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Abstract
Westudy a class of systemswhose dynamics are described by generalizedLangevin equations
with state-dependent coefficients.We find that in the limit, in which all the characteristic time
scales vanish at the same rate, the position variable of the system converges to a homogenized
process, described by an equation containing additional drift terms induced by the noise. The
convergence results are obtained using the main result in Hottovy et al. (CommunMath Phys
336(3):1259–1283, 2015), whose version is proven here under a weaker spectral assumption
on the damping matrix. We apply our results to study thermophoresis of a Brownian particle
in a non-equilibrium heat bath.

Keywords Generalized Langevin equation · Small mass limit · Multiscale analysis ·
Noise-induced drift · Thermophoresis

1 Introduction

From physical sciences to social sciences, many phenomena are modeled by noisy dynamical
systems. In many such systems, several widely separated time scales are present. The system
obtained in the homogenization limit, in which the fast time scales go to zero, is simpler than
the original one, while often retaining the essential features of its dynamics [1–4]. On the
other hand, the different fast time scales may compete and this competition is reflected in the
homogenized equations.
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Of particular interest is the model of a Brownian particle interacting with the environment
[5]. The usualmodel for such systemneglects thememory effects, representing the interaction
of the particle with the environment as a sum of an instantaneous damping force and a white
noise. Although such an idealized model generally gives a good approximate description of
the dynamics of the particle, there are situations where the memory effects play an important
role, for instance when the particle is subject to a hydrodynamic interaction [6], or when the
particle is an atom embedded in a condensed-matter heat bath [7]. In addition, the stochastic
forcing introduced by the environment is often more accurately modeled by a colored noise
than by white noise.

In this paper, we study a class of generalized Langevin equations (GLEs), with state-
dependent drift and diffusion coefficients, driven by a colored noise. They provide a realistic
description of the dynamics of a classical Brownian particle in an inhomogeneous environ-
ment; their solutions are not Markov processes. We are interested in the limiting behavior of
the particle when the characteristic time scales become small and in how competition of the
time scales, as well as inhomogeneity of the environment, impact its limiting dynamics. The
main mathematical result of this paper is Theorem 2, in which we derive the homogenization
limit for a general class of non-Markovian systems. Special cases are studied in some details
to obtain more explicit results. Their physical relevance is illustrated by an application to
thermophoresis models.

The paper is organized as follows. In Sect. 2, we introduce and discuss a class of GLEs, as
well as its two sub-classes, to be studied in this paper. In Sect. 3, we revisit the Smoluchowski–
Kramers limit for a class of SDEs with state-dependent drift and diffusion coefficients, under
a weaker assumption on the spectrum of the dampingmatrix than that used in earlier work [8].
Using this result of Sect. 3, we study homogenization for the GLEs in Sect. 4. We specialize
the study to two sub-classes ofmodels in Sect. 5. In Sect. 6,we apply the results obtained in the
previous sections to study thermophoresis of a Brownian particle in a non-equilibrium heat
bath.We end the paper by giving the conclusions and final remarks in Sect. 7. The appendices
provide some technical results used in the main paper, as well as physical motivation for the
form of the GLEs studied here. In Appendix Awe provide a variant of a (heuristic) derivation
of the equations studied in this paper from Hamiltonian model of a particle interacting with
a system of harmonic oscillators. Appendix B contains a sketch of the proof of Theorem 1.

2 Generalized Langevin Equations (GLEs)

2.1 GLEs as Non-MarkovianModels

Weconsider a class of non-Markovian Langevin equations, with state-dependent coefficients,
that describe the dynamics of a particle moving in a force field and interacting with the
environment. Let xt ∈ R

d , t ≥ 0, be the position of the particle. The evolution of position,
xt , is given by the solution to the following stochastic integro-differential equation (SIDE):

m ẍt = F(xt ) − g(xt )
∫ t

0
κ(t − s)h(xs)ẋsds + σ (xt )ξ t , (1)

with the initial conditions (here the initial time is chosen to be t = 0):

x0 = x, ẋ0 = v. (2)
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658 S. H. Lim, J. Wehr

The initial conditions x and v are random variables independent of the process {ξ t : t ≥ 0}.
Our motivation to study the SIDE (1) is that study of microscopic dynamics leads naturally
to equations of this form (see Appendix A).

Here and throughout the paper, overdot denotes derivative with respect to time t , the super-
script ∗ denotes conjugate transposition of matrices or vectors and E denotes expectation. In
the SIDE (1),m > 0 is the mass of the particle, the matrix-valued functions g : Rd → R

d×q ,
h : Rd → R

q×d and σ : Rr → R
d×r are the state-dependent coefficients of the equation,

and F : R
d → R

d is a force field acting on the particle. Here d , q and r are, possibly
distinct, positive integers. The second term on the right hand side of (1) represents the drag
experienced by the particle and the last term models the noise.

The matrix-valued function κ : R → R
q×q is a memory function which is Bohl, i.e.

the matrix elements of κ(t) are finite linear combinations of the functions of the form
tkeαt cos(ωt) and tkeαt sin(ωt), where k is an integer and α andω are real numbers. For prop-
erties of Bohl functions, we refer to Chapter 2 of [9]. The noise process ξ t is an r -dimensional
mean zero stationary real-valued Gaussian vector process having a Bohl covariance function,
R(t) := Eξ tξ

∗
0 = R∗(−t), and, therefore, its spectral density, S(ω) := ∫∞

−∞ R(t)e−iωt dt ,
is a rational function [10].

The SIDE (1) is a non-Markovian Langevin equation, since its solution at time t depends
on the entire past. Two of its terms are different than those in the usual Langevin equations.
One of them is the drag term, which here involves an integral over the particle’s past velocities
with a memory kernel κ(t − s). It describes the state-dependent dissipation which comprises
the back-action effects of the environment up to current time. The other term, involving a
Gaussian colored noise ξ t , is a multiplicative noise term, also arising from interaction of
the particle with the environment. Therefore, (1) is a generalized Langevin equation (GLE),
which in its most basic form was first introduced by Mori in [11] and subsequently used to
model many systems in statistical physics [12–14].

As remarked by van Kampen in [15], “Non-Markov is the rule, Markov is the exception”.
Therefore, it is not surprising that non-Markovian equations (including those of form (1))
find numerous applications and thus have been studied widely in the mathematical, physical
and engineering literature. See, for instance [16,17] for surveys of non-Markovian processes,
[18–20] for physical applications and [21] for asymptotic analysis.

Note that the Gaussian process ξ t which drives the SIDE (1) is not assumed to be Markov.
The assumptions we made on its covariance will allow us to present it as a projection of a
Markov process in a (typically higher-dimensional) space. This approach, which originated
in stochastic control theory [22], is called stochastic realization. We describe it in detail
below.

Let Γ 1 ∈ R
d1×d1 , M1 ∈ R

d1×d1 , C1 ∈ R
q×d1 , Σ1 ∈ R

d1×q1 , Γ 2 ∈ R
d2×d2 , M2 ∈

R
d2×d2 , C2 ∈ R

r×d2 , Σ2 ∈ R
d2×q2 be constant matrices, where d1, d2, q1, q2, q and r are

positive integers. In this paper, we study the class of SIDE (1), with the memory function
defined in terms of the triple (Γ 1, M1,C1) of matrices as follows:

κ(t) = C1e
−Γ1|t |M1C∗

1. (3)

The noise process is the mean zero, stationary Gaussian vector process, whose covariance
will be expressed in terms of the triple (Γ 2, M2,C2). More precisely, we define it as:

ξ t = C2β t , (4)

where β t is the solution to the Itô SDE:

dβ t = −Γ 2β t dt + Σ2dW
(q2)
t , (5)
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with the initial condition, β0, normally distributed with zero mean and covariance M2. Here,
W (q2)

t denotes a q2-dimensional Wiener process and is independent of β0. Throughout the
paper the dimension of the Wiener process will be specified by the superscript.

For i = 1, 2, the matrix Γ i is positive stable, i.e. all its eigenvalues have positive real
parts and M i = M∗

i > 0 satisfies the following Lyapunov equation:

Γ iM i + M iΓ
∗
i = Σ iΣ

∗
i . (6)

It follows from positive stability of Γ i that this equation indeed has a unique solution [23].
The covariance matrix, R(t) ∈ R

r×r , of the noise process is therefore expressed in terms of
the matrices (Γ 2, M2,C2) as follows:

R(t) = C2e
−Γ2|t |M2C∗

2, (7)

and therefore the triple (Γ 2, M2,C2) completely specifies the probability distribution of ξ t .
It is worth mentioning that the triples that specify the memory function in (3) and the noise
process in (4) are only unique up to the following transformations:

(Γ ′
i = T iΓ iT

−1
i , M ′

i = T iM iT∗
i ,C

′
i = C iT

−1
i ), (8)

where i = 1, 2 and the T i are invertible matrices of appropriate dimensions.
The triple (Γ 2, M2,C2) above is called a (weak) stochastic realization of the covariance

matrix R(t) in the well established theory of stochastic realization, which is concerned with
solving the inverse problem of stationary covariance generation (see [24,25]). Any zero
mean stationary Gaussian process, ξ ′

t , having a Bohl covariance function, can be realized as
a projection of a Gaussian Markov process in the above way. Let us remark that Gaussian
processes with Bohl covariance functions are precisely those with rational spectral density
[10].

Our approach allows us to consider themost general Gaussian noises that can be realized in
a finite-dimensional state space in the above way (i.e. as a linear transformation of a Gaussian
Markov process). In fact, the condition on the covariance function to have entries in the Bohl
class is necessary and sufficient for solvability of the problem of stochastic realization of
stationary Gaussian processes. We refer to the propositions and theorems on page 303-308
of [10] for a brief exposition of stochastic realization problems.

Remark 1 Physically, the choice of the matrices Γ 2, M2,C2 specifies the characteristic time
scales (eigenvalues of Γ −1

2 ) present in the environment, introduces the initial state of a
stationary Markovian Gaussian noise and selects the parts of the prepared Markovian noise
that are (partially) observed, respectively. In other words, we have assumed that the noise in
the SIDE (1) is realized or “experimentally prepared” by the above triple of matrices.

For our homogenization study of Eq. (1) we need the effective damping constant,

K 1 :=
∫ ∞

0
κ(t)dt = C1Γ

−1
1 M1C∗

1 ∈ R
q×q , (9)

and the effective diffusion constant,

K 2 :=
∫ ∞

0
R(t)dt = C2Γ

−1
2 M2C∗

2 ∈ R
r×r , (10)

to be invertible (see Sect. 2.2). This is equivalent to the matrices C i having full rank. Homog-
enization for a class of systems with vanishing effective damping and/or diffusion constant
[26] will be explored in our future work.
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With the above definitions of memory kernel and noise process, the SIDE (1) becomes:

m ẍt = F(xt ) − g(xt )
∫ t

0
C1e

−Γ 1(t−s)M1C∗
1h(xs)ẋsds + σ (xt )C2β t , (11)

where β t is the solution to the SDE (5). To illustrate the results of the general study in
important special cases (which will also be used later in applications), we consider two
representative classes of SIDE (1). The driving Gaussian colored noise is Markovian in the
first class and non-Markovian in the second. We set d = d1 = d2 = q1 = q2 = q = r in the
following examples.

(i) Example of a SIDE driven by a Markovian colored noise. The memory kernel is given
by an exponential function, i.e.

κ(t − s) = κ1(t − s) := Ae−A|t−s|, (12)

where A ∈ R
d×d is a constant diagonal matrix with positive eigenvalues. The driving

noise is theOrnstein–Uhlenbeck (OU) process, ξ t = ηt ∈ R
d , i.e. amean zero stationary

Gaussian process which is the solution to the SDE:

dηt = −Aηt dt + AdW (d)
t . (13)

In order for the process ηt to be stationary, the initial condition has to be distributed
according to the (unique) stationarymeasure of theMarkov process defined by the above
equation, i.e. η0 = η is normally distributed with zero mean and covariance A/2. The
mean and the covariance of ηt are given by:

E[ηt ] = 0, E[ηtη∗
s ] = 1

2
κ1(t − s), s, t ≥ 0. (14)

The resulting SIDE reads:

m ẍt = F(xt ) − g(xt )
∫ t

0
κ1(t − s)h(xs)ẋsds + σ (xt )ηt . (15)

Let us note that Ornstein–Uhlenbeck processes are the only stationary, ergodic, Gaus-
sian, Markov processes with continuous covariance functions [27]. When all diagonal
entries of A go to infinity, the OU process approaches the white noise. For details on
OU processes, see for instance [27] and Sect. 2 of [28].

(ii) Example of a SIDE driven by a non-Markovian colored noise. The memory kernel
is given by an oscillatory function whose amplitude is exponentially decaying, i.e.
κ(t − s) := κ2(t − s), a diagonal matrix with the diagonal entries:

(κ2)i i (t − s) :=

⎧⎪⎪⎨
⎪⎪⎩

1
τi i
e
−ω2

i i
|t−s|
2τi i

[
cos

(
ω0
i i

τi i
(t − s)

)
+ ω1

i i
2 sin

(
ω0
i i

τi i
|t − s|

)]
, if |ωi i | < 2

1
τi i
e
−ω2

i i
|t−s|
2τi i

[
cosh

(
ω̃0
i i

τi i
(t − s)

)
+ ω̃1

i i
2 sinh

(
ω̃0
i i

τi i
|t − s|

)]
, if |ωi i | > 2,

(16)
where for i = 1, . . . , d , τi i is a positive constant, ωi i is a real constant, ω0

i i :=
ωi i

√
1 − ω2

i i/4, ω̃0
i i := ωi i

√
ω2
i i/4 − 1, ω1

i i := ωi i/

√
1 − ω2

i i/4, and ω̃1
i i :=

ωi i/

√
ω2
i i/4 − 1.

