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Abstract
Weprove results for first-passage percolation on the configurationmodel with degrees having
asymptotic finite mean, infinite variance and i.i.d. edge-weights with strictly positive support
of the form Y = a + X , where a is a positive constant and the excess edge-weight X is
a non-negative random variable with zero as the infimum of its support. We prove that the
weight of the optimal path between two uniformly chosen vertices has tight fluctuations
around the asymptotic mean of the graph-distance if and only if the following condition
holds: the random variable X is such that the age-dependent branching process describing
first-passage percolation exploration in the same graph with edge-weights from distribution
X has a positive probability to reach infinitely many individuals in a finite time. This shows
that almost-shortest paths in the graph-distance proliferate, in the sense that there even exist
paths having tight total excess edge-weight for appropriate edge-weight distributions. Our
proof makes use of a degree-dependent percolation model that we believe is interesting in its
own right, as well as tightness results for distances in scale-free configuration models that
we prove to hold under rather weak conditions on the degrees.
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1 Introduction

1.1 Motivations

First Passage Percolation (FPP) has been introduced as amodel for the spread of amaterial in a
randommedium (see [10]). Inmore recent times,motivated by the boost in interest in complex
networks and the related randomgraphmodels for them, it has appeared as amathematical tool
for studying dynamics in complex networks. A typical setting in this sense is a transportation
network in which roads, corresponding to edges, have certain transport times, corresponding
to weights on the edges (see [13]). Typical travel times are then affected by the number of
edges in the almost-shortest paths between the vertices of the network and the passage time
cost to cross the edges. The corresponding mathematical model is a simple and connected
graph G, such that every edge e has a random variable Ye assigned to it, representing the
passage time through the edge e, where the edge-weights (Ye) are a collection of independent
and identically distributed (i.i.d.) random variables. The independence of the edge-weights is
a technical assumption that we pose and that makes the analysis of the mathematical model
possible, however, we emphasise that it might not hold in real-life applications. The main
object of study of first-passage percolation is the time that a flow starting from a vertex u
takes to reach a vertex v. For an extensive introduction to FPP on random graphs, we refer
to [18, Chapter 3].

In this paper, we study first-passage percolation in the setting of the configuration model
random graph, with degrees having finite mean and infinite variance. An important question
in the study of FPP regards the geometry of the geodesics, or the time-minimizing paths.
For this, we consider three functionals on the weighted graph: the graph-distance between
two vertices, i.e., the minimal number of edges between them, the weight-distance, i.e.,
the minimal total weight between the two vertices along all paths connected them, and
the hopcount, that is, the number of edges of the minimal-weight path. We focus on the
fluctuations of these functionals around their asymptotic mean. We investigate the case of
i.i.d. edge-weights of the form Y = a+X , where a is a positive constant that we can take to be
equal to one without loss of generality and X is a random variable with zero as its infimum of
support. In a previous paper [4] we have shown that in a similar setting the weight-distance
between two uniformly chosen vertices grows proportionally to log log n, where n is the
number of vertices in the graph. We now extend this result proving that fluctuations around
the median are tight for both the weight-distance and the hopcount if and only if the random
variable X is such that the continuous-time branching process approximation of the local
exploration in the given graph with weight X is explosive. With this we mean that the process
has a positive probability of having infinitely many individuals alive in a finite time. This is
a non-universality result in contrast with the case of general edge-weights with a continuous
distribution and support that contains 0 (see [6]) and finite-variance degrees, in which the
hopcount satisfies a central limit theorem. Further, it gives a rather precise picture about the
proliferation of almost-shortest paths in the graph distance, and thus about the geometry of
the configuration model in the infinite-variance degree setting.

1.2 Notation and Organization

In this section we introduce notation used throughout the paper. Given two R-valued random

variables X and Y , we write X
d= Y if P(X ≤ x) = P(Y ≤ x) for all x ∈ R. With oq(1)

we denote a sequence of real numbers such that oq(1) → 0 as q → ∞. A sequence of
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random variables (Xn)n≥1 converges in probability to a random variable X , which we write

as Xn
P→ X if, for all ε > 0, P(|Xn − X | > ε) → 0. A sequence of random variables

(Xn)n≥1 converges to X in distribution, which we write as Xn
d→ X , if limn→∞ P(Xn ≤

x) = P(X ≤ x) for all x ∈ R for which FX (x) = P(X ≤ x) is continuous. We denote the
set {1, 2, . . . , n} by [n]. A sequence of random variables (Xn)n≥1 is said to be tight if for all
ε > 0, there exists r > 0 such that supn≥1 P(|Xn | > r) < ε. A sequence of events (En)n≥1

is said to hold with high probability (w.h.p.) if limn→∞ P(En) = 1. Bin(n, p) denotes a
random variable with a binomial distribution where the number of trials is n and the success
probability is p. CMn(d) denotes the configurationmodel on n vertices with degree sequence
d = (d1, d2, . . . , dn), as introduced in the next section.

This section is organized as follows. In Sect. 1.3, we introduce the model. In Sect. 1.4,
we describe our results. We close this section in Sect. 1.5 by giving an overview of the proof
and relating it to the literature.

1.3 TheModel

Our setting is the configuration model CMn(d) (see [7]) on n vertices, where d =
(d1, . . . , dn), and di is the degree of vertex i ∈ [n]. Further, let Ln = ∑

i∈[n] di denote
the total degree. The configuration model graph is obtained as follows: we assign to vertex i
a number di of half-edges and we pair these half-edges uniformly at random.When two half-
edges are paired they form an edge, and we continue the procedure until there are no more
half-edges available. If Ln is odd, we add a half-edge to vertex n; this extra half-edge makes
no difference to our results and we will refrain from discussing it further. After the pairing is
done, we allocate i.i.d. random variables, that we call edge-weights, from some distribution
Y , to all existing edges. We consider general degree sequences that asymptotically satisfy a
power-law with exponent τ ∈ (2, 3), so that the variance blows up as n → ∞. A special
case is to consider i.i.d. degrees with cumulative distribution function x �→ F(x) satisfying

Cx−τ+1 exp{−C1(log x)
γ } ≤ 1 − F(x) ≤ Cx−τ+1 exp{C1(log x)

γ−1}, (1.1)

for γ ∈ (0, 1), C,C1 > 0 and τ ∈ (2, 3). We assume that F(1) = 0, so that mini∈[n] di ≥ 2
a.s. In more general settings, we adapt [20, Assumption 1.1] and impose the following
assumption on the empirical degree distribution, Fn(x) := 1

n

∑
v∈[n] 1{dv≤x}:

Assumption 1.1 (Power-law tail behavior) Fix τ ∈ (2, 3). There exists α ∈ (1/2, 1/(τ −1)],
c,C > 0 and γ ∈ (0, 1) such that, for all x ,

1 − Fn(x) ≤ C

xτ−1 exp{C(log x)γ }, (1.2)

while, for all x ∈ [x0, nα),

1 − Fn(x) ≥ c

xτ−1 exp{−C(log x)γ }. (1.3)

Assumption 1.1 is slightly stronger than [20, Assumption 1.1] in the sense that we deal
with appropriate upper and lower bounds on 1 − Fn(x), while [20, Assumption 1.1] also
considers truncated degree distributions for which Fn(x) = 1 for all x ≤ nβn for some βn

that might or might not tend to zero. Assumption 1.1 forms the main technical assumptions
on the degree distribution. Concentration techniques on binomial random variables can be
used to prove that Assumption 1.1 holds with high probability in the case of i.i.d. degrees
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whose distribution function satisfies (1.1) (see [19, Section A.1] for details, and in particular
[19, (A.1.26)]).

The condition on the minimal degree guarantees that almost all the vertices of the graph
lie in the same connected component (see [3, Proposition 2.1]), or, equivalently, the giant
component has size n(1 − o(1)) (see [9, Theorem 2.2]). All edges are equipped with i.i.d.
edge-weights with distribution function FY (y) = P(Y ≤ y), where Y = a + X is a non-
negative random variable with inf supp(X) = 0, a > 0. Note that we do not assume that X
has a continuous distribution. Without loss of generality, we can assume a = 1. We call X
the excess weight of the edge. Let Dn have distribution function Fn , and let Bn be defined as
the (size-biased version of Dn)−1, that is,

P(Bn = k) := k + 1

E[Dn]P(Dn = k + 1). (1.4)

We then let F�
n denote the distribution function of Bn .

In this paper, we consider several distances and functionals on the graph, as defined in the
following definition:

Definition 1.2 (Distances in graphs)Given two vertices u and v, the graph-distanceDn(u, v)

and the passage-time or weight-distance Wn(u, v) from u to v are defined as

Dn(u, v) := min
π : u→v

∑

e∈π

1, Wn(u, v) := WY
n (u, v) = min

π : u→v

∑

e∈π

Ye, (1.5)

where the minimum is over all paths π in G connecting u and v, and Y := (Ye)e is the
collection of edge-weights. The hopcount Hn(u, v) is the number of edges in the minimal
weight path between u and v (if this path is non-unique, we take the onewithminimal number
of edges on it).

The main aim of this paper is to study these functionals on the configuration model with
degrees having empirical distribution function Fn satisfying (1.1) and i.i.d. edge-weights
Y = 1 + X , where inf supp(X) = 0.

1.4 Results

Our main result is the following theorem:

Theorem 1.3 (Tightness criterion for excess edge-weights) Consider CMn(d), where the
degrees satisfy Assumption 1.1 for some τ ∈ (2, 3), and assume that Fn(1) = 0. Let u and
v be chosen uniformly at random from [n]. Suppose that the edge-weights are i.i.d. and are
of the form Y = 1 + X, where inf supp(X) = 0 and X has cumulative distribution function
FX (x) with its generalised inverse F (−1)

X (y) := inf{t ∈ R : FX (t) ≥ y} that satisfies that,
for some ε > 0,

I(X) :=
∫ ∞

1/ε
F (−1)

X

(
e−u) 1

u
du < ∞. (1.6)

Then

Wn(u, v) − 2 log log n

| log(τ − 2)| (1.7)
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is a tight sequence of random variables. Consequently, also

Hn(u, v) − 2 log log n

| log(τ − 2)| (1.8)

is a tight sequence of random variables.

The tightness of the hopcount in (1.8) is a rather direct consequence of a similar tightness
result for the typical distance Dn(u, v), since, for our choice of edge-weights,

Dn(u, v) ≤ Hn(u, v) ≤ Wn(u, v). (1.9)

Therefore, by (1.7) in Theorem 1.3 and the tightness of

Dn(u, v) − 2 log log n

| log(τ − 2)| (1.10)

as proved in [19, Theorem 1.2] in the setting of i.i.d. degrees, it follows that (1.8) holds. In the
setting of general degrees under Assumption 1.1, we prove this tightness in Proposition 1.8
below. Tightness of the sequence in (1.10) also follows from [20], under Assumption 1.1.

