis induced by
inner products in data space, can be studied via similar techniques to those presented below.
However, it should be kept in mind that the Markov normalization procedure described in
Sect. 4.3 (which will be important for the well-posedness of the Galerkin schemes in Sects. 6
and 7) requires that the kernel be sign-definite. Another consideration to keep in mind is
that the ability to approximate Koopman eigenfunctions with our techniques depends on the
“richness” of the range of KQ . As can be readily verified, the operator KQ constructed from
covariance kernels in d-dimensional data space (as in Assumption 1) has at most a dQ-
dimensional range, whereas the corresponding operators associated with Gaussian kernels,
as well as other non-polynomial kernels, have typically infinite-dimensional range for any
Q. Our approach should also be applicable with little modification to families of kernels of
the form

k̃Q(x, y) = 1

Q

Q−1∑

q=0
h(d1(Φ

q Δt (x),Φq Δt (y))),

where averaging takes place after application of the shape function. Lemma 10 below states
some useful properties of KQ associated with strictly positive kernels. In what follows, 1S
will denote the constant function equal to 1 on a set S.

Lemma 10 Under Assumptions 1 and 2(ii), for any Q ∈ N, the functions ρQ = KQ1X , and
σQ = KQ

(
1/ρQ

)
are continuous and positive. Moreover, restricted on X, they are bounded

away from zero.

Proof The claims follow directly by compactness of X and the fact that kQ |X×X is a contin-
uous function, bounded away from zero. ��

Intuitively, ρQ associatedwith theGaussian kernel in (10) can be thought of as a “sampling
density” on X . For instance, if X were a manifold embedded in R

Qd by a delay-coordinate
map constructed from F , then up to an ε-dependent scaling, ρQ would approximate the den-
sity of the invariantmeasureμ relative to the volumemeasure associatedwith that embedding.

Remark In a number of applications, such as statistical learning onmanifolds [6–8,10,16,58],
one-parameter families of integral operators such as KQ and PQ are studied in the limit
ε → 0, where under certain conditions they can be used to approximate generators of
Markov semigroups; one of the primary examples being the Laplace-Beltrami operator on
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Riemannian manifolds. Here, the fact that the state space X may not (and in general, will
not) be smooth precludes us from taking such limits unconditionally. However, according to
Theorem 3(ii), passing first to the limit Q → ∞ allows one to view K and P as operators
on functions on a smooth manifold, namely a D-dimensional torus, and study the small-ε
behavior of these operators in that setting.

4.2 Asymptotic Behavior in the Infinite-Delay Limit

To study the behavior of KQ in the limit of infinitely many delays, Q →∞, we first consider
the properties of the pseudometric dQ in the same limit. The latter can be studied in turn
through a useful (nonlinear) map Ψ : C0(X) → L∞(X × X , μ × μ), which maps a given
observation function F into a (pseudo)metric on X , namely,

Ψ (F)(x, y) := lim
Q→∞ΨQ(F)(x, y),

ΨQ(F)(x, y) := 1

Q

Q−1∑

q=0

∥
∥F(Φq Δt (x))− F(Φq Δt (y))

∥
∥2 .

(11)

In what follows, dX : X × X → R will denote the metric X inherits from M .

Theorem 11 Let Assumption 1 hold, and F = FD + FD⊥ be the L2 decomposition of F
from (2). Then,Ψ (F) in (11) is well-defined as a function in L∞(X× X , μ×μ), andΨQ(F)

converges to Ψ (F) in L p(X × X , μ× μ) norm for 1 ≤ p <∞. Moreover:

(i) For every t ∈ R and μ-a.e. x, y ∈ X, Ψ (F)(Φ t (x),Φ t (y)) = Ψ (F)(x, y).
(ii) For μ-a.e. x, y ∈ X, Ψ (F)(x, y) = Ψ (FD⊥)(x, y)+ Ψ (FD)(x, y).
(iii) Ψ (FD⊥) is a constant almost everywhere and equals 2‖FD⊥‖2L2 . Therefore,

Ψ (F) = Ψ (FD)+ 2‖FD⊥‖2L2 , (12)

and Ψ (F) lies in D ×D.

If, moreover, Assumption 3 holds:

(iv) Ψ (FD) ∈ C0(X × X) and ΨQ(FD) converges to Ψ (FD) uniformly on X × X.
(v) Ψ (F) is uniformly continuous on a full-measure, dense subset of X × X.
(vi) Ψ (F) has a unique continuous extension Ψ̄ (F) ∈ C0(X × X), and ΨQ(F) converges

to Ψ̄ (F) μ-almost uniformly.

Proof Toprovewell-definition ofΨ , note thatΨ (F) existsμ-a.e. since it is the pointwise limit
of theBirkhoff averagesΨQ(F)of the continuous functiond1 : (x, y) → ‖F(x)−F(y)‖with
respect to the product flowΦ t×Φ t on X×X . By compactness of X×X , each of the functions
ΨQ(F) is bounded above by ‖d1‖C0(X×X). Therefore, Ψ (F) lies in L∞(X × X , μ × μ),
and thus in L p(X × X , μ × μ), 1 ≤ p < ∞, since μ × μ is a probability measure. The
ΨQ(F) → Ψ (F) convergence in L p(X × X , μ × μ), 1 ≤ p < ∞, then follows from the
L p von Neumann ergodic theorem.

By the invariance of the infinite Birkhoff averages, Ψ (F) is invariant under the flow
ΦΔt × ΦΔt . It can then be shown that Ψ (F) must lie in the kernel of V ⊗ I + I ⊗ V , the
generator for Ut ⊗ Ut , and thus is invariant under the flow Φ t × Φ t for all t ∈ R, proving
Claim (i).
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To prove Claim (ii), let xq and yq denote Φq Δt (x) and Φq Δt (y) respectively. Let GD :
X × X → R

d := (x, y) �→ FD(xq) − FD(yq), and similarly define GD⊥ : X × X → R
d .

Expanding the right-hand side of (11) gives,

Ψ (F)(x, y) = lim
Q→∞

1

Q

Q−1∑

q=0

(∥
∥GD(xq , yq)

∥
∥2 + ∥

∥GD⊥(xq , yq)
∥
∥2

)

− 2 lim
Q→∞

1

Q

Q−1∑

q=0
GD(xq , yq) · GD⊥(xq , yq),

and the first two terms in the equation above are Ψ (FD)(x, y) and Ψ (FD⊥)(x, y) respec-
tively. Therefore, to prove Claim (ii), it suffices to prove that the third term vanishes. This is
equivalent to showing that for μ-a.e. x, y ∈ X ,

lim
Q→∞

1

Q

Q−1∑

q=0

(
FD⊥(xq)− FD⊥(yq)

) · (FD(xq)− FD(yq)
) = 0,

which follows from Lemma 9. This completes the proof of Claim (ii).
To prove Claim (iii), let xn and yn denote Φn Δt (x) and Φn Δt (y), respectively. Then, (11)

can be rewritten for FD⊥ as

(Ψ FD⊥)(x, y) = lim
N→∞

1

N

N−1∑

n=0
|FD⊥(xn)|2 + lim

N→∞
1

N

N−1∑

n=0
|FD⊥(yn)|2

+ 2 lim
N→∞

1

N

N−1∑

n=0
FD⊥(xn)FD⊥(yn).

The first two terms converge to the constant ‖FD⊥‖2L2 . It is therefore sufficient to show that
the last term vanishes. Indeed, since the function J : (x, y) → FD⊥(x)FD⊥(y) lies in the
continuous spectrum subspace of the product-system (X × X , Φ t ×Φ t , μ× μ), we have

lim
N→∞

1

N

N−1∑

n=0
FD⊥(xn)FD⊥(yn) = 〈J , 1X×X 〉 = 0.

Since FD is continuous,Ψ (FD) is continuous by a classic result ofKrengel ([40], Theorem
1.2.7). This proves Claim (iv).

Turning to Claim (v), it follows directly from Claims (iii) and (iv) that there exists a full-
measure subset S ⊆ X × X on which k∞ is uniformly continuous. Suppose that S were not
dense in X × X . Then, there would exist an open set B ⊂ X × X disjoint from S, and with
positive measure (since X × X is the support of μ×μ, and every open subset of the support
of a Borel measure has positive measure), which would in turn imply that (μ× μ)(S) < 1,
leading to a contradiction. Therefore, S is a full-measure, dense subset of X× X , completing
the proof of the claim.

Finally, the existence of Ψ̄ (F) in Claim (vi) follows from the fact that Ψ (F) is uniformly
continuous on the dense subset S of the compact metric space X× X , and the almost uniform
convergence of ΨQ(F) to Ψ̄ (F) is a consequence of Egorov’s theorem. ��
Remark Although the measure μ × μ is invariant under Φ t × Φ t , it is not ergodic. In fact,
it is ergodic iff (Φ t , μ) is mixing (equivalently, Ut has purely continuous spectrum and a
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simple eigenvalue at 1), in which case the metric d∞ would be constant almost everywhere,
in accordance with (12).

Theorem 11 establishes that the function d∞ : D(d∞)→ R, such that

d∞(x, y) := lim
Q→∞ dQ(x, y), (x, y) ∈ D(d∞) ⊆ X × X

is well-defined as a function in L p(X×X , μ×μ), 1 ≤ p ≤ ∞, with sup d∞ ≤ ‖d1‖C0(X×X).
It can also be verified that d∞ satisfies the triangle inequality and is non-negative. However,
depending on the properties of the dynamical system and observation map, it may be a
degeneratemetric as d∞(x, y)may vanish for some x �= y, even if dQ(x, y) is non-vanishing.
In fact, it is easy to check that if y lies in the stable manifold of x , then d∞(x, y) = 0.
Analogously to the finite-delay case in (10), we employ d∞ and the shape function h to
define a corresponding kernel k∞ : M × M → R, where

k∞(x, y) = h(d∞(x, y)), (x, y) ∈ D(d∞), (13)

and k∞(x, y) = 0 otherwise.We also let K be the kernel integral operator from (3) associated
with k∞.

Proposition 12 shows that the operator K depends only on the quasiperiodic component
of F , and is a direct consequence of Theorem 11 and (12).

Proposition 12 Let (X , Φ t , μ) and F be as in Theorem 1. Then, the integral operator K is
a constant scaling operator iff its kernel k∞ is a constant μ-a.e., which occurs iff FD is a
constant.

In general, k∞ may not be continuous. Nevertheless, it has a number of other useful
properties, which follow directly from Theorem 11 in conjunction with the boundedness and
continuity of the Gaussian shape function.