Let τ be constant diagonal matrix with the positive eigenvalues (τ j j )
d
j=1,Ω be constant

diagonalmatrixwith the real eigenvalues (ω j j )
d
j=1,Ω0 be constantd×d diagonalmatrix
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with the eigenvaluesω j j

√
1 − ω2

j j/4 (if |ω j j | < 2) and iω j j

√
ω2

j j/4 − 1 (if |ω j j | > 2),

and Ω1 be constant d × d diagonal matrix with the eigenvalues ω j j/
√
1 − ω2

j j/4 (if

|ω j j | < 2) and −iω j j/
√

ω2
j j/4 − 1 (if |ω j j | > 2), where i is the imaginary unit.

The driving noise is given by the harmonic noise process, ξ t = ht ∈ R
d , i.e. a mean

zero stationary Gaussian process which is the solution to the SDE system:

τdht = ut dt, (17)

τdut = −Ω2ut dt − Ω2ht dt + Ω2dW (d)
t , (18)

with the initial conditions, h0 and u0, distributed according to the (unique) stationary
measure of the above SDE system. The mean and the covariance of ht are given by:

E[ht ] = 0, E[hth∗
s ] = 1

2
κ2(t − s), s, t ≥ 0. (19)

Note that ht is not a Markov process (but the process (ht , ut ) is).
The resulting SIDE reads:

m ẍt = F(xt ) − g(xt )
∫ t

0
κ2(t − s)h(xs)ẋsds + σ (xt )ht . (20)

The harmonic noise is an approximation of the white noise, smoother than the Ornstein–
Uhlenbeck process. It can be shown that in the limit ωi i → ∞ (for all i) the process
ht converges to the Ornstein–Uhlenbeck process whose i th component process has
correlation time τi i , whereas in the limit τi i → 0 (for all i) the process ht converges
to the white noise. For detailed properties of harmonic noise process, see for instance
[29] or the Appendix in [30]. We remark that the harmonic noise is one of the simplest
examples of a non-Markovian process and its use as the driving noise in the SIDE (1) is
a natural choice that models the environment as a bath of damped harmonic oscillators
[31].

Remark 2 Note that in the SIDEs for the above two sub-classes, the dimension of the driving
Wiener process, W (d)

t , is the same as that of the colored noise processes ηt and ht , as
well as the processes, xt and vt . One could as well consider realizing the noise processes
using a driving Wiener process of different dimension. Our choice of working with the same
dimensions is for the sake of convenience as it will help to simplify the exposition.

Remark 3 Without loss of generality (due to (8)), we have taken A and Ω to be diagonal.

Remark 4 In cases of particular interest in statistical physics, the triples (Γ i , M i ,C i ) coin-
cide, up to the transformations in (8) (for i = 1, 2), h = g∗ and g is proportional to σ ,
with the proportionality factor equals kBT , where kB denotes the Boltzmann constant and
T > 0 is temperature of the environment (see Appendix A). In this case, we have d1 = d2
and q = r . In particular, for the two sub-classes above we have

E[η0t (η0s )∗] = 1

2
κ1(t − s) (21)

for the first sub-class and

E[h0t (h0s )∗] = 1

2
κ2(t − s) (22)
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662 S. H. Lim, J. Wehr

for the second sub-class. In such cases, the SIDEs describe a particle interacting with an
equilibrium heat bath at a temperature T , whose dynamics satisfy the fluctuation–dissipation
relation [13,32].

2.2 Homogenization of SIDEs: Discussion and Statement of the Problem

There are three characteristic time scales defining the non-Markovian dynamics described
by the SIDE (1):

(i) the inertial time scale, λm , proportional to m, whose physical significance is the relax-
ation time of the particle velocity process vt := ẋt . The limit λm → 0 is equivalent to
the limit m → 0;

(ii) the memory time scale, λκ , defined as the inverse rate of exponential decay of the
memory kernel κ(t − s);

(iii) the noise correlation time scale, λξ .

For the purpose of general multiscale analysis, we set m = m0ε
μ, λκ = τκεθ and

λξ = τξ ε
ν , where ε > 0 is a parameter which will be taken to zero, m0, τκ , τξ are (fixed)

proportionality constants, andμ, θ, ν are positive constants (exponents), specifying the orders
at which the time scales λm, λκ , λξ vanish respectively. We consider a family of SIDEs,
parametrized by ε, with the inertial time scale λm proportional to m0ε

μ, memory time scale
λκ = τκεθ and noise correlation time scale λξ = τξ ε

ν , to be defined in the following.
We replace m with m0ε

μ, Γ 1 with Γ 1/(τκεθ ), M1 with M1/(τκεθ ), and xt with xε
t in

(11). Also, we substitute Γ 2 with Γ 2/(τξ ε
ν), Σ2 with Σ2/(τξ ε

ν), and β t with βε
t in (5).

The SIDE (11) then becomes:

m0ε
μ ẍε

t = F(xε
t ) − g(xε

t )

τκεθ

∫ t

0
C1e

− Γ 1
τκ εθ

(t−s)
M1C∗

1h(xε
s )ẋ

ε
s ds + σ (xε

t )C2β
ε
t , (23)

with the initial conditions, xε
0 = x and vε

0 = v, where βε
t is the Ornstein-Uhlenbeck process,

with correlation time τξ ε
ν , satisfying the SDE:

dβε
t = − Γ 2

τξ εν
βε
t dt + Σ2

τξ εν
dW (q2)

t , (24)

with the initial condition, βε
0, normally distributed with zero mean and covariance of

M2/(τξ ε
ν).

We will also perform similar analysis on the two sub-classes of SIDE, in which case:

(i) the SIDE (15) becomes (withm := m0ε
μ, A in the formula for κ1 replaced by A/(τκεθ ),

A in (13) replaced by A/(τηε
ν), xt replaced by xε

t and ηt replaced by ηε
t ):

m0ε
μ ẍε

t = F(xε
t ) − g(xε

t )

τκεθ

∫ t

0
Ae

− A
τκ εθ

(t−s)
h(xε

s )ẋ
ε
s ds + σ (xε

t )η
ε
t , (25)

where ηε
t is the Ornstein–Uhlenbeck process with the correlation time τηε

ν , i.e. it is a
process satisfying the SDE:

dηε
t = − A

τηεν
ηε
t dt + A

τηεν
dW (d)

t . (26)

(ii) the SIDE (20) becomes (with m := m0ε
μ, τi i := τκεθ in the formula for (κ2)i i in (16),

xt replaced by xε
t , ht , ut replaced by hε

t , u
ε
t respectively and τ := τhε

ν I in (17), (18)):
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m0ε
μ ẍε

t = F(xε
t ) − g(xε

t )

τκεθ

∫ t

0
e
−Ω2 (t−s)

2τκ εθ

[
cos

(
Ω0

τκεθ
(t − s)

)

+Ω1

2
sin

(
Ω0

τκεθ
(t − s)

)]
h(xε

s )ẋ
ε
s ds + σ (xε

t )h
ε
t , (27)

where hε
t is the harmonic noise process with the correlation time τhε

ν , i.e. it is a process
satisfying the SDE system:

dhε
t = 1

τhεν
uε
t dt, (28)

duε
t = − Ω2

τhεν
uε
t dt − Ω2

τhεν
hε
t dt + Ω2

τhεν
dW (d)

t . (29)

Both SIDEs have the initial conditions xε
0 = x, ẋε

0 = v. The initial conditions ηε
0

(respectively, hε
0 and u

ε
0) are distributed according to the stationary measure of the SDE

that the process ηε
t (respectively, h

ε
t and uε

t ) satisfies.

In this paper we set μ = θ = ν, which is the case when all the characteristic time scales
are of comparable magnitude in the limit as ε → 0. Our main goal is to derive a limiting
equation for the (slow) xε-component of the process solving Eqs. (23), (24), including the
special cases (25), (26) and (27)–(29), in the limit as ε → 0, in a strong pathwise sense.

We explain the motivation behind the above rescalings. The rescaling of the memory
kernels κ(t − s), κ1(t − s), κ2(t − s) is such that in the limit ε → 0 the rescaled memory
kernels converge to K 1δ(t) formally, where δ(t) is the Dirac-delta function and K 1 is the
effective damping constant defined in (9). On the other hand, the noise processes ξ ε

t = C2β
ε
t ,

ηε
t and hε

t converge to white noise processes in the limit ε → 0.

3 Smoluchowski–Kramers Limit of SDE’s Revisited

Let (xmt , vmt ) ∈ R
n × R

n , where t ∈ [0, T ], be a family of solutions (parametrized by a
positive constant m) to the following SDEs:

dxmt = vmt dt, (30)

mdvmt = F(xmt )dt − γ (xmt )vmt dt + σ (xmt )dW (k)
t . (31)

In the SDEs above, m > 0 is the mass of the particle, F : Rn → R
n , γ : Rn → R

n×n ,
σ : R

n → R
n×k , and W (k) is a k-dimensional Wiener process on a filtered probability

space (Ω,F,Ft ,P) satisfying the usual conditions [33]. The initial conditions are given by
xm0 = x, vm0 = vm . The above SDE system models diffusive phenomena in cases where the
damping coefficient γ and diffusion coefficient σ are state-dependent.

The Smoluchowski–Kramers limit (or the small mass limit) of the system (30), (31) has
been studied in [8,34–37]. The main result in [37] says that, under certain assumptions,
the xm-component of the solution to (30), (31) converges (in a strong pathwise sense), as
m → 0, to the solution of a homogenized SDE that contains in particular the so-called noise-
induced drift, not present in the pre-limit SDEs (see Theorem 1 for a precise statement). The
presence of such noise-induced drift in the homogenized equation is a consequence of the
state-dependence of the damping coefficient (and therefore also the diffusion coefficient if
the system satisfies a fluctuation–dissipation relation). For an overview of the noise-induced
drift phenomena, we refer to the review article [38].
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664 S. H. Lim, J. Wehr

In all the works mentioned previously, the spectral assumption made on the matrix γ

was that the symmetrized damping matrix 1
2 (γ + γ ∗) is uniformly positive definite (i.e.

its smallest eigevalue is positive uniformly in x). The same results can be obtained under
a weaker assumption that matrix γ is uniformly positive stable, i.e. all real parts of the
eigenvalues of γ are positive uniformly in x [39].

Notation Here and in the following, we use Einstein summation convention on repeated
indices. The Euclidean norm of a vectorw is denoted by |w| and the (induced operator) norm
of a matrix A by ‖A‖. For an Rn2×n3 -valued function f ( y) := ([ f ] jk( y)) j=1,...,n2;k=1,...,n3 ,
y := ([y]1, . . . , [y]n1) ∈ R

n1 , we denote by ( f ) y( y) the n1n2 × n3 matrix:

( f ) y( y) = (∇ y[ f ] jk( y)) j=1,...,n2;k=1,...,n3 , (32)

where ∇ y[ f ] jk( y) denotes the gradient vector (
∂[ f ] jk ( y)

∂[y]1 , . . . ,
∂[ f ] jk ( y)

∂[y]n1 ) ∈ R
n1 for every

j, k. The symbol E denotes expectation with respect to P.
We make the following assumptions.

Assumption 1 For every x ∈ R
n, the functions F(x) and σ (x) are continuous, bounded

and Lipschitz in x, whereas the functions γ (x) and (γ )x(x) are continuously differentiable,
bounded and Lipschitz in x. Moreover, (γ )xx(x) is bounded for every x ∈ R

n.

Assumption 2 The matrix γ is uniformly positive stable, i.e. all real parts of the eigenvalues
of γ (x) are bounded below by some constant 2κ > 0, uniformly in x ∈ R

n.

Assumption 3 The initial condition xm0 = x0 is a random variable independent of m and
has finite moments of all orders, i.e. E|x|p < ∞ for all p > 0. The initial condition vm0
is a random variable that possibly depends on m and we assume that for every p > 0,
E|mvm |p = O(mα) as m → 0, for some α ≥ p/2.

Assumption 4 The global solutions, defined on [0, T ], to the pre-limit SDEs (30), (31) and
to the limiting SDE (33) a.s. exist and are unique for all m > 0 (i.e. there are no explosions).

We now state the result.

Theorem 1 Suppose that the SDE system (30), (31) satisfies Assumption 1–4. Let (xmt , vmt ) ∈
R
n × R

n be its solution, with the initial condition (x, vm). Let X t ∈ R
n be the solution to

the following Itô SDE with initial position X0 = x:

dX t = [γ −1(X t )F(X t ) + S(X t )]dt + γ −1(X t )σ (X t )dW
(k)
t , (33)

where S(X t ) is the noise-induced drift whose i th component is given by

Si (X) = ∂

∂Xl
[(γ −1)i j (X)]J jl(X), i, j, l = 1, . . . , n, (34)

and J is the unique matrix solving the Lyapunov equation

Jγ ∗ + γ J = σσ ∗. (35)

Then the process xmt converges, as m → 0, to the solution X t , of the Itô SDE (33), in the
following sense: for all finite T > 0,

sup
t∈[0,T ]

|xmt − X t | → 0 (36)

in probability, in the limit as m → 0.
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We end this section with a few remarks concerning the statements in Theorem 1.

Remark 5 (i) Because of the relaxed spectral assumption on γ , a new idea has to be used to
prove decay estimates for solutions of the velocity equation. Once this is done, Theorem 1
can be proven using the technique of [37] (note that Assumption 1 is essentially the same
as the assumptions in Appendix A of [37], specialized to the present case). In Appendix
B we give a sketch of the proof of Theorem 1, pointing out the necessary modifications.
The reader is referred to [37] for more details.

(ii) Our assumption on the initial variable vm0 implies that the initial average kinetic energy,
K (vm) := E

1
2m|vm |2, does not blow up (but can possibly vanish) as m → 0. This is

analogous to the Assumption 2.4 in [37] and it is more general than the one in [8].
(iii) With slightly more work and additional assumptions, one could prove the statement in

Assumption 4 from Assumptions 1–3. See Appendix C in [37] for a result along these
lines. However, such existence and uniqueness result is not the focus of this paper and,
therefore,we choose to take the existence anduniqueness result for granted inAssumption
4.