Remark 1.4 The integral condition in (1.6) is equivalent to the following. Let Bn be defined in

(1.4) and X be the excess edge-weight. Assume that Bn
d−→ B for some random variable B.

Let BP(B, X) be the age-dependent branching process where individuals have random life-
lengths with distribution X . At death, every individual, independently, produces a family of
random size with offspring distribution B. Then, (1.6) holds if and only if this age-dependent
branching process is explosive, meaning that there is a positive probability that Nt = ∞,
where Nt denotes the number of individuals alive at some finite time t > 0. Otherwise, the
process is called conservative. See [2] or [14, Section 6] for the proof of this result. Note in
particular that this property is independent of the precise value of the power-law exponent
τ ∈ (2, 3) in (1.1) (that enters the age-dependent branching process through (1.4)). We
emphasise this connection below in Theorem 1.10 below.

Remark 1.5 We emphasize that the integral condition in (1.6) is a criterion that is easy to
verify for most commonly known distributions. The convergence of the integral depends
on the behavior of the distribution of X around 0: the steeper the distribution function at
0, the smaller the lhs of (1.6). For example, (1.6) holds for Exponential, Uniform, Gamma
distributions, etc, but also distributions that are more flat around the origin. The boundary
case is when FX is doubly-exponentially flat around 0, i.e., the family of distributions FX (t) =
c1 exp{−c2 exp{c3/tβ}}, for appropriate constants c1, c2, c3 > 0 and parameter β. For this
case, (1.6) is satisfied forβ < 1 but the integral diverges forβ ≥ 1.We remark that FX (x) does
not have to be continuous to satisfy (1.6). For instance, a distribution that puts point masses
ck1/(1 − c1) to location ck2, for all k ≥ 0 can be shown to satisfy (1.6) for all c1, c2 ∈ (0, 1).
Finally, we remark that it is allowed that P(X = ∞) > 0. In this case one just needs to set
1/ε in the integration boundary (1.6) sufficiently high so that the inverse is defined.

We next investigate what happens when the criterion in (1.6) fails:

Proposition 1.6 (Non-tightness of excess edge-weight) Consider CMn(d), where the degree
sequence satisfies Assumption 1.1 for some τ ∈ (2, 3), and assume that Fn(1) = 0. Let u and
v be chosen uniformly at random from [n]. Suppose that the edge-weights are i.i.d. and are
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of the form Y = 1 + X, where inf supp(X) = 0 and X has cumulative distribution function
FX (x) that satisfies for some ε > 0 that I(X) = ∞ in (1.6). Then

Wn(u, v) − 2 log log n

| log(τ − 2)|
P−→ ∞. (1.11)

Further, also Wn(u, v) − Hn(u, v)
P−→ ∞.

To prove Proposition 1.6, we state and prove a useful lemma:

Lemma 1.7 ConsiderCMn(d), where the degrees satisfy Assumption 1.1 for some τ ∈ (2, 3),
and assume that Fn(1) = 0. Let u and v be chosen uniformly from [n]. Suppose that the
edge-weights are i.i.d. and are of the form X, where inf supp(X) = 0 and X has cumulative
distribution function FX (x) that satisfies for some ε > 0 that I(X) = ∞ in (1.6). Then

W X
n (u, v)

P−→ ∞. (1.12)

Proof The statement is a consequence of the branching process approximation of the neigh-
borhood of a vertex in CMn(d) and the hypothesis that the process is not explosive, see [4]
and [14, (11) and Proposition 3] in the context of i.i.d. degrees, and [1] for general degrees.
In more detail, [1] shows in this setting the stronger result

WX
n (u, v)/

log log n/| log(τ−2)|∑

k=1

F (−1)
X (exp(−(τ − 2)−k))

P−→ 1.

�	
The proof of Proposition 1.6 given Lemma 1.7 is as follows:

Proof of Proposition 1.6 Let Ye = Xe + Ze, where Ye, Xe and Ze are edge-weights. For a
path π , write WZ

n (π) = ∑
e∈π Ze (and the same for X , Y ). Then, for any pair of vertices u

and v in the same connected component and any path π connecting u and v,

WY
n (π) = WX

n (π) + WZ
n (π) ≥ WX

n (u, v) + WZ
n (π). (1.13)

Let π Y be the minimal-weight path between u and v for the weights (Ye)e and let Ze ≡ 1,
so that WY

n (π Y ) = WY
n (u, v), while WZ

n (π Y ) = Hn(u, v). Then, we can rewrite (1.13) as

WY
n (u, v) − Hn(u, v) ≥ WX

n (u, v). (1.14)

If Xe is such that I(X) = ∞, then, by Lemma 1.7, WX
n (u, v)

P−→ ∞, which implies

that WY
n (u, v) − Hn(u, v)

P−→ ∞, as required. For the statement that Wn(u, v) −
2 log log n/| log(τ − 2)| P−→ ∞, we note that Hn(u, v) ≥ Dn(u, v), so that

WY
n (u, v) − 2 log log n

| log(τ − 2)| ≥ [WY
n (u, v) − Hn(u, v)] + [

Dn(u, v) − 2 log log n

| log(τ − 2)|
] P−→ ∞,

(1.15)

since Dn(u, v) − 2 log log n/| log(τ − 2)| is a tight sequence of random variables by [20]. �	
Proposition 1.6 already highlights the importance of tightness of graph distances in our

setting.We next show that the difference between the graph-distance and 2 log log n/| log(τ −
2)| is tight:
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Proposition 1.8 (Lower tightness of graph distances) Consider CMn(d) where the degree
sequence d = (d1, . . . , dn) has empirical distribution function Fn(x). Suppose that there
exist C > 0,C1 ∈ R, γ ∈ (0, 1) such that

1 − Fn(x) ≤ C

xτ−1 exp{C1(log x)
γ } for all x ≥ 1. (1.16)

Then, Dn(u, v) − 2 log log n/| log(τ − 2)| satisfies
lim

K→∞ sup
n≥1

P

(
Dn(u, v) − 2 log log n

| log(τ − 2)| ≤ −K
)

= 0. (1.17)

Remark 1.9 (I.i.d. vs. non-i.i.d. degrees) For the i.i.d. case satisfying (1.1), the tightness
of Dn(u, v) − 2 log log n/| log(τ − 2)| has already been proved in [19]. Slightly sharper
conditions have appeared in the branching process context by Davies in [8], who investigates
the number of particles in an infinite-mean (Galton-Watson) branching process. It is unclear
whether the result also holdswhen exp{C1(log x)γ } is replaced by an arbitrary slowly-varying
function. We will use the result by Davies [8] in the proof of Proposition 1.8 below.

We now prove Proposition 1.8 and Lemma 1.7, using a branching process comparison:

Proof (Sketch of proof of Proposition 1.8 and Lemma 1.7)We only provide the sketch of one
possible proof, since many similar results are proved in the literature and we refer to some
of them. Let F�

n denote the distribution function of Bn in (1.4). When (1.16) holds, also

1 − F�
n (x) =

∑

k>x

k + 1

E[Dn]P(Dn = k + 1)

= x

E[Dn] [1 − Fn](x) + 1

E[Dn]
∑

k>x

[1 − Fn](k)

≤ C�

xτ−2 exp{C�
1(log x)

γ } (1.18)

for an appropriately chosen constantsC�,C�
1. See [20, (1.7)]where such an estimate isworked

out in more detail.We explore the neighborhoods of u and v in a breadth-first way, and denote
the arising forward degrees by (B̃(u)

n,i )i≥1 and (B̃(v)

n,i )i≥1 respectively, and the degrees of the uni-

form vertices by D̃(u)
n = du and D̃(v)

n = dv . By a standard coupling argument as, for example,

worked out in detail in [18, Lemma 2.12], we can couple
(
D̃(u)
n , (B̃(u)

n,i )i≤mn , D̃
(v)
n , (B̃(v)

n,i )i≤mn

)

to an independent sequence
(
D(u)
n , (B(u)

n,i )i≤mn , D
(v)
n , (B(v)

n,i )i≤mn

)
, where D(u)

n , D(v)
n have dis-

tribution Dn and B(u)

n,i , B
(v)

n,i distribution Bn in (1.4), as long asmn = o(
√
n/dmax), where dmax

is the maximal degree. When (1.16) holds, dmax = O(n1/(τ−1)), so this successful coupling
applies as long as mn = nκ for any κ < (τ − 2)/[2(τ − 1)]. In particular, this implies that
the two neighborhoods of u and v are w.h.p. disjoint up to the moment that each contains mn

vertices.
Further, when (1.16) holds, and using (1.18), the random variables Dn and Bn can be

stochastically bounded from above by random variables D̄ and B̄ with distribution functions
FD̄(x) = 1−Cx−(τ−2) exp{C1(log x)γ−1} and FB̄(x) = 1−C�x−(τ−2) exp{C�

1(log x)
γ−1},

respectively. In this setting, we can apply the branching process result by Davies [8], showing
that Z̄k , the number of individuals in generation k in the two-stage branching process with
root offspring distribution D̄ and offspring distribution B̄ in any other generation, satisfies

(τ − 2)k log(Z̄k)
a.s.−→ V̄ , (1.19)
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for some non-negative random variable Ȳ . Solving Z̄k ≤ exp{(τ − 2)−k(V̄ + ε)} ≤ mn =
nκ for k yields k ≤ (log log n − log((V̄u + ε)/κ))/| log(τ − 2)| w.h.p. This implies that
the neighborhood of u of size mn vertices w.h.p. contain the first (log log n − log((V̄u +
ε)/κ))/| log(τ − 2)| generations, where V̄u is the random variable V̄ corresponding to the
two-stage branching process rooted at u. The same applies to v. Thus, since the two clusters
are disjoint w.h.p.,

Dn(u, v) ≥ (log log n − log((V̄u + ε)/κ))/| log(τ − 2)|
+(log log n − log((V̄v + ε)/κ))/| log(τ − 2)|

= 2 log log n/| log(τ − 2)| − log((V̄u + ε)(V̄v + ε)/κ2))/| log(τ − 2)|,
(1.20)

as required. Since the last term is w.h.p. ≥ −K when K is large, the claim follows. This
completes the proof of Proposition 1.8.

