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Abstract
We characterize the non equilibrium stationary states in two classes of systems where phase
transitions are present. We prove that the interface in the limit is a plane which separates the
two phases.

Keywords Stationary non equilibrium states · Exact solution · Phase transition

1 Introduction

While the hydrodynamic limit of “closed” diffusive particle systems is well established, less
is known for “open systems” where boundary processes are added to the bulk evolution. The
aim is to characterise the invariant measures which carry a constant particles flux through the
system (non equilibrium stationary states) and prove the validity of the Fick law which states
that the particles current scales as the inverse of the size of the system. Our main purpose is
to check the validity of the above picture when phase transitions are present.

Hydrodynamic limit in a torus when phase transitions are present has been first established
by Rezakhanlou [1] for a stochastic lattice Ginzburg–Landau model, see Sect. 2 below, and
then by Bertini, Buttà and Rüdiger, [2], for a system where Ising spins and Ginzburg–Landau
variables are coupled, see Sect. 3 below. The analysis in these papers is based on entropy
inequalities as introduced byGuo, Papanicolaou andVaradhan [3]. An essential point in these
two papers is that the current of the conserved quantity m is the gradient of the chemical
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potential: this is important because the chemical potential is continuous at the interface
between the different phases. The above systems have unbounded configuration space, and
the tightness in the proof of the hydrodynamic limit requires bounds on the moments of the
currents that are usually proven via entropy inequality. This creates a difficulty in extending
the analysis to open systems with boundaries which are in contact with reservoirs and a proof
of convergence in the hydrodynamic limit is still an open problem.

The limit diffusive equation in closed systems has the form

∂m

∂t
= Δλ

where λ is the chemical potential. Thus linear chemical potential profiles are stationary and
if the above equation retains its validity also in open systems we would get a characterization
of the stationary profiles simply as profiles where the chemical potential varies linearly in
space. In this paper we check that in the two systems quoted above, see Sects. 2 and 3,
it is indeed true that the chemical potential varies linearly: this happens not only in the
hydrodynamic limit but also when the system is finite. In fact we compute explicitly the
stationary measure proving that it is what is called a local equilibrium state with a slowly
varying chemical potential. In particular we see that the stationary density profiles at phase
transition are discontinuous: a planar interface separates regions where the density is “in the
plus” and in the “minus” phases. The limit density profile is then a solution of the stationary
free boundary Stefan problem. We have not found in the literature such statements and in
this short note we report a proof.

The stationary non equilibrium state in our models has short range correlations contrary
to what is generally believed [4,5]. According to fluctuating hydrodynamic theory [6], and
non-equilibrium thermodynamic [7], short-range correlations in stationary non equilibrium
states occur when the mobility and the diffusion coefficient are suitably related. Such relation
is satisfied in the zero range processes [8], as well as in our models where the mobility is
equal to one.

2 The Stochastic Ginzburg–LandauModel

We consider a Ginzburg–Landau stochastic lattice model in the region Λ = [1, N ]d of Zd ,
N > 1. We denote by x the points in Λ and by ei the unit vector in the i-th direction,
i = 1, . . . , d . φx ∈ R is “the charge” at site x ∈ Λ and φ = {φx , x ∈ Λ}, a charge
configuration. Since Λ will be kept fixed we do not make explicit the dependence on Λ. The
Hamiltonian we consider is

H(φ) =
∑

x

(φ2
x − 1)2 +

∑

x

∑

i=1,...,d

1x+ei∈Λ(φx − φx+ei )
2. (2.1)

Forβ large enough and d ≥ 2 the correspondingGibbsmeasure at infinite volume has a phase
transition with the two extremal translation invariant Gibbs measures which are supported
respectively by configurations where φx is predominantly close either to + 1 or to − 1, [9].