Lemma 13 Under Assumption 1, the following hold:

(i) k∞ is the L p(X , μ)-norm limit, 1 ≤ p < ∞, of the sequence of continuous kernels
k1, k2, . . ..

(ii) k∞ is invariant under Ut ×Ut for all t ∈ R.
(iii) k∞ lies in L∞(X×X , μ×μ), and under Assumption 2(ii), 1/k∞ also lies in that space.

Moreover, if Assumption 3 additionally holds:

(iv) k∞ is uniformly continuous on a dense, full-measure subset of X × X.
(v) k∞ has a unique continuous representative k̄∞ ∈ C0(X × X), and as Q → ∞, kQ

converges to k∞ almost uniformly.

The stronger regularity properties of k∞ under Assumption 3 have the following important
implications on the behavior of the corresponding integral operator.

Lemma 14 Under Assumptions 1 and 3, the kernel integral operator K associated with k∞
has the following properties:

(i) For every f ∈ L2(X , μ), K f has a unique continuous representative.
(ii) For every f ∈ C0(X), K f is continuous.
(iii) ‖K‖ ≤ ‖k∞‖L∞(X×X) in either L2 or C0 operator norm.
(iv) As an operator on C0(X), K is compact.
(v) For every f ∈ C0(X), KQ f is a sequence of continuous functions converging μ-a.e.

to K f .
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Proof (i) Since k∞ is uniformly continuous on a set S ⊆ X × X of full μ×μ measure, there
exists a full μ-measure set X ′ ⊆ X , such that for every x ∈ X ′, k∞(x, ·) is continuous μ-a.e.
on X . Moreover, proceeding analogously to the proof of Theorem 11(v), it can be shown that
X ′ is dense in X . Let now f ∈ L2(X , μ), ‖ f ‖L2 = 1. Then, for every x1, x2 ∈ X ′,

|K f (x1)− K f (x2)| =
∣
∣
∣
∣

∫

X ′
[k∞(x1, y)− k∞(x2, y)] f (y)dμ(y)

∣
∣
∣
∣

≤ ‖k∞(x1, ·)− k∞(x2, ·)‖L2‖ f ‖L2

≤ ‖k∞(x1, ·)− k∞(x2, ·)‖L∞ . (14)

Since k∞ is uniformly continuous on S, for every ε > 0, there exists δ > 0 such that if
dX (x1, x2) < δ, ‖k∞(x1, ·) − k∞(x2, ·)‖L∞ < ε. Thus, for all such x1 and x2, we have
|K f (x1)− K f (x2)| < ε, which implies that K f , restricted to X ′, is uniformly continuous.
As a result, since X ′ is dense in the compact metric space X , K f |X ′ has a unique continuous
extension g ∈ C0(X). Moreover, since X ′ has full measure, g lies in the same L2 equivalence
class as K f , proving the claim.

(ii) Since k∞ is uniformly continuous on a dense set of full measure, for any f ∈ C0(X),
the function g : X × X → C with g(x, y) = k∞(x, y) f (y) has a unique continuous
representative ḡ ∈ C0(X × X). Therefore, for every x ∈ X , the function k∞(x, ·) f is μ-a.e.
equal to ḡ(x, ·) by μ-a.e. continuity of k∞(x, ·), and

K f (x) =
∫

X
k∞(x, y) f (y) dμ(y) =

∫

X
ḡ∞(x, y) f (y) dμ(y).

It then follows that K f is continuous by continuity of integrals of X -sections of continuous
functions on X × X .

(iii) To verify the claim on the L2 and C0 operator norms, observe that for every f ∈
L2(X , μ) and x ∈ X ′, where X ′ is as in the proof of Claim (i),

|K f (x)| ≤
∣∣∣∣

∫

X ′
k∞(x, y) f (y)dμ(y)

∣∣∣∣

≤ ‖k∞(x, ·)‖L2‖ f ‖L2 ≤ ‖k∞(x, ·)‖L∞‖ f ‖L2

≤ ‖k∞‖L∞(X×X)‖ f ‖L2 ,

and therefore

‖K f ‖L∞ ≤ ‖k∞‖L∞(X×X)‖ f ‖L2 . (15)

The bound on the L2 operator norm follows by setting ‖ f ‖L2 = 1 in (15), together with the
fact that ‖K f ‖L2 ≤ ‖K f ‖L∞ . The bound on the C0 operator norm follows from (15) with
f ∈ C0(X), in conjunction with the facts that ‖ f ‖L2 ≤ ‖ f ‖C0 and ‖K f ‖L∞ = ‖K f ‖C0 .
(iv) Since, by the Arzelà-Ascoli theorem, every equicontinuous sequence of functions on a

compactmetric space has a limit point, it suffices to show that for every sequence fn ∈ C0(X)

with ‖ fn‖C0 ≤ 1, the sequence gn = K fn is equicontinuous. Let k̄∞ ∈ C0(X × X) be the
unique continuous representative of k∞. For every x1, x2 ∈ X , we have

|gn(x1)− gn(x2)| ≤ ‖k̄∞(x1, ·)− k̄∞(x2, ·)‖C0 ,

and by uniform continuity of k̄∞, for any ε > 0, there exists δ > 0, independent of n, such
that, for every x1, x2 ∈ X with d(x1, x2) < δ, |gn(x1) − gn(x2)| < ε. This establishes
equicontinuity of gn , and thus compactness of K on C0(X).
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(v) The continuity of KQ f and K f follows from Claim (ii). The μ-a.e. convergence
follows from Lemma 13(v). ��

We end this section with two important corollaries of Theorem 11 and Lemmas 13, 14,
which are central to both Theorems 1 and 3.

Corollary 15 The operators Ut and K commute.

Proof Since μ is an invariant measure, for every x in X and t ∈ R we have

K f (x) =
∫

X
k∞(x, y) f (y) dμ(y) =

∫

X
k∞(x, Φ t (y)) f (Φ t (y)) dμ(y).

It therefore follows from Lemma 13(ii) that

K f (x) =
∫

X
k∞(Φ−t (x), y) f (Φ t (y)) dμ(y) = Ut∗KUt f (x),

and the claim of the corollary follows. ��
Corollary 16 Under Assumptions 1 and 2(ii), the function ρ = K1X is μ-a.e. equal to a
constant bounded away from zero (i.e., 1/ρ lies in L∞(X , μ)). Further, if Assumption 3
holds, then ρ|X and 1/ρ|X are continuous.

Proof Corollary 15 and the fact that Ut1X = 1X imply that Utρ = ρ, and it then follows
by ergodicity that ρ is constant μ-a.e. That ‖1/ρ‖L∞ is finite follows from Lemma 13(iii).
Finally, the continuity of ρ under Assumption 3 is a direct consequence of Lemma 14. ��

4.3 Markov Normalization

Next, we construct the Markov operators PQ and P appearing in Theorems 1 and 3 by
normalization of KQ and K . Throughout this section, we consider that Assumptions 1 and 2
hold. Under these assumptions, we employ a normalization procedure introduced in the
diffusion maps algorithm [16] and further developed in [10], although there are also other
approaches with the same asymptotic behavior. Specifically, using the normalizing functions
ρQ andσQ fromLemma10 andρ fromCorollary 16,we introduce the kernels pQ : M×M →
R and p : M × M → R, given by

pQ(x, y) = kQ(x, y)

σQ(x)ρQ(y)
, p(x, y) =

{
k∞(x, y)/ρ(x), ρ(x) > 0,

0, otherwise,
(16)

respectively. By Lemma 10, pQ satisfies the boundedness and continuity properties in
Assumption 2. On the other hand, p is neither guaranteed to be continuous nor bounded
on arbitrary compact sets, but it nevertheless follows from Lemma 13 and Corollary 16 that
both p and 1/p lie in L∞(X × X). Based on these facts, we can therefore define the kernel
integral operators PQ : L2(X , μ) → L2(X , μ) and P : L2(X , μ) → L2(X , μ) from (3)
associated with the kernels pQ and p, respectively, and these operators are both Hilbert-
Schmidt (see Sect. 4.1). Note that p and P have analogous properties to those stated for k∞
and K in Lemmas 13, 14 and Corollary 15. In particular, p is invariant under Ut ×Ut , and
P commute with Ut .

The operators PQ and P can also be obtained directly from KQ and K , respectively,
through the sequence of operations

K̃Q f := KQ

(
f

KQ1X

)
, PQ f = K̃Q f

K̃Q1X
, P f = K f

K1X
. (17)
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In [10], the steps leading to K̃Q from KQ and to PQ from K̃Q are called right and left
normalization, respectively. In the case of P , the effects of right normalization cancel since
K1X is μ-a.e. constant by Corollary 16, so it is sufficient to construct this operator directly
via left normalization of K .

As is evident from (17), PQ and P are both Markov operators preserving constant func-
tions. Moreover, for all x ∈ M we have

∫
X pQ(x, ·) dμ = 1, and for μ-a.e. x ∈ M ,∫

X p(x, ·) dμ = 1, i.e., both pQ and p are transition probability kernels. In particular, since
X is compact and pQ and p are essentially bounded below, PQ and P are both ergodic
Markov operators; that is, their eigenspaces at eigenvalue 1 are one-dimensional.

The Markov kernel p is μ-a.e. symmetric by symmetry of k∞ and the fact that ρ is μ-a.e.
constant. As a result, P is self-adjoint, its eigenvalues admit the ordering 1 = λ0 > λ1 ≥
λ2 ≥ · · · , and there exists a real orthonormal basis of L2(X , μ) consisting of corresponding
eigenfunctions, φ j , with φ0 being constant. On the other hand, because pQ is not symmetric,
the operator PQ is not self-adjoint, but is nevertheless related to a self-adjoint operator via
a similarity transformation by a bounded multiplication operator with a bounded inverse. To
verify this, define

σ̃Q = σQ/ρQ, σ̂Q = √σQρQ,

where ρQ and σQ are as in Lemma 10. Let also DQ be the multiplication operator which
multiplies by σ̃Q , and P̂Q the kernel integral operator with kernel p̂Q : M × M → R,

p̂Q(x, y) = kQ(x, y)

σ̂Q(x)σ̂Q(y)
. (18)

Observe now that P̂Q is a symmetric operator, and PQ is related to P̂Q via the similarity
transformation

P̂Q = D1/2
Q PQD

−1/2
Q ; (19)

that is, for every f ∈ L2(X , μ),

D1/2
Q PQD

−1/2
Q f (x) =

∫

X

√
σQ(x)

ρQ(x)

kQ(x, y)

σQ(x)ρQ(y)
f (y)

√
ρQ(y)

σQ(y)
dμ(y)

=
∫

X

kQ(x, y)

σ̂Q(x)σ̂Q(y)
f (y) dμ(y) = P̂Q f (x).