The proof of Lemma 1.7makes use of the same coupling, but nownote that when condition
(1.6) fails, then the continuous-time branching process with edge-weights X and offspring
distribution B̄ is not explosive, so that the time to leave the mn-environment of u tends to
infinity almost surely. �	

We close this results section by merging Proposition 1.6 and Theorem 1.3 in a single
theorem for i.i.d. degrees. For this, let FX be the cumulative distribution for the random
variable X , let D be the degree distribution and B the random variable defined in (1.4),
with Dn replaced by D. If BP(B, X) is the age-dependent branching process defined with
offspring distribution B and life-length distribution X (see Remark 1.4), then we can define
the following sets:

E(D) = {FX : BP(B, X) is explosive}, (1.21)

and

T (D) = {
FX : W (1+X)

n − 2 log log n

| log(τ − 2)| is tight
}
. (1.22)

Theorem 1.10 (Universality class for tightness = universality class for explosion) Consider
CMn(d), where the degrees are i.i.d. from some distribution D that satisfies (1.1) for some
τ ∈ (2, 3), and assume that FD(1) = 0. Then

E(D) = T (D). (1.23)

Proof The proof follows directly from Proposition 1.6, Theorem 1.3 and Remark 1.4. �	
Remark 1.11 (Universality and proliferation of almost-shortest paths) Proposition 1.6 shows
that there are two universality classes in terms of tightness for the casewhere the edge-weights
take the form Y = 1 + X where inf supp(X) = 0. Namely, one where (1.6) is satisfied and
one where it is not. The same is true for typical distances in the setting of edge-weights
(Ye)e with inf supp(Y ) = 0 (see [4, Theorem 4]). In that case, (1.6) implies distributional
convergence of typical distances, while divergence of the integral in (1.6) implies typical
distances tending to infinity. Remarkably, Theorem 1.10 shows that these two universality
classes are the same.

The proof of Theorem 1.3 also shows that there are many almost-shortest paths in the
graph-distance metric, since we can even find one with tight total excess edge-weight when
(1.6) is satisfied. However, when the excess edge-weight distribution increases too thinly
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from zero, such that (1.6) fails, such paths can no longer be found. This gives us a more
complete picture of the geometry of the configuration model with infinite-variance degrees,
and brings the discussion of the universality classes of FPP on it substantially further.

Theorems 1.3 and 1.10 leave open whether the fluctuations converge in distribution. That
is part of the following open problem:

Open Problem 1.12 (Weak convergence of fluctuations) Consider CMn(d), where the
degrees are i.i.d. from distribution D that satisfies sequence satisfies (1.1) with τ ∈ (2, 3),
and assume that Fn(1) = 0. Let u and v be chosen uniformly at random from [n]. Suppose
that the edge-weights are i.i.d. and are of the form Y = 1 + X, where inf supp(X) = 0 and
X has cumulative distribution function FX (x). Show that when I(X) < ∞ in (1.6) for some
ε > 0, then

WY
n (u, v) − 2 log log n

| log(τ − 2)|
d−→ W∞ (1.24)

for some limiting random variable W∞. When I(X) = ∞, is then

WY
n (u, v) − 2 log log n

| log(τ − 2)| (1.25)

of the same order of magnitude as W X
n (u, v)?

In Open Problem 1.12, we resort to i.i.d. degrees, as the limiting distribution W∞ can be
expected to depend sensitively on the precise degree distribution (not just upper and lower
bounds on its empirical distribution function as in Assumption 1.1).

1.5 Overview of the Proof

1.5.1 Upper Tightness of the Graph-DistanceDn(u, v)

First we prove a uniform upper bound on the difference between the graph-distance of
two vertices of sufficiently high degree (at least k) and 2 log log n/| log(τ − 2)|. For this
we construct a path that has length less than 2 log log n/ log(τ − 2)| plus a tight random
variable. The construction is as follows: we start from vertex uk with degree at least k, for
a fixed but large constant k. Then we find a sequence of nested sets 
yi : 
yi ⊃ 
yi+1 ,
where 0 ≤ i ≤ b, 
yi = {v : dv ≥ yi }, and b is less than log log n/| log(τ − 2)|, for some
increasing sequence yi . We show that for any fixed small ε > 0 there exists an increasing
sequence yi such that the following properties hold: y0 = k and a vertex in 
yi is connected
to at least one vertex in 
yi+1 with probability at least 1 − εi , and

∑b
i=0 εi < ε. Here, the

path is constructed sequentially, and the vertex that is found in 
yi is then w.h.p. connected
to at least one vertex in 
yi+1 . Moreover, the last set of the sequence 
yb is a subset of the
complete graph formed by hubs, by which we mean degree at least n1/2+δ for some small
δ > 0. We show that the number of sets needed, b, is at most log log n/| log(τ − 2)| when k
is sufficiently large. So, starting from two uniformly chosen vertices uk and vk with degree
at least k, the two paths constructed with the procedure above, we connect uk and vk to the
same complete graph in a number of steps that is at most 2 log log n/| log(τ − 2)|.
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1.5.2 Degree-Dependent Percolation on Configuration Models

Our proof of the upper tightness in (1.7) crucially relies on a percolation argument that
we believe to be of independent interest. We call this degree-dependent percolation. In this
percolation argument, we independently keep or remove each half-edge s with probability
p(d) vs. 1 − p(d), where d is the degree of the vertex that s is attached to. Then, each
edge is removed when at least one of the half-edges of which it consists is removed. We
show that a giant component remains when p(d) ≥ exp{−C log(d)γ }, and that the typical
distances Dr

n(u, v) within the giant component remaining after percolation still satisfy that
Dr
n(u, v)−2 log log n/| log(τ −2)| is tight. This is achieved by relating the degree-percolated

graph to another configuration model, for which the degrees w.h.p. still satisfy the lower
bound in (1.3) of Assumption 1.1, with the same value of τ ∈ (2, 3). For this, we extend the
construction by Janson (see [12]) to this degree-dependent percolation on the configuration
model.

1.5.3 Tightness of the Weight-DistanceWY
n (u, v) via Degree-Dependent Percolation

To apply the above degree-dependent percolation result, we choose p(d) in such a way that
it can be expressed as P(X ≤ ξd), for some appropriately chosen sequence ξd that depends
on the distribution of the excess edge-weight X . Then, we can use the (independent) extra
edge-weights (Xe)e as auxiliary random variables to decide which edge to keep or remove:
we keep a half-edge s attached to a vertex with degree d if and only if the excess edge-weight
on the half-edge s satisfies Xs ≤ ξd . Note that in Theorem 1.3, we have assumed that the
weight on an edge is of the form Y = 1+ X , while the degree-dependent percolation assigns
a weight to each half-edge. To solve this issue, we solve the case when the edge-weights
are of the form Y ′ = 1 + X1 + X2 where X1 and X2 are two i.i.d. random variables from

distribution X . Since 1 + X
d≤ 1 + X1 + X2, weight-distances in the graph with edge-

weights Y are stochastically smaller than weight-distances in the graph with edge-weights
Y ′. Further, both distances are bounded from below by the graph-distance. Hence, tightness
of the weight-distance with respect to the edge-weights from distribution Y ′ implies tightness
of the weight-distance with respect to the edge-weights from distribution Y . This is reflected
in the fact that the integral criterion for X and X1 + X2 in (1.6) can be seen to agree.

Starting from CMn(d), where the degrees satisfy Assumption 1.1 for some τ ∈ (2, 3),
we prove that under the condition that (1.6) is satisfied, it is possible to choose ξd and thus
p(d) in such a way that the new percolated graph has a new empirical degree distribution
that still satisfies the lower bound in (1.3) in Assumption 1.1 with the same exponent τ . This
implies that the setting that allows the construction of the path described in Sect. 1.5.1 is
maintained in the percolated graph. Namely, to construct a path from u to v with bounded
excess edge-weight, we use two steps. First, we fix some large constant k andwe approximate
a constant-size neighborhood of the vertices u, v in the original, unpercolated graph by two
branching processes, in order to reach two vertices uk, vk that have degree at least k after
percolation w.h.p. Then, in the second step, we connect uk to vk within the percolated graph
with a bounded excess edge-weight by constructing a path π�. Thus,

Wn(u, v) ≤ Wn(u, uk) + Wn(v, vk) + |π�| +
∑

x∈π∗
2ξdx , (1.26)

where |π�| is the number of edges on the constructed path and ξdx is the upper bound on the
excess edge-weight on the half-edges that are attached to vertex x in the percolated graph.
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The first two terms are tight since k is fixed, the third one is 2 log log n/| log(τ − 2)|+ a
k-dependent constant, by construction, while the final term can be seen to be tight for an
appropriate choice of the (ξd) precisely when (1.6) is satisfied. We mention that by choosing
k large enough, we also ensure that uk, vk belong to the giant component of the percolated
graph w.h.p., i.e., the path π� can be constructed. This describes the structure of the proof.

While we see that explosion of FPP with edge-weights (Xe)e occurs if and only if
W 1+X

n (u, v) − 2 log log n/| log(τ − 2)| is tight (recall Theorem 1.10), we have no heuris-
tic idea for one of the directions. The fact that non-explosion implies non-tightness has
an intuitive proof, see Proposition 1.6. The other direction, however, uses the complicated
degree-dependent percolation argument. It would be of interest to understand the heuristics
behind that direction better.

1.6 Discussion and Related Problems

First-passage percolation has been studied extensively in different settings, starting from the
grid Z

2 to a wide variety of random graphs, including the configuration model. One of the
main problems in first-passage percolation regards the typical weight-distance between two
vertices in the graph. Moreover, if we assume that the edges have a passage-time represented
by a collections of i.i.d. random variables, a second problem is to determine the geometry of
the time-minimizing paths between two points and the way in which they differ from graph-
distance paths. A third problem regards the nature of the fluctuations of these distances and
of the hopcount around their asymptotic mean values.

In the context of random and complete graphs, these questions have been widely investi-
gated, for instance in [11], Janson proves that on the complete graph Kn with i.i.d. exponential
weights, the weight-distance between two points grows asymptotically as log n/n. Bhamidi,
the second author and Hooghiemstra in [6] examine the Erdős–Rényi random graph Gn(pn)
with i.i.d. exponential edge-weights. When npn → λ > 1, the weight-distance centered by a
multiple of log n converges in distribution, while, when npn → ∞ they prove that the graph-
distance is of order o(log n), and that the addition of edge-weights changes the geometry of
the graph. The same authors show in [5] that on the configuration model, when the degree
sequence has finite variance with an extra logarithmic moment, first-passage percolation has
only one universality class in the sense that Wn(u, v) − γn log n converges in distribution
for some γn → γ > 0, while Hn(u, v) satisfies an asymptotic Central Limit Theorem with
asymptotic mean and variance proportional to log n. In [16], van den Esker, the second author
and Hooghiemstra generalize the results on configuration model with finite-variance degrees
to a more general class of random graphs, including the Erdős–Rényi random graph, showing
that the fluctuations around the asymptotic mean are tight.

