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Abstract
Coulomb and log-gases are exchangeable singular Boltzmann–Gibbs measures appearing
in mathematical physics at many places, in particular in random matrix theory. We explore
experimentally an efficient numerical method for simulating such gases. It is an instance of
the Hybrid or Hamiltonian Monte Carlo algorithm, in other words a Metropolis–Hastings
algorithm with proposals produced by a kinetic or underdamped Langevin dynamics. This
algorithmhas excellent numerical behavior despite the singular interaction, in particularwhen
the number of particles gets large. It ismore efficient than thewell known overdamped version
previously used for such problems, and allows new numerical explorations. It suggests for
instance to conjecture a universality of the Gumbel fluctuation at the edge of beta Ginibre
ensembles for all beta.

Keywords Numerical simulation · Random number generator · Singular Stochastic
differential equation · Coulomb gas · Monte Carlo adjusted Langevin · Hybrid Monte
Carlo · Markov chain Monte Carlo · Langevin dynamics · Kinetic equation

Mathematics Subject Classification 65C05 (Primary) · 82C22 · 60G57

We explore the numerical simulation of Coulomb gases and log-gases by mean of Hybrid
or Hamiltonian Monte Carlo algorithms (HMC) [19,36]. Such algorithms consist basically
in using discretized kinetic (underdamped) Langevin dynamics to produce proposals for
Metropolis–Hastings algorithms. This can be viewed as a way to add momentum to a Monte
Carlo interacting particle system. The basic outcome of this exploratory work is that HMC
algorithms have remarkably good numerical behavior for such gases despite the singularity
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of the interactions. Such algorithms scale well with the dimension of the system, see [4,8].
They are therefore more efficient than the tamed overdamped version already explored in the
literature for instance in [55]. In this paper, we benchmark the capability of the algorithm to
reproduce known results efficiently, and we make it ready to explore new conjectures.

Another advantage of this approach is that it could be adapted to take into account a sub-
manifold constraint [51]. For instance, this could be used for simulating randommatriceswith
prescribed trace or determinant, which is difficult to achieve by direct sampling of matrices.

For the sake of completeness, we should mention that there are remarkable alternative
simulation algorithms which are not based on a diffusion process, such as the ones based on
piecewise deterministic Markov processes (PDMP), see for instance [41] and [72].

1 Boltzmann–GibbsMeasures

We are interested in interacting particle systems subject to an external field and experiencing
singular pair interactions. In order to encompass Coulomb gases as well as log-gases from
random theory, we introduce a vector subspace S of dimension d of Rn , with n ≥ 2 and
n ≥ d ≥ 1. The particles belong to S, and R

n is understood as a physical ambient space.
We equip S with the trace of the Lebesgue measure of Rn , denoted by dx . The external field
and the pair interaction are respectively denoted by V : S �→ R and W : S �→ (−∞,+∞],
and belong to C2 functions, with W (x) < ∞ for all x �= 0. For any N ≥ 2, we consider the
probability measure PN on SN = S × · · · × S defined by

PN (dx) = e−βN HN (x1,...,xN )

Z N
dx1, . . . , dxN , (1.1)

where βN > 0 is a parameter,

Z N =
∫

SN
e−βN HN (x1,...,xN )dx1, . . . , dxN

is the normalizing factor, and

HN (x1, . . . , xN ) = 1

N

N∑
i=1

V (xi ) + 1

2N 2

∑
i �= j

W (xi − x j )

is usually called energy or Hamiltonian of the system. We assume that βN , V , and W are
chosen in such a way that Z N < ∞ for any N . The law PN is invariant by permutation of
the coordinates x1, . . . , xN (exchangeable), and HN depends only on the empirical measure

μN = 1

N

N∑
i=1

δxi .

Therefore PN is also the lawof a randomempiricalmeasure encoding a cloud of indistinguish-
able particles x1, . . . , xN . We emphasize that the particles live on the space SN = S×· · ·× S
of dimension d N . The parameter n serves as the physical dimension of the ambient space,
for the Coulomb gas setting described next.

For any m ≥ 1 and x ∈ R
m , we denote by |x | =

√
x21 + · · · + x2m the Euclidean norm of

x . This matches the absolute value when m = 1 and the modulus when m = 2, R2 ≡ C.
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694 D. Chafaï, G. Ferré

1.1 Coulomb Gases

The notion of Coulomb gas is based on elementary electrostatics. Here the vector subspace S
is interpreted as a conductor. It corresponds to taking W = g where g is the Coulomb kernel
or Green function in the physical space Rn . More precisely, recall that the Green function g
in R

n , n ≥ 2, is defined for all x ∈ R
n , x �= 0, by

g(x) =
{
log 1

|x | if n = 2,
1

|x |n−2 if n ≥ 3.

This function is the fundamental solution of the Poisson equation, namely, denoting by� the
Laplace operator in Rn and by δ0 the Dirac mass at 0, we have, in the sense of distributions,

−�g = cδ0, with c =
{
2π if n = 2,

(n − 2)|Sn−1| = n(n−2)πn/2

�(1+n/2) if n ≥ 3.

The physical interpretation in terms of electrostatics is as follows: HN (x1, . . . , xN ) is the
electrostatic energy of a configuration of N electrons inRn lying on S at positions x1, . . . , xN ,
in an external field given by the potential V . The Green function or Coulomb kernel g
expresses the Coulomb repulsion which is a two body singular interaction. The probability
measure PN can be seen as a Boltzmann–Gibbs measure, βN playing the role of an inverse
temperature. The probability measure PN is known as a Coulomb gas or as a one-component
plasma, see for instance [68] and references therein.

1.2 Log-Gases

A log-gas corresponds to choosing d = n and a logarithmic interaction W whatever the value
of n is, namely

W (x) = log
1

|x | = −1

2
log(x21 + · · · + x2d ), x ∈ S.

Coulomb gases and log-gases coincide when d = n = 2. In dimension d = n ≥ 3, log-gases
are natural and classical objects of approximation theory and can be seen as limiting Riesz
potentials, namely limα→0

1
α
(|x |−α − 1), see for instance [68–70].

