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Abstract
The Tutte polynomial T (G; x, y) of a graph G, or equivalently the q-state Potts model par-
tition function, is a two-variable polynomial graph invariant of considerable importance in
combinatorics and statistical physics. Graph operations have been extensively applied to
model complex networks recently. In this paper, we study the Tutte polynomials of the dia-
mond hierarchical lattices and a class of self-similar fractal models which can be constructed
through graph operations. Firstly, we find out the behavior of the Tutte polynomial under
k-inflation and k-subdivision which are two graph operations. Secondly, we compute and
gain the Tutte polynomials of this two self-similar fractal models by using their structure
characteristic. Moreover, as an application of the obtained results, some evaluations of their
Tutte polynomials are derived, such as the number of spanning trees and the number of
spanning forests.

Keywords Tutte polynomial · The number of spanning trees · Complex network model ·
Subdivision · Inflation

1 Introduction

The Tutte polynomial of a graph, also known as the partition function of the Potts model, is a
polynomial in twovariableswhich plays an important role in several areas of sciences. Though
originally studied in algebraic graph theory as a generalization of counting problems related
to graph coloring [1], it has many interesting connections with statistical mechanical models
as the Potts model [2,3], the Abelian SandpleModel [4,5], as well as the Jones polynomial [6]
from knot theory. In a strong sense it contains every graphical invariant that can be computed
by deleting and contraction operationswhich are natural reductions formany networkmodels.
The Tutte polynomial for a particular point at (x, y)-plane is related to much combinatorial
information and algebraic properties of a graph, including the number of spanning trees, the
number of spanning connected subgraphs and many more. Moreover, the Tutte polynomial
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contains several other polynomial invariants, such as the chromatic polynomial, the flow
polynomial and the all terminal reliability polynomial as partial evaluations [7,8]. However,
there are no widely available effective computational tools to compute the Tutte polynomial
of a graph of reasonable size.

In general, it is much easier to compute the Tutte polynomial of a small graph than a
large one. Since a large graph can be obtained from some small graphs by using some kinds
of graph operations, we can reduce the difficulty of computing the Tutte polynomial of a
large graph if we find out the recurrence relations of the Tutte polynomials under these graph
operations. It is well known that the diamond hierarchical lattices [9–13] can be constructed
recursively by replacing each edge at one step by a set of edges in a diamond shape. The
beauty of these lattices is that the Migdal–Kadanoff real-space renormalization is exact.
Using this fact, Muzy and Salinas [14] analyzed the critical behavior of a q-state Potts model
with correlated disordered ferromagnetic exchange interactions along the layers of the first
type of the diamond hierarchical lattice. Bleher and Lyubich [15] studied the analytical
continuation in the complex plane of free energy of the Ising model on the second type of
the diamond hierarchical lattice and proved that for almost all (with respect to the harmonic
measure) geodesics the complex critical exponent is common. Qiao [16] studied the phase
transition of the Potts model on the second type of the diamond hierarchical lattice and gave a
complete description about the connectivity of the set of the complex singularities. However,
not much work has been done on the computing the Potts model partition functions of these
hierarchical lattices. Recently, Ma and Yao [17] introduced a class of self-similar fractal
models {Lt } through subdivision [18] which is a kind of graph operation. By using both
induction and iterative computational method, they got an exact analytical solution for the
number of spanning trees of this model.

In this paper, we follow a combinatorial approach and use the recursive structure to
investigate the Tutte polynomials of the diamond hierarchical lattices and the fractal models.
Firstly, based on the construction methods, we study the relations between the spanning
subgraphs of graph G and the spanning subgraphs of its operation graphs. Secondly, using
these relations, we divide the sets of spanning subgraphs of its operation graphs into disjoint
subsets and compute the contribution of each subset. Thirdly, we find recursive expressions
of the Tutte polynomials of its operation graphs. Finally, as an application of the obtained
recurrence relations, we compute and gain the Tutte polynomials of two types of the diamond
hierarchical lattices and a class of self-similar fractal models. Moreover, we obtain some
evaluations of these Tutte polynomials, such as the number of spanning trees and the number
of totally cyclic orientations. It is worth mentioning that the Tutte polynomials of some
special graphs (or lattices) have been computed by several different methods in both fields
of combinatorics and statistical physics recently [19–26]. The method used in this work is
different with others. Our technique could be extended to compute the Tutte polynomials of
other classes of recursive graphs which could be obtained through edge replacement graph
operations.

