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Abstract
If F is a set of subgraphs F of a finite graph E we define a graph-counting polynomial
pF (z) = ∑

F∈F z|F | In the present note we consider oriented graphs and discuss some cases
where F consists of unbranched subgraphs E . We find several situations where something
can be said about the location of the zeros of pF .

Let F be a set of subgraphs F of a finite graph E . We denote by |F | the number of edges of
F and define a polynomial

pF (z) =
∑

F∈F
z|F |

(graph-counting polynomial associated with F). The case of unoriented graphs has been
discussed earlier (see [4–6] and [1–3]); here we mostly consider oriented graphs.

We shall find that for suitableF we can restrict the location of the zeros of pF (for instance
to the imaginary axis). The proofs will be based on the following fact:

Lemma (Asano-Ruelle). Let K1, K2 be closed subsets of the complex plane C such that
K1, K2 �� 0 and assume that

A + Bz1 + Cz2 + Dz1z2 �= 0 when z1 /∈ K1, z2 /∈ K2

Then

A + Dz �= 0 when z /∈ −K1K2

where −K1K2 is minus the set of products of an element of K1 and an element of K2. (The
replacement of A + Bz1 + Cz2 + Dz1z2 by A + Dz is called Asano contraction and denoted
(z1, z2) → z).

For a proof see for instance the Appendix A of [6]. The results given below follow rather
directly from this lemma.

1 Definitions: Subgraphs of an Oriented Graph

We say that a pair (V , E) of finite sets is an oriented graph if V �= ∅ and we are given
two maps x ′, x ′′ : E → V such that x ′(e) �= x ′′(e) for all e ∈ E . The elements x of V
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are vertices, and the elements e of E are oriented edges with endpoints x ′(e), x ′′(e); e is
outgoing at x ′(e) and ingoing at x ′′(e) and we write e : x ′(e) → x ′′(e). We allow different
edges e1, e2 such that e1 : x ′ → x ′′ and e2 : x ′ → x ′′ or e2 : x ′′ → x ′.

We say that (V , E) is bipartite if we are given a partition of V into nonempty sets V1 and
V2 such that for each e ∈ E the points x ′(e) and x ′′(e) are in different sets of the partition
{V1, V2}.

We call a subset F of E a subgraph of (V , E). We say that F is connected if for each
partition {F1, F2} of F there is an x ∈ V which is an endpoint of both some e1 ∈ F1 and
some e2 ∈ F2. A subgraph is thus a union of connected components Fj in a unique way.

We say that F is an unbranched subgraph if, for each x ∈ V ,

|{e ∈ F : x ′(e) = x}| ≤ 1 and |{e ∈ F : x ′′(e) = x}| ≤ 1

We say that an unbranched subgraph is a loop subgraph if for each x ∈ V we have

|{e ∈ F : x ′(e) = x}| = |{e ∈ F : x ′′(e) = x}|
We denote by U (E), resp. L(E), the set of unbranched subgraphs, resp. loop subgraphs of
the oriented graph (V , E). If F is an unbranched subgraph, we can write F as a disjoint
union of connected components Fj which are either loops (i.e., Fi ∈ L(E)) or, if they are not
loops, have different endpoints x ′

j and x ′′
j such that x ′

j → · · · (e) · · · → x ′′
j for each e ∈ Fj .

Introduce now complex variables z′
e, z′′

e , write Z ′ = (z′
e)e∈E , Z ′′ = (z′′

e )e∈E and, for each
x ∈ V , let

px (Z ′, Z ′′) =
⎛

⎝a′(x) +
∑

e:x ′(e)=x

z′
e

⎞

⎠

⎛

⎝a′′(x) +
∑

e:x ′′(e)=x

z′′
e

⎞

⎠ (1)

with some choice of the a′(x), a′′(x) ∈ C. For small ε > 0 we also write

pε
x (Z ′, Z ′′) =

⎛

⎝a′(x) +
∑

e:x ′(e)=x

(z′
e + ε)