1.3 Static Energy and EquilibriumMeasures

Under natural assumptions over V and W , typically when βN 	 N and V beats W at infinity,
it is well known, see for instance [14,67] and references therein, that PN almost surely, the
empirical measure

μN = 1

N

N∑
i=1

δxi

tends as N → ∞ to a non random probability measure, the equilibrium measure

μ∗ = arg inf E,
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Table 1 Examples of equilibrium
measures for Coulomb gases, see
[14,65]

d S n V μ∗ Nickname

1 R 2 ∞1intervalc Arcsine

1 R 2 x2 Semicircle GUE

2 R
2 2 |x |2 Uniform on a disc Ginibre

d ≥ 3 R
d d |x |2 Uniform on a ball

d ≥ 3 R
d d Radial Radial in a ring

the unique minimizer of the strictly convex lower semi-continuous “energy” E defined by

μ �→ E(μ) =
∫

V dμ +
∫∫

W (x − y)μ(dx)μ(dy).

When W = g is the Coulomb kernel, the quantity E(μ) is the electrostatic energy of the
distribution of charges μ, formed by the sum of the electrostatic potential coming from the
external electric field V with the Coulomb self repulsion by mean of the Coulomb kernel g.
Note that E(μ) = ∞ if μ has a Dirac mass due to the singularity of g. An Euler–Lagrange
variational analysis reveals that when S = R

d and V is smooth, convex, and grows faster
than g at infinity then the equilibrium probability measure μ∗ is compactly supported and
has density proportional to �V , see [14] and references therein. Table 1 gives examples of
equilibrium measures in this Coulomb setting. We refer to [33,44,65,67,68] for old and new
potential theory from this analytic point of view.Moreover, quite a few equilibriummeasures
are known for log-gases beyond Coulomb gases, see for instance [16].

Actually it can be shown that essentially if βN 	 N and V beats g at infinity then
under (PN )N the sequence of random empirical measures (μN )N satisfies a large deviation
principle with speed βN and good rate function E , see [3,14,30]. Concentration of measure
inequalities are also available, see [12] and references therein.

1.4 Two Remarkable Gases from RandomMatrix Theory

Let us give a couple of famous gases from randommatrix theory that will serve as benchmark
for our algorithm. They correspond to n = 2 because the Lebesgue measure on a matrix
translates via the Jacobian of the change of variable to a Vandermonde determinant on the
eigenvalues, giving rise to the two-dimensional Coulomb kernel inside the exponential via
the identity

∏
i< j

|xi − x j | = exp

⎛
⎝∑

i< j

log |xi − x j |
⎞
⎠ .

Hence the name “log-gases”. A good reference on this subject is [28] and we refer to [21,24,
28,29,39] for more examples of Coulomb gases related to random matrix models. Coulomb
gases remain interesting in any dimension n beyond random matrices, see [67,68].

Beta-Hermite model This model corresponds to

d = 1, n = 2, S = R, V (x) = x2

2β
, W (x) = − log |·|, βN = N 2β, β ∈ (0,∞).

This means that the particles evolve on the line R with Coulomb interactions given by the
Coulomb kernel inR2. Forβ = 2, it becomes the famousGaussianUnitary Ensemble (GUE),
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696 D. Chafaï, G. Ferré

which is the distribution of the eigenvalues of random N × N Hermitian matrices distributed
according to the Gaussian probability measure with density proportional to H �→ e−NTr(H2).
Beyond the case β = 2, the cases β = 1 and β = 4 correspond respectively to Gaussian
random matrices with real and quaternionic entries. Following [21], for all β ∈ (0,∞), the
measure PN is also the distribution of the eigenvalues of special random N × N Hermitian
tridiagonal matrices with independent but non identically distributed entries. Back to the
case β = 2, the law PN writes

(x1, . . . , xN ) ∈ R
N �→ e− N

2

∑N
i=1 x2i

∏
i< j

(xi − x j )
2. (1.2)

In this case, the Coulomb gas PN has a determinantal structure, making it integrable or
exactly solvable for any N ≥ 2, see [28,57]. This provides in particular a formula for the
density of the mean empirical spectral distribution EμN under PN , namely

x ∈ R �→ e− N
2 x2

√
2π N

N−1∑
�=0

H2
� (

√
N x), (1.3)

where (H�)�≥0 are the Hermite polynomials which are the orthonormal polynomials for the
standardGaussian distributionN (0, 1). The equilibriummeasureμ∗ in this case is theWigner
semicircle distribution with the following density with respect to the Lebesgue measure:

x ∈ R �→
√
4 − x2

2π
1x∈[−2,2]. (1.4)

A plot of μ∗ and EμN is provided in Fig. 1, together with our simulations. We refer to [46]
for a direct proof of convergence of (1.3)–(1.4) as N → ∞. Beyond the case β = 2, the
equilibrium measure μ∗ is still a Wigner semicircle distribution, scaled by β, supported by
the interval [−β, β], but up to our knowledgewe do not have a formula for themean empirical
spectral distribution EμN , except when β is an even integer, see [21].

Beta-Ginibre model This model corresponds to

d = 2, n = 2, S = R
2, V (x) = |x |2

β
, W (x) = − log |x |, βN = N 2β, β ∈ (0,∞).

In this case, the particlesmove inR2 with aCoulomb repulsion of dimension 2—it is therefore
a Coulomb gas. As for the GUE, the law PN can be written as

(x1, . . . , xN ) ∈ (R2)N �→ e−N
∑N

i=1 |xi |2 ∏
i< j

|xi − x j |β . (1.5)

When β = m for an even integer m ∈ {2, 4, . . .}, the law of this gas matches the Laughlin
wavefunction modeling the fractional quantum Hall effect (FQHE), see for instance [26].

For β = 2, this gas, known as the complex Ginibre Ensemble, matches the distribution of
the eigenvalues of random N × N complex matrices distributed according to the Gaussian

probability measure with density proportional to M �→ e−NTr(M M∗) where M∗ = M
�
.