2 Preliminaries

In this section we briefly discuss some necessary background that will be used for our
calculations. We use standard graph terminology and the words “network”, “lattice”, and
“graph” indistinctly.
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2.1 Tutte Polynomial

For a graph G we denote by V (G) its set of vertices and by E(G) its set of edges. Let |V (G)|
and |E(G)| denote the cardinality of V (G) and E(G), respectively. Let k(G) be the number
of connected components of the graph G. There is a useful relation that expresses the Tutte
polynomial T (G; x, y) as a sum of contributions from spanning subgraphs of G. Here, a
spanning subgraph A = (V (A), E(A)) has the same vertex set as G and a subset of E(G),
E(A) ⊆ E(G). If G is connected, this relation is

T (G; x, y) =
∑

A⊆G

(x − 1)k(A)−1(y − 1)n(A),

where n(A) = |E(A)| + k(A) − |V (A)| is the nullity of A. Note that throughout this paper
n(G) only denote the nullity of a graph G, it does not denote the number of vertices of G.
Recall that a one-point joinG ∗H of two graphsG and H is formed by identifying a vertex of
G and a vertex of H into a single vertex of G ∗ H . It is well known that the Tutte polynomial
fulfills the following property:

T (G ∗ H ; x, y) = T (G; x, y)T (H ; x, y).
We will refer to this equality as one-point join property hereafter. In the sequel of the paper,
we will be interested in special evaluations of the Tutte polynomial at some particular points
(x, y), that allow us to deduce many combinatorial and algebraic properties of the considered
graphs. The special evaluations of interest are (i) T (G; 1, 1) = τ(G), the number of spanning
trees of G; (ii) T (G; 2, 1) = σ(G), the number of spanning forests of G [7].

2.2 The Diamond Hierarchical Lattices

As we know, the hierarchical lattices are generated in an iterative manner, starting from an
edge. One then repeatedly uses an operation of replacing each edge by a diamond shape
simple graph. Different diamond shape simple graphs lead to different diamond hierarchical
lattices. We only study two famous types of the diamond hierarchical lattices in this paper.

The first type of the diamond hierarchical lattice Ft (see Fig. 1), also known as the (2, 2)-
flower in [27], is a particular case of the (x, y)-flower [28]. Clearly, the network is self-similar.
It is easy to see that the number of edges in Ft is |E(Ft )| = 4t . According to the generating
algorithm for the first type of the diamond hierarchical lattice, the number of vertices |V (Ft )|
in Ft satisfies the recursive relation |V (Ft )| = |V (Ft−1)|+2|E(Ft−1)|, which together with
the initial condition |V (F0)| = 2 yields |V (Ft )| = 2

3 (4
t + 2).

The second type of the diamond hierarchical lattice Qt (see Fig. 2) is also self-similar.
The number of edges in Qt is |E(Qt )| = 6t . The number of vertices |V (Qt )| in Qt satisfies
the recursive relation |V (Qt )| = |V (Qt−1)| + 3|E(Qt−1)|, which together with the initial
condition |V (Q0)| = 2 yields |V (Qt )| = 3

5

(
6t + 7

3

)
.

2.3 The NetworkModel Lt

This class of self-similar fractal models {Lt } can be created in the following recursive way.
For t = 0, L0 is the complete graph K3. For t ≥ 1, Lt is obtained from Lt−1: every existing
edge in Lt−1 is replaced with a path of length 2; every existing vertex in Lt−1 is replaced
with a copy of the complete graph K3. Figure 3 illustrates the construction process for the
first three generations.
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F2F1F0

Fig. 1 The first three generations of Ft

Q2Q1Q0

Fig. 2 The first three generations of Qt

L2

L1

L0

Fig. 3 The first three generations of Lt
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G I2(G)

Fig. 4 Graph G and its 2-inflation graph I2(G)

H A

Fig. 5 A is an expanded graph of H

According to the network construction method, one can see that at each step t (t ≥ 1),
{ |V (Lt )| = 3|V (Lt−1)| + |E(Lt−1)|;

|E(Lt )| = 3|V (Lt−1)| + 2|E(Lt−1)|.
Under the initial conditions |E(L0)| = 3 and |V (L0)| = 3, we can know

|E(Lt )| = 3

λ − μ

(
5(λt − μt ) − λμ(λt−1 − μt−1)

)
,

|V (Lt )| = 3

λ − μ

(
5(λt − μt ) − (λμ + 5)(λt−1 − μt−1) + λμ(λt−2 − μt−2)

)
,

where λ = 5+√
13

2 , μ = 5−√
13

2 . Note that this result is consistent with previous work [17].