⎞

⎠

⎛

⎝a′′(x) +
∑

e:x ′′(e)=x

(z′′
e + ε)

⎞

⎠

and

p̃x = 1 + px , p̃ε
x = 1 + pε

x

Choosing between px and p̃x for each x and applying Asano contractions (z′
e, z′′

e ) → ze for
all e ∈ E to the polynomials

∏

x∈V

(px (Z ′, Z ′′) or p̃x (Z ′, Z ′′)),
∏

x∈V

(pε
x (Z ′, Z ′′) or p̃ε

x (Z ′, Z ′′)) (2)

we obtain polynomials

P(Z), Pε(Z)

where Z = (ze)e∈E and

lim
ε→0

Pε(Z) = P(Z)

We shall obtain examples of p(z) = pF (z) by taking all components ze of Z equal to z.
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2 Unbranched Subgraphs of an Oriented Graph

If there are only px factors in (2) and we assume a′(x)a′′(x) = 1 for all x , we have

P(Z) =
∑

F∈U (E)

conn∏

Fj ⊂F

[a′′(x ′
j )a

′(x ′′
j )]Fjnot loop

∏

e∈Fj

ze (3)

where the product is over the connected components Fj of F and x ′
j , x ′′

j are the endpoints
of Fj if j is not a loop; [a′′(x ′

j )a
′(x ′′

j )] is replaced by 1 if Fj is a loop.
If we take a′(x) = a′′(x) = 1 and set all ze equal to z we obtain the unbranched subgraph

counting polynomial

punbranched(z) =
∑

F∈U (E)

z|F | (4)

Proposition 2.1 The zeros of the unbranched subgraph counting polynomial (4) are all real
and strictly negative.

To prove this let α′, α′′ ∈ (−π/2, π/2). Assuming

Re(z′
e + ε)e−iα′

> 0 , Re(z′′
e + ε)e−iα′′

> 0

for all e ∈ E and all ε > 0, we have
∏

x∈V pε
x (Z ′, Z ′′) �= 0 and therefore by the Asano-

Ruelle Lemma Pε(Z) �= 0 if e−i(α′+α′′)ze is in a neighborhood of the positive real axis and
−π < α′ + α′′ < π . Let p(z) and pε(z) be obtained by taking all ze equal to z in P(Z)

and Pε(Z). Then pε(z) �= 0 if arg z ∈ (−π, π). Using Hurwitz’s theorem we let ε → 0 in
pε(z) and find that either p(z) vanishes identically or p(z) �= 0 if arg z ∈ (−π, π). Clearly
p(0) �= 0 because ∅ ⊂ U (E) and we obtain thus punbranched(z) = p(z) �= 0 if z is not real
strictly negative. 
�

[In fact since a′(x) = a′′(x) = 1 we could have done without ε in the present situation].
Let now deg2 be the max over x ∈ V of the number d ′

x of outgoing edges at x times the
max over x of the number d ′′

x of ingoing edges at x . Then px (Z ′, Z ′′) �= 0 if |z′
e| < 1/d ′

x
and |z′′

e | < 1/d ′′
x for all e ∈ E , so that P(Z) �= 0 if all ze < 1/deg2. Finally p(z) �= 0 if

|z| < 1/deg2, i.e., the zeros of p(z) are negative and bounded above by −1/deg2.

Remark 2.2 Given V0 ⊂ V let a′(x) = a′′(x) = 1 if x ∈ V0 and a′(x) = a′′(x) = 0 if
x /∈ V0. The polynomial p counts then unbranched polynomials going through all x /∈ V0.
The proof of the Proposition 2.1 still applies (but now ε is indeed needed) and one finds that
the zeros of p are real less then or equal zero if p does not vanish identically.

The following result is relevant to Sect. 3.2 below.