The following are useful properties of P̂Q that follow from its relation to PQ .

1. P̂Q has the same discrete spectrum as PQ , consisting of eigenvalues λ j,Q with 1 =
λ0,Q > λ1,Q ≥ λ2,Q ≥ · · · .

2. Let φ j,Q denote the eigenfunctions of P̂Q corresponding to the nonzero eigenvalues

λ j,Q . These form an orthonormal basis for the closed subspace ran P̂Q = (ker P̂Q)⊥.
Moreover, the φ j,Q can be chosen to be real-valued.

3. The eigenfunction φ0,Q of P̂Q is equal up to proportionality constant to ρQσ
1/2
Q .

Remark In applications, it may be the case that ρQ and 1/ρQ take a large range of values. In
such situations, it may be warranted to replace (4) by a variable-bandwidth kernel of the form

kQ(x, y) = exp

(
− d2Q (x,y)

εrQ(x)rQ(y)

)
, with a bandwidth function rQ introduced so as to control

the decay of the kernel away from the diagonal, x = y. Various types of bandwidth functions
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have been proposed in the literature, including functions based on neighborhood distances
[9,66], state space velocities [29,33], and local density estimates [8]. While we do not study
variable bandwidth techniques in this work, our approach should be applicable in that setting
too, so long as Corollary 16 holds.

5 Proof of Theorems 1, 3, 4 and Corollary 2

Proof of Theorem 1 That P andUt commute follows from the invariance of p underUt ×Ut

and an analogous calculation to that in the proof of Corollary 15. Next, as Q → ∞, pQ
converges to p in any L p(X × X , μ×μ) norm with 1 ≤ p <∞ by the analogous result to
Lemma 13(i) that holds for these kernels (see Sect. 4.3). In particular, that pQ converges to
p in L2(X × X , μ × μ) norm implies that PQ converges to P in L2(X , μ) operator norm,
since PQ − P is Hilbert-Schmidt and thus bounded in operator norm by ‖pQ − p‖L2(X×X).

��
Proof of Theorem 3 We first establish that τ is a.e. invariant underΦ t×Φ t . Since the integral
operator T commutes with Ut , for every f ∈ L2(X , μ) and μ-a.e. x ∈ X ,

∫

X
τ(Φ t (x),Φ t (y′)) f (Φ t (y′)) dμ(y′) =

∫

X
τ(Φ t (x), y) f (y) dμ(y)

= UtT f (x) = T (Ut f )(x) =
∫

X
τ(x, y′) f (Φ t (y′)) dμ(y′),

where the second equality was obtained by the change of variables y = Φ t (y′), and utilizes
the invariance of the measure μ under Φ t . The only way the terms at the two ends of the
equation can be equal for every f ∈ L2(X , μ) is if τ(Φ t (x),Φ t (y′)) = τ(x, y′) μ-a.e.

Next, observe that, by (2), the space L2(X × X , μ × μ) splits as the Ut × Ut -invariant
orthogonal sum of D ⊗ D, D⊥ ⊗ D⊥, D⊥ ⊗ D, and D ⊗ D⊥. Since τ is an L2 kernel, it
has orthogonal projections onto each of these subspaces, all of which are Ut ⊗Ut -invariant
by the invariance of τ just established. By symmetry of τ , the projections onto D⊥ ⊗D and
D ⊗ D⊥ vanish. Moreover, the projection τD⊥⊗D⊥ ∈ D⊥ ⊗ D⊥ is orthogonal to constant
functions, and it follows by the Birkhoff ergodic theorem that for μ× μ-a.e. x, y ∈ X × X ,

0 = 〈1X×X , τD⊥⊗D⊥〉

= lim
N→∞

1

N

N−1∑

n=0
τD⊥⊗D⊥(Φn Δt (x),Φn Δt (y))

= lim
N→∞

1

N

N−1∑

n=0
τD⊥⊗D⊥(x, y)

= τD⊥⊗D⊥(x, y).

This completes the proof of Claim (i). The statements in Claim (ii) that D⊥ ⊂ ker(T ) and
that D and D⊥ are invariant under T are direct consequences of Claim (i).

The remaining two claims in the theorem, which requires that both D and ran T contain
non-constant functions, can be proved by means of the following, slightly stronger, result.

Proposition 17 For any nonzero eigenvalue λ of T , the corresponding eigenspace Wλ is
invariant under the action of the Koopman generator V , and V |Wλ is diagonalizable. More-
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over, the constant function 1X is an eigenfunction of T . If Wλ does not contain 1X , its
dimension is an even number.

Proof Since T is compact, every nonzero eigenvalue λ has finite multiplicity and its corre-
sponding eigenspace Wλ has finite dimension, l = dimWλ. Since Ut commutes with T , Ut

and hence V leaveWλ invariant. Similarly, since the constant function is an eigenfunction of
V , it is an eigenfunction of T .

Let λ0 be the eigenvalue of T corresponding to the constant eigenfunction, and λ �= λ0 be
any other eigenvalue of T . Then, V |Wλ is a skew-symmetric operator on a finite-dimensional
space, and thus can be diagonalized with respect to a basis of simultaneous eigenfunctions of
T and V . Fix any element ζ of this basis. By our choice of λ, ζ is a non-constant eigenfunction
of V , hence 〈ζ, 1〉 = 0. Therefore, by ergodicity of (Φ t , μ), V ζ = iωζ for some ω �= 0.
This implies that ζ has non-zero real and imaginary parts. Hence, the conjugate ζ ∗ is linearly
independent from ζ and corresponds to eigenvalue −iω of V . However, since T is a real
operator, ζ ∗ lies inWλ.We therefore conclude thatWλ can be split into disjoint 2-dimensional
spaces spanned by the conjugate pair of eigenfunctions ζ and ζ ∗. Therefore dimWλ is an
even number if λ �= 1. ��

Corollary 18 below follows from the fact that the closure of the range of P is spanned by
the φ j , and by Proposition 17, all φ j with nonzero corresponding eigenvalue lie in D(V ).

Corollary 18 The representation of V |ran P in the basis {φ0, φ1, . . .} has a block-diagonal
structure, consisting of even-sized blocks associated with the eigenspaces Wλ�=1, and a 1×1
block with the element 0, associated with W1. Moreover, the range of P lies in the domain of
V , and V |ran P and P|ran P are simultaneously diagonalizable.

Returning to the proof of Theorem 3, note that Ut and T have joint eigenfunctions, each
of which factors the dynamics into a rotation on the circle in accordance with (1). According
to Proposition 7, any collection of D such eigenfunctions factors the dynamics into a rotation
on TD . This proves Theorem 3 (iii). To prove Claim (iv), we use (8) to expand the kernel as

τ =
∑

a,b∈Zm

τ̃abza ⊗ zb,

where m is the number of generating eigenfrequencies. In this expansion, there is a minimal
number D ≤ m of generating eigenfunctions z j from (8), arranged without loss of generality
as z1, . . . , zD , such that the expansion coefficients τ̃ab corresponding to a = (a1, . . . , am)

and b = (b1, . . . , bm) with nonzero aD+1, . . . , am and bD+1, . . . , bm , respectively, van-
ish (in other words, the kernel τ does does not project onto the subspaces generated by
zD+1, . . . , zm and their powers). By Proposition 7, the Koopman eigenfunctions correspond-
ing to non-vanishing τ̃ab can be expressed as za = ζa ◦π , where the ζa are smooth Koopman
eigenfunctions onTD associatedwith an ergodic rotation. Thus, denoting the index set for the
nonzero τ̃ab coefficients by I ∈ Z

m ×Z
m , we have τ(x, y) = τ̂ (π(x), π(y)) for μ×μ-a.e.,

(x, y) ∈ X × X , where τ̂ is the L2 kernel on T
D given by

τ̂ =
∑

a,b∈I
τ̃abζa ⊗ ζb.

This completes the proof of Claim (v) and of Theorem 3. ��
Proof of Theorem 4 That p is uniformly continuous on a full-measure, dense subset of X ×
X follows from the analogous result to Lemma 13(iv), which holds for p (see Sect. 4.3).
Claims (i)–(iv) of the theorem follow analogously to Lemma 14. ��
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Rates of convergence in the continuous case As an auxiliary result, we state a lemma that
establishes rates of convergence with respect to the number of delays Q of the kernel integral
operators studied in this work.

Lemma 19 (Convergence of commutators) Let the assumptions of Theorem 4 hold, and the
shape function h from (10) be continuously differentiable. Then, the following operators
converge in C0(X) operator norm to 0 as Q →∞, with rates given below:

(i)
∥
∥UΔt KQ − KQUΔt

∥
∥
C0 = O

(
Q−1

)
,

(ii)
∥
∥
∥UΔt K̃Q − K̃QUΔt

∥
∥
∥
C0
= O

(
Q−1

)
,

(iii)
∥
∥UΔt PQ − PQUΔt

∥
∥
C0 = O

(
Q−1

)
.

Proof Let F̃Q,Δt (x, y) := ‖F(x)− F(y)‖2 − ∥
∥F(ΦQ Δt x)− F(ΦQ Δt (y))

∥
∥2, and notice

that by continuity of F and compactness of X this quantity is bounded on X × X . Note
that (i) dQ(ΦΔt (x),ΦΔt (y)) = dQ(x, y) + Q−1 F̃Q,Δt (x, y); and (ii) h(

√
u2 +Δu) =

h(u)+ O(Δu), as Δu → 0. Thus,

kQ(ΦΔt (x),ΦΔt (y)) = h(dQ(ΦΔt (x),ΦΔt (y))) = h

(√
d2Q(x, y)+ Q−1 F̃Q,Δt (x, y)

)

= h(dQ(x, y))+ O(Q−1) = kQ(x, y)+ O(Q−1),

where the estimate holds uniformly with respect to x, y ∈ X . Therefore, for every f ∈
L2(X , μ) and x ∈ X we have

UΔt KQ f (x) =
∫

X
kQ(ΦΔt (x), y) f (y) dμ(y)

=
∫

X
kQ(ΦΔt (x),ΦΔt (y)) f (ΦΔt (y)) dμ(y)

=
∫

X

[
kQ(x, y)+ O(Q−1)

]
(UΔt f )(y) dμ(y).