What follows holds as well in more general cases as: vertical periodic conditions (x +
Nei being identified to x , i ≥ 2) and when the Hamiltonian includes interactions with an
external configuration; we can also allow for more general one body potentials and finite
range interactions, provided the Hamiltonian remains super-stable [10, Definition 1.4]. For
notational simplicity we restrict to the Hamiltonian H(φ) of (2.1).
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We denote by νλ(dφ) the Gibbs measure with “chemical potential” λ ∈ R:

νλ(dφ) = Z−1
λ e−β[H(φ)−λ

∑
x φx ]dφ, dφ =

∏

x∈Λ

dφx (2.2)

and write ν for ν0 (i.e., when the chemical potential is 0).
Dynamics is defined by the generator

L =
∑

x

∑

i=1,...,d

1x+ei∈ΛLx,x+ei +
∑

x :x ·e1=1

Bx +
∑

x :x ·e1=N

Bx (2.3)

where Lx,x+ei and Bx are defined as follows.

Lx,x+ei = −
(

∂H

∂φx
− ∂H

∂φx+ei

) (
∂

∂φx
− ∂

∂φx+ei

)
+ 1

β

(
∂

∂φx
− ∂

∂φx+ei

)2

(2.4)

and given λ− and λ+ in R:

Bx = −
(

∂H

∂φx
− λ+

)
∂

∂φx
+ 1

β

(
∂

∂φx

)2

, x : x · e1 = N (2.5)

Bx = −
(

∂H

∂φx
− λ−

)
∂

∂φx
+ 1

β

(
∂

∂φx

)2

, x : x · e1 = 1. (2.6)

Observe that Lx,x+ei is self-adjoint with respect to νλ for any λ ∈ R, Bx , x · e1 = N , is
self-adjoint with respect to νλ+ and Bx , x · e1 = 1, with respect to νλ− .

We denote by L∗, L∗
x,x+ei and by B∗

x the adjoints of L , Lx,x+ei and Bx with respect to ν,
then, as already mentioned, L∗

x,x+ei = Lx,x+ei while

B∗
x = eβλ±

∑
y φy Bxe

−βλ±
∑

y φy , x · e1 = N , respectively x · e1 = 1. (2.7)

Let μ be a probability absolutely continuous with respect to ν and write μ = f ν. If
L∗ f = 0 then μ is time invariant.

Theorem 2.1 The measure μ = f ν is invariant if

f = eβ
∑

x λxφx , λx = λ(x · e1) (2.8)

where

λ(i) = λ− + λ+ − λ−
N + 1

i (2.9)

Proof We fix hereafter λx according to (2.8)–(2.9). We have L∗
x,x+ei f = 0 if i > 1, and for

x, x + e1 ∈ Λ, calling i = x · e1,

L∗
x,x+e1 f = f

{(
∂H

∂φx+e1
− ∂H

∂φx

)
(λ(i) − λ(i + 1)) + 1

β
(λ(i + 1) − λ(i))2

}

(2.10)

Using (2.7), for x : x · e1 = N :

B∗
x f = f

{
−

(
∂H

∂φx
− λ+

)
(λ(N ) − λ+) + 1

β
(λ(N ) − λ+)2

}
(2.11)

Similarly, for x : x · e1 = 1:

B∗
x f = f

{
−

(
∂H

∂φx
− λ−

)
(λ(1) − λ−) + 1

β
(λ(1) − λ−)2

}
(2.12)
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After a telescopic cancellation it then follows that L∗ f = 0. ��
Remark 2.2 Uniqueness of this stationary measure follows from the hypoellipticity of L , see
e.g., [11].