The setting of configuration models with power-law degrees having infinite asymptotic
variance has also been investigated. However, here the picture is less complete: In [4], we
prove results for the weight-distance for i.i.d. edge-weights X with inf supp(X) = 0. We
have shown the existence of two universality classes, one corresponding to explosive weights
as in (1.21) and one corresponding to conservative weights. These two classes correspond to
different weight-distances, in particular, in the explosive case, the weight converges to the
sum of two i.i.d. random variables. Adriaans and the third author [1] investigate the leading
order behavior of the weight-distance in the conservative case. A result on the nature of
fluctuation is given by the second author, Hooghiemstra and Znamenski in [19], where they
proved that the graph-distance for power-law exponent τ ∈ (2, 3) and i.i.d. degrees centers
around 2 log log n/| log(τ − 2)|, and that the fluctuations are tight. In a recent paper, the
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second and third author generalized these results by investigating the fluctuation of graph
distances when the degrees are truncated at a lower value nβn rather than n1/(τ−1), which is
the maximal degree for i.i.d. degrees, see [20]. We refer to [18, Chapter 3] for an extensive
discussion of results for FPP on random graphs.

Organization of this paper In Sect. 2 we prove upper tightness of Dn(u, v) −
2 log log n/| log(τ −2)| under relatively weak assumptions on the degrees, which is a crucial
ingredient in our proof. In Sect. 3 we combine this result with a degree-dependent half-edge
percolation argument that enables us to find the path π� in the percolated graph. In Sect. 4
we complete the proof of tightness of the weight-distance.

2 Tightness of the Graph-Distance

In this section, we prove the upper tightness result on Dn(u, v) − 2 log log n/| log(τ − 2)|
that complements the lower tightness result in Proposition 1.8. We further prove additional
properties depending on the degree of the vertices u, v as well as on the degrees of the vertices
in the connecting path, which will be crucial in order to apply the result in the context of
FPP on CMn(d). With Dn(u, v) := ∞ if u, v are not connected, we have the following
proposition:

Proposition 2.1 (Upper tightness of graph distances)ConsiderCMn(d)with degree sequence
d = (d1, . . . , dn) with empirical distribution function Fn(x). Suppose that there exist α >

1/2, β, c > 0,C1 ∈ R and γ ∈ (0, 1) such that

1 − Fn(x) ≥ c

xτ−1 exp{−C1(log x)
γ } for all x ∈ [1, nα), (2.1)

with Ln = ∑
i∈[n] di ≤ nβ. Then, the following holds:

(a) Let us set b(n) = log log n/| log(τ − 2)|, and introduce the event
En :=

{
∃b ≤ b(n), and a path (u = π0, π1, . . . , π2b+1 = v) with

dπi ≥ (k1−δ)(τ−2)−i∧(2b+1−i)
}
. (2.2)

For all ε2.1 > 0, there exists k = k(ε2.1) ∈ N and n = n(ε2.1), s.t., for all n ≥ n(ε2.1),
when u and v are two uniformly chosen vertices in [n],

P

(
Ec
n

∣
∣ du ≥ k, dv ≥ k

)
< ε2.1. (2.3)

Thus, since En ⊂ {Dn(u, v) − 2 log log n/| log(τ − 2)| ≤ 1}, we obtain

P

(
Dn(u, v) − 2 log log n

| log(τ − 2)| > 1
∣
∣ du ≥ k, dv ≥ k

)
< ε2.1. (2.4)

(b) The same results hold conditionally on du = �1, dv = �2 whenever �1, �2 ≥ k, with
error bound ε2.1 from (2.3) valid uniformly for all �1, �2 ≥ k.

Note that (2.4) includes the estimate on the probability of the event that Dn(u, v) = ∞, i.e.,
when u, v are not connected. To prove Proposition 2.1 we build a connecting path π using a
nested sequence of layers in CMn(d) of the form 
yi , where for a positive number y, we let

y := {v : dv ≥ y}. Let

�η = {
v : dv ≥ nη

} = 
nη . (2.5)
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Our aim is to prove that for any small ε > 0, there exists an increasing sequence (yi )i≤b,
with y0 = k s.t. (
yi )i≤b has the following properties:

1. u = π0 ∈ 
y0 chosen uniformly in {x ∈ [n] : dx ≥ k}. With probability at least 1 − ε,
there exists a sequence (πi )i≤b with b ≤ b(n), such that πi is connected to πi+1, and
πi ∈ 
yi is chosen in 
yi according to the size-biased distribution in 
yi , for all i ≥ 1.

2. πb is w.h.p. connected to the set �η for some η > 1/2 by an edge1.

For this, we choose a sequence (yi )i≥0 with y0 = k that satisfies the following: Let
π0 = u, and define (πi )i≥0 recursively as follows. Let πi+1 be the vertex in 
yi+1 that is
adjacent to the half-edge paired to the first half-edge attached to πi that is connected to a
half-edge incident to 
yi+1 (if this exists). Since the half-edge attached to πi+1 that forms
the edge (πi , πi+1) is chosen uniformly among the half-edges incident to 
yi+1 , πi+1 is a
vertex chosen according to the size-biased distribution in 
yi+1 for all i ≥ 0. Let Ei :=
{πi is not connected to 
yi+1} = {πi+1 does not exist}. Since dπi ≥ yi , the bounds on dπi

stated in Proposition 2.1 will follow directly from the choice of yi (see also Lemma 2.4 below,
where the precise bound is proved). We want to prove show that for all k sufficiently large,

b∑

i=0

P(πi ∈ 
yi , πi �→ 
yi+1 | deg(u0) ≥ k) ≤ ε2.1/3. (2.6)

Let Syi be the number of half-edges and Vyi be the number of vertices in 
yi , respectively.
Then,

Vyi = n[1 − Fn(yi )], and Syi ≥ yi n[1 − Fn(yi )], (2.7)

so that

P(Ei ) ≤
(

1 − Syi+1

Ln

)yi /2

≤ exp

{

− yi+1yi [1 − Fn(yi+1)]
nβ

}

. (2.8)

Here Ln ≤ βn is the total number of half-edges in the graph and the factor yi/2 in the
exponent comes from the worst-case scenario in which we connect all the half-edges of πi

back to πi .2 To show (2.6) we show that, uniformly in n, for a proper choice of yi = yi (k),

∞∑

i=0

exp
{

− yi+1yi [1 − Fn(yi+1)]
nβ

}
= ok(1). (2.9)

For this we introduce the shorthand notation for the absolute value of the exponent in (2.9),

gi (yi , yi+1) := yi+1yi [1 − Fn(yi+1)]
nβ

, (2.10)

where we suppress the dependence of gi on n, as we will prove a lower bound on gi (yi , yi+1)

that is uniform in n. Using the assumption (2.1), we bound gi as

gi (yi , yi+1) ≥ c̃yi y
2−τ
i+1 exp{−C1(log(yi+1))

γ } = c̃yi y
2−τ−C1 log(yi+1)

γ−1

i+1 , (2.11)

1 This statement requires proof. It will follow from the fact that πb has degree at least yb
2 Here we ignore the possibility that πi+1 = πi for some i , as well as the fact that the number of available
half-edges decreases while building the path between the different πi . These effects are indeed negligible,
since Vyi and Syi are much larger than the number of vertices and half-edges used in the construction of the
path.
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for some c̃ > 0. We would like to choose the sequence (yi )i≥1 so that (2.9) holds and then
we can choose k = k(ε) in Proposition 2.1 large enough so that (2.9) is at most ε/2, giving
(2.6). We claim that a sequence satisfying these conditions is given recursively by

y0 = k, yi+1 = yi
1/(τ−2+B(log(yi ))γ−1), (2.12)

with γ as in (1.1) and B > 0 to be defined later on. We give upper and lower bounds on
(yi )i≥0 in the following lemma:

Lemma 2.2 For every δ > 0 small enough, there exists k ∈ N large enough such that, if
y0 = k, for all i ≥ 1,

k1/(τ−2+δ)i ≤ yi ≤ k1/(τ−2)i . (2.13)

Proof The sequence yi is monotone increasing when k is large enough. Hence, if y0 > k0
for k0 sufficiently large, since γ − 1 < 0, it holds that

τ − 2 + B(log yi )
γ−1 < τ − 2 + B(log y0)

γ−1 < 1. (2.14)

For a choice of y0 satisfying the second inequality in (2.14), we define δ := B(log y0)γ−1.
We now get a lower bound on yi using

yi+1 ≥ y1/(τ−2+δ)
i ≥ · · · ≥ y1/(τ−2+δ)i

0 = k1/(τ−2+δ)i , (2.15)

while an upper bound is obtained by omitting the term B log(yi )γ−1, which is non-negative,
in the exponent, so that, recursively,

yi+1 ≤ y1/(τ−2)
i ≤ · · · ≤ y1/(τ−2)i

0 = k1/(τ−2)i . (2.16)

This concludes the proof of Lemma 2.2. �	
We now prove that (2.9) holds for (yi )i≥0 as in (2.12):

Lemma 2.3 For an appropriate choice of B in (2.12), with y0 = k and uniformly in n, (2.9)
holds, and hence (2.6) holds for all k sufficiently large.

Proof Recall gi (yi , yi+1) from (2.10). We use the lower bound on gi (yi , yi+1) in (2.11),
where we replace yi+1 in the base with the recursion in (2.12). Then we obtain

gi (yi , yi+1) ≥ c̃y1−(τ−2+C1(log(yi+1))
γ−1)/(τ−2+B(log(yi ))γ−1)

i

= c̃y(B(log yi )γ−1−C1(log yi+1)
γ−1)/(τ−2+B(log yi )γ−1)

i .

(2.17)

We investigate the numerator in the exponent on the rhs. Since yi is monotone increasing,
for the choice of B > 2C1 we get that

B(log yi )
γ−1 − C1(log yi+1)

γ−1 ≥ 2C1(log yi )
γ−1 − C1(log yi )

γ−1 ≥ C1(log yi )
γ−1.