3 Tutte Polynomial of Two Operation Graphs

Let G be a simple and connected graph with n vertices and m edges. Let D(G) denote the
set of spanning subgraphs of G.

3.1 The Tutte Polynomial of the Inflation Graph

The k-inflation graph of graphG, denoted by Ik(G), is the graph obtained fromG by replacing
each edge in G by k new edges connecting the same vertices. An example of I2(G) is given
in Fig. 4. It is not difficult to see that Ik(G) has km edges. Then |D(Ik(G))| = 2km .

Let R be the k-inflation graph of an edge. Let H be a spanning subgraph of G with
i ∈ {0, 1, · · · ,m} edges. If a graph A can be obtained from H by replacing each edge
e ∈ E(H) with at least one edge of R, A is an expanded graph of H . Figure 5 shows an
example of expanded graph. According to the construction process of Ik(G) we know that
every expanded graph of H is a spanning subgraph of Ik(G).

Lemma 3.1 Let H be a spanning subgraph of G with i ∈ {0, 1, · · · ,m} edges, and let [H ]1
denote the set of expanded graphs of H. Then |[H ]1| = (2k − 1)i .

123



898 Y. Liao et al.

Proof Each edge e ∈ H could be replaced by at least one edge of R. There are
(k
1

)+· · ·+(k
i

)+(k
k

) = 2k − 1 different ways to replace the edge e. Since H has i edges and the replacement
is independent with each other, we have (2k − 1)i different ways to replace the edges in H .
It is clear that each way of replacing determines an expanded graph and different ways of
replacing determine different expanded graphs. Therefore, |[H ]1| = (2k − 1)i . ��
Lemma 3.2 Let Ĥ = ⋃

H∈D(G)[H ]1. Then Ĥ = D(Ik(G)).

Proof For every H ∈ D(G), [H ]1 ⊆ D(Ik(G)). So Ĥ ⊆ D(Ik(G)). Suppose that H1, H2 are
two different spanning subgraphs of G. It is easy to see that [H1]1 ∩ [H2]1 = ∅. For each i ∈
{0, 1, . . . ,m}, graph G has

(m
i

)
spanning subgraphs which have i edges. From Lemma 3.1

we have that
(m
0

)
(2k − 1)0 + (m

1

)
(2k − 1) + · · · + (m

m

)
(2k − 1)m = (2k − 1 + 1)m = 2km .

Since |D(Ik(G))| = 2km , Ĥ = D(Ik(G)). ��
Lemma 3.2 implies that D(Ik(G)) could be divided into 2km disjoint subsets. Next we will
compute the contribution to T (Ik(G); x, y) of each subset.

Lemma 3.3 Let H be a spanning subgraph of G with i edges. Then
∑

A∈[H ]1
(x − 1)k(A)−1(y − 1)n(A) = (1 + y + · · · + yk−1)i (x − 1)k(H)−1(y − 1)n(H).

Proof For every A ∈ [H ]1, we have k(A) = k(H) and

n(A) − n(H) = (|E(A)| + k(A) − |V (A)|) − (|E(H)| + k(H) − |V (H)|)
= |E(A)| − |E(H)|.

Therefore, the contribution of A is given by

(x − 1)k(A)−1(y − 1)n(A) = (x − 1)k(H)−1(y − 1)n(H)(y − 1)|E(A)|−|E(H)|.

Let �E A
e be the number of edges increased by replacing the edge e ∈ H in the construction

process of A. So |E(A)| − |E(H)| = ∑
e∈H �E A

e . Thus,

(y − 1)|E(A)|−|E(H)| =
∏

e∈H
(y − 1)�E A

e .