3 The Stochastic Phase-Field Model

We use the same notation as in the previous model adding as new variables the Ising spins
σx ∈ {− 1, 1}, σ = {σx , x ∈ Λ}, being the spin configuration inΛ. TheHamiltonian H(σ, φ)

is

H(σ, φ) = −
∑

x

∑

i=1,...,d

1x+ei∈Λσxσx+ei + 1

2

∑

x

φ2
x (3.1)

The generator is

L =
∑

x

Lx +
∑

x

∑

i=1,...,d

1x+ei∈ΛLx,x+ei +
∑

x :x ·e1=1

Bx +
∑

x :x ·e1=N

Bx (3.2)

where

Lxg(σ, φ) = cx (σ, φ)[g((σ, φ)x ) − g(σ, φ)], cx (σ, φ) = e− β
2 [H((σ,φ)x )−H(σ,φ)]

(3.3)

with (σ, φ)x (x) = (−σ(x), φ(x) + 2σ(x)) and (σ, φ)x (y) = (σ, φ)(y) for y �= x . As in the
previous section (but with the new Hamiltonian)

Lx,x+ei = −(φx − φx+ei )

(
∂

∂φx
− ∂

∂φx+ei

)
+ 1

β

(
∂

∂φx
− ∂

∂φx+ei

)2

(3.4)

As in the previous section (but with the new Hamiltonian)

Bx = −
(
φx − λ+

) ∂

∂φx
+ 1

β

( ∂

∂φx

)2
, x : x · e1 = N (3.5)

and

Bx = −
(
φx − λ−

) ∂

∂φx
+ 1

β

( ∂

∂φx

)2
, x : x · e1 = 1 (3.6)

Remark – The quantity ω(x) := σ(x) + φ(x) is invariant under the bulk evolutions (i.e.
without the generators Bx ).

– For β large the Ising part of the Hamiltonian has a phase transition when d ≥ 2.
– Let f = f (σ ) (i.e., it does not depend on φ) then

L f (σ ) =
∑

x

e− β
2 [H ising

N (σ x )−H ising
N (σ )+2σxφx ][ f (σ x ) − f (σ )] (3.7)

(H ising
N the Ising Hamiltonian). Thus the spin σx is updated using the Glauber dynamics

with additional magnetic field φx . On the other hand (under the bulk dynamics)

d

dt
Eσ0,φ0 [φt (x)] = Eσ0,φ0 [Δφt (x)] − d

dt
Eσ0,φ0 [σt (x)] (3.8)
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where Δ is the discrete Laplacian and Eσ0,φ0 denotes the expectation with respect to
the dynamics generated by L with initial contitions (σ0, φ0). This is therefore the dis-
crete stochastic version of the phase field dynamics in continuum mechanics, see [2] for
comments.

We denote by dνλ(σ, φ) the Gibbs measure with “chemical potential” λ ∈ R:

dνλ(σ, φ) = Z−1
λ e−β[H(σ,φ)−λ

∑
x (σx+φx )]dφ (3.9)

and write again ν for ν0.

As in Sect. 2, Lx,x+ei is self-adjoint with respect to νλ for any λ ∈ R, while Bx , x ·e1 = N ,
is self-adjoint with respect to νλ+ and Bx , x · e1 = 1, with respect to νλ− . The generators Lx

are self-adjoint with respect to

e
∑

y λy(σy+φy)dν(σ, φ) (3.10)

for any choice of λy and therefore

L∗
x e

∑
y λy(σy+φy ) = 0 (3.11)

We choose λx as in (2.8)–(2.9) and then using (2.10)–(2.11)–(2.12) we see that Theorem 2.1
extends its validity to the present case, details are omitted.

4 Hydrodynamic Limit

In this section we study the limit as N → ∞ (hydrodynamic limit) of the stationary measures
found in the previous sections. It is now convenient to underline the dependence on N and
we thus write Λ(N ) for Λ and μ(N ) for the corresponding stationary measures. Denote by

C = [− 1
2 ,

1
2

]d
the unit cube of Rd centered at the origin, so that C is obtained in the limit

N → ∞ by squeezing Λ(N ) by N and then shifting by − 1
2e1. We call {g} the set of C∞ test

functions on C .
In the phase field Ising system of the previous section we have a full description of

the hydrodynamic limit, for the Ginzburg–Landau model we need some assumptions on
the behavior of the invariant measures μ(N ). We start from the former and introduce the
magnetization fields X(g):