(iv) We make no claim that Assumptions 2–4 are as weak or as general as possible. In
particular, the boundedness assumption on the coefficients of the SDEs could be relaxed
(for instance, using the techniques in [35]) and the initial condition x could have some
dependence on m (see, for instance [37]) at the cost of more technicalities.
The main focus of our revisit here is to point out that the result in [8] still holds with a
relaxed spectral assumption on the matrix γ and with the initial condition vm0 possibly
dependent onm—thiswill be important for applications in later sections (see alsoRemark
11).

4 Homogenization for Generalized Langevin Dynamics

In this section, we study homogenization for the system of equations (23), (24) (with μ =
θ = ν) by taking the limit as ε → 0, under appropriate assumptions.

Without loss of generality, we set μ = θ = ν = 1. We cast (23), (24) as the system of
SDEs for the Markov process (xε

t , v
ε
t , z

ε
t , y

ε
t , ζ

ε
t ,β

ε
t ) on the state space Rd × R

d × R
d1 ×

R
d1 × R

d2 × R
d2 :

dxε
t = vε

t dt, (37)

m0εdvε
t = −g(xε

t )C1 yε
t dt + σ (xε

t )C2β
ε
t dt + F(xε

t )dt, (38)

d zεt = yε
t dt, (39)

τκεd yε
t = −Γ 1 yε

t dt + M1C∗
1h(xε

t )v
ε
t dt, (40)

dζ ε
t = βε

t dt, (41)

τξ εdβε
t = −Γ 2β

ε
t dt + Σ2dW

(q2)
t , (42)

where we have defined the auxiliary process

yε
t := 1

τκε

∫ t

0
e− Γ 1

τκ ε
(t−s)M1C∗

1h(xε
s )v

ε
s ds. (43)

Here, the initial conditions xε
0 = x, vε

0 = v, zε0 = z and ζ ε
0 = ζ are random variables. Note

that yε
0 = 0, and βε

0 is a zero mean Gaussian random variable with covariance M2/τξ ε.
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Let W (q2)
t be an Rq2 -valued Wiener process on a filtered probability space (Ω,F,Ft ,P)

satisfying the usual conditions [33] and E denotes expectation with respect to P.
We use the notation introduced in Sect. 3 and make the following assumptions.

Assumption 5 For every x ∈ R
d , the vector-valued function F(x) is continuous, bounded

and Lipschitz in x, whereas the matrix-valued functions g(x), h(x), σ (x), (g)x(x), (h)x(x)

and (σ )x(x)are continuously differentiable, bounded andLipschitz in x.Moreover, (g)xx(x),
(h)xx(x) and (σ )xx(x) are bounded for every x ∈ R

d .

Assumption 6 The initial conditions x, v, z, ζ are random variables independent of ε. We
assume that they have finite moments of all orders, i.e. E|x|p, E|v|p, E|z|p, E|ζ |p < ∞
for all p > 0.

Assumption 7 There are no explosions, i.e. almost surely, for any value of the parameter ε

there exists a unique solution on the compact time interval [0, T ] to the pre-limit Eqs. (23),
(24), and also to the limiting Eq. (45).

The following convergence theorem is the main result of this paper. It provides a homog-
enized SDE for the particle’s position in the limit as the inertial time scale, the memory time
scale and the noise correlation time scale go to zero at the same rate in the case when the
pre-limit dynamics are described by the family of Eqs. (23), (24) (with μ = θ = ν = 1), or
equivalently by the SDEs (37)–(42). In the following, (D)i j denotes the (i, j)-entry of the
matrix D.

Theorem 2 Let xε
t ∈ R

d be the solution to the SDEs (37)–(42). Suppose that Assumptions
5–7 are satisfied and the effective damping and diffusion (constant) matrices, K 1, K 2, defined
in (9) and (10) respectively, are invertible. Moreover, we assume that for every x ∈ R

d ,

Bλ(x) := I + g(x)κ̃(λτκ)h(x)/λm0 (44)

is invertible for all λ in the right half plane {λ ∈ C : Re(λ) > 0}, where κ̃(z) := C1(z I +
Γ 1)

−1M1C∗
1, for z ∈ C, is the Laplace transform of the memory function.

Denote θ(X) := g(X)K 1h(X) ∈ R
d×d for X ∈ R

d . Then as ε → 0, the process xε
t

converges to the solution, X t , of the following Itô SDE:

dX t = S(X t )dt + θ−1(X t )F(X t )dt + θ−1(X t )σ (X t )C2Γ
−1
2 Σ2dW

(q2)
t , (45)

with S(X t ) = S(1)(X t ) + S(2)(X t ) + S(3)(X t ), where the S(k) are the noise-induced drifts
whose i th components are given by

S(1)
i = m0

∂

∂Xl

[
(θ−1)i j (X)

]
(J11) jl(X), i, j, l = 1, . . . , d, (46)

S(2)
i = −τκ

∂

∂Xl

[
(θ−1g)i j (X)

]
(C1Γ

−1
1 J21) jl(X), i, l = 1, . . . , d; j = 1, . . . , q,

(47)

S(3)
i = τξ

∂

∂Xl

[
(θ−1σ )i j (X)

]
(C2Γ

−1
2 J31) jl(X), i, l = 1, . . . , d; j = 1, . . . , r . (48)

Here J11 = J∗
11 ∈ R

d×d , J21 = J∗
12 ∈ R

d1×d and J31 = J∗
13 ∈ R

d2×d satisfy the
following system of five matrix equations:

gC1 J∗
12 + J12C∗

1 g
∗ = σC2 J∗

13 + J13C∗
2σ

∗, (49)
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m0 J11h∗C1M1 + τκσC2 J∗
23 = τκ gC1 J22 + m0 J12Γ ∗

1, (50)

τξ gC1 J23 + m0 J13Γ ∗
2 = σC2M2, (51)

M1C∗
1hJ12 + J∗

12h
∗C1M1 = Γ 1 J22 + J22Γ ∗

1, (52)

τξ M1C∗
1hJ13 = τξΓ 1 J23 + τκ J23Γ ∗

2.. (53)

The convergence is obtained in the following sense: for all finite T > 0,

sup
t∈[0,T ]

|xε
t − X t | → 0 (54)

in probability, in the limit as ε → 0.

Remark 6 Invertibility of the matrices Bλ(x) is a technical condition which will be used
in the proof of the theorem. We are going to verify it in the special cases and applications
discussed later (see Corollaries 3 and 5). In particular, it follows from the stronger spectral
condition, namely that g(x)κ̃(μ)h(x) has no spectrum in the right half plane for any μ with
Re(μ) > 0. See also Remark 8.

Remark 7 It is straightforward to extend Theorems 1 and 2 to the case when the coefficients
in the pre-limit equations depend explicitly on time, i.e. when γ = γ (xmt , t), σ = σ (xmt , t)
and F = F(xmt , t) in (30), (31), as well as when g = g(xε

t , t), h = h(xε
t , t), σ = σ (xε

t , t)
and F = F(xε

t , t) in (37)–(42). In this case, we expect similar results to hold under additional
assumptions, analogous to those studied in [37].

Proof We denote x̂ε
t := (xε

t , z
ε
t , ζ

ε
t ) ∈ R

d+d1+d2 and v̂
ε
t := (vε

t , y
ε
t , η

ε
t ) ∈ R

d+d1+d2 and
rewrite the above SDE system in the form (30), (31):

d x̂ε
t = v̂

ε
t dt, (55)

εd v̂
ε
t = −γ̂ (xε

t )v̂
ε
t dt + F̂(xε

t )dt + σ̂dW (q2)
t , (56)

with

γ̂ (xε
t ) =

⎡
⎢⎢⎣

0 g(xε
t )C1
m0

− σ (xε
t )C2
m0

− M1C∗
1h(xε

t )

τκ

Γ 1
τκ

0
0 0 Γ 2

τξ

⎤
⎥⎥⎦ , F̂(xε

t ) =
⎡
⎣

F(xε
t )

m0

0
0

⎤
⎦ , σ̂ =

⎡
⎣

0
0

Σ2
τξ

⎤
⎦ , (57)

where γ̂ ∈ R
(d+d1+d2)×(d+d1+d2) is a 3 by 3 block matrix with each block a matrix of

appropriate dimension, F̂ ∈ R
d+d1+d2 , σ̂ ∈ R

(d+d1+d2)×q2 and the 0 appearing in γ̂ , F̂ and
σ̂ is a zero vector or matrix of appropriate dimension.

We now want to apply Theorem 1 (with m := ε, n := d + d1 + d2, γ replaced by γ̂ , F
replaced by F̂, σ replaced by σ̂ , etc.) to (55), (56).

It is straightforward to see that Assumption 5 implies Assumptions 1 and 7 implies
Assumption 4.

To verify Assumption 3, note again that yε
0 = 0 and so by Assumption 6, we only need

to show that for every p > 0, E|εβε
0|p = O(εα) as ε → 0, for some constant α ≥ p/2.

To show this, we use the fact that for a mean zero Gaussian random variable, X ∈ R, with
variance σ 2,

E|X |p = σ p
2p/2Γ

(
p+1
2

)
√

π
, (58)
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for every p > 0, where Γ denotes the gamma function [40]. Applying this to βε
0, we obtain,

for every p > 0, E|βε
0|p = O(1/ε p/2) as ε → 0 and so E|εβε

0|p = O(ε p/2) as ε → 0.
Therefore, Assumption 3 is verified.

It remains to verify Assumption 2, i.e. that γ̂ is positive stable. Note that Γ 2 is positive
stable by assumption and the triangular-block structure of γ̂ implies that one only needs to
verify that the upper left 2 by 2 block matrix of γ̂ :

L(x) =
[

0 g(x)C1/m0

−M1C∗
1h(x)/τκ Γ 1/τκ

]
(59)

is positive stable, where x ∈ R
d .

We thus need to show that the resolvent set of −L(x), ρ(−L(x)) := {λ ∈ C : (λI +
L(x))−1 exists}, contains the right half plane {λ ∈ C : Re(λ) > 0} for every x ∈ R

d .
Let λ ∈ C such that Re(λ) > 0.Wewill use the following formula for blockwise inversion

of a block matrix: provided that S and P − QS−1R are nonsingular, we have
[
P Q
R S

]−1

=
[

(P − QS−1R)−1 −(P − QS−1R)−1QS−1

−S−1R(P − QS−1R)−1 S−1 + S−1R(P − QS−1R)−1QS−1

]
, (60)

where P , Q, R, S are matrix sub-blocks of arbitrary dimension.
Since the matrices Aλ := Γ 1/τκ + λI and Bλ(x) := I + g(x)κ̃(λτκ)h(x)/λm0 are

invertible for all λ in the right half plane by assumption, λI + L(x) is indeed invertible for
every x and in fact using the above formula for the inverse of a block matrix, we have:

(λI + L(x))−1

=
[

B−1
λ (x)/λ −B−1

λ (x)g(x)C1A
−1
λ /λm0

A−1
λ M1C∗

1h(x)B−1
λ (x)/λτκ A−1

λ (I − M1C∗
1h(x)B−1

λ (x)g(x)C1A
−1
λ /λm0τκ)

]
.

(61)

Therefore, γ̂ is invertible and one can compute:

γ̂
−1 =

⎡
⎣ m0θ

−1 −τκθ−1gC1Γ
−1
1 τξ θ

−1σC2Γ
−1
2

m0Γ
−1
1 M1C∗

1hθ−1 τκΓ −1
1 (I − M1C∗

1hθ−1gC1Γ
−1
1 ) τξΓ

−1
1 M1C∗

1hθ−1σC2Γ
−1
2

0 0 τξΓ
−1
2

⎤
⎦ ,

(62)

where θ = gK 1h. The result follows by applying Theorem 1 to the SDE systems (55), (56).
In particular, a rewriting of the resulting Lyapunov equation (35) gives the system of matrix
equations (49)–(53). 
�
Remark 8 In the above proof, the condition of invertibility of Bλ(x) is only used to guarantee
the positive stability of the matrix γ̂ . Therefore, the conclusion of the theorem holds also
when the latter can be established in another way. This can indeed be done in a number
of concrete examples (see, for instance, the matrix γ in Eq. (83), or the line (90) and the
sentence below the line).

Remark 9 Our SIDEs belong to a special class of non-Markovian equations, the so-called
quasi-Markovian Langevin equations [41]. For these equations one can introduce a finite
number of auxiliary variables in such a way that the evolution of particle’s position and
velocity, together with these auxiliary variables, is described by a usual SDE system and is
thus Markovian. We remark that such “Markovianization” procedure works here because the
colored noise can be generated by a linear system of SDEs and the memory kernel satisfies

123



Homogenization for a Class of Generalized Langevin Equations with an. . . 669

a linear system of ordinary differential equations—both with constant coefficients. If, on
the other hand, the memory kernel decays as a power, then there is no finite dimensional
extension of the space which would make the solution process Markovian [16].

The following corollary uses a linear change of variables in a given SIDE, to arrive at an
alternative form of the corresponding homogenized SDE of the form (45).

Corollary 1 For i = 1, 2, let T i be arbitrary di × di constant invertible matrix, where d1, d2
are positive integers. For t ≥ 0, denote Γ ′

i = T iΓ iT
−1
i , M ′

i = T iM iT∗
i , C

′
i = C iT

−1
i ,

(βε
t )

′ = T2β
ε
t , Σ

′
i = T iΣ i and consider the equations:

m0ε
μ ẍε

t = F(xε
t ) − g(xε

t )

τκεθ

∫ t

0
C ′
1e

− Γ ′
1

τκ εθ
(t−s)

M ′
1(C

′
1)

∗h(xε
s )ẋ

ε
s ds + σ (xε

t )C
′
2(β

ε
t )

′,

(63)

τξ ε
νd(βε

t )
′ = −Γ ′

2(β
ε
t )

′dt + Σ ′
2dW

′
t , (64)

where W ′
t is a q2-dimensional Wiener process and the initial condition, (βε

0)
′, is normally

distributed with zero mean and covariance of M ′
2/(τξ ε

ν).
Suppose that Assumptions 5–7 are satisfied and the effective damping and diffusion con-

stants, K ′
i = C ′

i (Γ
′
i )

−1M ′
i (C

′
i )

∗ = K i (i = 1, 2), are invertible. Moreover, we assume that

I + g(x)κ̃ ′(λτκ)h(x)/λm0 is invertible for all λ in the right half plane {λ ∈ C : Re(λ) > 0}
and x ∈ R

d , where κ̃ ′(z) := C ′
1(z I + Γ ′

1)
−1M ′

1(C
′
1)

∗ = κ̃(z) for z ∈ C.
Let μ = θ = ν in (63), (64). Then as ε → 0, the process xε

t converges, in the similar
sense as in Theorem 2, to X t , where X t is the solution of the SDE (45) with the C i , Γ i , M i ,
Σ i replaced by C ′

i , Γ
′
i , M

′
i , Σ

′
i respectively, and the driving Wiener process W (q2)

t replaced
by W ′

t .