Proposition 2.3 Let (V , E) be bipartite corresponding to a partition {V1, V2} of V and let
Ueven(E) consist of the unbranched subgraphs F such that |Fj | is even for each connected
component Fj of F. We define

punbranched even(z) =
∑

F∈Ueven(E)

z|F | (5)

Assume that the odd connected subgraphs in U (E) come in pairs (G, Ḡ) connecting the
same vertices and both G, Ḡ are loops or not loops. If x ′, x ′′ (resp. x̄ ′, x̄ ′′) are the endpoints
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246 D. Ruelle

of non-loop G (resp. Ḡ) we also assume x ′ = x̄ ′′, x ′′ = x̄ ′. Under these conditions the zeros
of the polynomial (5) are all purely imaginary.

To prove this let us in Eq. (1) take a′(x) = (1 + i)/
√
2 if x ∈ V1, a′(x) = (1 − i)/

√
2 if

x ∈ V2 and let a′′(x) be the complex conjugate a′(x)∗ of a′(x) in all cases. We use thus the
px (Z ′, Z ′′), pε

x (Z ′, Z ′′) corresponding to those a′(x), a′′(x).
We obtain polynomials P(Z), resp. Pε(Z), by Asano contractions of

∏
px (Z ′, Z ′′), resp.∏

pε
x (Z ′, Z ′′), and (3) gives

P(Z) =
∑

F∈U (E)

conn∏

Fj ⊂F

γ (Fj )
∏

e∈Fj

ze (6)

with γ (Fj ) = a′′(x ′
j )a

′(x ′′
j ) if Fj is not a loop, and γ (Fj ) = 1 if Fj is a loop. If |Fj | is

even, x ′
j and x ′′

j are both in either V1 or V2, so that γ (Fj ) = 1. If |Fj | is odd, x ′
j and x ′′

j

are in different sets of the partition (V1, V2), so that a′′(x ′
j )a

′(x ′′
j ) = ((1 ± i)/

√
2)2 and

γ (Fj ) = ±i . Choose now a pair (G, Ḡ) with odd |G| = |Ḡ| then γ (G) + γ (Ḡ) = 0 so that
the terms in p(z) corresponding to F containing a connected component G or Ḡ cancel.
This holds for all pairs (G, Ḡ) with odd |G| = |Ḡ| and therefore

p(z) =
∑

F∈U (E)

conn∏

Fj ⊂F

γ (Fj )z
|Fj | =

∑

F∈Ueven(E)

z|F | = punbranched even(z)

With our choice of a′, a′′ we see that if α′, α′′ ∈ (−π/4, π/4) and

Re(z′
e + ε)e−iα′

> 0 , Re(z′′
e + ε)e−iα′′

> 0

for all e ∈ E, we have
∏

x∈V pε
x (Z ′, Z ′′) �= 0. Therefore by the Asano-Ruelle Lemma

Pε(Z) �= 0 if

−π/2 < α′ + α′′ < π/2 and (∀e ∈ E) (ze + ε′)e−i(α′+α′′) > 0

for some ε′ > 0. We take all ze equal to z and use Hurwitz’s theorem to let ε → 0. Since
∅ ∈ Ueven, p does not vanish identically and we obtain p(z) �= 0 if Re(z) > 0, or by symmetry
if Re(z) �= 0. 
�

3 Oriented Subgraphs of a Non-oriented Graph

Let (V , E0) be a non-oriented graph. There are different ways to associate an oriented graph
with (V , E). Here we define the oriented graph (V , Ẽ0) where each non-oriented edge
e ∈ E0 with endpoints x1, x2 ∈ V is replaced by two oriented edges e′, e′′ ∈ Ẽ0 such that
x ′(e′) = x1, x ′′(e′) = x2 and x ′(e′′) = x2, x ′′(e′′) = x1. We have thus |Ẽ0| = 2|E0|. The
subgraphs F̃ of (V , Ẽ0), i.e., the subsets of Ẽ0 may be called oriented subgraphs of (V , E0).