In this case PN has a determinantal structure, see [28,57]. This provides a formula for the
density of the mean empirical spectral distribution EμN under PN , namely

x ∈ R
2 �→ e−N |x |2

π

N−1∑
�=0

|√N x |2�
�! , (1.6)
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which is the analogue of (1.3) for the Gaussian Unitary Ensemble. Moreover, if Y1, . . . , YN

are independent and identically distributed Poisson random variables of mean |x |2 for some
x ∈ R

2, then (1.6) writes

x ∈ R
2 �→ 1

π
P

(
Y1 + · · · + YN

N
< 1

)
.

As N → ∞, by the law of large numbers, it converges to 1/π if |x | < 1 and to 0 if |x | > 1,
while by the central limit theorem it converges to 1/(2π) if |x | = 1. It follows that EμN

converges weakly as N → ∞ to the uniform distribution on the disk, with density

x ∈ R
2 �→ 1|x |<1

π
, (1.7)

which is the equilibrium measure μ∗. When N is finite, the numerical evaluation of (1.6) is
better done by mean of the Gamma law. Namely, by induction and integration by parts, (1.6)
writes

x ∈ R
2 �→ 1

π(N − 1)!
∫ ∞

N |x |2
uN−1e−udu = �(N , N |x |2)

π
,

where � is the normalized incomplete Gamma function and where we used the identity

e−r
N−1∑
�=0

r�

�! = 1

(N − 1)!
∫ ∞

r
uN−1e−udu.

Note that t �→ 1−�(N , t) is the cumulative distribution function of the Gamma distribution
with shape parameter N and scale parameter 1. Figure 4 illustrates the difference between
the limiting distribution (1.7) and the mean empirical spectral distribution (1.6) for a finite
N . Beyond the case β = 2, we no longer have a formula for the density of EμN , but a
simple scaling argument reveals that the equilibrium measure μ∗ is in this case the uniform
distribution on the centered disk of radius

√
β/2.

2 Simulating Log-Gases and Coulomb Gases

Regarding simulation of log-gases or Coulomb gases such as (1.1), it is natural to use
the random matrix models when they are available. There exist also methods specific to
determinantal processes which cover the log-gases of random matrix theory with β = 2,
see [2,18,32,37,45,59,66]. Beyond these specially structured cases, a great variety ofmethods
are available for simulating Boltzmann–Gibbs measures, such as overdamped Langevin dif-
fusion algorithm, Metropolis–Hastings algorithm, Metropolis adjusted Langevin algorithm
(MALA), and kinetic versions called Hybrid or Hamiltonian Monte Carlo (HMC) which
are based on a kinetic (or underdamped) Langevin diffusion, see for instance [10,52]. Other
possibilities exist, such as Nosé-Hoover dynamics [40] or piecewise deterministic Markov
processes [9].

Twodifficulties arisewhen samplingmeasures as (1.1). First, theHamiltonian HN involves
all couples, so the computation of forces and energy scales quadratically with the number of
particles. A natural way to circumvent this numerical problem is to use clusterization proce-
dures such as the “fast multipole methods”, see for instance [35]. A second difficult feature of
such a Hamiltonian is the singularity of the interacting function W , which typically results in
numerical instability. A standard stabilization procedure is to «tame» the dynamics [11,38],
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698 D. Chafaï, G. Ferré

which is the strategy adopted in [55]. However, this smoothing of the force induces a sup-
plementary bias in the invariant measure, as shown in [11] for regular Hamiltonians. This
requires using small time steps, hence long computations. In the present note, we explore for
the first time the usage of HMC for general Coulomb gases in the context of randommatrices,
in the spirit of [71], the difficulty being the singularity of the interaction. This method has
the advantage of sampling the exact invariant measure (1.1), while allowing to choose large
time steps, which reduces the overall computational cost [27].

In Sect. 2.1, we review standard methods for sampling measures of the form e−βN HN ,
before presenting in detail the HMC algorithm in Sect. 2.2.

2.1 Standard SamplingMethods

To simplify and from now on, we suppose the support set S in (1.1) to be Rd . We introduce
the methods based on the overdamped Langevin dynamics. To sample approximately (1.1),
the idea is to exploit the fact that PN in (1.1) is the reversible invariant probability measure
of the Markov diffusion process (Xt )t≥0 solution to the stochastic differential equation:

dXt = −αN ∇ HN (Xt ) dt +
√
2
αN

βN
dBt , (2.1)

or in other words

Xt = X0 − αN

∫ t

0
∇ HN (Xs) ds +

√
2
αN

βN
Bt ,

where (Bt )t≥0 is a standard Brownian motion on SN and αN > 0 is an arbitrary time
scaling parameter (for instance αN = 1 or αN = βN ). The infinitesimal generator associated
with (2.1) is

L f = αN

βN
� f − αN ∇ HN · ∇ f .

The difficulty in solving (2.1) lies in the fact that the energy HN involves a singular interaction
W , which may lead the process to explode. Actually, under certain conditions on βN and V ,
the Eq. (2.1) is well posed, the process (Xt )t≥0 is well defined, and

Xt
Law−→

t→∞ PN ,

for all non-degenerate initial condition X0. See for instance [1,13,25] for the case of Beta-
Hermite case known as the Dyson Ornstein–Uhlenbeck process, and [6] for the Beta-Ginibre
case. We do not discuss these delicate aspects in this note. A convergence in Cesáro mean is
provided by the ergodic theorem for additive functionals,

1

t

∫ t

0
δXs ds

weak−→
t→∞ PN

almost surely or, for any test function f ∈ L1(PN ),

1

t

∫ t

0
f (Xs) ds −→

t→∞

∫
S

f dPN ,

almost surely. It is also possible to accelerate the convergence by adding a divergence free
term in the dynamics (2.1), see for instance [22,49] and references therein. This modification
keeps the same invariant distribution but produces a non-reversible dynamics.
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This method of simulation is referred to as an “unadjusted Langevin algorithm”, a ter-
minology which will be clarified later on. In practice, one cannot simulate the continuous
stochastic process (Xt )t≥0 solution to (2.1), and resorts to a numerical integration with a
finite time step �t . A typical choice is the Euler–Maruyama scheme [42,58], which reads

xk+1 = xk − ∇ HN (xk)αN �t +
√
2
αN

βN
�tGk, (2.2)

where (Gk) is a family of independent and identically distributed standardGaussian variables,
and xk is an approximation of Xk�t . Note that αN and �t play the same role here. However,
because of the singularity of HN , this sampling scheme leads to important biases in practice,
and (2.2) may even lack an invariant measure [56, Sect. 6]. One way to stabilize the dynamics
is to use a tamed version of (2.2), which typically takes the following form:

xk+1 = xk − ∇ HN (xk)αN �t

1 + |∇ HN (xk)|αN �t
+

√
2
αN

βN
�tGk . (2.3)

This strategy is used in [55] but, as noted by the authors, the number of time steps needed to
run a trajectory of fixed time T scales as �t ∼ N−2, which makes the study of large systems
difficult.