X(g) = N−d
∑

x∈Λ(N )

g

(
x

N
− 1

2
e1

)
σx (4.1)

We then have:

Theorem 4.1 For any test function g and any δ > 0

lim
N→∞ μ(N )

[
|X(g) −

∫

C
dr g(r)m(r)| > δ

]
= 0 (4.2)

where, denoting by νh, h �= 0, the Ising DLR measure with external magnetic field h:

m(r) = Eνh(r) [σ0], h(r) = λ− + (λ+ − λ−)

[
r · e1 + 1

2

]
, r : h(r) �= 0 (4.3)
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Proof Let Δ ⊂ Z
d be a cube of side � with center x∗(N ) such that

lim
N→∞

x∗(N )

N
= r + 1

2
e1, (r − r0) · e1 �= 0, r /∈ ∂C

where r0 is such that h(r0) = 0, if there is no such point the condition is dropped (it can also
be dropped if β < βc, the inverse critical temperature).

We are going to prove that, for any δ > 0,

lim
�→∞ lim sup

N→∞
μ(N )

[∣∣∣
1

|Δ|
∑

x∈Δ

σ(x) − m(r)
∣∣∣ > δ

]
= 0, (4.4)

then (4.2) follows from (4.4).
To prove (4.4) we first observe that for any x in Δ

|λx − h(r)| ≤ c
�

N

We then condition on the spins outside Δ and call μ
(N )
σΔc (σΔ) the probability of having σΔ

when there is σΔc outsideΔ. Analogously we call νΔ,h(r);σΔc (σΔ) the Ising Gibbs probability
of having σΔ in Δ when there is an external magnetic field h(r) and when the boundary
conditions are σΔc . We have

e−c′�d �
N ≤ μ

(N )
σΔc (σΔ)

νΔ,h(r);σΔc (σΔ)
≤ ec

′�d �
N (4.5)

We also have for all σΔ and σΔc

νΔ,h(r);σΔc (σΔ) ≤ ec
′′�d−1

νh(r)(σΔ) (4.6)

where νh(r)(σΔ) denotes the probability of having the configuration σΔ in Δ with respect to
the infinite volume DLR measure νh(r) [12]. We then use the large deviation estimate (valid
when β < βc and otherwise when the external magnetic field is non-zero)

νh(r)

[∣∣∣
1

|Δ|
∑

x∈Δ

σ(x) − m(r)
∣∣∣ > δ

]
≤ e−c′′′δ�d (4.7)

and conclude the proof of (4.4). ��
Suppose β < βc, then the relation (4.3) between the magnetization m and the magnetic

field h can be inverted. Let F(m) be the thermodynamic free energy density at the value m
of the magnetization density. Then m = Eνh [σ0] ranges in (− 1, 1) when h ∈ R and

m = Eνh [σ0], h = F ′(m) ≡ dF(m)

dm
(4.8)

Then Theorem 4.1 states that F ′(m(r)) is a linear function of r so that

d2

dr2
F ′(m(r)) = 0 (4.9)

(4.9) agrees with the analysis in [2] where it is shown that the hydrodynamic limit (in the
torus) is a diffusive equation with diffusion coefficient D(m) = F ′′(m).

The most interesting case is when there is a phase transition, we thus restrict below to
d ≥ 2 and β > βc. The relation (4.3) between m and h is then no longer invertible. We still
have a one to one correspondence between m and h when h ∈ R \ 0 and m : |m| > mβ ,
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A Note on Fick’s Law with Phase Transitions 209

mβ > 0 the spontaneous magnetization but there is no value of h for which |m| < mβ . For
any h �= 0 there is a unique DLR measure and (4.3) holds with m such that |m| > mβ . m
converges to ±mβ as h → 0+ and respectively to 0−, if h = 0 there are two pure states, one
with magnetization mβ and the other with magnetization −mβ .