Using this bound in the numerator, and that γ − 1 ≤ 0 implies that for k large enough,
uniformly in i , τ − 2 + B log(yi )γ−1 ≤ τ − 2 + δ′ < 1 followed by the lower bound on yi
in Lemma 2.2, we obtain for some constant C ,

gi (yi , yi+1) ≥ c̃ exp
{
C(log yi )

γ
}

≥ c̃ exp
{
C(log k)γ

( 1

τ − 2 + δ

)iγ }
. (2.18)

Note that τ − 2 + δ < 1, so that exp{−gi (yi , yi+1)} is dominated by a geometric series,
hence it is summable in i (uniformly in n), and is a constant times its first term. This constant
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is less than 2 whenever k is large enough so that exp{−g0(y0, y1)} ≤ 1/2. As a result, since
γ > 0 and y0 = k,

∞∑

i=0

exp{−gi (yi , yi+1)} ≤ 2 exp{− exp{C(log k)γ }} → 0, (2.19)

as k → ∞, establishing the statement of Lemma 2.3 as well as (2.9). �	
Wewant to give anupper boundonb, i.e., the index i forwhichπi is connected to�η, η > 1/2,
the set of vertices of high degree. For this, we refine the lower bound in Lemma 2.2 in the
next lemma:

Lemma 2.4 There exists δ ∈ (0, 1) such that, for k sufficiently large,

yi ≥ (k1−δ)(τ−2)−i
. (2.20)

Proof Let us write yi+1 = kai+1 , so that by (2.12),

ai+1 = ai
τ − 2 + B(log yi )γ−1 = · · · =

i∏

j=0

(
τ − 2 + B(log y j )

γ−1
)−1

. (2.21)

Using the lower bound on yi in Lemma 2.2 we get

ai+1 ≥ (τ − 2)−(i+1)
i∏

j=0

(
1 + (τ − 2 + δ)− j(γ−1) B(log k)γ−1

τ − 2

)−1
. (2.22)

The convergence of the product on the rhs of (2.22) for any fixed k as i → ∞ is equivalent
to the convergence of the series

(B log k)1−γ
i∑

j=0

(τ − 2 + δ) j(1−γ ), (2.23)

and this series converges as i → ∞ because τ − 2 + δ < 1 for δ > 0 sufficiently small. So,
let us write

M−1
k := lim

i→∞

i∏

j=0

(
1 + (τ − 2 + δ) j(1−γ ) B(log k)γ−1

τ − 2

)
, (2.24)

and since the partial products on the rhs of (2.24) increase to the limit M−1
k , combining this

with (2.22) yields the lower bound

ai+1 ≥ 1

(τ − 2)i+1 Mk . (2.25)

Further observe that due to γ < 1, Mk = 1 + ok(1), therefore, using the form yi = kai

again,

yi ≥ (
kMk

)1/(τ−2)i ≥ (
k1−δ

)1/(τ−2)i (2.26)

by taking k so large that Mk ≥ 1 − δ. �	
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Now we have all the preliminaries to complete the proof of Proposition 2.1:

Proof of Proposition 2.1 By condition (2.1) in Proposition 2.1, there are some vertices in the
graph of degree nη, for η > 1/2. As a consequence of Lemma 2.4, the number of layers
needed to reach the highest-degree vertices in �η has b as an upper bound,3 where b − 1 is
the solution of

(k1−δ)1/(τ−2)i = nη, (2.27)

that is, by elementary calculations,

b ≤
log

(
log(nη)/ log y1−δ

0

)

log( 1
τ−2 )

+ 1 = log log n + log η − log(log(y1−δ
0 ))

| log(τ − 2)| + 1. (2.28)

Then, for y0 = k sufficiently large,

b ≤ log log n

| log(τ − 2)| = b(n). (2.29)

By Lemma 2.3, for all k ≥ k0(ε), (2.6) holds. As a consequence of (2.6), w.h.p., we can
connect the vertex u and v with degree k, to the set �η with probability 1 − 2ε2.1/2 in at
most 2b steps. As a consequence of [6, Lemma 5], �η is a complete graph w.h.p., i.e., for all
n ≥ n(ε2.1), the probability that the edge between πb(u) and πb(v) is not present is at most
ε2.1/3. Hence, we can connect uk and vk in 2b + 1 steps with probability at least 1 − ε2.1.
That is,

P

(
Ec
n | du ≥ k, dv ≥ k

)
< ε2.1. (2.30)

This ends the proof of Proposition 2.1(a). The proof of Proposition 2.1(b) is identical. We
mention that the probability that u, v are not connected is estimated along the construction
of the path π , namely, {Dn(u, v) = ∞} ⊂ {∃πi : πi � 
i+1}, and hence it is swallowed in
the terms in (2.6). �	

3 Degree Percolation

In this section our goal is to define degree-dependent percolation on the configuration model
and relate it to an appropriately chosen configuration model. Degree-dependent percolation
means that we keep each edge with a probability that depends on the degree of the two
vertices the edge is adjacent to. In what follows, we explain two different ways to do this,
and show that they are in fact equivalent. Let

p(d) : N −→ [0, 1] (3.1)

be a monotone decreasing function of d . Later p(d) will equal the probability of keep-
ing a half-edge that is attached to a vertex with degree d . We now define two different
degree-dependent percolation methods given a function p(d), one where we remove edges
independently and one where we remove half-edges independently. In each case, the removal
probabilities depend on the degree(s) of the vertices involved in the (half-)edge or edge. We
start by defining the edge degree-percolation model:

3 This is an upper bound since the true number is an integer, while the solution of (2.27) is not necessarily an
integer
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Definition 3.1 (Edge degree-percolation) Consider a configuration model CMn(d) where
half-edges are already paired into edges. Keep any edge between vertices u, v in the graph
with probability p(du)p(dv), independently for different edges, where du and dv are the

degrees of u and v. We denote the graph spanned by kept edges by C̃M
p(d)

n (d).

We let v(s) be the vertex that the half-edge s is attached to and dv(s) its degree. Then
half-edge degree-percolation is defined as follows:

Definition 3.2 (Half-edge degree-percolation) Fix a degree sequence d = (d1, . . . , dn). We
do the following operations:

1. We keep the half-edge s with probability p(dv(s)), independently across half-edges. Let
drv denote the random number of kept half-edges attached to vertex v, and let dr :=
(dr1 , . . . , d

r
n).

2. If we do not keep the half-edge s, then we create a new vertex of degree 1 with one
half-edge that corresponds to the deleted half-edge, carrying the same half-edge label s.
We call the newly created vertex and half-edge artificial. We denote the total number of
artificial vertices by A and let 1(A) denote a vector of A many ones.

3. We pair all the half-edges uniformly at random (including the artificial ones), obtaining
the configuration model CMn+A(dr , 1(A)) with random number n + A many vertices
and random degree sequence (dr , 1(A)).

4. We take the induced subgraph on the first n (original) vertices (i.e., remove the edges
that contain at least one artificial half-edge), with isolated vertices removed. We denote
the resulting graph by CMp(d)

n (d).

Note that the total number of half-edges in CMn+A(dr , 1(A)) is again Ln as it was for
CMn(d). The final graph CMp(d)

n (d) is a subgraph of this configuration model. We will
apply Proposition 2.1 to the configuration model CMn+A(dr , 1(A)), so it is convenient that
CMn+A(dr , 1(A)) both encodes the half-edge degree percolation on CMn(d), as well as
equals a configuration model itself.

We adapt an argument by Janson [12], who studies various types of percolation on random
graphs, including degree-dependent site percolation, to our edge degree-percolation.

Lemma 3.3 Fix a degree sequence d = (d1, . . . , dn). Then, CM
p(d)
n (d) and C̃M

p(d)

n (d) have

the same law. Moreover, C̃M
p(d)

n (d) can be coupled to CMn+A(dr , 1(A)) in Definition 3.2

in such a way that CMp(d)
n (d) and C̃M

p(d)

n (d) coincide under the coupling.

Proof of Lemma 3.3 Given the original list of degrees d = (d1, . . . , dn) in CMn(d) that

we think of now as labelled half-edges attached to vertices in [n], the outcome C̃M
p(d)

n (d)

of the edge degree-percolation as well as the outcome CMp(d)
n (d) of the half-edge degree-

percolation can be described as a sub-matchingMkept of d that contains the kept andmatched

half-edges.Hence, for the distributional identity betweenCMp(d)
n (d) and C̃M

p(d)

n (d),weneed
to show that for every given sub-matching m� of the labelled half-edges d,

P(CMp(d)
n (d) = m�) = P(̃CM

p(d)

n (d) = m�). (3.2)

We start to investigate the rhs. Recall that to obtain C̃M
p(d)

n (d), first we take a matching m
of d and then for each pair of half-edges (s, t) ∈ m, we decide to keep or delete the edge
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independently with probability p(dv(s))p(dv(t)) and 1− p(dv(s))p(dv(t)), respectively, where
recall that v(q) denotes the vertex to which the half-edge q is attached to.

Let us denote all the matchings of the labels d that contain the sub-matchingm� byMm� ,
and the set of all matchings byM. Recall that every matching m in the configuration model
has probability 1/(Ln − 1)!!, where Ln = ∑n

i=1 di , and that given the matched edges in m,
we keep every edge (s, t) with probability p(dv(s))p(dv(t)) independently of each other. As
a result, we compute the probability to obtain the sub-matching m� as the outcome of the
edge degree-percolation by summing over all possible matchings m ∈ Mm� and keeping an
edge in m precisely when it is also part of m�:

P(̃CM
p(d)

n (d) = m�) = 1

(Ln − 1)!!
∑

m∈Mm�

∏

(s′,t ′)∈m�

p(dv(s′))p(dv(t ′))

×
∏

(s,t)∈m\m�

(1 − p(dv(s))p(dv(t))). (3.3)

Introducing the indicator 1{q kept} = 1 − 1{q not kept} for half-edge q , we can interpret the
factors in the first product as E[1{s kept}1{t kept}], while we can rewrite the factors in the last
product by using the identity

1 − p(dv(s))p(dv(t))

= (1 − p(dv(s))p(dv(t)) + p(dv(s))(1 − p(dv(t))) + (1 − p(dv(s))(1 − p(dv(t)) (3.4)

= E[1{s not kept}1{t not kept} + 1{s kept}1{t not kept} + 1{s not kept}1{t not kept}].
For each half-edge s, letUs a uniform r.v. in [0, 1], independent for different s. Then one can
actually realise the above indicators by setting 1{s kept} := 1{Us≤p(dv(s))}. Note that the events
1{s kept} and 1{s not kept} can be also interpreted as the half-edge s being additionally labelled
artificial and regular, respectively.Note that the set of half-edges additionally labelled artificial
uniquely determine this additional labelling. By writing A,Ac for the set of half-edges that
are additionally labelled artificial/regular, one can rewrite (3.3) as

P(̃CM
p(d)

n (d) = m�)

= 1

(Ln − 1)!!
∑

m∈Mm�

∏

(s,t)∈m�

P(s ∈ Ac, t ∈ Ac) ×
∏

(s,t)∈m\m�

P({s ∈ A} ∪ {t ∈ A})

= 1

(Ln − 1)!!
∑

m∈Mm�

P

⎛

⎝
⋂

(s,t)∈m�

{s ∈ Ac, t ∈ Ac}
⋂

(s,t)∈⊂m\m�

{s ∈ A} ∪ {t ∈ A}
⎞

⎠ .

(3.5)

Let us thus denote a configurationmodel,with additional labels ‘artificial’ on the deterministic
set S and degree sequence d by CMn(d)(S). In other words, CMn(d)(S) can be described by
the pair (m,S), wherem is a matching of d and S is the set of half-edges additionally labelled
artificial. With m�,m a sub-matching and a matching of d, let us call an additional labelling
S of half-edges proper for (m�,m) if it has the property that each pair (s, t) ∈ m \ m� has
at least one half-edge labeled artificial, while all half-edges that form edges that are in m�

are labelled regular. Let us denote the set of proper additional labelings of half-edges by
P(m�,m). Note that this set is non-empty if and only if m ∈ Mm� . Let us further denote by
A a random labelling where each half-edge s gets the regular additional label independently
with probability p(dv(s)), otherwise artificial. With this notation, (3.5) turns into
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P(̃CM
p(d)

n (d) = m�) = 1

(Ln − 1)!!
∑

m∈M

∑

S∈P(m�,m)

P(A = S)

=
∑

m∈M

∑

S∈P(m�,m)

P (CMn(d)(A) = (m,S)) ,

(3.6)

where we have obtained the rhs bymoving the prefactor 1/(Ln −1)!! into the probability sign
by using the notion of the additionally labelled configuration model CMn(d)(S) introduced
above after (3.5), now with random additional labels A. Note also that the summation goes
over all m ∈ M since in case m /∈ Mm� , the inner sum is empty.