Another strategy is to add a selection step at each iteration. This is the idea of theMetropolis
Adjusted (overdamped) Langevin Algorithm (MALA) [63], which prevents irrelevant moves
with a Metropolis step. One can also view the MALA algorithm as a Metropolis algorithm
in which the proposal is produces by using a one step discretization of the Langevin dynam-
ics (2.1). Let us make this precise; more details can be found e.g. in [61,63].

Algorithm 2.1 (Metropolis Adjusted (overdamped) Langevin Algorithm—MALA) Let K
be the Gaussian transition kernel associated to the Markov chain of the Euler discretiza-
tion (2.2) of the dynamics (2.1). For each step k,

• draw a proposal x̃k+1 according to the kernel K (xk, ·),
• compute the probability

pk = 1 ∧ K (x̃k+1, xk)e−βN HN (x̃k+1)

K (xk, x̃k+1)e−βN HN (xk )
, (2.4)

• set

xk+1 =
{

x̃k+1 with probability pk;
xk with probability 1 − pk .

Note that the “reversed” kernel K (·, x) is Gaussian only if HN is a quadratic form. Note
also that if the proposal kernel K is symmetric in the sense that K (x, y) = K (y, x) for all
x, y then it disappears in (2.4), and it turns out that this is the case for the Hybrid Monte
Carlo algorithm described next (up to momentum reversal)!

A natural issue with these algorithms is the choice of �t : if it is too large, an important
fraction of the proposed moves will be rejected, hence poor convergence properties; con-
versely, if �t is too small, many steps will be accepted but the physical ellapsed time will
be small, hence a large variance for a fixed number of iterations. This algorithm actually has
a nice scaling of the optimal time step �t with the dimension of the system. Indeed, it can

be shown that it scales as �t ∼ N− 1
3 , at least for product measures (see [62] and references

therein). Although this algorithm is already efficient, we propose to use a kinetic version with
further advantages.
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700 D. Chafaï, G. Ferré

2.2 Hybrid Monte Carlo Algorithm

Hybrid Monte Carlo is built on Algorithm 2.1, but using a kinetic version of (2.1). For this, a
momentum variable is introduced so as to improve the exploration of the space. Namely, set
E = R

d N , and letUN : E → R be smooth and such that e−βN UN is Lebesgue integrable. Let
(Xt , Yt )t≥0 be the diffusion process on E × E solution to the stochastic differential equation

⎧⎪⎨
⎪⎩
dXt = αN ∇UN (Yt ) dt,

dYt = −αN ∇ HN (Xt ) dt − γN αN ∇UN (Yt ) dt +
√
2
γN αN

βN
dBt ,

(2.5)

where (Bt )t≥0 is a standard Brownian motion on E , and γN > 0 is an arbitrary parameter
which plays the role of a friction, and which may depend a priori on N and (Xt )t≥0, even if
we do not use this possibility here. In addition, HN and βN are as in (1.1), while UN plays
the role of a generalized kinetic energy [71]. This dynamics admits the following generator:

L f = −αN ∇ HN (x) · ∇y f + αN ∇UN (y) · ∇x f︸ ︷︷ ︸
L1

+ γN αN

βN
�y f − γN αN ∇UN (y) · ∇y f

︸ ︷︷ ︸
L2

(2.6)
where L1 is known as the Hamiltonian part while L2 is called the fluctuation-dissipation part.
The dynamics leaves invariant the product Boltzmann–Gibbs measure

RN = PN ⊗ QN where QN (dy) = e−βN UN (y)

Z ′
N

dy,

see for instance [71]. In other words

RN (dx, dy) = e−βN H̃N (x,y)

Z N Z ′
N

dx dy with H̃N (x, y) = HN (x) + UN (y). (2.7)

As for the overdamped dynamics, the ergodic theorem for additive functionals gives

1

t

∫ t

0
δ(Xs ,Ys ) ds

weak−→
t→∞ RN almost surely.

Remark 2.2 (Terms: Hamiltonian, Langevin, overdamped, underdamped, kinetic) The
dynamics (2.5) is called “Hamiltonian” when we turn off the noise by taking γN = 0.
On the other hand, when γN → ∞ and αN → 0 with αN γN = 1, we recover (2.1) from
(2.5) with Yt and UN instead of Xt and HN . Both (2.1) and (2.5) are known as Langevin
dynamics. To be more precise, (2.1) is generally called overdamped while (2.5) is referred
to as kinetic or underdamped.

When UN (y) = 1
2 |y|2 then Yt = dXt/dt , and in this case Xt and Yt can be interpreted

respectively as the position and the velocity of a system of N points in S at time t . In this
case we say that UN is the kinetic energy. For simplicity, we specialize in what follows to
this “physical” or “kinetic” case and refer to [71] for more possibilities.

As before, to simulate (Xt , Yt )t≥0, one can discretize (2.5) and sample from a trajectory.
This will provide a proposal for the HMC scheme as the Euler discretization (2.2) did for
Algorithm 2.1. A good way of doing this is a splitting procedure. First, one integrates the
Hamiltonian part i.e. the operator L1 in (2.6), which amounts to a standard Hamiltonian
dynamics, before integrating the fluctuation-dissipation part i.e. the operator L2 in (2.6). For
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Simulating Coulomb and Log-Gases with Hybrid Monte Carlo… 701

discretizing the Hamiltonian dynamics over a time step, a standard approach is the Verlet
integrator [31,50], whichwe describe now. For a time step�t > 0, this scheme reads, starting
from a state (xk, yk) at time k:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yk+ 1
2

= yk − ∇ HN (xk)αN
�t

2
,

xk+1 = xk + yk+ 1
2
αN �t,

ỹk+1 = yk+ 1
2

− ∇ HN (xk+1)αN
�t

2
.