Hence, we have
∑

A∈[H ]1
(x − 1)k(A)−1(y − 1)n(A) = (x − 1)k(H)−1(y − 1)n(H)

∑

A∈[H ]1
(y − 1)|E(A)|−|E(H)|

= (x − 1)k(H)−1(y − 1)n(H)
∑

A∈[H ]1

∏

e∈H
(y − 1)�E A

e .

Let η = ∑
A∈[H ]1

∏
e∈H (y − 1)�E A

e . It is not easy to evaluate η directly. Thus, we
will compute it in an alternative way. For every edge e ∈ H , if the edge e is replaced by
t ∈ {1, 2, · · · , k} edges of R, the number of edges increased by t−1. Since R has k edges, the
contribution toη givenby replacing the edge e is

(k
1

)
(y−1)0+· · ·+(k

t

)
(y−1)t−1+· · ·+(k

k

)
(y−

1)k−1 = yk−1
y−1 = 1+ y + · · · + yk−1. Since |E(H)| = i and the replacement is independent

with each other, the contribution given by replacing all edges of H is (1+ y+· · ·+ yk−1)i . It
is important to note that all expanded graphs A ∈ [H ]1 can be obtained from H by replacing
edges. So we have η = ∑

A∈[H ]1
∏

e∈H (y − 1)�E A
e = (1 + y + · · · + yk−1)i . ��

123



Tutte Polynomials of Two Self-similar Network Models 899

S2(G)G

Fig. 6 Graph G and its 2-subdivision graph S2(G)

Theorem 3.4 Let G be a simple and connected graph with n vertices and m edges. Then

T (Ik(G); x, y) = (1 + y + · · · + yk−1)n−1T

(
G; x + y + · · · + yk−1

1 + y + · · · + yk−1 , yk
)

.

Proof According to Lemmas 3.2 and 3.3, it follows that

T (Ik(G); x, y) =
∑

H∈D(G)

∑

A∈[H ]1
(x − 1)k(A)−1(y − 1)n(A)

=
∑

H∈D(G)

(
1 + y + · · · + yk−1

)|E(H)|
(x − 1)k(H)−1(y − 1)n(H)

=
(
1 + y + · · · + yk−1

)n−1 ∑

H∈D(G)

(
x − 1

1 + y + · · · + yk−1

)k(H)−1

(yk − 1)n(H)

=
(
1 + y + · · · + yk−1

)n−1 ∑

H∈D(G)

(
x + y + · · · + yk−1

1 + y + · · · + yk−1 − 1

)k(H)−1

(yk − 1)n(H)

=
(
1 + y + · · · + yk−1

)n−1
T

(
G; x + y + · · · + yk−1

1 + y + · · · + yk−1 , yk
)

.

��
Let x = y = 1, we can compute the number of spanning trees of Ik(G).

τ(Ik(G)) = kn−1τ(G).

3.2 The Tutte Polynomial of the Subdivision Graph

The k-subdivision graph of graph G, denoted by Sk(G), is the graph obtained from G by
inserting k new vertices into each edge in G. Figure 6 illustrates an example of S2(G). In
fact, the k-subdivision graph Sk(G) is a path-replacement of G. It could be obtained from G
by replacing each edge of G with a path of length k. It is not difficult to see that Sk(G) has
km edges. Then |D(Sk(G))| = 2km .

If a graph B is a spanning subgraph of G and B �= G, then B is called a proper spanning
subgraph of G. Let P be the k-subdivision graph of an edge. Let H be a spanning subgraph
of G with i ∈ {0, 1, . . . ,m} edges, and let C(H) = E(G) − E(H). Then |C(H)| = m − i .
A graph A is said to be an extended graph of H if it can be obtained from G by replacing
each edge e ∈ E(H) with P and replacing each edge e ∈ C(H) with a proper spanning
subgraph of P . From the construction method of Sk(G) we know that every extended graph
A is a spanning subgraph of Sk(G). Figure 7 displays an example of extended graph.