To move towards half-edge degree-percolation, it is left to reverse the two sums in (3.6).
For this, let us write Lab(d) for the set of additional labelings of d. For a given S ∈ Lab(d)

and sub-matching m� of d, write M(m�,S) for the set of matchings that have the property
that {(s, t) ∈ m : s ∈ Sc, t ∈ Sc} = m�, i.e., the sub-matching consisting of pairs of
half-edges with both regular additional label is m�. In other words, M(m�,S) contains all
those matchings m that extend the sub-matching m� into a full matching in a way that the
edges that are not in m� contain at least one half-edge that is additionally labelled artificial.
Note that for a given additional labelling S ∈ Lab(d), the set M(m�,S) might be empty
(e.g., when all the half-edges are labelled regular, or when some half-edge in m� is labelled
artificial). Then, note that S ∈ P(m�,m) if and only if m ∈ M(m�,S). With the notation
CMn(d)(A)|1 meaning the random matching in CMn(d)(A), (i.e., the first coordinate) the
rhs of (3.6) equals

∑

S∈Lab(d)

∑

m∈M(m�,S)

P(CMn(d)(A) = (m,S))

=
∑

S∈Lab(d)

P(A = S,CMn(d)(A)|1 ∈ M(m�,S))

= P(CMn(d)(A)|1 ∈ M(m�,A)),

(3.7)

where we brought in the disjoint sum
∑

S∈Lab(d) as a disjoint union to obtain the second line,
where now the additional labelling A is random and distributed as explained before (3.6).
Note that one can express the event CMn(d)(A) ∈ M(m�,A) in words as {in CMn(d)(A)

the sub-matching spanned by regular half-edges equals m�}. This is already similar to the
event defined in Definition 3.2.

It is only left to connect CMn(d)(A) to CMn+A(dr , 1(A)). Indeed, in the procedure
creating CMn+A(dr , 1(A)) in point 3. of Definition 3.2, the half-edges attached to degree-
one artificial vertices keep carrying the original label s of the half-edge. Both for the event
{CMn(d)(A)|1 ∈ M(m�,A)}, as well as for the event {the graph spanned by regular half-
edges equals m� in CMn+A(dr , 1(A))}, artificial half-edges and isolated vertices will be
removedwhen taking the subgraphCMp(d)

n (d), so itmakes no differencewhetherwe consider
the half-edge s additionally labelled ‘artificial’ or actually we first remove it and attach it to
a degree-one vertex. Further, by exchangeability, CMn+A(dr , 1(A))} has the same law when
we re-label the artificial half-edges in the vector 1(A). Hence, we arrive at

P(̃CM
p(d)

n (d) = m�) = P(CMn(d)(A)|1 ∈ M(m�,A))

= P(In CMn+A(dr , 1(A)) the sub-matching spanned by regular half-edges equals m�}
= P(CMp(d)

n (d) = m�)

(3.8)
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This finishes the proof of (3.2). Note that we could prove this statement for sub-matchings
m� of d, but, by exchangeability, one can obtain the same result for graphs G as outcome,
where only the vertices are labelled from [n] (and half-edge labels are forgotten), by taking
a union over all possible labellings of the two ends of the edges of G. In other words, for
two labellings S,S ′ that leave the same regular degree sequence dr , the probability that the
subgraph spanned by regular edges equals G is the same. In other words, by exchangeability,
one can look at CMn+A(dr , 1(A)) with arbitrary half-edge labels on 1(A).

Finally, in our proof, the additional labels ‘artificial’ and ‘regular’ correspond to the
indicators 1{Us≥p(dv(s))} and 1{Us≤p(dv(s))}, determined by i.i.d. uniform half-edge weights,
respectively, see (3.4). Since half-edge labels are kept when creating an artificial vertex,
one can use the same random variable Us in the two notions of percolation, and then the
corresponding indicators ‘carry through’ CMn+A(dr , 1(A)) as well, when the 1’s in 1(A) do
carry the original half-edge labels s. This provides the coupling and finishes the proof. �	

Remark 3.4 (Paths in CMn+A(dr , 1(A))) If π is a path in CMn+A(dr , 1(A)) consisting only
of vertices in [n], then it is also part of CMp(d)

n (d). Indeed, the induced subgraph on [n] keeps
every path like that.

In reverse, if π is a path in CMn+A(dr , 1(A)) with degrees drv ≥ 2, then, π must belong

to the subgraph CMp(d)
n (d) induced by vertices in [n]. Indeed, any artificial vertex has degree

1 so it cannot be part of such π .

By Lemma 3.3, the law of the percolated graph is equal to a subgraph of a configuration
modelCMn+A(dr , 1(A))with randomdegrees (dr , 1(A)) and randomnumber of vertices n+
A. In the next results, our goal is to determine the empirical degree distribution of (dr , 1(A)).
Recall we start with a degree sequence d = (d1, . . . , dn) that satisfies Assumption 1.1. We
would like to maintain a similar power-law condition with the same value of τ ∈ (2, 3). This
is of course not possible for an arbitrary choice of p(d), thus we need to restrict the half-
edge retention probabilities to satisfy some degree-dependent bounds. The next proposition
is about this:

Proposition 3.5 Consider CMn(d), where the degrees satisfy Assumption 1.1 for some τ ∈
(2, 3), Ln = ∑

i∈[n] di ≤ nβ for some β < ∞, and assume that Fn(1) = 0. Perform half-
edge degree-percolation on this graph with half-edge retention probability p(d) as described
in Definition 3.2. Then, if p(d) satisfies

p(d) > b exp
{−a(log d)γ

}
, (3.9)

with γ < 1, and a, b > 0, then the empirical degree distribution Fr
n of (dr , 1(A)) also obeys

a power law with the same value of τ ∈ (2, 3). More precisely, for α in Assumption 1.1, there
exists c′,C ′ such that, for all x ∈ [1, nα) and w.h.p.,

1 − Fr
n (x) ≥ c′

xτ−1−C ′(log x)γ−1 . (3.10)

Notice that (3.10) is precisely the condition that is necessary to apply Proposition 2.1.
Thus, it allows us to construct a path π connecting two vertices of degree at least k in the
percolated graph CMp(d)

n (d) provided that the degrees of vertices used are at least 2 on π , by
Remark 3.4. To prove Proposition 3.5, we will use the following lemma about concentration
of binomial random variables:
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Lemma 3.6 (Concentration of binomial random variables) Let R be a binomial random vari-
able. Then

P (R /∈ [E[R]/2, 2E[R]]) ≤ 2 exp{−E[R]/8}. (3.11)

Proof See e.g., [17, Theorem 2.19]. �	
Proof of Proposition 3.5 Let d be the degree sequence inCMn(d), p(d) the half-edge retention
probability, and dr , Fn, Fr

n as above. By monotonicity, we may as well assume that p(d) =
b exp {−a(log d)γ } in (3.9), and we will do so from now on (in the entire paper). The upper
bound is obvious since (1.1) implies that

[1 − Fr
n ](x) ≤ n

n + A
[1 − Fn](x) ≤ [1 − Fn](x) ≤ Cx−τ+1+C(log x)γ−1

. (3.12)

For the lower bound, we assume that x ≥ 2, so that we are only considering vertices that are
not artificial. For some y = y(x) to be chosen later,

[1 − Fr
n ](x) = 1

n + A

∑

i∈[n]
1{Bin(di ,p(di ))>x} ≥ 1

n + Ln

∑

i∈[n] : di≥y(x)

1{Bin(di ,p(di ))>x}.

(3.13)

Thus, (n+Ln)[1−Fr
n ](x) is bounded from below by a sum of independentBernoulli random

variables. We use concentration techniques to show that (3.10) holds w.h.p. Denote

V :=
∑

i∈[n] : di≥y(x)

1{Bin(di ,p(di ))>x}. (3.14)

We start by investigating the mean of V . Suppose y is such that yp(y) ≥ 2x . Then, for any
i for which di > y,

P(Bin(di , p(di )) > x) ≥ min
z : z≥y

P(Bin(z, p(z)) > x)) =: q(x). (3.15)

Then, using the monotonicity of d �→ dp(d), it holds that zp(z) ≥ yp(y) ≥ 2x , thus we can
apply Lemma 3.6 to obtain

min
z : z≥y

(
P(Bin(z, p(z)) > x

)
≥ min

z : z≥y

(
1 − exp

{
− zp(z)

8

})
. (3.16)

Again, monotonicity of p(d) implies zp(z) ≥ yp(y), so

min
z : z≥y

(
1 − exp

{
− zp(z)

8

})
= 1 − exp

{
− yp(y)

8

}
. (3.17)

Since there are n[1 − Fn](y) vertices with (original) degree at least y, combining this with
(3.13), we obtain the lower bound

E[V ] ≥ n[1 − Fn](y(x)) · q(x) ≥ n
(
1 − exp

{
− yp(y)

8

}) c

yτ−1+C(log y)γ−1 . (3.18)

Let us set now y(x) := 2x exp{2c(log 2
a x)

γ }/a, for γ, a, b as in (3.9). Since p(y) satisfies
the lower bound given in (3.9),

y(x)p(y(x)) = 2x exp
{
2c(log 2

a x)
γ − c

(
log 2

a x + 2c(log 2
a x)

δ
)γ

}

= 2x exp
{
2c(log 2

a x)
γ − c(log 2

a x)
γ

(
1 + 2c(log 2

a x)
γ−1)γ

}
.

(3.19)
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Note that since γ < 1, the factor
(
1 + 2c(log 2

a x)
γ−1

)γ
is less than say 3/2 (but larger than

1) if x is large enough, and hence, for large enough x , the rhs is at least

y(x)p(y(x)) ≥ 2x exp

{
1

2
c(log 2

a x)
γ

}

≥ 2x .