Corollary 1 is an easy consequence of Theorem 2.
Next, we discuss a particular, but very important, case when a fluctuation–dissipation

relation holds. This is, for instance, the case when the pre-limit dynamics are (heuristically)
derived from Hamiltonian dynamics (see Appendix A). We will further explore similar cases
of fluctuation–dissipation relations for the two sub-classes.

Corollary 2 Let xε
t ∈ R

d be the solution to the SDEs (37)–(42). Suppose that the assumptions
of Theorem 2 holds. Moreover, we assume that:

τκ = τξ = τ, σ = g, h = g∗, (65)

where τ is a positive constant, and

C1 = C2 := C, Γ 1 = Γ 2 := Γ , M1 = M2 := M, Σ1 = Σ2 := Σ, (66)

(so that q = r and d1 = d2). Denote K := CΓ −1MC∗. Then as ε → 0, the process xε
t

converges to the solution, X t , of the following Itô SDE:

dX t = S(X t )dt +[g(X t )K g∗(X t )]−1F(X t )dt +[g(X t )K g∗(X t )]−1g(X t )CΓ −1ΣdW (q2)
t ,

(67)
where S(X t ) is the noise-induced drift whose i th component is given by

Si (X) = m0
∂

∂Xl

[
((gK g∗)−1)i j (X)

]
(J11) jl(X), i, j, l = 1, . . . , d, (68)

where J11 solves the following system of three matrix equations:

m0 J11gCM + τ gC(J23 + J∗
23) = τ gC J22 + gCM, (69)
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MC∗g∗gCM(Γ −1)∗ = τMC∗g∗gC J23(Γ −1)∗

+ m0(Γ J23 + J23Γ ∗), (70)

MC∗g∗gCM(Γ −1)∗ + Γ −1MC∗g∗gCM = τ(MC∗g∗Γ −1 J∗
23C

∗g∗

+ Γ −1 J∗
23C

∗g∗gCM)

+ m0(Γ J22 + J22Γ ∗). (71)

The convergence is obtained in the same sense as in Theorem 2.

Equations (65) and (66) are a form of fluctuation–dissipation relation familiar from
non-equilibrium statistical mechanics [13]. As stationary measures of systems satisfying
fluctuation–dissipation relations are in equilibrium with respect to the underlying dynamics,
this result is relevant for describing equilibrium properties of such systems in the small mass
limit.

Remark 10 Therefore, if the fluctuation–dissipation relation holds, the noise-induced drift
in the limiting SDE reduces to a single term (later we will see how this term simplifies in
some special cases). This result may have interesting implications for nanoscale systems
in equilibrium. We remark that the conditions for the fluctuation–dissipation relation in
Corollary 2 can be written in other equivalent forms, up to the transformations in (8) and
multiplication by a constant.

Proof The above corollary follows from applying Theorem 2. Indeed, by assumptions of the
corollary, (49) simplifies to:

gC(J12 − J13)∗ + (J12 − J13)(gC)∗ = 0. (72)

This implies that J12 = J13 and, therefore, S(2) and S(3) cancel. Rewriting the resulting
system of matrix equations in (49)–(53) give (69)–(71). 
�

5 Homogenization for Models of the Two Sub-classes

We now return to the two sub-classes of SIDEs (11) introduced in Sect. 2. In this section,
we study the effective dynamics described by SIDEs (25) and (27) in the limit as ε → 0.
By specializing to these two sub-classes, the convergence result of Theorem 2, in particular
the expressions in (45)–(53), can be made more explicit under certain assumptions on the
matrix-valued coefficients and therefore the limiting equation obtained may be useful for
modeling purposes.

5.1 SIDEs Driven by aMarkovian Colored Noise

The following convergence result provides a homogenized SDE for the particle’s position
in the limit as the inertial time scale, the memory time scale and the noise correlation time
scale vanish at the same rate in the case when the pre-limit dynamics are driven by an
Ornstein–Uhlenbeck noise.

Corollary 3 Let d = d1 = d2 = q1 = q2 = q = r . We set, in the SDEs (37)-(42): βε
t = ηε

t ,

τξ = τη, W
(q2)
t = W (d)

t := W t and

(Γ 1, M1,C1) = (A, A, I), (Γ 2, M2,C2) = (A, A/2, I), (73)
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to obtain SDEs equivalent to Eqs. (25) and (26) with μ = θ = ν = 1. Let xε
t ∈ R

d be
the solution to these equations, with the matrices g(x) and h(x) positive definite for every
x ∈ R

d . Suppose that Assumptions 5–7 are satisfied and, moreover, that g(x), h(x) and the
diagonal matrix A are commuting.

Then as ε → 0, the process xε
t converges to the solution, X t , of the following Itô SDE:

dX t = S(X t )dt + (gh)−1(X t )F(X t )dt + (gh)−1(X t )σ (X t )dW t , (74)

with S(X t ) = S(1)(X t ) + S(2)(X t ) + S(3)(X t ), where the S(k) are the noise-induced drifts
whose i th components are given by

S(1)
i (X) = m0

∂

∂Xl
[((gh)−1)i j (X)](J11) jl(X), i, j, l = 1, . . . , d, (75)

S(2)
i (X) = −τκ

∂

∂Xl
[((Ah)−1)i j (X)](J21) jl(X), i, j, l = 1, . . . , d, (76)

S(3)
i (X) = τη

∂

∂Xl
[((gh)−1σ A−1)i j (X)](J31) jl(X), i, j, l = 1, . . . , d. (77)

Here J11 = J∗
11, J21 = J∗

12 and J31 = J∗
13 are d by d block matrices satisfying the

following system of matrix equations:

τηg J23 + m0 J13A = σ A/2, (78)

τηAhJ13 = τηAJ23 + τκ J23A, (79)

AhJ12 + J∗
12hA = AJ22 + J22A, (80)

g J∗
12 + J12g = σ J∗

13 + J13σ ∗, (81)

m0 J11hA + τκσ J∗
23 = τκ g J22 + m0 J12A. (82)

The convergence is obtained in the same sense as in Theorem 2.

Proof We will apply Theorem 2. As K 1 = 2K 2 = I , clearly they are invertible. Also, being
positive definite, g and h are invertible.

Since g, h and A are positive definite and commuting matrices, the matrix Bλ(x), defined
in (44), is invertible for all λ such that Re(λ) > 0. Indeed, in this case Bλ(x) = I +
g(x)(λτκ I + A)−1Ah(x)/λm0. Since g, h and A are positive definite and commuting,
they have positive eigenvalues and can be simultaneously diagonalized. Therefore, all the
eigenvalues of Bλ(x) are nonzero for every λwith Re(λ) > 0 and x ∈ R

d , so the invertibility
condition is verified. Therefore, the block matrix:

γ̂ (xε
t ) =

⎡
⎢⎣

0 g(xε
t )

m0
− σ (xε

t )

m0

− Ah(xε
t )

τκ

A
τκ

0
0 0 A

τη

⎤
⎥⎦ , (83)

is positive stable (see Remark 8). The result then follows by applying Theorem 2. 
�
For special one-dimensional systems, the form of the limiting equation can be made even

more explicit.

Corollary 4 In the one-dimensional case, we drop the boldface and write X t := Xt ∈
R, g(X) := g(X), with g : R → R, etc.. We assume that h = g and A := α > 0 is
a constant. The homogenized equation is given by:

dXt = S(Xt )dt + g−2(Xt )F(Xt )dt + g−2(Xt )σ (Xt )dWt , (84)
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with S(Xt ) = S(1)(Xt ) + S(2)(Xt ) + S(3)(Xt ), where the noise-induced drift terms S(k)(Xt )

have the following explicit expressions that depend on the parameters m0, τκ and τη:

S(1)(Xt ) =
(

1

g2(Xt )

)′
σ(Xt )

2

2g2(Xt )

[
τ 2κ g

2(Xt ) + m0α(τκ + τη)

τ 2η g
2(Xt ) + m0α(τκ + τη)

]
, (85)

S(2)(Xt ) = −
(

1

g(Xt )

)′
σ(Xt )

2τκ(τκ + τη)

2g(Xt )[τ 2η g2(Xt ) + m0α(τκ + τη)] , (86)

S(3)(Xt ) =
(

σ(Xt )

g2(Xt )

)′
σ(Xt )τη(τκ + τη)

2[τ 2η g2(Xt ) + m0α(τκ + τη)] , (87)

where the prime ′ denotes derivative with respect to Xt .

Proof With xε
t := (xε

t , z
ε
t , ζ

ε
t ) ∈ R

3 and vε
t := (vε

t , y
ε
t , η

ε
t ) ∈ R

3, SDEs (55), (56) become:

dxε
t = vε

t dt, (88)

εdvε
t = −γ (xε

t )v
ε
t dt + F(xε

t )dt + σdW t , (89)

where

γ (xε
t ) =

⎡
⎢⎣

0 g(xε
t )

m0
− σ(xε

t )

m0− α
τκ
g(xε

t )
α
τκ

0
0 0 α

τη

⎤
⎥⎦ , F(xε

t ) =
⎡
⎣

F(xε
t )

m0

0
0

⎤
⎦ , σ =

⎡
⎣

0
0
α
τη

⎤
⎦ . (90)

It follows from Corollary 3 that the matrix γ is positive stable; one can also calculate its
eigenvalues explicitly and see that their real parts are positive. The eigenvalues of γ are

α

τη

,
α

2τκ

± 1

2

√
α2m0 − 4αg(xε

t )
2τκ

m0τ 2κ
, (91)

and so their real parts are indeed positive.
On the other hand, the solution, J ∈ R

3×3, to the Lyapunov equation,

γ J + Jγ ∗ = σσ ∗, (92)

can be computed (using Mathematica®) to be:

J =

⎡
⎢⎢⎢⎢⎣

σ 2

2m0g2

[
τ 2κ g

2+m0α(τκ+τη)

τ 2η g
2+m0α(τκ+τη)

]
ασ 2(τκ+τη)

2g(τ 2η g
2+m0α(τκ+τη)

ασ(τκ+τη)

2(τ 2η g
2+m0α(τκ+τη))

ασ 2(τκ+τη)

2g(τ 2η g2+m0α(τκ+τη)

ασ 2(τκ+τη)

2(τ 2η g2+m0α(τκ+τη))

τηασ g
2(τ 2η g2+m0α(τκ+τη))

ασ(τκ+τη)

2(τ 2η g
2+m0α(τκ+τη))

τηασ g
2(τ 2η g

2+m0α(τκ+τη))
α
2τη

⎤
⎥⎥⎥⎥⎦ . (93)

The result then follows from Corollary 3. 
�
Remark 11 Note that here thematrix γ in (90) is not symmetric and the smallest eigenvalue of
its symmetric part can be negative. Moreover, the initial condition vε

0 depends on ε through
the component ηε

0 (which is a zero mean Gaussian random variable with variance α
2ετη

).
Thus, we cannot apply the main results in [8] to obtain the convergence result. This is our
main motivation to revisit the Smoluchowski–Kramers limit of SDEs in Sect. 3 under a
weakened spectral assumption on the matrix γ (or γ̂ in the multidimensional case) and a
relaxed assumption concerning the ε dependence of vε

0 (or v̂
ε
0 in the multidimensional case).
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Remark 12 In the important case when the fluctuation–dissipation relation (i.e. τκ = τη,
h = g and g is proportional to σ ) holds for the one-dimensional models of the first sub-class,
the correction drift terms S(2) and S(3) cancel each other and the resulting (single) noise-
induced drift term coincides with that obtained in the limit as m → 0 of the systems with
no memory, driven by a white noise to which Theorem 1 applies directly! However, when
the relation fails, we obtain three different drift corrections induced by vanishing of all time
scales. Again, the presence of these correction terms may have significant consequences for
the dynamics of the systems (see Sect. 6).

5.2 SIDEs Driven by a Non-Markovian Colored Noise

The following corollary provides a homogenized SDE for the particle position in the limit,
in which the inertial time scale, the memory time scale and the noise correlation time scale
vanish at the same rate in the case when the pre-limit dynamics are driven by the harmonic
noise. We emphasize that in this case the original system is driven by a noise which is not a
Markov process.

Corollary 5 Let d = d1 = d2 = q1 = q2 = q = r . We set, in the SDEs (37)–(42): τξ = τh,

W (q2)
t = W (d)

t = W t and

Γ 2 =
[
0 −I

Ω2 Ω2

]
, Γ 1 = 1

2

[
Ω2 4I − Ω2

−Ω2 Ω2

]
=: TΓ 2T−1, (94)

M2 = 1

2

[
I 0
0 Ω2

]
, M1 = 2TM2T∗, (95)

C2 = [I 0], C1 = C2T−1, (96)

to obtain SDEs equivalent to equations (27)–(29) with μ = θ = ν = 1. Let xε
t ∈ R

d be the
solution to the SDEs (37)–(42), with the matrices g(x) and h(x) positive definite for every
x ∈ R

d . Moreover, g(x), h(x) and the diagonal matrix Ω2 are commuting. Suppose that
Assumptions 5–7 are satisfied.