Note that we have used the fact that μ is an invariant measure in the second-to-last line.
Since kQ is continuous, it follows from the Cauchy–Schwarz inequality that ‖KQ f ‖C0 ≤
‖kQ‖C0‖ f ‖L2 . Substituting this result in the right-hand side and taking the supremum over
x ∈ X yields

∥∥(UΔt KQ − KQU
Δt ) f

∥∥
C0 = O(Q−1) ‖ f ‖L2 .

Claim (i) then follows from the fact that ‖·‖L2 ≤ ‖·‖C0 . Claims (ii) and (iii) can be proved
in a similar manner. ��

6 Galerkin Approximation of Koopman Eigenvalue Problems

In this section, we formulate a Galerkin method for the eigenvalue problem of the Koopman
generator V in the eigenbasis of P , under the implicit assumption that the latter operator is
available to us from PQ after having taken a large number of delays Q. The task of finding
the eigenvalues of V has two challenges, namely, (i) V is an unbounded operator defined
on a proper subspace D(V ) ⊂ L2(X , μ) which is not known a priori; (ii) the spectrum of
V could be dense in iR (even for a pure point spectrum system such an ergodic rotation
on T

D with D ≥ 2; e.g., [30], Remark 8), in which case, solving for its eigenvalues is a
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numerically ill-posed problem. Following [30,34], we will address these issues by employing
a Galerkin scheme for the eigenvalue problem of V , with a small amount of judiciously
constructed diffusion added for regularization. Throughout this section, we consider that
Assumptions 1, 2, and 3 hold. Further, we assume the following.

Assumption 5 The kernels kQ , and thus k∞, are symmetric positive-definite. That is, (i)
kQ(x, y) = kQ(y, x), for every x, y ∈ M ; (ii) for every x0, x1, . . . , xn ∈ M and
c0, c1, . . . , cn ∈ C,

∑n−1
i, j=0 c∗i kQ(xi , x j )c j ≥ 0; and (iii) the analogous conditions hold

for k∞.

Our approach has the following steps.

Step 1. Sobolev spaces We first construct subspaces of L2 in which we search for eigenfunc-
tions. These spaces will be shown to be dense in H , the latter defined as the closed subspace
of ran P ⊆ D orthogonal to constant functions (that is, H only consists of zero-mean func-
tions). Note that {φ j } j∈J , where J is an index set for the nonzero eigenvalues λ j of P , strictly
less than 1, is an orthonormal basis of H . For any p ≥ 0, we define

H p =
⎧
⎨

⎩

∑

j∈J
c jφ j ∈ H :

∑

j∈J
|c j |2|η j |p <∞

⎫
⎬

⎭
, η j = (λ−1j − 1)/(λ−11 − 1). (20)

The spaces H p are analogous to the usual Sobolev spaces associated with self-adjoint,
positive semidefinite, unbounded operators with compact resolvents and discrete spectra
(here, {η j } j∈J ). In particular, when (X , g) is a smooth Riemannian manifold with a metric
tensor g satisfyingvolg = μ, and (η j , φ j ) are the eigenvalues andorthonormal eigenfunctions
of the corresponding Laplace-Beltrami operator, then H p becomes the canonical Sobolev
space H p(X , g), restricted to be orthogonal to constant functions. H p from (20) is a Hilbert
space equipped with the inner product

〈 f , g〉H p :=
p∑

q=0

∑

j∈J
c∗j d j |η j |q ,

where f = ∑
j∈J c jφ j and g = ∑

j∈J d jφ j . Moreover, {φ(p)
j } j∈J with φ

(p)
j = φ j/‖φ j‖p ,

‖φ j‖2H p =∑p
q=0 λ

q
j , forms an orthonormal basis of H p .

Proposition 20 For every p > 0, the space H p is dense in H and moreover, the inclusion
map H p → H, and thus H p → L2(X , μ), is compact.

Proof To see that H p is dense, note that it includes all finite linear combinations of the φ j .
Since the φ j form an orthonormal basis of H , these finite linear combinations are dense in H .
Next, the embedding of H p in H can be represented by a diagonal operator G : H p → H
such that G j j := 〈φ j ,Gφ

(p)
j 〉 = η

−p/2
j . This operator is compact iff G j j converges to 0 as

j → ∞, which is true since λ j → 0. The compactness of the inclusion H p → L2(X , μ)

follows immediately. ��

Step 2. Regularized generator For every θ > 0, we define the unbounded operators Δ :
D(Δ) → H and Lθ : D(Lθ )→ H , where D(Δ) = D(Lθ ) ⊂ D(V ), and

Δ := f �→
∞∑

k=1
η j 〈φ j , f 〉φ j , Lθ := V |D(Δ) − θΔ. (21)
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As we will see in Step 3 below, the role of the diffusion term θΔ is to penalize the eigenfunc-
tions of V with large values of a Dirichlet energy functional. Theorem 21 below identifies a
domain in which the operators in (21) are continuous, and establishes that the eigensolutions
of Lθ converge to eigensolutions of V as θ → 0.

Theorem 21 Viewed as operators from H2 to H, the generator V , as well as the operators Lθ

and Δ from (21), are bounded. In particular, we can set D(Δ) = D(Lθ ) = H2. Moreover,
for every eigenvalue iω of V , whose corresponding eigenspace lies in H2, there exists an
eigenvalue η of Δ such that the smooth curve θ �→ γθ := iω − θη consists of eigenvalues
γθ of Lθ , converging to iω as θ → 0+.

Proof First, by Corollary 18, we can consider that the basis {φ j } j∈J of H consists of simul-
taneous eigenfunctions of V and P (and thus Δ), without loss of generality. To verify that V
is a bounded operator on H2, observe that the frequencies ω j satisfy the growth bound

ω j = ‖Vφ j‖ = ‖Vλ−1j Pφ j‖ ≤ λ−1j ‖p′‖L2(X×X ,μ×μ) ≤ Cη j , ∀ j ∈ J . (22)

Here C > 0 is some constant independent of j , and p′ is the kernel defined pointwise as
p′(x, y) = V p(·, y)(x). Hence, for f =∑

j∈J c jφ j ∈ H2,

‖V f ‖2 =
∥∥∥∥∥∥

∑

j∈J
c j Vφ j

∥∥∥∥∥∥

2

=
∥∥∥∥∥∥

∑

j∈J
ic jω jφ j

∥∥∥∥∥∥

2

≤ C2
∑

j∈J
|c j |2|η j |2 ≤ C2‖ f ‖2H2 ,

proving that V is a bounded operator on H2. The same reasoning applies for Lθ and Δ.
Finally, to establish convergence of the eigenvalues of Lθ to those of V |H2 , let iω j be the
eigenvalue of V corresponding to φ j . Then, by definition of Lθ and the basis {φ j } j∈J ,

Lθφ j = Vφ j − θΔφ j = (iω j − θη j )φ j ,

and the claim follows immediately. This completes the proof of Theorem 21. ��
Remark Theorem 21 establishes that H2 is a domain on which V is a bounded operator, but if
X had a smooth manifold structure, it is possible to show that the standard H1 Sobolev space
associated with a Riemannian metric on X is also a suitable domain. In this work, X has no
smooth structure, and we can state Theorem 21 above only for V |H2 . In separate calculations,
wehaveobserved that an analogof theweak eigenvalueproblem for Lθ formulated inH1×H1

actually performs well numerically.

Step 3. Galerkinmethod By virtue of Theorem 21, the eigenvalues of Lθ can be considered
to be approximations of the eigenvalues of V . We will take the Galerkin approach in finding
the eigenvalues of Lθ by solving for z ∈ H2 and γ ∈ C in the following variational (weak)
eigenvalue problem:

Definition 22 (Regularized Koopman eigenvalue problem) Find γ ∈ C and z ∈ H2 such that
for all f ∈ H ,

A( f , z) = γ 〈 f , z〉,
where A : H × H2 → C is the sesquilinear form defined by

A(g, f ) = 〈g, Lθ f 〉 = 〈g, V f 〉 − θE(g, f ), E(g, f ) = 〈g,Δ f 〉.
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In the above, the form E : H × H2 → C induces a Dirichlet energy functional E( f ) =
E( f , f ), f ∈ H2, providing a measure of roughness of functions in H2. In particular,
if X were a smooth Riemannian manifold, and the (η j , φ j ) were set to Laplace-Beltrami
eigenvalues and eigenfunctions, respectively, we would have E( f ) = ∫

X‖grad f ‖2 dμ.
While the lack of smoothness of X in our setting precludes us from defining E by means
of a gradient operator, its definition in terms of the η j from (20) still provides a meaningful
measure of roughness of functions. For instance, it follows from results in spectral graph
theory that the variance of estimates η

(N )
j of the η j computed from finite data sets [e.g., as

described in Sect. 7 ahead] increases with j [9,58,62], which is consistent with the intuitive
expectation that rough (highly oscillatory) functions require larger numbers of samples for
accurate approximations.

Following [30,34], we will order all solutions (γ j , z j ) of the problem in Definition 22 in
order of increasingDirichlet energy E(z j ). Since A( f , f ) = −θE( f , f ) by skew-symmetry
ofV ,we can compute theDirichlet energyof eigenfunction z j directly from the corresponding
eigenvalue, viz. E(z j ) = −Re γ j/θ . Similarly, we have ω j = Im γ j . By (22), there exist
constants C1,C2 > 0 such that

C2 ≤ |iω j − θη j |
|η j | ≤ C1, ∀ j ∈ J . (23)

To justify the well-posedness of the eigenvalue problem in Definition 22, we will state
three important properties of A, namely,

|A(u, v)| ≤ C1‖u‖H‖v‖H2 , ∀u ∈ H , ∀v ∈ H2, (24)

sup
f ∈H

‖ f ‖H=1
|A( f , v)| ≥ C2‖v‖2H2 , ∀v ∈ H2, (25)

sup
g∈H2

‖g‖H2=1

|A(u, g)| ≥ C2‖u‖2H , ∀u ∈ H . (26)

We now give brief proofs of these results. In the following, v = ∑
j∈J d jφ j and u =

∑
j∈J c jφ j will be arbitrary functions in H2 and H , respectively. Moreover, as in the proof

of Theorem21,wewill assume that the basis {φ j } j∈J consists of simultaneous eigenfunctions
of V and Δ. First, note that,

|A(u, v)| =
∣∣∣∣∣∣

∑

j∈J
(iω j − θη j )c

∗
j d j

∣∣∣∣∣∣
≤

∑

j∈J
|iω j − θη j ||c∗j d j |,

and by the Cauchy–Schwartz inequality on �2 and (23),

|A(u, v)| ≤ C1

∑

j∈J
|η j ||c∗j d j | ≤ C1‖u‖H‖v‖H2 ,

proving (24). To prove (25), let f = ∑
j∈J a jφ j ∈ H . Then, the left-hand side of that

equation becomes
∑

j∈J (iω j/η j − θ)η j a∗j d j . Let R j := iω j/η j − θ , where |R j | ≥ C2

by (23). By the Cauchy–Schwarz inequality, under the constraint
∑

j∈J |a j |2 = 1, the sum∣∣∣
∑

j∈J a∗j η j d j

∣∣∣ attains the maximum value of
∑

j∈J |η2j d j |2. Therefore,
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sup
f ∈H

‖ f ‖H=1
|A( f , v)| = sup∑

j∈J |a j |2=1

∣
∣
∣
∣
∣
∣

∑

j∈J
a∗j d j R jη j

∣
∣
∣
∣
∣
∣
≥ C2

∑

j∈J
|η j d j |2 = C2‖v‖2H2 .