This corresponds to updating the velocity over half a time step, then the positions over a time
step, and again the velocity over half a time-step. Given that this scheme only corresponds to
the Hamiltonian part, it remains to integrate the fluctuation-dissipation part, corresponding to
L2 in (2.6). For quadratic energies, it is a simple Ornstein–Uhlenbeck process whose variance
can be computed explicitly. Therefore, we add to the previous scheme the following velocity
update which comes from the Mehler formula1:

yk+1 = η ỹk+1 +
√
1 − η2

βN
Gk, η = e−γN αN �t ,

where Gk is a standard Gaussian random variable. Like the numerical scheme (2.2), because
of the singularity of the interactions, this integrator may not have an invariant measure [56],
or its invariant measure may be a poor approximation of RN depending on the time step [48].
Note that, here again, αN and �t play the same role.

Hybrid or Hamiltonian Monte Carlo (HMC) methods, built on the later integration,
appeared in theoretical physics in lattice quantum chromodynamics with [19], see also [64],
and are still actively studied in appliedmathematics, see for instance [4,8,17,23,34,50,71] and
references therein. The HMC algorithm can be thought of in a sense as a special Metropolis
Adjusted (underdamped) LangevinAlgorithm. Indeed, inspired by theMALAAlgorithm2.1,
a way to avoid the stability problem of the discretization of the kinetic Langevin dynam-
ics mentioned above is to add an acceptance-rejection step. A surprising advantage of this
approach is that the Verlet integration scheme is time reversible up to momenta reversal [50,
Sect. 2.1.3 and Eq. (2.11)], hence when computing the acceptance probability as in (2.4),
the transition kernel does not appear. Note that the Verlet algorithm has been widely used
for years by statistical physicists, and goes back to the historical works of Verlet [73] and
Levesque and Verlet [53,54]. Let us now describe the algorithm.

Algorithm 2.3 [HMC] Start from a configuration (x0, y0) and perform the following steps
for each time k ≥ 0:

(1) update the velocities with

ỹk = ηyk +
√
1 − η2

βN
Gk, η = e−γN αN �t ;

1 The Mehler formula states that the Ornstein–Uhlenbeck process (Zt )t≥0 in R
n solution of the stochastic

differential equation dZt =
√
2σ 2dBt − ρZtdt satisfies Law(Zt+s | Zs = z) = N (ze−ρt , 1−e−2ρt

ρ σ 2 In).
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Fig. 1 Study of the Gaussian unitary ensemble with N = 8 (top) and N = 50 (bottom). The solid line is
the plot of the limiting spectral distribution (1.4) while the dashed line is the plot of the mean empirical
distribution (1.3). The bars form the histogram of simulations obtained using our HMC algorithm. This
algorithm was run once with final-time T = 106 and time-step �t = 0.5. The histogram was produced by
looking at the last half of the trajectory and retaining the positions each 1000 time-steps, producing n values,
namely ≈ 8 × 103 and ≈ 5 × 104 respectively

(2) run one step of the Verlet scheme:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ỹk+ 1
2

= ỹk − ∇ HN (xk)αN
�t

2
;

x̃k+1 = xk + ỹk+ 1
2
αN �t;

ỹk+1 = ỹk+ 1
2

− ∇ HN (xk+1)αN
�t

2
;

(2.8)

(3) compute the probability ratio

pk = 1 ∧ exp

[
−βN

(
HN (x̃k+1) + ỹ2k+1

2
− HN (xk) − ỹ2k

2

)]
;

(4) set

(xk+1, yk+1) =
{

(x̃k+1, ỹk+1) with probability pk;
(xk,−ỹk) with probability 1 − pk .

As noted in the various references above, the Metropolis step acts as a corrector on the
energy conservation of the Hamiltonian step. In this, it helps avoiding irrelevant moves,
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Fig. 2 Evolution of the rejection rate in Algorithm 2.3 as �t goes to zero, for the Gaussian unitary ensemble
with N = 50, β = 2 and T = 105 (in log–log coordinate)

while enhancing the exploration capacities of the dynamics through the speed variable. A
more precise argument in favor of this algorithm is the scaling of the time step�t with respect
to the system size N . Indeed, as shown in [4] for product measures, the optimal scaling is as

�t ∼ N− 1
4 , which makes the algorithm appealing for large systems. Since the Hamiltonian

computational cost scales as N 2, we see that the cost of the algorithm for a fixed time T and

N = �[T /�t]� is in O(N
9
4 ), which has to be compared to the O(N 4) cost reached in [55].

Finally, the parameter γN can also be tuned in order to optimize the speed of convergence –
we leave this point here and stick to γN = 1.

The control of the error or rate of convergence for the HMC algorithm is the subject of
active research, see for instance [47] and [7,23] for some results under structural assumptions.

From a practical point of view, the algorithm can be tested in the following way. First,
when only the Hamiltonian part of the dynamics is integrated with the Verlet scheme (2.8), it
can be checked that the energy variation over one time step scales as�t3 as�t → 0. Then, if
the selection step is added, the rejection rate should also scale as �t3. When the momentum
resampling is added, this rejection rate scaling should not change. For completeness, we
illustrate some of these facts in Sect. 3.