Then as ε → 0, the process xε
t converges to the solution, X t , of the following Itô SDE

dX t = S(X t )dt + (gh)−1(X t )F(X t )dt + (gh)−1(X t )σ (X t )dW t , (97)

with S(X t ) = S(1)(X t ) + S(2)(X t ) + S(3)(X t ), where the S(k) are the noise-induced drift
terms whose i th components are given by the expressions

S(1)
i (X) = m0

∂

∂Xl
[((gh)−1)i j (X)](J11) jl(X), (98)

S(2)
i (X) = −τκ

(
∂

∂Xl
[(h−1)i j (X)](J21) jl(X) + ∂

∂Xl
[(h−1(I − 2Ω−2))i j (X)](J31) jl(X)

)
,

(99)

S(3)
i (X) = τh

(
∂

∂Xl
[((gh)−1σ )i j (X)](J41) jl(X) + ∂

∂Xl
[((gh)−1σΩ−2)i j (X)](J51) jl(X)

)
,

(100)

where i, j, l = 1, . . . , d. In the above,

Ĵ :=
⎡
⎢⎣
J11 . . . J15
...

. . .
...

J51 . . . J55

⎤
⎥⎦ ∈ R

5d×5d , where Jkl ∈ R
d×d , k, l = 1, . . . , 5, (101)
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is the block matrix solving the Lyapunov equation

Ĵ γ̂
∗ + γ̂ Ĵ = σ̂ σ̂

∗
, (102)

and

γ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 g(X)
m0

g(X)
m0

− σ (X)
m0

0

− h(X)
τκ

Ω2

2τκ

2I
τκ

− Ω2

2τκ
0 0

0 − Ω2

2τκ

Ω2

2τκ
0 0

0 0 0 0 − 1
τh
I

0 0 0 Ω2

τh

Ω2

τh

⎤
⎥⎥⎥⎥⎥⎥⎦

, σ̂ =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

Ω2

τh

⎤
⎥⎥⎥⎥⎦ . (103)

In the above, γ̂ ∈ R
5d×5d is a 5 by 5 block matrix with each block an R

d×d -valued matrix,
σ̂ ∈ R

5d×d is a 5 by 1 block matrix with each block a R
d×d -valued matrix, I is a d × d

identity matrix, 0 in γ̂ and σ̂ is a d × d zero matrix, and W is a d-dimensional Wiener
process. The convergence is obtained in the same sense as in Theorem 2.

Note that the oscillatory nature of covariance function of the harmonic noise in the pre-
limit SIDE makes the noise-induced drift in the resulting limiting SDE more complicated
(there are more terms) compared to the case of OU process in the first sub-class. Therefore,
we write the system of matrix equations that the Jkl satisfy in the form of a matrix Lyapunov
equation in Corollary 5, without breaking it up into equations for individual blocks. This
could of course be done, leading to a (more complicated) analog of (78)–(82). The proof of
Corollary 5 is essentially identical to the proof of Corollary 3, so we omit it.

Again, for special one-dimensional systems, we are going tomake the result more explicit.

Corollary 6 In the one-dimensional case, we drop the boldface and write X t := Xt ∈
R, g(x) := g(x), with g : R → R, etc.. We assume that h = g and Ω := Ω is a
real constant. The homogenized equation is given by:

dXt = S(Xt )dt + g−2(Xt )F(Xt )dt + g−2(Xt )σ (Xt )dWt , (104)

with S(Xt ) = S(1)(Xt ) + S(2)(Xt ) + S(3)(Xt ), where the noise-induced drift terms S(k)(Xt )

have the following explicit expressions (computed using Mathematica®) that depend on the
parameters m0, τκ and τh:

S(1)(X) = m0

(
1

g2(X)

)′
J11(X), (105)

S(2)(X) = −τκ

(
1

g(X)

)′ (
J21(X) +

(
1 − 2

Ω2

)
J31(X)

)
, (106)

S(3)(X) = τh

(
σ(X)

g2(X)

)′ (
J41(X) + 1

Ω2 J51(X)

)
, (107)

where the prime ′ denotes derivative with respect to X and the Jkl(X) are given by:

J11(X) = σ 2

2m0g2R(X)

(
g4τ 4κ (τ 2κ + τκτhΩ

2 + τ 2hΩ2) + m2
0Ω

4(τκ + τh)
2(τ 2κ + τ 2h

+ τκτh(Ω
2 − 2)) + m0Ω

2g2(τκ + τh)[τ 4h + τ 2κ τ 2h (Ω2 − 2) + τ 4κ (Ω2 − 1)

+ τ 3κ τh(2 − 3Ω2 + Ω4)]
)

(108)
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J21(X) = σ 2(τκ + τh)Ω
2

4gR(X)

(
m0Ω

2(τκ + τh)(τ
2
κ + τ 2h + τκτh(Ω

2 − 2))

+ g2(τ 4κ + τ 2κ τ 2h + τ 4h + τ 3κ τh(Ω
2 − 1))

)
, (109)

J31(X) = −σ 2(τκ + τh)Ω
2

4gR(X)

(
− m0Ω

2(τκ + τh)(τ
2
κ + τ 2h + τκτh(Ω

2 − 2))

+ g2(τ 4κ + τ 2κ τ 2h − τ 4h + τ 3κ τh(Ω
2 − 1))

)
, (110)

J41(X) = 1

2

(
σΩ2(τκ + τh)[g2τ 4h + m0Ω

2(τκ + τh)(τ
2
κ + τ 2h + τκτh(Ω

2 − 2))]
)

,

(111)

J51(X) = −1

2

(
σΩ2(τκ + τh)[m0Ω

2(τκ + τh)(τ
2
κ + τ 2h + τκτh(Ω

2 − 2))

− g2τκτ 2h (τκ + τh(Ω
2 − 1))]

)
, (112)

where g = g(X), σ = σ(X) and

R(X) = g4τ 4h (τ 2κ + τκτhΩ
2 + τ 2hΩ2) + m2

0Ω
4(τκ + τh)

2(τ 2κ + τ 2h + τκτh(Ω
2 − 2))

+ g2m0τ
2
hΩ2[τ 3hΩ2 + τ 3κ (Ω2 − 2) + τ 2κ τhΩ

2(Ω2 − 2) + τκτ 2h (2 − 2Ω2 + Ω4)].
(113)

Note that if we send Ω → ∞ in the expressions for the S(i)(X) (i = 1, 2, 3) above,
we recover the corresponding expressions given in Corollary 4 (with α = 1). This is not
surprising, since in this limit the harmonic noise becomes an OU process (with α = 1).

Moreover, when τκ = τh = τ , the noise-induced drift becomes S(X) = S(1)(X) +
S(2)(X) + S(3)(X), where

S(1) = 1

2

(
1

g2

)′
σ 2

g2
, (114)

S(2) = −2τΩ2σ 2

g

(
1

g

)′ ( g2τ + m0Ω
2(Ω2 − 1)

4m2
0Ω

6 + 2g2m0τΩ4(Ω2 − 1) + g4τ 2(1 + 2Ω2)

)
, (115)

S(3) = 2τΩ2σ

(
σ

g2

)′ ( g2τ + m0Ω
2(Ω2 − 1)

4m2
0Ω

6 + 2g2m0τΩ4(Ω2 − 1) + g4τ 2(1 + 2Ω2)

)
. (116)

Again, in the case when the fluctuation–dissipation relation holds we see that the noise-
induced drift coincides with that obtained in the limit as m → 0 of the Markovian model in
Sect. 3.

6 Application to the Study of Thermophoresis

6.1 Introduction

We revisit the dynamics of a free Brownian particle immersed in a heat bath where a tem-
perature gradient is present. This was previously studied in [42]. It was found there that
the particle experiences a drift in response to the temperature gradient, due to the interplay
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between the inertial time scale and the noise correlation time scale. Such phenomenon is
called thermophoresis. We refer to [42,43] and the references therein for further descriptions
of this phenomenon, including references to experiments.

Here, we will study the dynamics of the particle in a non-equilibrium heat bath, where
a generalized fluctuation–dissipation relation holds, in which both the diffusion coefficient
and the temperature of the heat bath vary with the position. In contrast to [42], we take
into account also the memory time scale (in addition to the inertial time scale and the noise
correlation time scale) and model the position of the particle as the solution to a SIDE of
the form (11). Unlike the model used in [42], the model can be derived heuristically from
microscopic dynamics by an argument very similar to that of Appendix A.

For a spherical particle of radius R immersed in a fluid of viscosity μ, which in general
is a function of the temperature T = T (x) (and thus depends on x as well), the friction (or
damping) coefficient γ satisfies the Stokes law [13]:

γ (x) = 6πμ(T )R. (117)

On the other hand, the damping coefficient γ (x) and the noise coefficient σ(x) are expressed
in terms of the diffusion coefficient D(x) and the temperature T (x) as follows:

γ (x) = kBT (x)

D(x)
, σ (x) = kBT (x)

√
2√

D(x)
. (118)

In the following, we study two one-dimensional non-Markovian models of thermophore-
sis. The first model is driven by a Markovian colored noise and the second model by a
non-Markovian one.

6.2 A Thermophoresis Model with Ornstein–Uhlenbeck Noise

In this section we model evolution of the position, xt ∈ R, of a particle by the following
SIDE:

mẍt = −√γ (xt )
∫ t

0
αe−α(t−s)

√
γ (xs)ẋsds + σ(xt )ηt , (119)

where ηt is a stationary process, satisfying the SDE:

dηt = −αηt dt + αdWt . (120)

The above equations are obtained by setting d = 1, F = 0, h = g = g := √
γ , σ = σ in

(15) and A = α in (13), where γ and σ are given by (118). Note that the noise correlation
function is proportional to the memory kernel in the SIDE (119), i.e.

E[ηtηs] = α

2
e−α|t−s| = 1

2
κ1(t − s), s, t ≥ 0 (121)

as in (21). Together with (118), this implies that (119) satisfies the generalized fluctuation–
dissipation relation (see the statement of Corollary 2 and Remark 12). Note also that g is a
constant multiple of σ if and only if T is position-independent.

We now consider the effective dynamics of the particle in the limit when all the three
characteristic time scales vanish at the same rate. In the following, the prime ′ denotes
derivative with respect to the argument of the function.
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Corollary 7 Let ε > 0 be a small parameter and let the particle’s position, xε
t ∈ R (t ≥ 0),

satisfy the following rescaled version of (119), (120):

dxε
t = vε

t dt, (122)

m0εdvε
t = σ(xε

t )η
ε
t dt −√γ (xε

t )

(∫ t

0

α

τε
e− α

τε (t−s)
√

γ (xε
s )v

ε
s ds

)
dt, (123)

τεdηε
t = −αηε

t dt + αdWt , (124)

where m0, α, τ are positive constants, and (Wt ) is a one-dimensional Wiener process. The
initial conditions are random variables xε

0 = x, vε
0 = v, independent of ε and (statistically)

independent of (Wt ), and ηε
0 is distributed according to the invariant distribution of the SDE

(124).
Assume that the assumptions of Corollary 3 are satisfied (in particular, γ (x) > 0 for every

x ∈ R). Then, in the limit as ε → 0, xε
t converges (in the same sense as in Corollary 3) to

the process Xt ∈ R, satisfying the SDE:

dXt = b1(Xt )dt +√2D(Xt )dWt , (125)

with the noise-induced drift, b1(X) = S(1)(X) + S(2)(X) + S(3)(X), where

S(1)(X) = D′(X) − D(X)T ′(X)

T (X)
, (126)

S(2)(X) =
[
−kBT (X)D′(X)

D(X)
+ kBT

′(X)

]
·
[

τD(X)

τkBT (X) + 2m0αD(X)

]
, (127)

S(3)(X) =
[
kBT (X)D′(X)

D(X)

]
·
[

τD(X)

τkBT (X) + 2m0αD(X)

]
. (128)

Proof The corollary follows from Corollary 4. In particular, the expressions for S(1), S(2)

and S(3) follow from applying Corollary 4 to the present system (see (85)–(87)). 
�
We give some remarks and discussions of the contents of Corollary 7 before we end this

subsection.

Remark 13 We see that in this case a part of S(2) cancels S(3) and therefore the noise-induced
drift simplifies to:

b1(X) = D′(X) − 2m0αD2(X)

τkBT (X) + 2m0αD(X)

T ′(X)

T (X)
. (129)

Using the Stokes law (117) which gives

D(X) = kB
6πR

T (X)

μ(T )
, (130)

where μ(T ) = μ(T (X)), we have

b1(X) = kBT
′(X)

(
τ

2(αm0 + 3πRτμ(T ))
− μ′(T )T (X)

6πRμ2(T )

)
. (131)

Equation (129) gives the thermophoretic drift in the limit when the three characteristic time
scales vanish. Since it arises in the absence of an external force acting on the particle, it is a
“spurious drift” caused by the presence of the temperature gradient and the state-dependence
of the diffusion coefficient. Compared to Eq. (101) in [8], the drift term derived here contains
a correction term due to the temperature profile.
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DiscussionWe discuss some physical implications of the thermophoretic drift given in (129).
As discussed in [42], the sign of b1(X) determines the direction in which the particle is
expected to travel. The particle will eventually reach some boundaries, which can be either
absorbing or reflecting. We are going to consider the reflecting boundaries case.

In the reflecting boundaries case, the position of the particle, satisfying the SDE (125),
reaches a steady-state distribution ρ∞(X) in the limit t → ∞. Assuming that the particle is
confined to the interval (a, b), a < b, one can compute the stationary density:

ρ∞(X) = C exp

(
−
∫ X

a

2α

rγ (y) + 2α

T ′(y)
T (y)

dy

)
, (132)

where in terms of the original parameters of themodel, r := τ/m0 > 0, andC is a normalizing
constant. In particular, in absence of temperature gradient (T ′(y) = 0), the particle is equally
likely to be found anywhere in (a, b), whereas when a temperature gradient is present, the
distribution of the particle’s position is not uniform. In the limit r → ∞, the particle’s
position is again distributed uniformly on (a, b). On the other hand, in the limit r → 0 the
stationary density is inversely proportional to the temperature, i.e. ρ∞(X) = C̃T (X)−1,

where C̃ is a normalizing constant. Thus, the particle is more likely to be found in the colder
region. In the special case when D(X) is proportional to T (X), so that γ is independent of
X , we have

ρ∞(X) = C̃T (X)
− 2α

2α+rγ , (133)

where C̃ is a normalizing constant, so the particle is more likely to be found in the colder
region, with the likelihood decreasing as r increases.