This proves (25). The proof of (26) is similar to that of (25), with f replaced by a trial
function g = ∑

j∈J b jφ j ∈ H2 and the constraint ‖g‖2
H2 =

∑
j∈J |b j |2 = 1. A direct

consequence of (25) and (26) is,

inf
v∈H2

‖v‖H2=1
sup
u∈H‖u‖H=1

|A(u, v)| ≥ C2, inf
u∈H‖u‖H=1

sup
v∈H2

‖v‖H2=1
|A(u, v)| ≥ C2. (27)

Equations (24), (25), (27), and the compact embedding of H2 in H by Proposition 20
together guarantee that the eigenvalues of A restricted to the finite-dimensional subspaces of
H × H2 spanned by the leading m eigenfunctions φ1, . . . , φm converge, as m →∞, to the
weak eigenvalues of Lθ . See [5], Sect. 8, for an exposition on this classic result. The resulting
finite-dimensional Galerkin approximations of the weak eigenvalue problem for Lθ can be
summarized as follows:

Definition 23 (Koopman eigenvalue problem, Galerkin approximation) Set H̃m = span
{φ1, . . . , φm} and H̃2

m = span{φ(2)
1 , . . . , φ

(2)
m }, m ≥ 1. Then, find γ ∈ C and z ∈ H̃2

m such
that for all f ∈ H̃m ,

A( f , z) = γ 〈 f , z〉,
where the sesquilinear form A : H × H2 → C is as in Definition 22.

This problem is equivalent to solving a matrix generalized eigenvalue problem

Ac = λBc, (28)

where A and B are m × m matrices with elements

Ai j = A(φi , φ
(2)
j ) = Vi j

η j
− θΔi j , Vi j = 〈φi , Vφ j 〉, Δi j = δi j ,

Bi j = 〈φi , φ
(2)
j 〉 = η−1i δi j ,

(29)

respectively, and c = (c1, . . . , cm) is a column vector in C
m containing the expansion

coefficients of the solution z in the {φ(2)
j } basis of H̃2

m , viz. z =
∑m

j=1 c jφ
(2)
j . It is important

to note that, unlike the proofs of Theorem 21 and (24)–(26), in (29) we do not require that
the φ j be simultaneous eigenfunctions of V and P . This concludes the description of our
Galerkin approximation of the eigenvalue problem for Lθ and therefore for V .

7 Data-Driven Approximation

In this section, we discuss the numeric procedures used to approximate the integral opera-
tors described in Sects. 4, 5, and implement the Galerkin method of Sect. 6, using a finite,
time-ordered dataset of observations (F(xn))

N−1
n=0 . In addition, we will prove Theorem 5.

Throughout this section,wewill assume thatAssumptions 1–4hold. In particular, byAssump-
tion 4, we can assume without loss of generality that the underlying trajectory (xn)

N−1
n=0 starts

at a point x0 in the compact set U (for, if x0 were to lie in V \ U , the trajectory would enter
U after finitely many steps, and its portion lying in V \ U would not affect the asymptotic
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behavior of our schemes as N → ∞). Besides this assumption, the trajectory (xn)
N−1
n=0 is

assumed to be unknown, and note that it need not lie on X .
For the purposes of the analysis that follows, it will be important to distinguish between

operators that act on L2 and C0 spaces. Specifically, to every kernel k : M × M → R

satisfying Assumption 2, we will assign a bounded operator K ′ : L2(X , μ) → C0(U),
acting on f ∈ L2(X , μ) via the same integral formula as in (3), but with the image K ′ f
understood as an everywhere-defined, continuous function on U . With this definition, the
operator K : L2(X , μ) → L2(X , μ) acting on L2 equivalence classes can be expressed as
as K ′′ = ι ◦ K ′, where ι : C0(U) → L2(X , μ) is the canonical L2 inclusion map on C0(U),
and we can also define an analog K ′′ : C0(U) → C0(U) acting on continuous functions via
K ′′ = K ′ ◦ ι. It can be verified using the Arzelà-Ascoli theorem that K ′′ is compact.

Data-driven Hilbert spaces Let μN := N−1
∑N−1

n=0 δxn be the sampling probability measure
associated with the finite trajectory (xn)

N−1
n=0 . The compact set U from Assumption 4 always

contains the support of μN . Moreover, since x0 lies in the basin of the physical measure μ,
as N →∞, μN converges weakly to μ, in the sense that

lim
N→∞

∫

U
f dμN =

∫

X
f dμ, ∀ f ∈ C0(U). (30)

Our data-driven analog of the space L2(X , μ) will be L2(U, μN ); the set of equivalence
classes of complex-valued functions on U which are square-summable and have common
values at the sampled states xn . By Assumption 1, X is not a single point, thus L2(U, μN )

is isomorphic to C
N . As a result, every element f ∈ L2(U, μN ) can be represented in the

canonical basis of CN as an N -vector f = ( f (x0), . . . , f (xN−1)). In fact, L2(U, μN ) is
the image of C0(U) under the restriction map πN : C0(U) → L2(U, μN ), where πN f =
( f (x0), . . . , f (xN−1)). Moreover, given any f , g ∈ L2(U, μN ), we have 〈 f , g〉L2(U,μN ) =
f · g/N , where · denotes the canonical inner product on CN .

Kernel integral operators In the data-driven setting, given a continuous kernel k : M×M →
R, we define a kernel integral operator K ′N : L2(U, μN )→ C0(U) by (cf. (3))

K ′N f (x) =
∫

U
k(x, y) f (y) dμN (y) = 1

N

N−1∑

n=0
k(x, xn) f (xn),

and we also set KN : L2(U, μN ) → L2(U, μN ) and K ′′N : C0(U) → C0(U) with KN =
πN ◦ K ′N and K ′′N = K ′N ◦πN . Note that KN can be represented by an N × N matrix K with
elements Ki j = k(xi , x j )/N . In this representation, the function g = KN f , f ∈ L2(U, μN ),
is represented by g = K f .

When k = kQ from (10), one can similarly defineoperators K ′Q,N : L2(U, μN )→ C0(U),

KQ,N : L2(U, μN ) → L2(U, μN ), and K ′′Q,N : C0(U) → C0(U). This family of operators
has the analogous properties to those stated for KQ in Lemma 10; namely, the functions
ρQ,N = K ′′Q,N1U and σQ,N = K ′′Q,N (1/ρQ,N ) are both continuous, positive, and bounded
away from zero on U . Therefore, one can define a kernel pQ,N : M × M → R by

ρQ,N = K ′′Q,N1U , σQ,N = K ′′Q,N (1/ρQ,N ),

pQ,N (x, y) = kQ,N (x, y)

σQ,N (x)ρQ,N (y)
.
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The kernel pQ,N has the Markov property, i.e.,
∫
U pQ,N (x, ·) dμN = 1 for every x ∈

M , and therefore induces the Markov operators P ′Q,N : L2(U, μN ) → C0(U) , PQ,N :
L2(U, μN ) → L2(U, μN ), and P ′′Q,N : C0(U) → C0(U). Moreover, PQ,N is related to the

self-adjoint operator P̂Q,N : L2(U,μN )→ L2(U, μN ) with kernel p̂Q,N : M × M → R,

p̂Q,N (x, y) = kQ(x, y)

σ̂Q,N (x)σ̂Q,N (y)
, σ̃Q,N = σQ,N/ρQ,N , (31)

via a similarity transformation analogous to (19). From the kernel p̂Q,N one can construct
the operators P̂Q,N : L2(U, μN ) → L2(U, μN ), P̂ ′Q,N : L2(U, μN ) → C0(U), and P̂ ′′Q,N :
C0(U)→ C0(U).

Data-driven basis We will use eigenvectors φ j,Q,N of P̂Q,N as an orthonormal basis of
L2(U, μN ), and employ the corresponding eigenvalues, 1 = λ0,Q,N > λ1,Q,N ≥ · · · ≥
λN−1,Q,N ≥ 0, to define data-driven analogs

η j,Q,N = (λ−1j,Q,N − 1)/(λ−11,Q,N − 1), j ∈ JN , (32)

of the η j in (20), where JN = { j : λ j,Q,N > 0}. The eigenvalue problem for P̂Q,N is equiv-
alent to a matrix eigenvalue problem for the N × N symmetric matrix P̂ = [ p̂Q,N (xi , x j )]
representing P̂Q,N . Details on the numerical solution of this problem can be found in [30,31].
Note that for kernels kQ with exponential decay, such as the Gaussian kernels in (4), P̂ can
be well approximated by a sparse matrix, allowing scalability of our techniques to large N .

To establish convergence of our schemes in the limit of large data, N →∞, we would like
to establish a correspondence between the eigenvalues and eigenvectors of P̂Q,N accessible
from data and those of P̂Q , but because these operators act on the different spaces, a direct
comparison of their eigenvectors is not possible. Therefore, as stated in Sect. 2, we will
first establish a correspondence between the eigenvalues and eigenvectors of P̂Q,N (P̂Q) and
those of P̂ ′′Q,N (P̂ ′′Q), and show that P̂ ′′Q,N spectrally converges to P̂ ′′Q . The latter problem is

meaningful since both P̂ ′′Q,N and P̂ ′′Q act on C0(U).