Lemma 3.5 Let H be a spanning subgraph of G with i edges, and let [H ]2 denote the set of
extended graphs of H. Then |[H ]2| = (2k − 1)m−i .
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e3,2
e4,1

e3,1

e1,2e1,1

A

e3

e1

H
Fig. 7 A is an extended graph of H

Proof Since P has k edges, it has 2k−1 proper spanning subgraphs. For each edge e ∈ C(H),
it should be replaced by a proper spanning subgraph of P . So there are 2k − 1 different
ways to replace e. Since C(H) has m − i edges, there are (2k − 1)m−i different ways
to replace all edges in C(H). It is not difficult to see that each way of replacing edges of
C(H) determines an extended graph and different ways determine different extended graphs.
Therefore, |[H ]2| = (2k − 1)m−i . ��
Lemma 3.6 Let H̃ = ⋃

H∈D(G)[H ]2. Then H̃ = D(Sk(G)).

Proof For each H ∈ D(G), [H ]2 ⊆ D(Sk(G)), then H̃ ⊆ D(Sk(G)). Suppose that H1, H2

are two different spanning subgraphs of G. It is not difficult to see that [H1]2 ∩ [H2]2 = ∅.
Graph G has

(m
i

)
spanning subgraphs for each i ∈ {0, . . . ,m}. From Lemma 3.5 we have

that |H̃ | = (m
0

)
(2k − 1)m + · · · + (m

i

)
(2k − 1)m−i + · · · + (m

m

) = (2k − 1 + 1)m = 2km .

Since |D(Sk(G))| = 2km , H̃ = D(Sk(G)). ��
Lemma 3.6 says that D(Sk(G)) could be divided into 2km disjoint subsets. Next we will
compute the contribution to T (Sk(G); x, y) of each subset.
Lemma 3.7 Let H be a simple graph. Then n(Sk(H)) = n(H).

Proof Suppose that H has n vertices and i edges. Hence Sk(H) has n + (k − 1)i vertices
and ki edges. Clearly, k(H) = k(Sk(H)). Therefore,

n(Sk(H)) = ki + k(Sk(G)) − (n + (k − 1)i)

= i + k(Sk(G)) − n

= n(H).

��
A pendant vertex is a vertex of degree 1 and a pendant edge is an edge incident with a pendant
vertex. Let p = v0v1 . . . vs (s ≥ 1) be a path with d(v1) = d(v2) = · · · = d(vs−1) = 2
where d(v) is the degree of the vertex v. We call p a pendant path if the d(vs) = 1 and
d(v0) ≥ 3. The following three lemmas can be easily got by applying the definition of
nullity.

Lemma 3.8 Let u be an isolated vertex of a graph H. Then n(H − u) = n(H).

Lemma 3.9 Let e be a pendant edge of a graph H. Then n(H − e) = n(H).

Lemma 3.10 Let p be a pendant path of a graph H. Then n(H − p) = n(H).
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Lemma 3.11 Let H be a spanning subgraph of graph G and graph A ∈ [H ]2. Then n(A) =
n(H).

Proof Every proper spanning subgraph of P is constituted by isolated vertices, pendant edges
and pendant paths. An extended graph A ∈ [H ]2 is obtained from G by replacing edges in
C(H) with proper spanning subgraphs of P and replacing edges in H with P . Let A′ be the
graph obtained from A by deleting all the proper spanning subgraphs of P which replace
the edges belonging to C(H) in the construction process of A. Lemmas 3.8, 3.9 and 3.10
tell us that n(A) = n(A′). In fact, A′ is the k-subdivision graph of H . By Lemma 3.7,
n(A′) = n(H). Therefore, n(A) = n(H). ��

Lemma 3.12 Let H be a spanning subgraph of G with i ∈ {0, 1, · · · ,m} edges. Then
∑

A∈[H ]2
(x − 1)k(A)−1(y − 1)n(A) = (1 + x + · · · + xk−1)m−i (x − 1)k(H)−1(y − 1)n(H).

Proof For every A ∈ [H ]2, n(A) = n(H). Then the contribution given by A can be computed
as follows.

(x − 1)k(A)−1(y − 1)n(A) = (x − 1)k(H)−1(y − 1)n(H)(x − 1)k(A)−k(H).

Let�kAe be the number of connected components increased by replacing the edge e ∈ C(H)

in the construction process of A. Then, k(A) − k(H) = ∑
e∈C(H) �kAe . Hence,

(x − 1)k(A)−k(H) =
∏

e∈C(H)

(x − 1)�kAe .