Thus if there is r0 so that h(r0) = 0, then the magnetization profile m(r) of Theorem 4.1
has a discontinuity on the vertical plane r : r · e1 = r0 · e1 with a jump from −mβ to +mβ

when moving from negative to positive values of the magnetic field.
For the sake of definiteness let us suppose hereafter that λ+ > 0 and λ− = − λ+ so that

the [macroscopic] interface is localized in the plane r · e1 = 0. The question is about the
microscopic location of the interface. This problem has been much studied in equilibrium
when the interface is determined by the boundary conditions. The typical case is when we put
+ boundary conditions onΛc ∩{x ·e1 ≥ 0} and− boundary conditions onΛc ∩{x ·e1 < 0},
i.e. on the left and right semi-spaces. In this case the interface fluctuates around the plane
x · e1 = 0 by the order of

√
N in d = 2 while, if β is large enough when d ≥ 3 it becomes

rigid, giving rise, in the thermodynamic limit to a non translation invariant DLR measure
known as the “Dobrushin state” [13,14]. We believe that also in our case the interface is rigid
in d ≥ 3 but a proof would go beyond the purposes of this short note. In d = 2 the question
remains open whether the interface fluctuates as

√
N as in the equilibrium setting or, as we

believe, its fluctuations are damped by the presence of the chemical potential. Fluctuations
have also being considered in [15].

Another interesting phenomenon appears when we let λ+ → 0 as N → ∞. If λ+ → 0
slowly enough the limit profilem(r) is a step function equal to−mβ and tomβ for r · e1 < 0
and respectively r · e1 > 0. However we see a different picture if the convergence is fast
enough and supposing that the Ising Hamiltonian H has no interaction with the outside (zero
boundary conditions). The limit profile is in fact random and constantly equal to mβ with
probability 1/2 and to −mβ with same probability. Indeed the energy cost of an interface
scales as Nd−1, the state with the plus phase in the whole region, i.e. without any interface,
has also a cost, namely the energy of having the plus phase (mβ ) also in r · e1 < 0. This is
bounded proportionally to |λ−|Nd thus if λ− = cN−a , a > 1, |λ−|N → 0 and therefore the
probability of an interface vanishes.

4.1 The Ginzburg–Landau Case

The conjecture is that the analogue of Theorem 4.1 holds, there are however difficulties when
extending the proof given for Ising. In particular (4.5) and (4.6) cannot hold uniformly on
the boundary conditions. As done by Rezakhanlou [1], the problem can be circumvented
by cutoffing the interaction term (Sx − Sx+e)

2. However we could not quote anymore the
literature for a proof of phase transition and the validity of the Pirogov-Sinai scheme (see
[12]) to prove absence of phase transitions for λ �= 0.

5 Boundary Conditions

The Fick’s law is about the current which flows in a system having fixed the density at
the boundaries. In the hydrodynamic limit literature this is usually enforced by fixing the
chemical potential (as we did in Sects. 2 and 3), technically this is used to prove Gibbsian
local equilibrium up to the boundaries. The two procedures, fixing the density or fixing the
chemical potential, are equivalent in the absence of phase transitions. At phase transition
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instead there is an interval of values of the density (the spinodal region) which are not
produced by any chemical potential, the question then arises on how such densities can be
enforced and which are the consequences.

Fixing the chemical potential has a clear physical meaning. Consider in fact two systems
separated by a “wall” which however allows for exchange of particles. Equilibrium is then
reached when the chemical potentials at the wall are equal. The free energy flow from left to
right at the wall is

(dFleft(m)

dm
− dFright(m)

dm

)
j

j the current at the wall. Since the derivative of the free energy is the chemical potential the
above is equal to 0.