3.1 Unbranched Subgraphs of a Non-oriented Graph

From Proposition 2.1 we know that the polynomial counting oriented unbranched subgraphs
of (V , E0), i.e.,

poriented unbranched(z) =
∑

F̃∈U (Ẽ0)

z|F̃ | =
∑

F̃∈U (Ẽ0)

conn∏

F̃ j ⊂F̃

z|F̃ j |
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has all its zeros real strictly negative. Note that without orientation

punbranched(z) =
∑

F∈U (E0)

z|F | =
∑

F∈U (E0)

conn∏

Fj ⊂F

z|Fj |

and it is known (see [5]) that this has all its zeros with real part strictly negative. [The set
U (E0) of unbranched subgraphs of E0 and the connected components of a non-oriented F
are defined in the obvious manner].

Let us now assume that (V , E0) has only simple edges between vertices. It is interesting to
compare the connected components Fj of some non-oriented unbranched subgraph F with
the possible corresponding oriented connected components F̃jα of an unbranched oriented
subgraph F̃ such that, for each edge e of F , one or both of the corresponding edges e′, e′′
belongs to F̃ . If |Fj | = 1 then Fj = e for some non-oriented e ∈ E0 with endpoints x1, x2
and there are two oriented edges e′, e′′ ∈ Ẽ0 corresponding to e. Then, corresponding to Fj

there are three possible connected components F̃jα ⊂ Ẽ0, namely {e′}, {e′′}, {e′, e′′}, and
|F̃jα| is 1 or 2. If |Fj | > 1, there correspond to Fj two oriented F̃jα . We obtain thus for Ẽ0

the polynomial

poriented unbranched(z) =
∑

F∈U (E0)

conn∏

Fj :|Fj |=1

(2z + z2)
conn∏

Fj :|Fj |>1

(2z|Fj |)

3.2 Even Oriented Unbranched Subgraphs of a Non-oriented Graph

For a bipartite graph E0 we obtain pairs (G, Ḡ) of subgraphs of Ẽ0 as in Proposition 2.3 by
orientation reversal so that

poriented unbranched even(z) =
∑

F̃∈Ueven(Ẽ0)

z|F̃ |

has all its zeros purely imaginary by Proposition 2.3.
Let (V , E0) have only simple edges between vertices. We define

U ′(E0) = {F : for all connected components Fj of F either |Fj | = 1 or |Fj | iseven}
Then we have

poriented unbranched even(z) =
∑

F∈U ′(E0)

z2|{| j :|Fj |=1}|.
∏

j :|Fj |>1

(2z)|Fj |

for the unbranched even subgraph counting polynomial of Ẽ0.

References

1. Lebowitz, J.L., Pittel, B., Ruelle, D., Speer, E.R.: Central limit theorems, Lee-Yang zeros, and graph-
counting polynomials. J. Comb. Theory Ser. A 142, 147–183 (2016)

2. Lebowitz, J.L., Ruelle, D.: Phase transitions with four-spin interactions. Commun. Math. Phys. 311, 755–
768 (2011)

3. Lebowitz, J.L., Ruelle, D., Speer, E.R.: Location of the Lee-Yang zeros and absence of phase transitions
in some Ising spin systems. J. Math. Phys. 53, 095211 (2012)

4. Ruelle, D.: Zeros of graph-counting polynomials. Commun. Math. Phys. 200, 43–56 (1999)

123



248 D. Ruelle

5. Ruelle, D.: Counting unbranched subgraphs. J. Algebr. Comb. 9, 157–160 (1999)
6. Ruelle, D.: Characterization of Lee-Yang polynomials. Ann. Math. 171, 589–603 (2010)

123


	Graph-Counting Polynomials for Oriented Graphs
	Abstract
	1 Definitions: Subgraphs of an Oriented Graph
	2 Unbranched Subgraphs of an Oriented Graph
	3 Oriented Subgraphs of a Non-oriented Graph
	3.1 Unbranched Subgraphs of a Non-oriented Graph
	3.2 Even Oriented Unbranched Subgraphs of a Non-oriented Graph

	References