So, we have
∑

A∈[H ]2
(x − 1)k(A)−1(y − 1)n(A) = (x − 1)k(H)−1(y − 1)n(H)

∑

A∈[H ]2
(x − 1)k(A)−k(H)

= (x − 1)k(H)−1(y − 1)n(H)
∑

A∈[H ]2

∏

e∈C(H)

(x − 1)�kAe .

Let θ = ∑
A∈[H ]2

∏
e∈C(H)(x − 1)�kAe . It is not easy to evaluate θ directly. Thus, we

will compute it in an alternative way. Let P ′ be a proper spanning subgraph of P with
t ∈ {0, 1, . . . , k − 1} edges. Since P is a path with k edges, then P ′ has k − t + 1 connected
components and P has

(k
t

)
such proper spanning subgraphs. Let e be an edge in C(H). If it

is replaced by P ′, the number of connected components increased by k − t − 1 since e /∈ H .
Therefore, the contribution to θ given by replacing the edge e is

(k
0

)
(x−1)k−1+· · ·+(k

t

)
(x−

1)k−t−1 + · · · + ( k
k−1

)
(x − 1)0 = xk−1

x−1 = 1 + x + · · · + xk−1. Since |C(H)| = m − i and
the replacement is independent with each other, the contribution given by replacing edges
is (1 + x + · · · + xk−1)m−i . It is important to note that all extended graphs A ∈ [H ]2 can
be obtained by this way. So we have θ = ∑

A∈[H ]2
∏

e∈C(H)(x − 1)�kAe = (1 + x + · · · +
xk−1)m−i . ��

Theorem 3.13 Let G be a simple and connected graph with n vertices and m edges. Then

T (Sk(G); x, y) =
(
1 + x + · · · + xk−1

)m−n+1
T

(
G; xk, y + x + · · · + xk−1

1 + x + · · · + xk−1

)
.
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L1S(L0)L0

Fig. 8 Illustration of the construction of L1 by using the subdivision graph S(L0)

Proof From Lemmas 3.6 and 3.12 we have

T (Sk(G); x, y) =
∑

H∈D(G)

∑

A∈[H ]2
(x − 1)k(A)−1(y − 1)n(A)

=
∑

H∈D(G)

(
1 + x + · · · + xk−1

)m−|E(H)|
(x − 1)k(H)−1(y − 1)n(H)

= (1 + x + · · · + xk−1)m−n+1
∑

H∈D(G)

(xk − 1)k(H)−1
(

y − 1

1 + x + · · · + xk−1

)n(H)

=
(
1 + x + · · · + xk−1

)m−n+1
T

(
G; xk , y + x + · · · + xk−1

1 + x + · · · + xk−1

)
.

��

Let x = y = 1, we can compute the number of spanning trees of Sk(G).

τ(Sk(G)) = km−n+1τ(G).

When k = 2, we have

τ(S2(G)) = 2m−n+1τ(G).

Huang and Li [29] have proved that this equation holds for regular graphs. We prove that this
equation also holds for a general simple graph.

4 Applications

We will study the Tutte polynomials of a class of self-similar fractal models and two types
of diamond hierarchical lattices in this section. For convenience, we denote I2(G) by I (G)

and denote S2(G) by S(G).

4.1 The Tutte Polynomial of Lt

As shown in Fig. 8, Lt may be obtained from S(Lt−1) by joining a copy of the complete
graph K3 at every vertex existing in Lt−1. It is well known that T (K3; x, y) = y + x + x2.
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Theorem 4.1 For each t ≥ 1, The Tutte polynomial of Lt is given by

T (Lt ; x, y) = (y + x + x2)|V (Lt−1)|(1 + x)|E(Lt−1)|−|V (Lt−1)|+1T

(
Lt−1; x2, y + x

1 + x

)
,

with the initial condition T (L0; x, y) = y + x + x2.

Proof This theorem follows from Theorem 3.13 and the one-point join property of Tutte
polynomial immediately. ��

By setting x = y = 1, we can obtain the number of spanning trees of Lt .

τ(Lt ) = T (Lt ; 1, 1) = 2t+
∑t−2

i=0 |E(Li )|31+
∑t−1

i=0 |V (Li )|.