Next, we are going to study the sign of the thermophoretic drift directly using (129) (this
is in contrast to the approach in [42], where μ(T ) is expanded around a fixed temperature).
We find that b1(X) > 0 if and only if r > rc and rc is the critical ratio of τ/m0, given by:

rc = α

3πRμ(T )

(
μ′(T )T (X)

μ(T ) − μ′(T )T (X)

)
, (134)

where μ(T ) = μ(T (X)) is obtained from the Stokes law. For r = rc, the stationary density
(132) reduces to:

ρc∞(X) = C
μ(T (X))

T (X)
, (135)

where C is a normalizing constant. Importantly, note that the drift does not change sign if T
is independent of X .

We now discuss a special case. When μ(T ) = μ0 > 0 is a constant (so that γ (X) is a
constant), the thermophoretic drift is given by:

b1(X) = kBT ′(X)

6πRμ0

[
1 − α

α + 3πr Rμ0

]
. (136)

In agreement with the result in [42], b1(X) has the same sign as T ′(X), leading to a flow
towards the hotter region. The steady-state density is

ρ∞(X) = CT (X)
− α

α+3πr Rμ0 , (137)

where C is a normalizing constant, and the particle is more likely to be found in the colder
region for all r > 0, even though the thermophoretic drift actually directs the particle towards
the hotter regions. This effect is in agreement with experiments, and is explained by the
presence of reflecting boundary conditions.
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Remark 14 Strictly speaking, reflecting boundary conditions should be first considered for
the positive-epsilon version of the process. For instance, at the moment of hitting a bound-
ary point, the velocity can be required to change its sign instantaneously. One has to ask
whether such a modification might have an effect on the limiting process. One could, in
principle, resolve this problem by adopting the following strategy. Instead of reflecting from
the boundaries, the particle may continue going in the same direction, with the coefficients of
the equation obtained by reflection in the boundary point (i.e. σ(b+ xε

t ) = σ(b− xε
t ), where

b is one of the boundary points etc.). The above asymptotic analysis may be conducted for
the resulting system. The coefficients of this system are periodic (with the period 2(b − a))
and continuous, but nondifferentiable at isolated points, so this would involve additional
technical work. Also, one would have to prove that putting the limiting system back on a
bounded interval indeed gives rise to a process reflecting at the boundaries. We do not pursue
the details here.

6.3 A Thermophoresis Model with Non-Markovian (Harmonic) Noise

We repeat the analysis of the previous subsection in the case when the colored noise is a
harmonic noise. We set d = 1, F = 0, h = g = g := √

γ , σ = σ , Ω = Ω , Ω0 = Ω0 :=
Ω
√
1 − Ω2/4, Ω1 = Ω1 := Ω/

√
1 − Ω2/4 (where |Ω| < 2) in the SIDE (20) and study

the effective dynamics of the resulting system as before. The case where |Ω| > 2 can be
studied analogously. The following result follows from Corollary 6.

Corollary 8 Let ε > 0 be a small parameter and the particle’s position, xε
t ∈ R (t ≥ 0),

satisfy the following rescaled SDEs:

dxε
t = vε

t dt, (138)

m0εdvε
t = −

√
γ (xε

t )

τε

(∫ t

0
e− Ω2

2τε (t−s)
[
cos

(
Ω0

τε
(t − s)

)

+Ω1

2
sin

(
Ω0

τε
(t − s)

)]√
γ (xε

s )v
ε
s ds

)
dt + σ(xε

t )h
ε
t dt, (139)

τεdhε
t = uε

t dt, (140)

τεduε
t = −Ω2uε

t dt − Ω2hε
t dt + Ω2dWt , (141)

where m0 and τ are positive constants, Ω , Ω0 and Ω1 are constants defined as before, and
(Wt ) is a one-dimensional Wiener process. The initial conditions are given by the random
variables xε

0 = x, vε
0 = v, independent of ε, and (hε

0, u
ε
0) are distributed according to the

invariant measure of the SDEs (140), (141).
Assume that the assumptions in Corollary 5 are satisfied. Then, in the limit as ε → 0, the

process xε
t converges (in the same sense as Corollary 5) to the process Xt ∈ R, satisfying

the SDE:
dXt = b2(Xt )dt +√2D(Xt )dWt , (142)

where the noise-induced drift term is given by:

b2(X) = D′(X) (143)

− (4m2
0Ω

6D2(X) + τ 2(kBT (X))2)D(X)

4m2
0Ω

6D2(X) + 2kBT (X)m0τΩ4(Ω2 − 1)D(X) + τ 2(1 + 2Ω2)(kBT (X))2

T ′(X)

T (X)
.

(144)
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We next discuss the contents of Corollary 8.

Remark 15 Note that b2(X) differs from b1(X) obtained previously and b2(X) → b1(X),
with α = 1 in the expression for b1(X), in the limit Ω → ∞.

Discussion In the reflecting boundaries case, the stationary distribution of the particle’s
position is

ρ∞(X)

= C exp

(
−
∫ X

a

D(y)(4Ω6D2(y) + r2(kBT (y))2)

4Ω6D2(y) + 2rΩ4(Ω2 − 1)D(y)kBT (y) + r2(1 + 2Ω2)(kBT (y))2
T ′(y)
T (y)

dy

)
,

(145)

where r := τ/m0 > 0 and C is a normalizing constant. Similarly to the previous model,
in the absence of temperature gradient (i.e. when T is a constant), the particle is equally
likely to be found anywhere in (a, b). When a temperature gradient is present, distribution
of the particle’s position is not uniform. However, in contrast to the previous model, in the
limit r → ∞ the particle is not distributed uniformly on (a, b) and in the limit r → 0 the
stationary density is no longer inversely proportional to the temperature. Both distributions
depend on the diffusion coefficient D(X) as well as on the temperature profile T (X).

We can also study the sign of the thermophoretic drift. In this case there can be up to two
critical ratios, rc, at which b2(X) changes sign, as the equation b2(X) = 0 is a quadratic
equation in r . In the special case when μ(T ) = μ0 > 0 is a constant (and thus so is γ (X)),
the thermophoretic drift is given by:

b2(X) = kBT ′(X)

6πRμ0

[
1 − Ω6 + 9π2R2r2μ2

0

Ω6 + 3πRrΩ4(Ω2 − 1)μ0 + 9π2R2r2(1 + 2Ω2)μ2
0

]
. (146)

In contrast to the result in previous model, b2(X) has the same sign as T ′(X) provided that

r >
Ω2(1 − Ω2)

6πRμ0
. (147)

Thus, b2(X) and T ′(X) do not share the same sign for all r > 0, unless |Ω| ≥ 1. According
to this model, presence of a temperature gradient allows us to tune the parameters (m0, τ,Ω)

to control the direction which the particle travels. The steady-state density in this case is

ρ∞(X) = CT (X)
− Ω6+9π2R2r2μ20

Ω6+3πRrΩ4(Ω2−1)μ0+9π2R2r2(1+2Ω2)μ20 , (148)

whereC is a normalizing constant. The particle will be more likely found in the colder region
for all r > 0 if |Ω| ≥ 1, whereas this might not be true for all r > 0 if |Ω| < 1.

7 Conclusions and Final Remarks

We have studied homogenization of a class of GLEs in the limit when three characteristic
time scales, i.e. the inertial time, the characteristic memory time in the damping term, and
the correlation time of colored noise driving the equations, vanish at the same rate. We have
derived effective equations, which are simpler in three respects:

1. The velocity variables have been homogenized. As a result, the number of degrees of
freedom is reduced and there are no fast variables left.
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2. The equations become regular SDEs, since the memory time has been taken to zero.
3. The system is driven by a white noise.

Importantly, noise-induced drifts are present in the limiting equations, resulting from
the dependence of the coefficients of the original model on the state of the system. We have
applied the general results to a study of thermophoretic drift, correcting the formulae obtained
in an earlier work [42]. In systems, satisfying a fluctuation–dissipation relation, the noise-
induced drifts in the limiting SDEs for the particle’s position reduce to a single term, and for
special cases the limiting SDEs coincide with that of [8]. However, in the more general case,
new terms appear, absent in the case without memory. To prove the main theorem, we have
employed themain result of [8], proven here in a different version under a relaxed assumption
on the damping matrix and the initial conditions.

Homogenization of other specific non-Markovian models can also be studied using the
methods of this paper. An example is a system with exponentially decaying memory kernel,
driven by white noise in the limit as the inertial and memory time scales vanish at the same
rate. In this case the noise-induced drift in the limiting equation will consist of two terms,
not three, as in the case studied here. Moreover, one could also study the case when the time
scales of the system do not vanish at the same rate, along the lines of [3].

The colored noises considered in this paper have correlations decaying exponentially
(short-range memory). It would be interesting to study cases where the GLE is driven by
other colored noises such as fractional Gaussian noises, with covariances decaying as a
power, relevant for modeling anomalous diffusion phenomena in fields ranging from biology
to finance [44]. As mentioned in Sect. 2, we will explore homogenization for GLEs with
vanishing effective damping and diffusion constant in a future work.
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Appendices

Appendix A: Derivation of SIDEs From a HamiltonianModel

For completeness, we provide a derivation for a special case of SIDEs (11), (15) and (20)
from a Hamiltonian model of a small system (Brownian particle) in contact with a heat bath
in thermal equilibrium. The particle is moving in a potentialU . The heat bath is modeled as a
systemof non-interacting harmonic oscillatorswhose initial energy is distributed according to
the Gibbs distribution at temperature T . The Brownian particle is coupled to each oscillator
in the bath. This model is used widely to study many systems in statistical physics [11,
45]. Our goal is to derive, heuristically, a stochastic integro-differential equation (SIDE)
for the position and momentum variables of the particle from the Hamiltonian dynamics.
This derivation serves to motivate the class of SIDEs that we are studying in this paper. We
emphasize that our derivation here is certainly not original and follows closely that in [46]
(see also an abstract approach in [47]).

One approach to derive the equations is to assumefirst that there are finitelymanyharmonic
oscillators in the bath (Kac–Zwanzig model [32,48]). We then take the thermodynamic limit
by sending the number of oscillators to infinity in the resulting equations (replacing finite
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sum over oscillator frequencies by an integral), arguing that the set of frequencies must be
dense to allow dissipation of energy from the system to the bath and to eliminate Poincaré
recurrence. Another approach, which is more technically involved, is to replace the finite
system of oscillator equations by a system modeled by a wave equation [27,49]. We will
derive the SIDEs by adopting the former approach in the multi-dimensional case.

We consider the situation where the coupling is nonlinear in the particle’s position and
linear in the bath variables. Let x̂ = (x, x1, . . . , xN ) ∈ R

d+Np and p̂ = ( p, p1, . . . , pN ) ∈
R
d+Np (here, x, p ∈ R

d and xi , pi ∈ R
p for i = 1, . . . , N ). Hereafter, the superscript

∗ denotes transposition and |b|2 := b∗b = ∑n
k=1 b

2
k denotes square of the norm of vector

b := (b1, . . . , bn) ∈ R
n .

The Hamiltonian of the system plus bath is:

H(x̂, p̂) = | p|2
2m

+U (x) +
N∑

k=1

⎛
⎝ | pk |2

2
+ 1

2
ω2
k

∣∣∣∣∣xk − c∗k
ω2
k

f (x)

∣∣∣∣∣
2
⎞
⎠ , (149)

where m is the particle’s mass, x ∈ R
d and p ∈ R

d are respectively the particle’s position
and momentum, xk ∈ R

p , pk ∈ R
p and ωk ∈ R

+ (k = 1, . . . , N ) are respectively the
position, momentum and frequency of the kth bath oscillator (with unit mass), f (x) :=
( f1(x), . . . , fr (x)) ∈ R

r is a vector function of x := (x (1), . . . , x (d)) and the ck ∈ R
r×p (so

c∗k ∈ R
p×r ) are coupling matrices that specify the coupling strength between the system and

the kth bath oscillator.
To derive an equation for the particle’s position and momentum, we start by substituting

the expression for H(x̂, p̂) into the Hamilton’s equations to obtain:

ẋ = p
m

, (150)

ṗ = −∇xU (x) + g(x)
∑
k

ck

(
xk − c∗k

ω2
k

f (x)

)
, (151)

ẋk = ṗk, k = 1, . . . , N , (152)

ṗk = −ω2
k xk + c∗k f (x), k = 1, . . . , N , (153)

where g(x) ∈ R
d×r denotes the Jacobian matrix

(
∂ fi

∂x ( j)

)
i j

.

Next, we eliminate the bath variables xk, pk , k = 1, . . . , N , from the system’s dynamics.
Solving for xk(t) in terms of x(t):

xk(t) = xk(0) cos(ωk t) + pk(0)
ωk

sin(ωk t) + c∗k
ωk

∫ t

0
sin(ωk(t − s)) f (x(s))ds. (154)

Substituting this into (151), we obtain:

ṗ(t) = −∇xU (x(t)) + g(x(t))
∑
k

ck c∗k
ω2
k

(∫ t

0
ωk sin(ωk(t − s)) f (x(s))ds − f (x(t))

)

+ g(x(t))F(t), (155)

where

F(t) =
∑
k

ck

(
xk(0) cos(wk t) + pk(0)

ωk
sin(ωk t)

)
. (156)

123



Homogenization for a Class of Generalized Langevin Equations with an. . . 683

In the integral term above, we integrate by parts to obtain:
∫ t

0
ωk sin(ωk(t − s)) f (x(s))ds = f (x(t)) − cos(ωk t) f (x(0))

−
∫ t

0
cos(ωk(t − s))g∗(x(s))ẋ(s)ds. (157)

Using this, the equation for p(t) becomes the generalized Langevin equation (GLE):

ṗ(t) = −∇xU (x(t)) − g(x(t))
∫ t

0
κ(t − s)g∗(x(s))ẋ(s)ds + g(x(t))ξ(t), (158)

where

κ(t) =
∑
k

ck c∗k
ω2
k

cos(ωk t) ∈ R
r×r (159)

and

ξ(t) = F(t) − κ(t) f (x(0)) =
∑
k

ck

((
xk(0) − c∗k

ω2
k

f (x(0))

)
cos(ωk t) + pk(0)

ωk
sin(ωk t)

)
.