This shows that we can indeed apply Lemma 3.6 above.
Note that, due to the bound yp(y) ≥ 2x , the factor (1− exp{−yp(y)/8}) ≥ 1/2 for large

enough x in (3.18). Using this estimate and again that y = 2x exp{2c(log 2
a x)

γ }/b we obtain
from (3.18)

[1 − Fn](y(x)) · q(x)

≥ c

2

1

( 2a x)
τ−1

exp
{
−(τ − 1)

(
2c(log 2

a x)
γ
) − C

(
log( 2a x) + 2c(log 2

a x)
γ
)γ }

. (3.20)

As before, the second term in the exponent is C(log 2
a x)

γ (1 + 2c(log 2
a x)

γ−1)γ , and, since
γ < 1, the latter factor is at most 3/2 when x is sufficiently large. Thus

[1 − Fn](y(x)) · q(x) ≥ caτ−1

2τ

1

xτ−1 exp
{−( 32C + (τ − 1))(log 2

a x)
γ
}
. (3.21)

Finally, again for sufficiently large x , log 2
a x = log x(1+ log(2/a)

log x ) ≤ 2 log x , so we arrive at

[1 − Fn](y(x)) · q(x) ≥ caτ−1

2τ

1

xτ−1 exp
{−2γ ( 32C + (τ − 1))(log x)γ

}

=: c̃

xτ−1 exp{−C̃(log x)γ } (3.22)

Combining (3.13), (3.18) and (3.22), we see that (n+Ln)E[1− Fr
n ](x)/n satisfies the lower

bound in (1.3) in Assumption 1.1 with exponent τ , γ ∈ (0, 1), c replaced by c̃ = caτ−1/2τ

and C replaced by C̃ = 2γ ( 32C + (τ − 1)).
We next extend the argument to show that the required lower bound on [1− Fr

n ](x) holds
w.h.p. Again suppose y is such that yp(y) ≥ 2x . By (3.15)–(3.18) and the independence
of the summands in (3.13), (n + Ln)[1 − Fr

n ](x)/n is bounded from below by a binomial
random variable with parameters n[1 − Fn](y(x)) and success probability q(x), so that, by
Lemma 3.6,

P

(
[1 − Fr

n ](x)≤n[1 − Fn](y(x))q(x)/(2(n + Ln)
)
<exp

{
− n[1 − Fn](y(x)) · q(x)/8

}
,

(3.23)

where we can use the lower bound on [1 − Fn](y(x))q(x) in (3.22) on the opposite of the
exponent on the rhs. Since the lower bound, i.e., the rhs of (3.22), is decreasing in x , the rhs
of (3.23) is bounded from above, for all x ≤ nα by

P

(
[1 − Fr

n ](x) ≤ n[1 − Fn](y(x))q(x)/(2(n + Ln))
)

≤ exp
{

− n
c̃

nα(τ−1)
exp{−C̃ log(nα)γ }

}
. (3.24)

Then, since α < 1/(τ − 1) in Assumption 1.1, the opposite of the exponent on the rhs is at
least nc for some constant c > 0. Thus, using the lower bound on [1− Fn](y(x)) · q(x) from
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(3.22) once more, (now inside the probability sign on the lhs of (3.24)), the assumption that
Ln ≤ βn, and a union bound,

P

(
∃x ≤ nα : [1 − Fr

n ](x) ≤ c̃/(2(1 + β))

xτ−1 exp{−C̃(log x)γ }
)

≤
∑

x≤nα

P

(
1 − Fr

n (x) ≤ [1 − Fn](y(x))q(x)/2
)
. (3.25)

By (3.23) and (3.24), each summand is at most exp{−nc}. So, we obtain

P

(
∃x ≤ nα : [1 − Fr

n ](x) ≤ c̃/(2(1 + β))

xτ−1 exp{−C̃(log x)γ }
)

< nα exp{−nc} = on(1),

(3.26)

as required. This completes the proof of Proposition 3.5 with exponent τ , γ ∈ (0, 1), c
replaced by c̃/(2(1+β)) = caτ−1/(2τ+1(1+β)) andC replaced by C̃ = 2γ ( 32C+(τ −1)).

�	
We now combine Propositions 2.1 and 3.5 to ensure that we can construct a path in the

degree-percolated graph. Let Dr
n be the graph-distance in C̃M

p(d)

n (d). Then, we have the
following bound:

Corollary 3.7 Consider CMn(d) with i.i.d. degrees having distribution satisfying (1.1) and

p(d) satisfying (3.9), and the corresponding edge-percolated graph C̃M
p(d)

n (d). Then, Propo-
sition 2.1 remains valid for the percolated graph. Namely, for En defined in (2.2), let us write
En ∈ C̃M

p(d)

n (d) when the path π is present in the edge percolated graph C̃M
p(d)

n (d). Then,
for ε3.7 > 0, there exists k = k(ε3.7) and n0(ε3.7) s.t., for all n ≥ n0(ε3.7), if u and v are
two uniformly chosen vertices in [n],

P

(
En ∈ C̃M

p(d)

n (d)
∣
∣ dru ≥ k, drv ≥ k

)
≥ 1 − ε3.7. (3.27)

The same result holds when instead taking u and v uniformly from the set of vertices with
degrees dru = �1 and drv = �2, whenever �1, �2 ≥ k(ε3.7). As a consequence

P

(
Dr
n − log log n

| log(τ − 2| > 1
∣
∣ dru ≥ k, drv ≥ k

)
≤ ε3.7. (3.28)

Proof By Lemma 3.3, the law of the degree-percolated graph C̃M
p(d)

n (d) can be looked at as
subgraph of a new configuration model CMn+A(dr , 1(A)) with random degrees (dr , 1(A))

and random number of vertices n + A, and empirical degree distribution Fr
n . Let

An :=
{
1 − Fr

n (x) ≥ c′

xτ−1+C ′(log x)γ−1 ∀x ≤ nα
}
, (3.29)

where α > 1/2 is defined in Proposition 3.5. Then by Proposition 3.5, P(An) = 1 − on(1).

For brevity let us write Kn := {En ∈ C̃M
p(d)

n (d)}. Then,
P

(
Kc
n | dru ≥ k, drv ≥ k

)
= P

(
Kc
n | dru ≥ k, drv ≥ k, An

)
P(An)

+P

(
Kc
n | dru ≥ k, drv ≥ k, Ac

n

)
P(Ac

n). (3.30)

On An , Proposition 2.1 applies to CMn+A(dr , 1(A)) as well, the probability of the first term
on the rhs is bounded in Proposition 2.1(a), where we also use that the degrees of vertices in
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the path obtained are always at least 2, so that the path is not destroyed by the removal of the
artificial vertices and edges (recall Remark 3.4). Further, P(Ac

n) = on(1) by Proposition 3.5.
Thus, with ε2.1,

P

(
Kn | dru ≥ k, drv ≥ k

)
≤ ε2.1(1 − on(1)) + on(1) ≤ ε3.7, (3.31)

for all n sufficiently large, finishing the proof. The same proof works in the setting where
u and v are chosen uniformly from the set of vertices with degrees dru = �1 and drv ≥ �2,
whenever �1, �2 ≥ k, now using Proposition 2.1(b). �	
We finish this section by connecting degree-percolation and the presence of edge-weights.

Claim 3.8 (Edge degree-percolation and excess edge-weights) Consider an edge-weighted
CMn(d) where the edges have i.i.d. edge-weights from distribution 1 + X1 + X2, with
X1, X2 i.i.d. random variables, and a non-decreasing function (ξd)d≥1. Then, the following
procedure yields an edge degree-percolation model as defined in Definition 3.1:

1. For each edge e = (z, w)with z, w two half-edges, with z ≤ w andweight 1+X (e)
1 +X (e)

2 ,

‘allocate’ X (e)
1 to z and X (e)

2 to w.

2. Keep the edge precisely when the event {X (e)
1 ≤ ξdv(z)} ∩ {X (e)

2 ≤ ξdv(w)
} occurs.

Proof Since the excess edge-weights are all i.i.d., every edge is kept independently. Given
(ξd)d≥1, we set p(d) := P(X ≤ ξd). The probability of keeping a present edge (z, w) is

P(X1 ≤ ξdv(z) , X2 ≤ ξdv(w)
) = P(X1 ≤ ξdv(z) )P(X2 ≤ ξdv(w)

) = p(dv(z))p(dv(w)),

since X1, X2 are independent. �	
Claim 3.9 (Half-edge degree-percolation and half-edge-weights) Consider a configuration
model CMn(d), a random variable X, and a non-decreasing function (ξd)d≥1. Then, the
following procedure yields a half-edge degree-percolation model as defined in Definition 3.2:

For each half-edge s, allocate a random variable Xs , a copy of X, independent for different
s. Keep the half-edge s precisely when {Xs ≤ ξdv(s)}, and then follow the operations in
Definition 3.2.

Proof Since the half-edge weights are all i.i.d., every half-edge is kept independently. Given
(ξd)d≥1, we set p(d) := P(X ≤ ξd). Note that P(s is kept) = P(Xs ≤ ξdv(s) ) = p(dv(s)). �	
Note that one can represent the weight of a (kept or non-kept) edge in the half-edge degree-
percolation as the sum of the weights of the two half-edges involved. Hence, combining
Claims 3.8, 3.9 with Lemma 3.3 yields the following corollary:

Corollary 3.10 Consider an edge-weightedCMn(d)where the edges have i.i.d. edge-weights
from distribution 1 + X1 + X2, with X1, X2 i.i.d. random variables, and a non-decreasing
function (ξd)d≥1. Let p(d) := FX (ξd), and realise the edge degree-percolation and half-
edge degree percolation (Definitions 3.1, 3.2) on CMn(d) as in Claims 3.8, 3.9. Then, there

is a coupling between the two procedures so that the resulting CMp(d)
n (d) and C̃M

p(d)

n (d)

coincide.

The definition in Sect. 1.3 of the edge-weighted configuration model says that we allocate the
edge-weights after the pairing of the half-edges. Hence, one would like to construct paths in
CMn(d) that have short excess edge-weight by percolating the already constructed and edge-

weighted graph, i.e., a path in C̃M
p(d)

n (d), an object that is hard to work with. Corollary 3.10
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ensures that we can work with CMn+A(dr , 1(A)) instead. The main advantage to working

with CMn+A(dr , 1(A)) compared to CMp(d)
n (d) or C̃M

p(d)

n (d), is that it is a configuration
model itself.