Lemma 24 The following correspondence between the spectra of operators holds:

(i) λ j,Q,N is a nonzero eigenvalue of P̂Q,N iff it is a nonzero eigenvalue of P̂ ′′Q,N . Moreover,

if φ j,Q,N ∈ L2(U, μN ) is an eigenfunction of P̂Q,N corresponding to λ j,Q,N , then
ϕ j,Q,N = λ−1j,Q,N P̂ ′Q,Nφ j,Q,N ∈ C0(U) is an eigenfunction of P̂ ′′Q,N corresponding to
the same eigenvalue.

(ii) λ j,Q is a nonzero eigenvalue of P̂Q iff it is a nonzero eigenvalue of P̂ ′′Q,N . Moreover,

if φ j,Q ∈ L2(X , μ) is an eigenfunction of P̂Q corresponding to λ j,Q, then ϕ j,Q =
λ−1j,Q P̂ ′Qφ j,Q ∈ C0(U) is an eigenfunction of P̂ ′′Q corresponding to the same eigenvalue.

Lemma 24 is a direct consequence of the definitions of P̂Q,N and P ′′Q,N . Next, we estab-

lish spectral convergence of P̂ ′′Q,N to P̂ ′′Q . For that, we will need the following notion of
convergence of operators.

Collective compact convergence [62] A sequence of operators An on a Banach space B
is said to be collectively compactly convergent to an operator A if An → A pointwise, and
there is an N ∈ N such that ∪∞n=N (A− An)(B1) has a compact closure in B. Here, B1 is the
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unit ball in B. The following proposition states that the data-driven operators P̂Q,N converge
collectively compactly, and as result in spectrum.

Proposition 25 LetAssumptions1–5hold.Given a trajectory (xn)n∈N starting inU , the corre-
sponding sequenceof operators P̂ ′′Q,N constructed from theobservations F(x0), . . . , F(xN−1)
converges collectively compactly as N →∞ to P̂ ′′Q. As a result, the sequence P̂Q,N converges

spectrally, analogously to Corollary 2, to P̂Q. In particular, since the nonzero spectrum of a
compact operator only consists of isolated eigenvalues, the convergence holds for all nonzero
eigenvalues of P̂Q,N and the corresponding eigenspaces.

The proof for the operators P ′′Q,N on C0(U) is analogous to techniques given in [62], and
the full details will be omitted. In particular, the general assumptions in [62] that the sampling
measuresμN converge weakly toμ is guaranteed by the assumption that x0 ∈ U . As a result,
Proposition 13 in [62] applies, and we obtain collective compact convergence of P̂ ′′Q,N to P̂ ′′Q .
By Propositions 14 and 15 in [62], respectively, this implies compact convergence (a weaker
notion than collectively compact convergence),which is sufficient for spectral convergence on
C0(U). The spectral convergence of P̂Q,N to P̂Q on L2(X , μ) then follows from Lemma 24.

Proof of Theorem 5 The claims of the theorem follow from analogous results to Lemma 24
and Proposition 25 for the operators PQ,N , P ′Q,N , P

′′
Q,N and PQ , P ′Q , P ′′Q . ��

Together, Lemma 24 and Proposition 25 imply that every eigenpair (λ j,Q, φ j,Q) of P̂Q
can be consistently approximated by a sequence of eigenpairs (λ j,Q,N , φ j,Q,N ) of P̂Q,N .
Moreover, by Corollary 2, as Q → ∞, (λ j,Q, φ j,Q) approximates in turn the eigenpair
(λ j , φ j ) of P; that is,

lim
Q→∞ lim

N→∞ λ j,Q,N = λ j , lim
Q→∞ lim

N→∞ λ−1j,Q,N ιP̂ ′Q,Nφ j,Q,N = φ j , (33)

where the limit Q →∞ in the second equation is taken with respect to the L2(X , μ) norm.
Since, as can be seen in (29), the Galerkin scheme in Sect. 6 can be entirely formulated
using the λ j and the matrix elements 〈φi , Vφ

(2)
j 〉 of the generator, (33) indicates in turn that

we can construct a consistent data-driven Galerkin scheme if we can consistently compute
approximate generator matrix elements using the data-driven eigenfunctions φ j,Q,N . To that
end, we will employ finite-difference approximations, as described below.

Finite-difference approximation The action V f of the generator on a function f ∈ D(V ) is
defined via the limit in (7). This suggests that for data sampled discretely at sampling interval
Δt , we can approximate V f by a finite-difference approximation [29,30,34]. For example,
the following are first- and second-order, approximation schemes for V , respectively:

VΔt f = 1

Δt
(UΔt f − f ), VΔt f = 1

2Δt

(
UΔt f −U−Δt f

)
. (34)

In the finite-sample case, we approximate VΔt by a corresponding r -th order finite-difference
operator VΔt,N : L2(U, μN ) → L2(U, μN ). For example, in the case of the first-order
scheme in (34), VΔt,N becomes

VΔt,N f (xn) = f (xn+1)− f (xn)

Δt
, n ∈ {0, . . . , N − 2}, (35)

and VΔt,N f (xN−1) = 0. To ensure that the approximations VΔt,N f converge to the true func-
tion V f for a class of functions of sufficient regularity, the following smoothness conditions
are sufficient:
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Assumption 6 U is a forward-invariant C1 compact manifold, and Φ t |U is generated by a
C0 vector fieldV. Moreover, F |U ∈ C1(U;Rd), and the kernel shape function h : R→ R is
C1. VΔt and VΔt,N are first-order finite-difference schemes, as in (34) and (35), respectively.

Under Assumption 6, the generator V of the Koopman group is an extension ofV, viewed
as a differential operator on C1(U). Moreover, we can approximate V by finite-difference
schemes VΔt : C0(U) → C0(U), defined analogously to (34) with UΔt replaced by ΦΔt .
We then have:

Proposition 26 Let Assumptions 1, 2, and 6 hold. Then for every i, j ∈ N:

(i) The eigenfunctions ϕ j,Q,N and ϕ j,Q from Lemma 24 lie in C1(U). Moreover, VΔtϕ j,Q

converges to VΔtϕ j,Q as Δt → 0, uniformly on U .
(ii) limΔt→0 limN→∞〈φ̂i , VΔt,N φ̂ j 〉L2(U,μN ) = 〈φi,Q, Vφ j,Q〉.

Proof To prove Claim (i), note that under Assumption 6, for a finite number of delays Q, by
(4), p̂Q is a C1-smooth kernel. Hence, according to [25], the ranges of the integral operators
P̂ ′Q and P̂ ′Q,N , and thus ϕ j,Q and ϕ j,Q,N lie in C1(U). Since the vector field V is C0, the

trajectories areC1-smooth, and therefore,Vϕ j,Q , which is the time derivative along the orbit,
has a first-order Taylor expansion. Claim (ii) is a consequence of Claim (i), in conjunction
with the weak convergence of measures in (30) and Lemma 24. ��

Remark In many cases, such as flows induced on inertial manifolds in dissipative PDEs [18],
the C1 regularity in Assumption 6 cannot be strengthened. Proposition 26 provides the basis
for numerically approximating V for these cases. IfM ,U ,V, F , and h have a higher degree of
smoothness, sayCr for some r ≥ 2, then taking VΔt to be an (r−1)-th order finite-difference
scheme would lead to an improved, O(Δt)r−1, convergence.

Data-driven Galerkin method Using the η j,Q,N from (32), we define the data-driven nor-

malized basis vectors φ̂
(p)
j = φ j,Q,N/η̂

p/2
j,Q,N , j ∈ JN (cf. the φ

(p)
j from Step 1 in Sect. 6),

and the associated Galerkin approximation spaces H p
N ,Q,m = span{φ̂(p)

j }mj=1 ⊆ L2(U, μN ),

m ≤ JN , where we abbreviate H p
Q,N ,JN

=: H p
Q,N and H0

Q,N =: HQ,N . We also define the
positive semidefinite, self-adjoint operator ΔQ,N : HQ,N → HQ,N , where

ΔQ,N f =
∑

j∈JN
η j,Q,Nc jφ j,Q,N , f =

N−1∑

j=0
c jφ j,Q,N .

This operator is a data-driven analog of Δ in (21). With these definitions and the finite-
difference approximation of V described above, we pose the following data-driven analog
of the Galerkin approximation in Definition 23:

Definition 27 (Koopman eigenvalue problem, data-driven form) Find γ ∈ C and z ∈
H2
Q,N ,m such that for all f ∈ HQ,N ,m ,

AΔt,Q,N ( f , z) = 〈 f , z〉L2(U,μN ),

where AΔt,Q,N : HQ,N × HQ,N → C is the sesquilinear form defined as

AΔt,Q,N ( f , z) = 〈 f , VΔt,N z〉L2(U,μN ) − θ〈 f ,ΔQ,N z〉L2(U,μN ).
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Numerically, this is equivalent to solving a matrix generalized eigenvalue problem anal-
ogous to that in (28), viz.

Ac = λBc,

where A and B are m × m matrices with elements

Ai j = AΔt,Q,N (φi,Q,N , φ
(2)
j,Q,N ) = Vi j

η j,Q,N
− θΔi j ,

Vi j = 〈φi,Q,N , VΔt,Nφ j,Q,N 〉L2(U,μN ), Δi j = δi j ,

Bi j = 〈φi,Q,N , φ
(2)
j,Q,N 〉L2(U,μN ) = η−1i,Q,N δi j ,

respectively, and c = (c1, . . . , cm) is a column vector in C
m containing the expansion

coefficients of the solution z =∑m
j=1 c j φ̂

(2)
j,Q,N in the {φ̂(2)

j } basis of H2
Q,N ,m . Analogously

to the continuous case, we define a data-driven Dirichlet energy functional EQ,N on H2
Q,N ,

given by EQ,N ( f ) = 〈 f ,ΔQ,N f 〉L2(U,μN ), and use that functional to order the computed
eigenfunctions in order of increasing Dirichlet energy. Note that, unless an antisymmetriza-
tion is explicitly performed, in the data driven setting, Vi j will generally not be equal to
−Vji , and thus Re γ will not be equal to −θEQ,N (z) (cf. Sect. 6). Nevertheless, in practice
we observe that Re γ ≈ −θEQ,N (z), at least for the leading eigenfunctions.

For any fixed m, and up to similarity transformations, the matrices A and B converge
in the limits Q → ∞, after Δt → 0, after N → ∞ (in that order) to the corresponding
matrices in the variational eigenvalue problem in (28). We therefore conclude that the data-
driven Galerkin method in Definition 27 is consistent (as Δt → 0 and Q, N →∞) with the
Galerkin method in Definition 23, which is in turn consistent (as m → ∞) with the weak
eigenvalue problem for the regularized generator Lθ in Definition 22.