(160)
Note that ξ(t) ∈ R

r is expressed in terms of the initial values of the variables x′
k(0) :=

xk(0) − c∗k
ω2
k
f (x(0)) ∈ R

p and pk(0) ∈ R
p . If all these initial values are known, then ξ(t)

is a deterministic force. However, one rarely has a complete information about these initial
values and this is where the introduction of randomness can help to simplify the model. In
view of this, we assume that the variables x′

k(0) and pk(0) are random and are distributed
according to a Gibbs measure, with the density:

ρ((xk, pk) | x(0) = x) = Z−1 exp

⎛
⎝−β

⎛
⎝ N∑

k=1

| pk |2
2

+ 1

2
ω2
k

∣∣∣∣∣xk − c∗k
ω2
k

f (x)

∣∣∣∣∣
2
⎞
⎠
⎞
⎠, (161)

where β = 1/(kBT ) and Z is the partition function. Taking the averages of the bath variables
with respect to the above density:

Eρ

[
x′
k(0) | x(0) = x

] = 0, Eρ[ pk(0) | x(0) = x] = 0, (162)

Eρ[x′
k(0)(x

′
k(0))

∗ | x(0) = x] = kBT

ω2
k

I, Eρ[( pk(0)( pk(0))∗ | x(0) = x] = kBT I,

(163)

where Eρ denotes mathematical expectation with respect to ρ and I ∈ R
p×p is identity

matrix.
Note that ξ(t) is a stationary Gaussian process, if it is conditionally averaged with respect

to ρ [32]. It follows from this distribution of the bath variables that we have the fluctuation–
dissipation relation:

Eρ[ξ(t)] = 0, Eρ[ξ(t)ξ(s)∗] = kBT κ(t − s), (164)

where κ(t−s) is thememory kernelwhose formula is given in (159). Later, wewill generalize
the resulting covariance of the process ξ(t) to an integral expression. We remark that the
memory function κ(t) and the “color” of the noise ξ(t) are determined by the bath spectrum
and the system-bath coupling.
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Now we pass to the continuum limit by replacing the sum over k in κ(t) by an integral∫
R+ dωn(ω), where n(ω) is a density of states. Then, if the ck are replaced by c(ω) ∈ R

r×p ,
the memory function κ(t) becomes the function:

κ(t) =
∫
R+

dωn(ω)
c(ω)c(ω)∗

ω2 cos(ωt), (165)

where κ̂c(ω) := n(ω)c(ω)c(ω)∗/ω2 ∈ L1(R+). Repeating the same procedure for the noise
process and also replacing the x′

k(0) and pk(0) by x
′(ω) and p(ω) respectively, ξ(t) becomes:

ξ(t) =
∫
R+

dωn(ω)c(ω)

(
x′(ω) cos(ωt) + p(ω)

ω
sin(ωt)

)
. (166)

The choice of the n(ω) and c(ω) specifies the memory function and therefore (by the
fluctuation–dissipation relation) the statistical properties of the noise process. We write κ(t)
as an inverse Fourier transform of a measure:

κ(t) = 1

2π

∫
R

S(ω)eiωt dω, (167)

where the measure is absolutely continuous with respect to the Lebesgue measure, with the
density S(ω) = π κ̂c(ω) ≥ 0. The density S(ω) is known as the spectral density of the bath.

In the following examples, we take n(ω) = 2ω2/π (Debye-type spectrum for phonon
bath).

Example 1 If we choose c(ω) ∈ R
d×d to be the identity matrix I multiplied by a scalar

constant that is independent of ω, then κ(t) is proportional to δ(t)I . This leads to a Langevin
equation driven by white noise, in which the damping term is instantaneous. In this case, we
have the SDE system for (xt , vt ) ∈ R

d×d :

dxt = vt dt, (168)

mdvt = −∇xU (xt )dt − g(xt )g∗(xt )vt dt + g(xt )ξ t dt, (169)

where ξ t is a white noise.

Example 2 If we choose c(ω) ∈ R
d×d to be the diagonal matrix with the kth entry

αk√
α2
k + ω2

, (170)

where the αk > 0, then we have:
κ(t) = Ae−A|t |, (171)

where A is the constant diagonal matrix with the kth entry equal αk . This gives SIDE (15).
On the other hand, choosing c(ω) to be the diagonal matrix with the kth entry

(
ωkk

τkk

)2 1√
ω2(ω2

kk/τkk)
2 + (ω2 − (ωkk/τkk)2)2

(172)

allows us to obtain the covariance function of a harmonic noise process, where the ωkk and
τkk are the diagonal entries of the matrices Ω and τ respectively. In the general case where
κ(t) is of the form (3), onemay take M1 = I , Γ 1 to be positive definite (so that the Lyapunov
equation gives Γ 1 = Σ1Σ

∗
1/2) and choose

c(ω) = 1√
2
C1(Γ

2
1 + ω2 I)−1/2Σ1. (173)
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Conclusion The goal of this paper is to study effective dynamics of systems which can be
modeled by equations of the form (11). As argued above, Hamiltonian systems describing
particles interacting with heat baths can be modeled by equations of the form (11).

Appendix B: Outline of the Proof of Theorem 1

We provide minimal outline of the proof of Theorem 1 in the following.

Appendix B.1: Derivation of Limiting SDE

Denoting W (k)
t = W t , we start by rewriting SDE (31) as

vmt dt = −mγ −1(xmt )dvmt + γ −1(xmt )F(xmt )dt + γ −1(xmt )σ (xmt )dW t . (174)

The integral form of the above is given by

xmt = x − m
∫ t

0
γ −1(xms )dvms +

∫ t

0
γ −1(xms )F(xms )ds +

∫ t

0
γ −1(xms )σ (xms )dW s .

(175)

We are interested in the limit as m → 0 of the process xmt . As m → 0, we expect
the sum of the second and third integral terms in the right hand side above to converge to∫ t
0 γ −1(Xs)F(Xs)ds + ∫ t0 γ −1(Xs)σ (Xs)dW s .
To examine the asymptotics of the first integral term whenm becomes small, we integrate

by parts to write its i th component as:
∫ t

0
(γ −1)i j (xms )d(mvms ) j = (γ −1)i j (xmt )m(vmt ) j − (γ −1)i j (x)m(vm) j

−
∫ t

0

∂

∂xml
[(γ −1)i j (xms )]m(vms ) j (v

m
s )l ds. (176)

Note that the product m(vms ) j (v
m
s )l is the ( j, l)-entry of the matrix mvms (vms )∗.

We now examine the asymptotic behavior of the above expression in the limit as m → 0.
Following [8], we express the matrix mvms (vms )∗, s ∈ [0, t], as a solution to an equation by
applying Itô’s formula to the matrix (mvms )(m(vms )∗). This leads to:

d[(mvms )(m(vms )∗)] = −[γ (xms )(mvms (vms )∗ds) + (mvms (vms )∗ds)γ ∗(xms )]
+ σ (xms )σ ∗(xms )ds + dUm

s + d(Um
s )∗, (177)

where

dUm
s = (F(xms )ds + σ (xms )dW s)m(vms )∗, (178)

d(Um
s )∗ = mvms (F∗(xms )ds + dW∗

sσ
∗(xms )). (179)

Denoting mvms (vms )∗ds by V , −γ (xms ) by Q and letting

C := d[(mvms )(m(vms )∗)] − σ (xms )σ ∗(xms )ds − dUm
s − d(Um

s )∗, (180)

we can write the above equation as the following Lyapunov equation

QV + V Q∗ = C. (181)
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By Assumption 2, all real parts of the eigenvalues of Q are negative, thus the Lyapunov
equation has a unique solution given by:

V = −
∫ ∞

0
eQyCeQ

∗ydy. (182)

Writing this out explicitly, we obtain:

mvms (vms )∗ds = −
∫ ∞

0
e−γ (xms )yd[(mvms )(m(vms )∗)]e−γ ∗(xms )ydy

+
∫ ∞

0
e−γ (xms )y(σ (xms )σ ∗(xms )ds)e−γ ∗(xms )ydy

+
∫ ∞

0
e−γ (xms )y(dUm

s + d(Um
s )∗)e−γ ∗(xms )ydy. (183)

Based on the prior result in [8], we expect that only the second term on the right hand side
has a nonzero limit as m → 0. The other terms are expected to vanish as m → 0. Thus, in
the limit m → 0, we expect that mvmt (vmt )∗ converges to the solution, J , of the Lyapunov
equation:

Jγ ∗ + γ J = σσ ∗, (184)

given in the statement of Theorem 1 (see Eq. (35)).

Appendix B.2: Moment Estimates

To justify the above convergence arguments, we provide estimate on the pth moment of the
momentum process pmt := mvmt , in the limit m → 0.

Proposition 1 Suppose that Assumption 1–4 hold. For all p ≥ 1, T > 0, there exists a
positive random variable m1 such that:

E

[
sup

t∈[0,T ]
| pmt |p;m ≤ m1

]
→ 0 (185)

as m → 0.

Proof For t ∈ [0, T ], m > 0, the process pmt satisfies the SDE:

d pmt = −γ (xmt )

m
pmt dt + F(xmt )dt + σ (xmt )dW t . (186)

Let τ ∈ [0, t] and rewrite the above equation as:

d pmt = −γ (xmτ )

m
pmt dt + 1

m

(
γ (xmτ ) − γ (xmt )

)
pmt dt + F(xmt )dt + σ (xmt )dW t , (187)

which admits the following solution representation:

pmt = e− γ (xmτ )

m t pm0 +
∫ t

0
e− γ (xmτ )

m (t−s)F(xms )ds +
∫ t

0
e− γ (xmτ )

m (t−s)σ (xms )dW s

+ 1

m

∫ t

0
e− γ (xmτ )

m (t−s)(γ (xmτ ) − γ (xms )) pms ds. (188)
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We set τ = t in the above representation to obtain:

pmt = e− γ (xmt )

m t pm0 +
∫ t

0
e− γ (xmt )

m (t−s)F(xms )ds +
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

+ 1

m

∫ t

0
e− γ (xmt )

m (t−s)(γ (xmt ) − γ (xms )) pms ds. (189)

Therefore,

| pmt | ≤
∣∣∣∣e− γ (xmt )

m t pm0

∣∣∣∣+
∫ t

0

∥∥∥∥e− γ (xmt )

m (t−s)
∥∥∥∥ · |F(xms )|ds +

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣
+ sup

s∈[0,T ]
| pms | · 1

m

∫ t

0

∥∥∥∥e− γ (xmt )

m (t−s)
∥∥∥∥ · ‖(γ (xmt ) − γ (xms ))‖ds. (190)

By assumption on the boundedness and spectrum of γ (xτ ) ∈ R
n×n (see Assumption 1-2),

there exist positive constants κ > 0 and C > 0 such that∥∥∥∥e− γ (xmτ )

m s
∥∥∥∥ ≤ Ce− κ

m s, (191)

for all s, τ ∈ [0, T ], m > 0. Indeed, applying the formula (A.2.4) in [50], one has:

∥∥∥∥e− γ (xmτ )

m s
∥∥∥∥ ≤ e− Λ

m s

(
1 + 2‖γ ‖

n−1∑
k=1

1

k!
(
2s‖γ ‖
m

)k)
, (192)

where Λ := mink Re(λk) > 0 and the λk are the eigenvalues of γ . Therefore, there exists a

constant C > 0 such that

∥∥∥∥e− γ (xmτ )

m s

∥∥∥∥ ≤ Ce− Λ
2m s .

Using this, we obtain the following P-a.s. estimate:

sup
t∈[0,T ]

| pmt | ≤ C
∣∣ pm0

∣∣+ C sup
t∈[0,T ]

∫ t

0
e− κ

m (t−s)|F(xms )|ds

+ sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣

+ sup
t∈[0,T ]

| pmt |
(

sup
t∈[0,T ]

C̃

m

∫ t

0
e− κ

m (t−s)‖γ (xmt ) − γ (xms )‖ds
)

, (193)

where C̃ > 0 is a constant.
Next, the key observation on (193) is that the term in parentheses in (193) can be made

small by choosing a sufficiently smallm. More precisely, using an adapted version of Lemma
A.2.4 in [50], there exists a (generally random) m1 > 0 such that for m ≤ m1,

sup
t∈[0,T ]

| pmt | ≤ C
∣∣ pm0

∣∣+ C sup
t∈[0,T ]

∫ t

0
e− κ

m (t−s)|F(xms )|ds

+ sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣+ 1

2
sup

t∈[0,T ]
| pmt |, (194)

and so:

sup
t∈[0,T ]

| pmt | ≤ 2C
∣∣ pm0

∣∣+ 2C sup
t∈[0,T ]

∫ t

0
e− κ

m (t−s)|F(xms )|ds
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+ 2 sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣ (195)

≤ 2Cm
∣∣vm0
∣∣+ 2C

m

κ
sup
u∈Rn

|F(u)| + 2 sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣ .
(196)

Therefore, for p ≥ 1,

E

[
sup

t∈[0,T ]
| pmt |p;m ≤ m1

]
≤ C1(p)E

[∣∣mvm0
∣∣p ;m ≤ m1

]+ C2(p)E
[
mp;m ≤ m1

]

+ C3(p)E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣
p

;m ≤ m1

]
,

(197)

where C1(p), C2(p) and C3(p) are some positive constants.
We estimate the last term in the above, using in particular the Burkholder-Davis-Gundy

inequality [33]:

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣
p

;m ≤ m1

]

≤ E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
e− γ (xmt )

m (t−s)σ (xms )dW s

∣∣∣∣
p
]

(198)

≤ C(p, n)E

(∫ T

0
‖e− γ (xmt )

m (t−s)σ (xms )‖2Fds
)p/2

(199)

≤ C̃(p, n)E

(∫ T

0
e−2κ(t−s)/mds

)p/2

(200)

≤ C̃(p, n)

κ
mp/2, (201)

where C(p, n), C̃(p, n) are positive constants dependent on p and n, and ‖ · ‖F
denotes Frobenius norm. Using this estimate, (197) and Assumption 3, we see that
E
[
supt∈[0,T ] | pmt |p;m ≤ m1

]→ 0 as m → 0. 
�

We also need the following estimate on a class of integrals with respect to products of
the components of the momentum process pmt = mvmt . The estimate is a straightforward
modification of the one given in Proposition 2.3 in [37].