3 Numerical Experiments on Remarkable Models

In this section, we start testing Algorithm 2.3 for the two cases described in Sect. 1.4. Since
the equilibrium measures are known for any N ≥ 2, we will be able to compare accurately
our results with the expected one. We will also consider models for which the empirical
spectral distribution and the equilibrium distribution are not known. We remind that when
S = R

d with d ≥ 1 we have the following formulas that hold in any dimension:
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Fig. 3 Study of the quartic confinement with N = 8 (top) and N = 50 (bottom). The solid line is the plot of
the limiting spectral distribution (1.4). The bars form the histogram of simulations obtained using our HMC
algorithm. This algorithm was run once with final-time T = 106 and time-step �t = 0.5. The histogram
was produced by looking at the last half of the trajectory and retaining the positions each 1000 time-steps,
producing n values namely ≈ 8 × 103 and ≈ 5 × 104 respectively. We do not have a formula for the mean
empirical distribution for this model. This gas describes the law of the eigenvalues of a random symmetric
tridiagonal matrix model but its entries are not independent, see [43, Prop. 2]
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Fig. 4 Study of the complex Ginibre ensemble with N = 8 (top) and N = 50 (bottom). The solid line is
the plot of the limiting spectral distribution (1.7) while the dashed line is the plot of the mean empirical
distribution (1.6), both as functions of the radius |z| and scaled by 2π (in order to obtain a radial density). The
bars form the histogram of simulations obtained using our HMC algorithm. This algorithm was run 40 times
with final-time T = 105 and time-step �t = 0.1. The histogram was produced by looking at the last halves of
the 40 trajectories and retaining the positions each 10000 time-steps, producing n values namely ≈ 16× 103

and ≈ 105 respectively
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Fig. 5 Evolution of the energy difference in Algorithm 2.3 as �t goes to zero, for the complex Ginibre
ensemble with N = 50, β = 2 and T = 103 (in log–log coordinate)

∇|x |2 = 2x, ∇ log
1

|x | = − x

|x |2 , ∇ 1

|x | = − x

|x |3 .

3.1 Case Study: 1D

We test the numerical method by looking at the mean empirical distribution in the case of
the Gaussian Unitary Ensemble (1.2) with β = 2, N = 8, for which the exact expression
of EμN under PN is provided by (1.3). The results in Fig. 1 show a very good agreement
between the exact result and the algorithm. For completeness, we study the rejection rate
of the algorithm as �t goes to zero, as mentioned at the end of Sect. 2.2. More precisely,
we compute over a trajectory the rate of rejected moves in the Step 4 of Algorithm 2.3. The
logarithmic plot in Fig. 2 shows a linear fit with a slope of about 3.1, which confirms the
expected scaling in �t3.

We also study the quartic confinement potential V (x) = x4/4, as in [55]. In this case,
the empirical spectral distribution is not known, but the equilibrium distribution has density
with respect to the Lebesgue measure given by

x ∈ R �→ (2a2 + x2)

√
4a2 − x2

2π
1x∈[−2a,2a], a = 3− 1

4 .

The results of the numerical simulations, see Fig. 3, show a good agreement with the equi-
librium measure when N is large. Note that a tridiagonal random matrix model is known but
it does not have independent entries, see [43, Prop. 2.1].
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Fig. 6 Study of the fluctuation of the largest particle in modulus for the β complex Ginibre ensemble with
N = 50, in the cases β ∈ {1, 2, 4}. The solid line is the plot of the fit with a translation-scale Gumbel
distribution. The Gumbel fluctuation is proved only in the case β = 2, see [15,60]. These simulations suggest
to conjecture that the Gumbel fluctuation is valid for any β > 0. The simulation matches pretty well the edge
support at

√
β/2 and suggests that the variance is not very sensitive to β
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Fig. 7 Study of the 3D Coulomb case (top) and 3D Log-gas (bottom) with Euclidean confinement and β = 2
and N = 50. Equilibriummeasure in solid line and histogram obtained with our HMC algorithm with N = 50
and same simulation parameters as for Fig. 4. In contrast with the GUE case and the Ginibre case, we do not
have a formula for the mean empirical distribution at fixed N for both cases, and for the Log-gas (bottom) the
equilibrium measure is not known
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3.2 Case Study: 2D

We next consider in Fig. 4 the mean empirical distribution in the case of the Complex Ginibre
Ensemble (1.5) with β = 2, N = 8. In this case, we also know a theoretical formula forEμN

under PN , given by (1.6). For completeness, we investigate the scaling of the relative energy
difference in the Step 3 of Algorithm 2.3 (by turning off the selection procedure of Step 4).
The logarithmic plot in Fig. 5 shows a slope of about 2.9, which confirms the expected scaling
in �t3 that corresponds to the error of energy conservation, over one time step, of the Verlet
integrator (2.8).

We explore next in Fig. 6 the Gumbel fluctuation at the edge, which is proved for β = 2
and conjectured for β �= 2, see [15,20,60] (note that in this case we have a formula for μ∗
but not for EμN under PN ). One could also explore the crystallization phenomenon, see [5]
and references therein.

3.3 Case Study: 3D

In Fig. 7, we finally turn to the Coulomb gas which corresponds to S = R
3, d = n = 3,

V = |·|2/β, W = 1/|·| and to the log-gas for which W = − log |·|. In the first case the
equilibrium measure μ∗ is uniform on the centered ball of Rd of radius (β(d − 2)/2)1/d ,
see for instance [14, Cor. 1.3], while in the second case the equilibrium measure is not know
yet, see however [16]. In both cases we do not have a formula for EμN under PN . One could
study the fluctuation at the edge, which is conjectured to be Gumbel, just like for the complex
Ginibre ensemble in 2D.
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on the theoretical and numerical sides of this work. We are also grateful to Thomas Leblé and Laure Dumaz
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Appendix A: Julia Code

Here is a program written in the Julia language2 illustrating our method. It allows to exploit
the multiple cores of modern processors and works in parallel on clusters. Beware that this
code is not fully optimized, for instance the energy and its gradient could be computed
simultaneously for better performance.