8 Results and Discussion

In this section, we apply the methods described in Sects. 4–7 to two ergodic dynamical
systems with mixed spectrum, constructed as products of either a mixing flow on the 3-
torus, or the L63 system, with circle rotations. Our objectives are to demonstrate that (i) the
eigenspaces of PQ,N from (17) are eigenspaces ofUt ; and (ii) the eigenvalues obtained using
the Galerkin scheme in Definition 27 are consistent with those expected theoretically.

8.1 Two Systems with Mixed Spectrum

The first system studied below is based on a mixing flow on the 3-torus introduced by Fayad
[24]. The flow, denoted by Φ t

T3 , is given by the solution of the ordinary differential equation

(ODE) d(x, y, z)/dt = V(x, y, z), where (x, y, z) ∈ T
3, and V is the smooth vector field

V(x, y, z) = ν/ϕ(x, y, z), ϕ(x, y, z) = 1+
∞∑

k=1

e−k

k
Re

⎡

⎣
∑

|l|≤k
eik(x+y)+ilz

⎤

⎦ , (36)

parameterized by the constant frequency vector ν. Hereafter,we set ν = (
√
2,
√
10, 1) . Note

that the orbits underΦ t
T3 are the same as that of the ergodic, non-mixing linear flow along the

vector ν. Φ t
T3 has a unique Borel, invariant, ergodic probability measure μT3 with density
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ϕ/
∫
M ϕ d Leb relative to Lebesguemeasure. Such flows are also called time-reparameterized

flows as ν is scaled by the function ϕ(x, y, z) at each point (x, y, z) ∈ T
3.

In [24], it is shown that this system is mixing, and thus weak-mixing, with respect to its
invariant measure μT3 . As a result, its Koopman generator has continuous spectrum and a
single eigenvalue at zero corresponding to constant eigenfunctions (see Sect. 3). To construct
an associated mixed-spectrum system, we take the product Φ t

T3 × Φ t
ω with a periodic flow

Φ t
ω on S1, defined as

dΦ t
ω(α)/dt = ω, ω = 1. (37)

Thus, the state space of the product system is M = T
3× S1 = T

4. Note that in this example
the invariant set X is smooth and coincides with the state space, M = X ; in particular,
all states sampled experimentally lie exactly on X . Moreover, the Koopman generator V :
D(V )→ L2(X , μ) is a skew-adjoint extensionof the differential operatorV⊕ω : C∞(X) →
L2(X , μ), where ω : C∞(S1) → C∞(S1) is the differential operator f �→ ω( f ) := ω f ′.
Φ t

ω has an associated pure point spectrum, with the eigenfrequencies being integer multiples
of ω. Since Φ t

T3 has no non-zero corresponding eigenfrequencies, the discrete spectrum of
the product system is {ikω, k ∈ Z}.

The second system that we study is based on the L63 system [43]. This system is known
to have a chaotic attractor XLor ⊂ R

3 with fractal dimension 2.0627160 [46], supporting a
physical invariant measure μLor [60] with a compact absorbing ball [41]. Moreover, the flow
is mixing with respect to μLor [45]. Similarly to the T3 system described above, the latter
implies that the Koopman generator of the L63 system has only constant eigenfunctions,
corresponding to eigenvalue 0. The flow, denoted by Φ t

Lor, is generated by a smooth vector
field V ∈ C∞(R3;R3), whose components at (x, y, z) ∈ R

3 are

V1 = σ(y − x), V2 = x(ρ − z)− y, V3 = xy − βz. (38)

Throughout, we use the standard parameter values β = 8/3, ρ = 28, and σ = 10. As in
the torus case, we form the product Φ t

Lor × Φ t
ω with the rotation Φ t

ω in (37), leading to a
mixed spectrum system with the same discrete spectrum {ikω, k ∈ Z}. Note that unlike the
torus-based system, the invariant set X = XLor × S1 is a strict subset of the state space
M = R

3 × S1.
For each product system, we define a continuous map F : M → R

3 coupling the degrees
of freedom of the mixing subsystem with the rotation. In the case of the torus-based system,
we define F(x, y, z, α) = (F1, F2, F3), (x, y, z) ∈ T

3, α ∈ S1, via additive coupling, viz.

F1 = sin α + sin x, F2 = cosα + sin y, F3 = sin(2α)+ sin z. (39)

In the case of the L63-based system, the coupling is nonlinear with F(x, y, z, α) =
(F1, F2, F3), (x, y, z) ∈ R

3, α ∈ S1, and

F1 = sin(α + x), F2 = cos(2α + y), F3 = cos(α + z). (40)

Note that all of the examples that we study satisfy Assumption 4. For Φ t
Lor, M = R

3,
V = VLor = BμLor ,U is the absorbing ballULor, andμ = μLor. ForΦ t

Lor×Φ t
ω,M = R

3×S1,
V = VLor×S1,U = ULor×S1, andμ = μLor×LebS1 . ForΦ t

T3×Φ t
ω,M = V = U = T

3×S1,
and μ = μT3 × LebS1 .
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Fig. 2 Time series of the observation maps of the L63-based system (40) (left) and the torus-based system
(39) (right). Each time series is a nonlinear combination of data generated from two sources, one with a purely
continuous spectrum, (38) and (36), respectively, and onewith a purely discrete spectrum, (37). The time series
clearly exhibit complex evolution, characteristic of chaotic dynamics, and recovering from them Koopman
eigenvalues and eigenfunctions is a non-trivial task

8.2 Experimental Results

We generated numerical trajectories x0, x1, . . . , xN−1 of the torus- and L63-based systems
from Sect. 8.1, starting in each case from an arbitrary initial condition y ∈ M . In the torus
experiments, the system is always on the attractor, so the starting state x0 in the training data
was set to y. In the L63 experiments, we let the system relax towards the attractor, and set
x0 to a state sampled after a long spinup time (4000 time units); that is, we formally assume
that y (and therefore x0) lie in the basin Bμ of the physical measure associated with X , and
that x0 has entered the forward-invariant set U . In both cases, the number of samples was
N = 50,000, the integration time-step was 0.01, and the number of delays was Q = 2000.
Gaussian kernels kQ from (5) were used throughout. We employed the ode45 solver of
Matlab to compute the trajectories, and generated time series F(x0), F(x1), . . . , F(xN−1)
by applying the observation maps in (39) and (40) to the respective states xn . Portions of the
observable time series from each system are displayed in Fig. 2. Note that the xn were not
presented to our kernel algorithm.

We computed data-driven eigenpairs (λ j,Q,N , φ j,Q,N ) by solving the eigenvalue problem
for the operator P̂Q,N from (31), using Matlab’s eigs iterative solver. Henceforth, for ease
of notation, we abbreviate λ j,Q,N and φ j,Q,N by λ̂ j and φ̂ j , respectively. The bandwidth
parameter ε of the Gaussian kernels was selected using the tuning procedure described
in [8,12,17], which yielded ε ≈ 3.6 and ≈ 2.053 for the torus and L63-based systems,
respectively. Representative eigenfunctions φ̂ j , plotted as time series n �→ φ̂ j (xn), and the
corresponding eigenvalues are displayed in Figs. 1 and 3, respectively.We now describe these
results in more detail.

According to Theorem 1 and Proposition 17, at large numbers of delays (here, Q = 2000),
the eigenfunctions φ̂ j of P̂Q,N should form doubly degenerate pairs, and each pair should
exhibit a single frequency associated with an eigenvalue of V . More precisely, φ̂ j ± i φ̂ j+1
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Fig. 3 Eigenvalues λ̂ j = λ j ,Q,N of the integral operator PQ,N for representative values of the delay parameter
Q for the torus system in (39) (left) and the L63-based system in (40) (right). The blue and red lines correspond
to no delays (Q = 1) and 2000 delays, respectively. When Q = 1, the eigenvalues are seen clustering around
1. The eigenvalues cannot exceed 1 as PQ,N is a Markov operator. At Q = 2000, the eigenvalues decay more
rapidly towards zero and, at least up to eigenvalue 15, have multiplicity 2 as expected from Proposition 17

with j ∈ {1, 3, . . .} should approximate an eigenfunction of V . Both systems studied here
have exactly one rationally independent eigenvalue iω = i , so the eigenfunctions of PQ,N

are expected to evolve at frequencies jω, j ∈ N. This is evidently the case in the time series
plots in Fig. 1. Also, each of the φ̂ j has multiplicity 2 (note that only one eigenfunction
from each eigenspace is shown in Fig. 1). The left-hand panels of Fig. 1 show a matrix
representation of the generator V (approximated via the finite-difference scheme in (35))
in the 51-dimensional data-driven subspace spanned by φ̂0, . . . , φ̂50. The matrix is, to a
good approximation, skew-symmetric, consistent with the fact that V is a skew-symmetric
operator, and exhibits prominent 2× 2 diagonal blocks associated with the eigenspaces of V
approximated by (φ̂1, φ̂2), (φ̂3, φ̂4), . . ., in agreement with Corollary 18.

Figure 4 shows the approximated eigenvalues γ j of the regularized generator Lθ obtained
from this basis using the Galerkin scheme in Definition 27 with the diffusion regulariza-
tion and spectral order parameters θ = 10−4 and m = 50, respectively. Each plot in Fig. 4
shows the first 20 eigenvalues corresponding to eigenfunctions of increasing Dirichlet energy
E(z j ) of the corresponding eigenfunction z j (recall that Re γ j ≈ −θEQ,N (z j )). According
to Sect. 6, the imaginary parts of the γ j should approximate the Koopman eigenfrequencies
j(k)ω, where j is an integer-valued function giving the frequency of the Koopman eigen-
function with the k-th smallest Dirichlet energy. In Fig. 4, the Im γ j are indeed equal to
integer multiples of ω = 1 to a good approximation for the first≈ 10 eigenvalues (ordered in
order of increasing Dirichlet energy). The accuracy of the eigenvalues begins to deteriorate
as the index k approaches m. This is due to the facts that (i) even with a “perfect” basis
{φ̂ j }, eigenfunctions of higher Dirichlet energy (and stronger oscillatory behavior) require
increasingly higher-order Galerkin approximation spaces; (ii) at fixed sample number N , the
quality of the data-driven elements φ̂ j degrades at large j .