Proposition 2 Suppose that Assumption 1-4 hold. Let h : Rn → R be a C1
b function (i.e.

continuously differentiable and bounded function) on [0, T ], with bounded first derivative
∇xh(x) for every x ∈ R

n. Then for any p ≥ 1, T > 0, i, j = 1, . . . , n,

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
h(xms )d((pms )i (p

m
s ) j )

∣∣∣∣
p

;m ≤ m1

]
→ 0 (202)

as m → 0, where the m1 is from Proposition 1. Here i, j denote the components of the
momentum process pmt in the standard basis for Rn.
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Using the above moment estimates and the proof techniques (the main tools are well
known ordinary and stochastic integral inequalities as well as a Gronwall type argument)
in [36,37], one obtain the convergence of xmt to X t in the limit as m → 0 in the following
sense: for all finite T > 0, p ≥ 1,

E

[
sup

t∈[0,T ]
|xmt − X t |p;m ≤ m1

]
→ 0, (203)

as m → 0, where the m1 is from Proposition 1. This implies that for all finite T > 0,
supt∈[0,T ] |xmt − X t | → 0 in probability, in the limit as m → 0 (see Lemma 1 below).

Lemma 1 Let Ym ≥ 0 (m ≥ 0) be a family of random variables. Suppose that there exists a
strictly positive random variable m∗(ω) such that

lim
m→0

E
[
Y p
m ;m∗ ≥ m

]→ 0

for some p ≥ 1. Then Ym → 0 in probability as m → 0.

Proof Let g be a bounded continuous function on R+. We have

E [g(Ym)] = E
[
g(Ym);m∗ ≤ m

]+ E
[
g(Ym);m∗ ≥ m

]
. (204)

The first term is bounded from above by (sup |g|)P [m∗ ≤ m
]
which goes to zero as m → 0,

since ∩m>0{m∗ ≤ m} = ∅. To estimate the second term, let ε > 0. Choose δ > 0 such that
|g(y)| < ε whenever y < δ. We have

E
[
g(Ym);m∗ ≥ m

] ≤ E
[
g(Ym);m∗ ≥ m, Ym < δ

]+ E
[
g(Ym);m∗ ≥ m, Ym ≥ δ

]
.

(205)
The first term is bounded from above by ε. The function g(y)

y on {y : y ≥ δ} is bounded by
some constant M , so the second term on the right-hand side of the above equation is bounded
from above by ME

[
Ym;m∗ ≥ m

]
which goes to zero as m → 0 by assumption. The lemma

is proven. 
�

We end this appendix with a remark on the mode of convergence stated in Theorem 1.

Remark 16 Provided that for p ≥ 1, there exists a constant C > 0 such that
E supt∈[0,T ] | pmt |p < C for all m > 0 (so that the family of random variables
(supt∈[0,T ] | pmt |p)m>0 is uniformly integrable), one could, using Proposition 1, Lemma 1 and
Theorem 13.7 in [51], obtain L p-convergence of supt∈[0,T ] | pmt | to zero and hence strengthen
the convergence result stated in Theorem1 to L p-convergence. The uniform integrability con-
dition is satisfied if E supt∈[0,T ] ‖Φm(t)‖p is bounded uniformly in m, where Φm(t) is the
fundamental matrix that solves the random initial value problem:

∂

∂t
Φm(t) = −γ (xmt )

m
Φm(t), Φm(0) = I, t ∈ [0, T ]. (206)

However, it is not obvious how one could verify the latter condition from our assumptions
on γ . Roughly speaking, one does not have a good control of supt∈[0,T ] | pmt |p outside of the
set {m ≤ m1}. If γ was, in addition, symmetric (and so all the (real) eigenvalues of γ are
bounded from below by a positive constant—c.f. [37]), the condition can be easily verified.

123



690 S. H. Lim, J. Wehr

References

1. Majda, A.J., Timofeyev, I., Vanden Eijnden, E.: Amathematical framework for stochastic climate models.
Commun. Pure Appl. Math. 54(8), 891–974 (2001)

2. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms.
Nonlinearity 17(6), R55 (2004)

3. Pavliotis, G.A., Stuart, A.M.: Analysis of white noise limits for stochastic systemswith two fast relaxation
times. Multiscale Model. Simul. 4(1), 1–35 (2005)

4. Pavliotis, G., Stuart, A.: Multiscale Methods, Texts in Applied Mathematics, vol. 53. Springer, New York
(2008)

5. Nelson, E.: Dynamical Theories of BrownianMotion, vol. 2. Princeton University Press, Princeton (1967)
6. Franosch, T., Grimm, M., Belushkin, M., Mor, F.M., Foffi, G., Forró, L., Jeney, S.: Resonances arising

from hydrodynamic memory in Brownian Motion. Nature 478(7367), 85–88 (2011)
7. Gröblacher, S., Trubarov, A., Prigge, N., Cole, G., Aspelmeyer, M., Eisert, J.: Observation of non-

Markovian micromechanical Brownian motion. Nat. Commun. 6, 7606 (2015). https://doi.org/10.1038/
ncomms8606

8. Hottovy, S.,McDaniel,A.,Volpe,G.,Wehr, J.: The Smoluchowski–Kramers limit of stochastic differential
equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283 (2015)

9. Trentelman, H.L., Stoorvogel, A.A., Hautus, M.: Control Theory for Linear Systems. Communications
and Control Engineering Series. Springer, Berlin (2002)

10. Willems, J., Van Schuppen, J.: Stochastic systems and the problem of state space realization. In: Geo-
metrical Methods for the Theory of Linear Systems: Proceedings of a NATO Advanced Study Institute
and AMS Summer Seminar in Applied Mathematics held at Harvard University, Cambridge, June 18–29,
1979, vol. 62, p. 283. Springer, Berlin (1980)

11. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965)
12. Kubo, R.: The fluctuation–dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)
13. Toda, M., Kubo, R., Saito, N., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechan-

ics. Springer Series in Solid-State Sciences. Springer, Berlin (2012)
14. Goychuk, I.: Viscoelastic subdiffusion: Generalized Langevin equation approach. Adv. Chem. Phys. 150,

187 (2012)
15. Van Kampen, N.: Remarks on non-Markov processes. Braz. J. Phys. 28(2), 90–96 (1998)
16. Łuczka, J.: Non-Markovian stochastic processes: colored noise. Chaos: an interdisciplinary. J. Nonlinear

Sci. 15(2), 026107 (2005)
17. Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite

Variance. Stochastic Modeling Series. Taylor & Francis, Boca Raton (1994)
18. Stella, L., Lorenz, C.D., Kantorovich, L.: Generalized Langevin equation: an efficient approach to

nonequilibrium molecular dynamics of open systems. Phys. Rev. B 89, 134303 (2014). https://doi.org/
10.1103/PhysRevB.89.134303

19. McKinley, S.A., Yao, L., Forest, M.G.: Transient anomalous diffusion of tracer particles in soft matter. J.
Rheol. (1978-present) 53(6), 1487–1506 (2009)

20. Adelman, S., Doll, J.: Generalized Langevin equation approach for atom/solid-surface scattering: general
formulation for classical scattering off harmonic solids. J. Chem. Phys. 64(6), 2375–2388 (1976)

21. Ottobre, M., Pavliotis, G.A.: Asymptotic analysis for the generalized Langevin equation. Nonlinearity
24, 1629–1653 (2011). https://doi.org/10.1088/0951-7715/24/5/013

22. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45
(1960)

23. Bellman, R.: Introduction to Matrix Analysis, vol. 19. SIAM, Philadelphia (1997)
24. Lindquist, A., Picci, G.: Realization theory for multivariate stationary Gaussian processes. SIAM J.

Control Optim. 23(6), 809–857 (1985)
25. Lindquist, A., Picci, G.: Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and

Identification. Series in Contemporary Mathematics. Springer, Berlin (2015)
26. Bao, J.D., Hänggi, P., Zhuo, Y.Z.: Non-Markovian Brownian dynamics and nonergodicity. Phys. Rev. E

72(6), 061,107 (2005)
27. Pavliotis, G.: Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and

Langevin Equations. Texts in Applied Mathematics. Springer, New York (2014)
28. Hottovy, S., McDaniel, A., Wehr, J.: A small delay and correlation time limit of stochastic differential

delay equations with state-dependent colored noise. Markov Proc. Relat. Fields 22(3), 595–628 (2016)
29. Schimansky-Geier, L., Zülicke, C.: Harmonic noise: effect on bistable systems. Zeitschrift für Physik B

Condensed Matter 79(3), 451–460 (1990)

123

https://doi.org/10.1038/ncomms8606
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1103/PhysRevB.89.134303
https://doi.org/10.1103/PhysRevB.89.134303
https://doi.org/10.1088/0951-7715/24/5/013


Homogenization for a Class of Generalized Langevin Equations with an. . . 691

30. McDaniel, A., Duman, O., Volpe, G., Wehr, J.: An SDE approximation for stochastic differential delay
equations with colored state-dependent noise (2014). arXiv:1406.7287

31. Hänggi, P., Jung, P., Zerbe, C., Moss, F.: Can colored noise improve stochastic resonance? J. Stat. Phys.
70(1), 25–47 (1993)

32. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)
33. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Berlin (2012)
34. Hottovy, S., Volpe, G., Wehr, J.: Noise-induced drift in stochastic differential equations with arbitrary

friction and diffusion in the Smoluchowski–Kramers limit. J. Stat. Phys. 146(4), 762–773 (2012). https://
doi.org/10.1007/s10955-012-0418-9

35. Herzog, D.P., Hottovy, S., Volpe, G.: The small mass limit for Langevin dynamics with unbounded
coefficients and positive friction. J. Stat. Phys. 163(3), 659–673 (2016). https://doi.org/10.1007/s10955-
016-1498-8

36. Birrell, J., Hottovy, S., Volpe, G., Wehr, J.: Small mass limit of a Langevin equation on a manifold.
Annales Henri Poincaré 18, 707–755 (2017)

37. Birrell, J., Wehr, J.: Homogenization of Dissipative, Noisy, Hamiltonian Dynamics. Stochastic Processes
and Their Applications. Elsevier, Amsterdam (2017)

38. Volpe, G., Wehr, J.: Effective drifts in dynamical systems with multiplicative noise: a review of recent
progress. Rep. Prog. Phys. 79(5), 053901 (2016)

39. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)
40. Winkelbauer, A.: Moments and absolute moments of the normal distribution (2012). arXiv:1209.4340
41. Eckmann, J.P., Pillet, C.A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains

coupled to two heat baths at different temperatures. Commun. Math. Phys. 201(3), 657–697 (1999)
42. Hottovy, S., Volpe, G., Wehr, J.: Thermophoresis of Brownian particles driven by colored noise. EPL 99,

60002 (2012)
43. Piazza, R., Parola, A.: Thermophoresis in colloidal suspensions. J. Phys. 20(15), 153102 (2008)
44. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat.

2(2), 501–535 (2008)
45. Ford, G., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys.

6(4), 504–515 (1965)
46. Hänggi, P.: Generalized Langevin equations: A useful tool for the perplexed modeller of nonequilibrium

fluctuations? Stochastic Dynamics, pp. 15–22. Springer, Berlin (1997)
47. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973). https://doi.

org/10.1007/BF01008729
48. Ariel, G., Vanden-Eijnden, E.: A strong limit theorem in the Kac–Zwanzig model. Nonlinearity 22(1),

145 (2008)
49. Rey-Bellet, L.: Open classical systems. Open Quantum Systems II, pp. 41–78. Springer, Berlin (2006)
50. Kabanov, Y., Pergamenshchikov, S.: Two-Scale Stochastic Systems: Asymptotic Analysis and Control.

Stochastic Modelling and Applied Probability. Springer, Berlin (2013)
51. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

123

http://arxiv.org/abs/1406.7287
https://doi.org/10.1007/s10955-012-0418-9
https://doi.org/10.1007/s10955-012-0418-9
https://doi.org/10.1007/s10955-016-1498-8
https://doi.org/10.1007/s10955-016-1498-8
http://arxiv.org/abs/1209.4340
https://doi.org/10.1007/BF01008729
https://doi.org/10.1007/BF01008729

	Homogenization for a Class of Generalized Langevin Equations with an Application to Thermophoresis
	Abstract
	1 Introduction
	2 Generalized Langevin Equations (GLEs)
	2.1 GLEs as Non-Markovian Models
	2.2 Homogenization of SIDEs: Discussion and Statement of the Problem

	3 Smoluchowski–Kramers Limit of SDE's Revisited
	4 Homogenization for Generalized Langevin Dynamics
	5 Homogenization for Models of the Two Sub-classes
	5.1 SIDEs Driven by a Markovian Colored Noise
	5.2 SIDEs Driven by a Non-Markovian Colored Noise

	6 Application to the Study of Thermophoresis
	6.1 Introduction
	6.2 A Thermophoresis Model with Ornstein–Uhlenbeck Noise
	6.3 A Thermophoresis Model with Non-Markovian (Harmonic) Noise

	7 Conclusions and Final Remarks
	Acknowledgements
	Appendices
	Appendix A: Derivation of SIDEs From a Hamiltonian Model
	Appendix B: Outline of the Proof of Theorem 1
	Appendix B.1: Derivation of Limiting SDE
	Appendix B.2: Moment Estimates

	References