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
2 #−−−−−−−−−−−−− S imu l a t i ng coulomb gase s wi th HMC a lgo r i t hm −−−−−−−−−−−−−−−−−−−−#
3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
4
5 # Tes ted wi th J u l i a 1 . 0 . D. Chafa i + G. Fe r r e : h t t p s : / / a r x i v . org / abs /1806 .05985
6
7 using D i s t r i b u t e d # f o r @everywhere and nprocs ( )
8 @everywhere using P r i n t f # f o r @sp r in t f ( )
9 @everywhere using Linea rA lgeb ra # f o r norm ( )

10 @everywhere using De l im i t e dF i l e s # f o r Base . wr i t ed lm ( )
11
12 @everywhere beg in # f o r p a r a l l e l computing : j u l i a −p NumberOfAddi t iona lProcesses
13 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
14 # Cus tomiza t i on p a r t : pa rame te r s , conf inement , and i n t e r a c t i o n #
15 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
16
17 ## Pa rame t e r s . Note t h a t i n t h i s code U_N( y ) = | y | ^ 2 / 2 .
18
19 # F i n a l t ime and t ime s t e p
20 const T = 1e4
21 const d t = 0 .1
22 # Number of e i g e nv a l u e s

2 http://JuliaLang.org/
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23 const N = 8
24 # Dimension of t h e p h y s i c a l space
25 const dim = 1 # works f o r d imens ions 1 , 2 , 3
26 # Tempera ture and f r i c t i o n
27 const be t a = 2 .
28 # Riesz pa r ame t e r f o r Riesz i n t e r a c t i o n
29 const s = 1 .
30
31 ## Func t i on s
32
33 # Confinement p o t e n t i a l V and i t s g r a d i e n t
34 @inl ine func t ion conf inemen t ( x )
35 return do t ( x , x ) / ( 2 ∗ be t a ) # 1D Beta−Hermite
36 # r e t u r n do t ( x , x ) / b e t a # 2D Beta−Ginibre , 3D Beta−Coulomb
37 end
38 @inl ine func t ion con f i n emen t _g r ad i e n t ( x )
39 return x / b e t a # 1D Beta−Hermite
40 # r e t u r n 2∗x / b e t a # 2D Beta−Ginibre , 3D Beta−Coulomb
41 end
42
43 # I n t e r a c t i o n p o t e n t i a l W and i t s g r a d i e n t
44 @inl ine func t ion i n t e r a c t i o n ( x , y )
45 return −l og ( norm ( x−y ) ) # 1D Beta−H. , 2D Beta−Gin . , 2D/3D Beta log−gas .
46 # r e t u r n 1 / norm ( x−y ) # 3D Beta−Coulomb
47 # r e t u r n 1 / norm ( x )^ s # Riesz
48 end
49 @inl ine func t ion i n t e r a c t i o n _ g r a d i e n t ( x , y )
50 v = x−y
51 return −v / norm ( v )^2 # 1D Beta−H. , 2D Beta−Gin
52 # r e t u r n −v / norm ( v )^3 # 3D Beta−Coulomb
53 # r e t u r n −s∗x / norm ( x ) ^ ( s +2) # Riesz
54 end
55
56 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
57 #−−− Pa rame te r s computed from i n p u t s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
58 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
59
60 const a lphan = 1 .
61 const be t an = be t a ∗ N^2
62 const gamman = 1 . / a lphan
63 # Pa rame t e r s f o r d i s c r e t i s a t i o n of f l u c t u a t i o n−d i s s i p a t i o n p a r t L2
64 const e t an = exp(− gamman ∗ a lphan ∗ d t )
65 const sdn = s q r t ((1− e t an ^ 2 ) / be t an )
66 #−− I /O paramete r , w r i t e t h e c o n f i g u r a t i o n every n i t e r i o s t e p s
67 const n i t e r i o = 1000
68 # Number of i t e r a t i o n s and number of o u t p u t s
69 const n i t e r = I n t 64 ( round (T / d t ) )
70 const n s t e p s = In t 64 ( round ( n i t e r / n i t e r i o ) )
71
72 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
73 #−−−−−−−−−− Core p a r t − Be c a r e f u l and good luck ! −−−−−−−−−−−−−−−−−#
74 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
75
76 ## Func t i on s
77
78 # P o t e n t i a l energy H_N
79 @inl ine func t ion energy (X)
80 ene r = 0
81 @inbounds for i = 1 :N
82 @inbounds for j = i +1:N
83 ene r += i n t e r a c t i o n (X[ i ] ,X[ j ] ) /N
84 end
85 ene r += conf inemen t (X[ i ] )
86 end
87 return ene r /N
88 end # f u n c t i o n energy ( )
89
90 # K i n e t i c energy U_N
91 @inl ine func t ion k i n e t i c (Y)
92 return norm (Y)^2 / 2 .
93 end # f u n c t i o n k i n e t i c ( )
94
95 # Force a pp l i e d on p a r t i c l e a t X[ i ] from a l l o t h e r s a t p o s i t i o n s X[ j ] j != i
96 @inl ine func t ion compute_force ! (X, F ) # −Grad H_N
97 # Computat ion of i n t e r a c t i o n f o r c e s between each p a i r s
98 Fp a i r s = Array {Vector { F loa t64 }}( undef , N,N) # we use only N(N−1)/2 e n t r i e s
99 @inbounds for i = 1 :N