Thus fixing the chemical potential means physically that there is no free energy dissipation
at the boundaries. As a consequence if we force a boundary process which fixes the density
at the boundary in the spinodal region we should expect some extra free energy flux at the
boundary. Since the whole process (in the Fick’s law apparatus) is “boundary driven” such
extra flux may not be innocent at all. Indeed numerical simulations performed on the d = 2
Ising model with Kawasaki dynamics show a very rich behavior including the fact that the
current may flow from the boundary with smaller density to the one with larger density,
phenomenon known as “uphill diffusion” [16–18].

Acknowledgements We are indebted to B. Derrida, D. Gabrielli and J. L. Lebowitz for many useful comments
on the nature of the stationary non equilibrium states. S.O. would like to thank the warm hospitality of the
GSSI, where this work was initiated. The work of S.O. has been partially supported by the Grant ANR-15-
CE40-0020-01 LSD of the French National Research Agency.

References

1. Rezakhanlou, F.: Hydrodynamic limit for a system with finite range interactions. Commun. Math. Phys.
129, 445–480 (1990)

2. Bertini, L., Buttà, P., Rudinger, B.: Interface dynamics and Stefan problem from a microscopic conser-
vative model. Rend. Mat. Ser. VII 19, 547–581 (1999)

3. Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest
neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)

4. Derrida, B., Lebowitz, J.L., Speer, E.R.: Free energy functional for nonequilibrium systems: an exactly
solvable case. Phys. Rev. Lett. 87, 150601 (2001)

5. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the
open symmetric simple exclusion process. J. Stat. Phys. 107(3/4), 599–634 (2002)

6. Derrida, B., Sadhu, T.: Correlations of the density and of the current in non-equilibrium diffusive systems.
arXiv:1608.03867 (2016)

7. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctiation theory. Rev.
Mod. Phys. 87, 593 (2015)

8. De Masi, A., Ferrari, P.A.: A remark on the hydrodynamics of the zero range process. J. Stat. Phys. 36,
81–87 (1984)

9. Dinaburg, E.I., Sinai, Ya G.: Contour models with interaction and their applications. Sel. Math. Sov. 7,
291–315 (1988)

10. Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Commun. Math. Phys
50, 195–218 (1976)

11. Rey Bellet, L.: Ergodic properties of Markov processes. In: Attal, S., Joye, A., Pillet, C.A. (eds.) Open
Quantum Systems II. Lecture Notes in Mathematics, vol. 1881. Springer, Berlin (2006)

12. Presutti, P.: Scaling Limits in Statistical Mechanics. Theoretical and Mathematical Physics Series.
Springer, New York (2009)

13. Dobrushin, R.L.: Gibbs state describing coexistence of phases for a three-dimensional Ising model. Teor.
Veroyatnost. Primen. 17(4), 619–639 (1972)

123

http://arxiv.org/abs/1608.03867


A Note on Fick’s Law with Phase Transitions 211

14. Dobrushin, R.L.:Gibbs state describing coexistence of phases for a three-dimensional Isingmodel. Theory
Probab. Appl. 17(4), 582–600 (1973)

15. Spohn, H.: Fluctuations of a flux driven interface. Z. Phys. B 97, 361 (1995)
16. Colangeli, M., De Masi, A., Presutti, E.: Latent heat and the Fourier law. Phys. Lett. A 380, 1710–1713

(2016)
17. Colangeli, M., De Masi, A., Presutti, E.: Microscopic models for uphill diffusion. J. Phys. A 50, 435002

(2017)
18. Colangeli, M., Giardin, C., Giberti, C., Vernia, C.: Nonequilibrium two-dimensional Ising model with

stationary uphill diffusion. Phys. Rev. E 97, 030103 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A Note on Fick's Law with Phase Transitions
	Abstract
	1 Introduction
	2 The Stochastic Ginzburg–Landau Model
	3 The Stochastic Phase-Field Model
	4 Hydrodynamic Limit
	4.1 The Ginzburg–Landau Case

	5 Boundary Conditions
	Acknowledgements
	References