Let x = 0, y = 2, we can obtain the number of totally cyclic orientations [7] of Lt .

o(Lt ) = T (Lt ; 0, 2) = 21+
∑t−1

i=0 |V (Li )|.

4.2 The Tutte Polynomials of the Diamond Hierarchical Lattices

As shown in Fig. 1, The first type of the diamond hierarchical lattice Ft can be obtained from
Ft−1 by 2-inflation and subdivision. Actually, Ft = S(I (Ft−1)). According to Theorems 3.4
and 3.13, we have the following theorem.

Theorem 4.2 For each t ≥ 1, The Tutte polynomial of Ft is given by

T (Ft ; x, y) = (1 + x)2(|E(Lt−1)|−|V (Lt−1)|+1)(1 + 2x + y)|V (Lt−1)|−1

·T
(
Ft−1; y + x + x2 + x3

1 + 2x + y
, (

x + y

1 + x
)2

)
.

with the initial condition T (F0; x, y) = x.

Proof Graph I (Ft−1) has |V (Ft−1)| vertices and 2|E(Ft−1)| edges.
T (Ft ; x, y) = T (S(I (Ft−1)); x, y)

= (1 + x)2|E(Ft−1)|−|V (Ft−1)|+1T

(
I (Ft−1); x2, x + y

1 + x

)

= (1 + x)2|E(Ft−1)|−|V (Ft−1)|+1
(
1 + x + y

1 + x

)|V (Ft−1)|−1

·T
(
Ft−1;

x2 + x+y
1+x

1 + x+y
1+x

,

(
x + y

1 + x

)2
)

= (1 + x)2(|E(Ft−1)|−|V (Ft−1)|+1)(1 + 2x + y)|V (Ft−1)|−1

· T
(
Ft−1; y + x + x2 + x3

1 + 2x + y
,

(
x + y

1 + x

)2
)

.

��
Let x = y = 1, we can compute the number of spanning trees of Ft .

τ(Ft ) = 4
∑t−1

i=0 |Ei | = 4
1
3 (4t−1).

Similarly, we can compute the Tutte polynomial of the second type of the diamond hier-
archical lattice Qt .
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Theorem 4.3 For each t ≥ 1, The Tutte polynomial of Qt is given by

T (Qt ; x, y) = (1 + x)3(|E(Qt−1)|−|V (Qt−1)|+1)(1 + 3x + y + 3x2 + 3xy + y2)|V (Qt−1)|−1

·T
(
Qt−1; x + y + 3x2 + 3xy + y2 + 2x3 + x4

1 + 3x + y + 3x2 + 3xy + y2
,

(
x + y

1 + x

)3
)

with the initial condition T (Q0; x, y) = x.

Proof Note that Qt = S(I3(Qt−1)). I3(Qt−1)has |V (Qt−1)|vertices and3|E(Qt−1)| edges.

T (Qt ; x, y) = (1 + x)3|E(Qt−1)|−|V (Qt−1)|+1T

(
I3(G); x2, y + x

1 + x

)

= (1 + x)3|E(Qt−1)|−|V (Qt−1)|+1

(
1 + x + y

1 + x
+

(
x + y

1 + x

)2
)|V (Qt−1)|−1

·T
⎛

⎜⎝Qt−1;
x2 + x+y

1+x +
(
x+y
1+x

)2

1 + x+y
1+x +

(
x+y
1+x

)2 ,

(
x + y

1 + x

)3

⎞

⎟⎠

= (1 + x)3(|E(Qt−1)|−|V (Qt−1)|+1)(1 + 3x + y + 3x2 + 3xy + y2)|V (Qt−1)|−1

·T
(
Qt−1; x + y + 3x2 + 3xy + y2 + 2x3 + x4

1 + 3x + y + 3x2 + 3xy + y2
,

(
x + y

1 + x

)3
)

.

��
Let x = y = 1, we can obtain the number of spanning trees of Qt .

τ(Qt ) = 2
12
25 (6t−1)− 2

5 t3
3
25 (6t−1)+ 2

5 t .

Let x = 2, y = 1, we can obtain the number of spanning forests of Qt .

σ(Qt ) = 2 × 3
3
5 (6t−1).
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