100 @inbounds for j = 1 : i−1
101 Fpa i r s [ i , j ] = −i n t e r a c t i o n _ g r a d i e n t (X[ i ] ,X[ j ] )
102 end
103 end
104 # Computat ion of t o t a l f o r c e on each p a r t i c l e
105 @inbounds for i = 1 :N
106 F [ i ] = z e r o s ( dim )
107 # I n t e r a c t i o n
108 @inbounds for j = 1 : i−1
109 F [ i ] += Fpa i r s [ i , j ]
110 end
111 @inbounds for j = i +1:N
112 F [ i ] −= Fpa i r s [ j , i ]
113 end
114 F [ i ] /= N
115 # Confinement
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116 F [ i ] −= con f i n emen t _g r ad i e n t (X[ i ] )
117 F [ i ] /= N
118 end
119 end # f u n c t i o n compute_force ! ( )
120
121 # compute t h e new fo r c e and speed
122 @inl ine func t ion v e r l e t _ i n t e g r a t o r ! ( Fnew , Fcur , Xnew , Ynew , X, Y)
123 @inbounds for i =1:N
124 Ynew[ i ] = Y[ i ] + Fcur [ i ] ∗ a lphan ∗ d t / 2 .
125 Xnew[ i ] = X[ i ] + Ynew[ i ] ∗ a lphan ∗ d t
126 end
127 compute_force ! (Xnew , Fnew )
128 @inbounds for i =1:N
129 Ynew[ i ] += Fnew [ i ] ∗ a lphan ∗ d t / 2
130 end
131 end # f u n c t i o n v e r l e t _ i n t e g r a t o r ! ( )
132
133 # upda te p o s i t i o n s and speed
134 func t ion upda te ! (X, Y, Fcur , Xnew , Ynew , Fnew , Epot , a c c e p t r a t e )
135 #−−− Speed re samp l ing
136 @inbounds for i = 1 :N
137 Y[ i ] = e t an ∗ Y[ i ] + sdn ∗ randn ( dim )
138 end
139 Ekin = k i n e t i c (Y)
140 Energy = Epot + Ekin
141 #−−− Ve r l e t i n t e g r a t o r . P o s i t i o n−speed p ropo s a l w i l l be i n (Xnew ,Ynew ) .
142 v e r l e t _ i n t e g r a t o r ! ( Fnew , Fcur , Xnew , Ynew , X, Y)
143 # New energy
144 Epotnew = energy (Xnew)
145 Ekinnew = k i n e t i c (Ynew)
146 NewEnergy = Epotnew + Ekinnew
147 # Me t r opo l i s r a t i o
148 r = be t a ∗ (− NewEnergy + Energy )
149 # Se l e c t i o n−r e j e c t i o n s t e p
150 i f l og ( rand ( ) ) <= r
151 # a c c e p t a t i o n
152 @inbounds @simd for i = 1 :N
153 X[ i ] = Xnew[ i ]
154 Y[ i ] = Ynew[ i ]
155 Fcur [ i ] = Fnew [ i ]
156 end
157 a c c e p t r a t e [ 1 ] += 1
158 Epot = Epotnew
159 e l s e # r e j e c t i o n : speed i n v e r s i o n
160 @inbounds @simd for i = 1 :N
161 Y[ i ] = −Y[ i ]
162 end
163 end
164 return Epot
165 end # f u n c t i o n upda te ( )
166
167 # Runs a t r a j e c t o r y of HMC a lgo r i t hm and compute ave r age s
168 func t ion HMC( run i d )
169 #−−− For ou t pu t : f o r p o s i t i o n s / v e l o c i t i e s every n i t e r i o s t e p s
170 Tra j e c t o ryX = Array { F loa t64 }( undef , n s t eps , N∗dim )
171 Tra j e c t o ryY = Array { F loa t64 }( undef , n s t eps , N∗dim )
172 #−−− For ou t pu t : Accep t a t i on r a t e f o r t h e HMC s e l e c t i o n s t e p
173 a c c e p t r a t e = z e r o s ( 1 )
174 # Local v a r i a b l e s
175 #−−− c o n f i g u r a t i o n and speed
176 X = Vector {Vector { F loa t64 }}( undef , N)
177 Y = Vector {Vector { F loa t64 }}( undef , N)
178 #−−− i n i t i a l f o r c e s
179 Fcur = Vector {Vector { F loa t64 }}( undef , N)
180 #−−− Same q u a n t i t i e s f o r t h e p r opo s a l
181 Ynew = Vector {Vector { F loa t64 }}( undef , N)
182 Xnew = Vector {Vector { F loa t64 }}( undef , N)
183 Fnew = Vector {Vector { F loa t64 }}( undef , N)
184 # random i n i t i a l c o n f i g u r a t i o n wi th uni form law on a squa r e
185 for i = 1 :N
186 X[ i ] = −1 .+ 2 ∗ rand ( dim )
187 end
188 i f dim == 1
189 X = s o r t (X)
190 end
191 # i n i t i a l ze ro speed and f o r c e s
192 for i = 1 :N
193 Y[ i ] = z e r o s ( dim )
194 Fcur [ i ] = z e r o s ( dim )
195 Xnew[ i ] = X[ i ]
196 Ynew[ i ] = Y[ i ]
197 Fnew [ i ] = Fcur [ i ]
198 end
199 #−−− i n i t i a l i z a t i o n of d i f f e r e n t q u a n t i t i e s
200 Ekin = k i n e t i c (Y)
201 Epot = energy (X)
202 Energy = Epot + Ekin
203 #−−− Loop over t ime
204 @fastmath @inbounds for n = 1 : n i t e r
205 #−−− save c o n f i g u r a t i o n every n i t e r i o s t e p s
206 i f n % n i t e r i o == 0
207 for i = 1 :N
208 for k = 1 : dim
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209 Tra j e c t o ryX [ I n t 64 ( n / n i t e r i o ) , ( i−1) ∗ dim + k ] = X[ i ] [ k ]
210 Tra j e c t o ryY [ I n t 64 ( n / n i t e r i o ) , ( i−1) ∗ dim + k ] = Y[ i ] [ k ]
211 end
212 end
213 end
214 #−−− upda te p o s i t i o n s and speeds
215 Epot = upda te ! ( X, Y, Fcur , Xnew , Ynew , Fnew , Epot , a c c e p t r a t e )
216
217 end
218 ## Post−p r o c e s s i n g
219 p r i n t ( " Pe r c en t age of r e j e c t e d s t e p s : " , 1 .− a c c e p t r a t e / n i t e r , " \ n " )
220 # Wri te t h e da t a i n t e x t f i l e s − Whole t r a j e c t o r y sample
221 wr i t ed lm ( @spr in t f ( " p o s i t i o n s−%i " , r un i d ) , Tra jec to ryX , " " )
222 wr i t ed lm ( @spr in t f ( " v e l o c i t i e s−%i " , r un i d ) , Tra jec to ryY , " " )
223 end # f u n c t i o n HMC( )
224 #
225 end # @everywhere
226
227 ### Main p a r t − runs only on main J u l i a p r o c e s s .
228 Nprocs = nprocs ( )
229 p r i n t ( "Number of p r o c e s s e s i s " , Nprocs , " . \ n " )
230 p r i n t ( "Time of t h e s imu l a t i o n i s " , T , " . \ n " )
231 p r i n t ( "Number of t ime s t e p s i s " , T / d t , " . \ n " )
232 ## Launching compu ta t i ons on Nprocs p a r a l l e l p r o c e s s e s .
233 ou t pu t = @time pmap (HMC, 1 : Nprocs )
234 ### EOF
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