4 Tightness of theWeight

Our goal is to prove Theorem 1.3 in this section.We first connect the uniformly chosen vertex
u to a vertex uk with druk ≥ k in CMn+A(dr , 1(A)) and give a bound on the excess weight
of this path. We let

∂Bm(u) := {w ∈ CMn(d) s.t. Dn(u, w) = m}, (4.1)

and define the vertices Vm(u) and V p(d)
m (u) by

deg(Vm(u)) := max
w∈∂Bm (u)

dw, deg(V p(d)

m (u)) := max
w∈∂Bm (u)

drw, (4.2)

(breaking ties in an arbitrary way, if necessary), where we recall that drw equals the regular
degree of w in CMn+A(dr , 1(A)). The following holds:

Lemma 4.1 Assume that p(d) satisfies (3.9) and that d �→ dp(d) is monotone increasing.
Then, for all ε4.1 > 0 and for all k > 0,there exists a k(ε4.1) and constant m := m(k, ε4.1)

such that

P(deg(V p(d)
m (u)) < k) < ε4.1. (4.3)

Proof The proof consists of two steps. In the first step we show that when a vertex has
sufficiently high degree before percolation, say K (k, ε), then after the degree-dependent
percolation its regular degree is at least k with probability at least ε/2. In the second step
we determine the graph distance m, that we can find a vertex with degree at least K (k, ε) at
graph distancem from the uniformly chosen vertex u. Recall Definition 3.2. Since half-edges

are kept independently, for any vertex w ∈ [n], drw d= Bin(dw, p(dw)).
For any z > 2, define

L(k, z) := inf
d>0

{dp(d) ≥ zk} (4.4)

which is well-defined since d �→ dp(d) is monotone increasing in d . Then, a Chernoff bound
as in [15, Corollary 13.3], with β = 1 − 1/z ≥ 1/2 and μ = zk yields that

P(Bin(L(z, k), p(L(z, k))) < k) ≤ e−β2μ/2 ≤ exp{−(1 − 1/z)2zk/2} ≤ exp{−zk/8}.
(4.5)

Thus, for any ε4.1 > 0 and any k > 0, choose first z := z(ε4.1) large enough such that
exp{−zk/8} is at most ε4.1/2, and that gives a K (k, ε4.1) := L(k, z(ε4.1)) according to
(4.4). This means that with probability at least ε4.1/2, a vertex with (original) degree at least
K (k, ε4.1) has regular-degree dr at least k.

We now show that we can connect a uniformly chosen vertex u to a vertex with degree at
least K (k, ε4.1) in a bounded number of steps and probability tending to 1 within CMn(d),
i.e., in the original graph. By the coupling to i.i.d. random variables discussed in the proof
of Proposition 1.8, in particular, by (1.19),

|∂Bm | P−→ ∞, (4.6)
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and the sequence {(dvi − 1)vi∈∂Bm } can be coupled to |∂Bm | many i.i.d. random variables
with a power-law distribution described in (1.4). Then, by (1.18)

P(deg(Vm(u)) ≤ K (k, ε4.1)) ≤
(
1 − C�

K (k, ε4.1)τ−2 exp{−C� log(K (k, ε4.1))γ }
)|∂Bm |

,

(4.7)

with deg(Vm(u)) defined in (4.2) and for some positive constantC�. We conclude that, for all
ε4.1 > 0, there existsm(k, ε4.1) such that P(deg(Vm(k,ε4.1) ≤ K (k, ε4.1)) < ε4.1. Finally,
let

E1 := {deg(Vm(k,ε4.1)(u)) < K (k, ε4.1))}
E2 := {deg(Vm(k,ε4.1)(u)) > K (k, ε4.1)), drVm(k,ε4.1)(u) < k, } (4.8)

Then, P(Ec
1) is estimated below (4.7) while P(Ec

2) below (4.5), so, by noticing that

deg(V p(d)
m (u)) ≥ drVm(k,ε4.1)(u) by definition and a union bound,

P(deg(V p(d)
m (u)) < k) ≤ P(Ec

1) + P(Ec
2) ≤ ε4.1/2 + ε4.1/2. (4.9)

This completes the proof of the lemma. �	
We are now ready to prove Theorem 1.3 by constructing a path with tight excess edge-

weight.

Proof of Theorem 1.3 Fix k such that k > k(ε2.1), where k(ε2.1) is defined in Proposition
2.1. Here k will be determined later on in the proof. Taking ε4.1 = ε in Lemma 4.1, for any
fixed ε4.1, with probability at least 1 − ε4.1, there exists a path in CMn(d) that connects u
with a vertex uk with druk ≥ k in at mostm := m(k, ε4.1) steps.We call this path κ = (κi )i≤k ,
and set uk := κk . We do the same from v giving us a path κ ′ and vertex vk . Since the choice
of these paths did not depend on the excess edge-weights, only on the degrees of vertices,
the excess weight over the path κk is given by the sum of at most m i.i.d. random variables
with distribution FX . Therefore for all ε(4.10) > 0 there exists r = r(ε(4.10)) such that

P(Wn(u, uk) + Wn(v, vk) > r) < ε(4.10). (4.10)

Next we connect uk, vk using edge degree-percolation. We aim to prove an upper bound on

the weight of the path that connects uk and vk in the percolated graph C̃M
p(d)

n (d), realised as

described in Claim 3.8. That is, we allocate two i.i.d. excess edge-weights X (e)
1 , X (e)

2 to each

edge e = (z, w), with the meaning that X (e)
1 belongs to the vertex with smaller index in [n]

(say z), and keep an edge if and only if its excess edge-weights satisfy X (e)
1 ≤ ξdz , X

(e)
2 ≤

ξdw . By Lemma 3.3 and Corollary 3.10, the obtained percolated graph can be coupled to
a configuration model CMn+A(dr , 1(A)), where again, each half-edge s is kept and stays
attached to vertex x if and only if its excess edge-weight Xs satisfies Xs ≤ ξdv(s) , as described
in Claim 3.9. Suppose now that we can define a threshold function (ξd)d≥1 that in turn defines
p(d) := P(X ≤ ξd) as in Claims 3.8 and 3.9, and that ξd is chosen in a way that p(d) satisfies
(3.9). Then, for the empirical degree distribution of CMn(d, 1(A)), Proposition 3.5 applies
and the assumptions of Corollary 3.7 are satisfied. Here we note that the vertices uk and vk
are not uniformly distributed (as required in Proposition 2.1(a)). However, conditionally on
druk = �1, the vertex uk does have a uniform distribution by exchangeability (and the same
for vk conditionally on drvk = �2), so that we are allowed to use Corollary 3.7.
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Corollary 3.7 guarantees the existence of a path (πi )
2b+1
i=1 with π0 = uk and π2b+1 = vk

with b ≤ log log n/| log(τ − 2)| within C̃M
p(d)

n (d) with probability at least 1 − ε3.7. So,

Wn(uk, vk) ≤ 2b + 1 + 2
b∑

i=0

(
2ξπi

)
, (4.11)

where we have noted that the path uses two kept half-edges at each inner vertex πi on the
path, and the two sides of the path (one from uk , one from vk) constitute to the other factor

2. Further, the event En ∈ C̃M
p(d)

n (d) (see (2.2) and Corollary 3.7) guarantees that πi , i ≤ b

has regular degree at least drπi
≥ (k1−δ)(τ−2)−i

while πi , i ≥ b has drπi
≥ (k1−δ)(τ−2)2b+1−i

for all i . Finally, the at most two connecting vertices within �η have degree at least nη and
as a result the at most 4 half-edges connected to them on the constructed path have excess
half-edge weight at most ξnη (see the proof of Proposition 2.1 below (2.29)). Since dx ≥ drx
for all x and we may assume that ξd is non-increasing in d , the excess half-edge weight at
πi , i ≤ b is at most

ξdπi
≤ ξ

(k1−δ)(τ−2)−i . (4.12)

Combining this with (4.10), with probability at least 1− 2ε(4.10) − ε3.7, and r = r(ε(4.10)),

Wn(u, v) ≤ 2r + 2
log log n

| log(τ − 2)| + 1 + 4
∞∑

i=0

ξ
(k1−δ)(τ−2)−i + 4ξnη . (4.13)

Note that 4ξnη < 4 for all sufficiently large n. Hence, it remains to show that, when the
integrability criterion in (1.6) holds, we can choose, for each r ′ > 0, (ξd)d≥1 and k so large
that p(d) = P(X ≤ ξd) satisfies (3.9) and that

4
∞∑

i=1

ξ
(k1−δ)(τ−2)−i∧(b−i) < r ′. (4.14)

We start by rewriting the integrability criterion in (1.6). By a change of variables u := 1/y,
we obtain that (1.6) is equivalent to the convergence of

∫ c

0
F (−1)

X (exp{−1/y}) 1
y
dy (4.15)

for some c > 0. For now, let us fix an arbitrary γ ∈ (τ − 2, 1) and cut the integral at the
powers of γ . Then, the convergence of (4.15) implies the convergence of the sum

∞∑

n=K

∫ γ n

γ n+1
F (−1)

X (exp{−1/y}) 1
y
dy, (4.16)

where K := min{n : γ n ≤ c}. By the monotonicity of the inverse function F (−1)
X (·),

F (−1)
X

(
1

e1/γ n+1

)

(1 − γ ) ≤
∫ γ n

γ n+1
F (−1)

X

(
1

e1/y

)
1

y
dy, (4.17)

hence the convergence of the integral in (1.6) implies that

∞∑

n=K

F (−1)
X

(
1

e1/γ n

)

< ∞. (4.18)
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Now we turn to the choice of ξd and thus p(d). For fixed r ′ > 0, choose K (r ′) so large in
(4.18) that the sum on the lhs is at most r ′/4:

∞∑

n=K (r ′)
F (−1)

X

(
1

e1/γ n

)

=
∞∑

n=0

F (−1)
X

(
1

e1/γ n+K (r ′)

)

< r ′/4. (4.19)

The intuitive idea is the following: recall that in the path constructed in the proof of
Proposition 2.1, by Lemmas 2.2 and 2.4, for the i th vertex of the constructed path, the
degrees are yi ∈ ((k1−δ)1/(τ−2)i , k1/(τ−2)i ), for some constants k and δ ∈ (0, 1). Thus, we
would like to set ξd so that the equation

ξ
(k1−δ)1/(τ−2)i = F (−1)

X

(
e−1/γ i+K (r ′))

(4.20)

holds, and then (4.14) is satisfied. For this, d = (k1−δ)1/(τ−2)i implies that i =
log

(
log(d)/ log(k1−δ)

)
/| log(τ − 2)|, which, when used on the right hand side of (4.20),

results in the definition

ξd := F (−1)
X

(
exp

{ − γ −K (r ′)(log d)| log γ |/| log(τ−2)|(log k1−δ)−| log γ |/| log(τ−2)|}).

(4.21)

Using that probability distribution functions are right-continous, FX (F
(−1)
X (x)) ≥ x , and

hence

p(d) = FX (ξd) ≥ exp
{
− (log d)| log γ |/| log(τ−2)| γ −K (r ′)(log k1−δ)− log γ /| log(τ−2)|}

= exp
{
−C ′(k, r ′) (log d)| log γ |/| log(τ−2)|} ,

Due to the fact that we have chosen γ ∈ (τ −2, 1), we have | log γ |/| log(τ −2)| < 1. Thus,
the conditions of Proposition 3.5 are satisfied with this choice of p(d). This, combined with
(4.13) finishes the proof of the upper bound. The proof of the lower bound follows from the
fact that

Wn(u, v) ≥ Dn(u, v),

and the latter is lower tight around 2 log log n/| log(τ − 2)| by Proposition 1.8. �	
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