8.3 Discussion

The examples presented in Sects. 8.1 and 8.2 areCartesian products ofweak-mixing and pure-
point spectrum flows, with their state-space variables combined through some observation
map.Webeginwith someobservations about our kernelmethod applied toCartesian products.

Cartesian products Let (X , Φ t
X , μX ) and (Y , Φ t

Y , μY ) be two ergodic flows with μX , μY

compact, and with weak-mixing and pure-point spectra, respectively. We are interested in the
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Fig. 4 Galerkin approximations γ j of the eigenvalues of the regularized generator Lθ for the torus-based
system (39) (left) and the L63-based system (40) (right). The numerical eigenvalues were obtained through
the data-driven variational eigenvalue problem in Definition 27 with a spectral order parameter m = 50. Each
plot shows the first≈ 25 eigenvalues corresponding to eigenfunctions of increasing Dirichlet energy, with the
first 14 plotted in blue and the remaining ≈ 10 in red. Dashes on the imaginary axes indicate the imaginary
parts of the eigenvalues. The intervals between the blue-colored dashes are to a good approximation equal to
1, in agreement with the exact Koopman eigenvalues of these systems

measure-preserving mixed spectrum dynamical system (X × Y , Φ t
X ×Φ t

Y , μX × μY ). It is
well known that the space L2(X × Y , μX ×μY ) is densely spanned by products of the form
{ f ⊗ g : f ∈ L2(X , μX ), g ∈ L2(Y , μY )}. Corollary 28 below characterizes the component
FD of the observation map F in this scenario.

Corollary 28 Let (X , Φ t
X , μX ) and (Y , Φ t

Y , μY ) be as described above, and F ∈ L2(X ×
Y , μX × μY ) be decomposed as the sum F =∑∞

n=1 fn ⊗ gn. Then,

(i) FD = ∑∞
n=1 E( fn)gn, where E( fn) =

∫
X fn dμX . Hence, a necessary and sufficient

condition that P is not trivial is that E( fn) �= 0 for at least one n ∈ N.
(ii) If F is a continuous map, then FD is a continuous map given pointwise by FD(x, y) =∫

X F(x, y)dμX (x).

Claim (i) is a direct consequence of Proposition 12, and gives an “observability” condition
that must be fulfilled by the observation map F in order for the methods presented here to
yield non-trivial results. The proof of Claim (ii) is also direct and is omitted for brevity. It
shows that if the eigenfunctions of (X , Φ t

X , μX ) are continuous functions, then the product
system satisfies Assumption 3. Note that Corollary 28 also applies to all dynamical systems
which are topologically conjugate to such product systems.

Kernels with a small number of delays An implicit assumption in the approximation of
the operator P in (17) by the operator PQ in (17) with finitely many delays Q, is that Q
is large-enough for the asymptotic analysis of Lemma 19 to hold. When Q is small, dQ is
closer to a proper metric and therefore, the entries Ki j = exp(−dQ(xi , x j )2/ε) of the kernel
matrix K decay rapidly away from the diagonal i = j . As a result Ki j is close to a diagonal
matrix, and Pi j is close to the identity matrix. On the other hand, for Q large, dQ becomes a
pseudo-metric and Pi j is not necessarily close to a diagonal matrix. Figure 3 shows how the
Koopman eigenvalues computed for the two examples from (39) and (40) cluster near 1 for
Q = 1 and decay more rapidly for Q = 2000.

Weak-mixing systems An important assumption of our approach is that the dynamics has
non-zero Koopman eigenfrequencies, i.e.,D contains non-constant functions. This underlies
the ability of our regularized operator Lθ in (21) to be a suitable substitute of V (Theorem 21).
In fact, by Theorem 3, in the limit of infinitely many delays, Q → ∞, if D only contains
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Fig. 5 Eigenvalues λ̂ j = λ j ,Q,N and eigenfunctions φ̂ j = φ j ,Q,N of PQ,N , and absolute values of a matrix
representation of the generator of the L63 system in (38) obtained with Q = 4000 delays. The generator of this
system has continuous spectrum and a trivial eigenvalue at 0. As a result, according to Theorem 3, as Q →∞
all λ̂ j �= 1 converge to 0. This behavior can be seen in the bottom-right panel, where the λ̂ j not equal to 1

are seen clustered around a small value ≈ 0.1. Moreover, the time series of the φ̂ j , shown in the bottom-left
panel, are manifestly non-periodic since they fail to converge to Koopman eigenfunctions. As illustrated by
the phase space plot of φ̂2 in the top-right panel, the leading eigenfunctions have a highly rough geometrical
structure on the Lorentz attractor. The top left panel shows the matrix representation Vi, j = 〈φ̂i , VΔt,N φ̂ j 〉μn

of the approximate generator VΔt,N with respect to the {φ̂ j } basis. Remarkably, this matrix is very nearly
bi-diagonal, yet we do not have a theoretical result justifying this behavior

constant functions, then the kernels kQ and pQ converge to constants (in the L2 sense).
However, when using finitely many delays, kQ and pQ are generally non-constant. It is
not currently understood how the operator PQ should behave for weak-mixing systems and
Q <∞.

One of the consequences of Theorem 3(ii) is that in the limit of Q →∞, the continuous
spectrum subspaceD⊥ is annihilated by the integral operator P∞, thus rendering this operator
ineffective for studying or reconstructing the weak mixing component of the dynamics. In
particular, for weak-mixing systems, P∞ should have all but one of its eigenvalues to equal to
zero.Numerical results shown inFig. 5 indicate that the finite-rank, data-driven operator PQ,N

for the L63 system still has nonzero eigenvalues strictly less than 1, but these eigenvalues are
clustered around a small value (λ̂ j ≈ 0.1). This behavior is in agreement with Theorem 3,
according towhich all the eigenvalues of PQ other than 1 should converge to zero as Q →∞.
Note that the matrix representation of V (also shown in Fig. 5) is still skew-symmetric to
a good approximation, since V is a skew-symmetric operator. Intriguingly, the matrix has a
2× 2 block-diagonal form, despite V having no eigenfunctions. This form of the generator
matrix has some aspects in common with the recent results of Brunton et al. [14], who
obtained a bi-diagonal matrix representation of the L63 generator in a data-driven basis
from Hankel matrix analysis. In Fig. 5, the lack of Koopman eigenfunctions is evident from
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the time-series plots of the numerical eigenfunctions φ̂ j , which are clearly non-periodic.
Moreover, a phase space plot of φ̂2 illustrates that it is a highly rough function on the Lorenz
attractor.

In light of the above, the results established in this work have implications for delay-
embedding techniques, as they point to a tradeoff between reconstruction of the system’s state
space topology in delay embedding space (favored by large numbers of delays) and the ability
of operators for data analysis, such as PQ , to adequately represent the mixing component
of the dynamics. Nevertheless, the ability to consistently approximate the quasiperiodic
dynamics through Koopman eigenfunctions is still useful, as it allows identification and
efficient modeling [e.g., via (9)] of observables with high predictability. At the very least,
the “negative” result described above provides a reference point that may aid the design of
delay-embedding methodologies aiming to reconstruct the full structure of the dynamics.
One of the goals of our future work is to investigate the behavior of the techniques presented
here away from the asymptotic limit Q →∞ in the presence of a continuous spectrum.
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58. Trillos, N., Slepčev, D.: A variational approach to the consistency of spectral clustering. Appl. Comput.
Harmon. Anal. 45(2), 239–281 (2018). https://doi.org/10.1016/j.acha.2016.09.003

59. Tu, J.H., Rowley, C.W., Lucthenburg, C.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition:
theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014). https://doi.org/10.3934/jcd.2014.1.391

60. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Ser. I 328, 1197–1202 (1999)
61. Vautard,R.,Ghil,M.: Singular spectrumanalysis in nonlinear dynamics,with applications to paleoclimatic

time series. Physica D 35, 395–424 (1989). https://doi.org/10.1016/0167-2789(89)90077-8
62. von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Stat. 26(2), 555–586

(2008). https://doi.org/10.1214/009053607000000640
63. Wang, C., Deser, C., Yu, J.Y., DiNezio, P., Clement, A.: El Niño and Southern Oscillation (ENSO): a

review. In: P.W. Glynn, D.P. Manzello, I.C. Enoch (eds.) Coral Reefs of the Eastern Tropical Pacific:
Persistence and Loss in a Dynamic Environment, Coral Reefs of the World, vol. 8, pp. 85–106. Springer
Netherlands, Dordrecht (2017). https://doi.org/10.1007/978-94-017-7499-4_4

64. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator:
extending dynamic mode decomposition. J. Nonlinear Sci. (2015). https://doi.org/10.1007/s00332-015-
9258-5

65. Young, L.S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108,
733–754 (2002). https://doi.org/10.1023/A:1019762724717

66. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Adv. Neural Inf. Process. Syst. 17, 1601–
1608 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1090/S0065-9266-2012-00669-1
https://doi.org/10.1007/s00220-005-1411-9
https://doi.org/10.1098/rsta.1968.0001
https://doi.org/10.1007/s11071-005-2824-x
https://doi.org/10.1016/j.physd.2004.06.015
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1017/s0022112009992059
https://doi.org/10.1007/bf01053745
https://doi.org/10.1007/bf01053745
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1175/JCLI-D-16-0176.1
https://doi.org/10.1175/JCLI-D-16-0176.1
https://doi.org/10.2307/1968538
https://doi.org/10.2307/1968538
https://doi.org/10.1016/j.acha.2016.09.003
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1016/0167-2789(89)90077-8
https://doi.org/10.1214/009053607000000640
https://doi.org/10.1007/978-94-017-7499-4_4
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1007/s00332-015-9258-5
https://doi.org/10.1023/A:1019762724717

	Delay-Coordinate Maps and the Spectra of Koopman Operators
	Abstract
	1 Introduction
	2 Assumptions and Statement of Main Results
	3 Overview of Spectral Methods for Dynamical Systems
	4 Kernel Integral Operators from Delay-Coordinate Mapped Data
	4.1 Choice of Kernel
	4.2 Asymptotic Behavior in the Infinite-Delay Limit
	4.3 Markov Normalization

	5 Proof of Theorems 1, 3, 4 and Corollary 2
	6 Galerkin Approximation of Koopman Eigenvalue Problems
	7 Data-Driven Approximation
	8 Results and Discussion
	8.1 Two Systems with Mixed Spectrum
	8.2 Experimental Results
	8.3 Discussion

	Acknowledgements
	References




