

Graph-Counting Polynomials for Oriented Graphs

David Ruelle¹

Received: 27 June 2018 / Accepted: 16 August 2018 / Published online: 21 August 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

If \mathcal{F} is a set of subgraphs F of a finite graph E we define a graph-counting polynomial $p_{\mathcal{F}}(z) = \sum_{F \in \mathcal{F}} z^{|F|}$ In the present note we consider oriented graphs and discuss some cases where \mathcal{F} consists of unbranched subgraphs E. We find several situations where something can be said about the location of the zeros of $p_{\mathcal{F}}$.

Let \mathcal{F} be a set of subgraphs F of a finite graph E. We denote by |F| the number of edges of F and define a polynomial

$$p_{\mathcal{F}}(z) = \sum_{F \in \mathcal{F}} z^{|F|}$$

(graph-counting polynomial associated with \mathcal{F}). The case of unoriented graphs has been discussed earlier (see [4–6] and [1–3]); here we mostly consider oriented graphs.

We shall find that for suitable \mathcal{F} we can restrict the location of the zeros of $p_{\mathcal{F}}$ (for instance to the imaginary axis). The proofs will be based on the following fact:

Lemma (Asano-Ruelle). Let K_1 , K_2 be closed subsets of the complex plane \mathbb{C} such that K_1 , $K_2 \not\ge 0$ and assume that

 $A + Bz_1 + Cz_2 + Dz_1z_2 \neq 0 \quad \text{when} \quad z_1 \notin K_1, z_2 \notin K_2$

Then

 $A + Dz \neq 0$ when $z \notin -K_1 K_2$

where $-K_1K_2$ is minus the set of products of an element of K_1 and an element of K_2 . (The replacement of $A + Bz_1 + Cz_2 + Dz_1z_2$ by A + Dz is called Asano contraction and denoted $(z_1, z_2) \rightarrow z$).

For a proof see for instance the Appendix A of [6]. The results given below follow rather directly from this lemma.

1 Definitions: Subgraphs of an Oriented Graph

We say that a pair (V, E) of finite sets is an *oriented graph* if $V \neq \emptyset$ and we are given two maps $x', x'' : E \rightarrow V$ such that $x'(e) \neq x''(e)$ for all $e \in E$. The elements x of V

David Ruelle ruelle@ihes.fr

¹ Mathematics Department, Rutgers University and IHES, 91440 Bures sur Yvette, France

are vertices, and the elements e of E are oriented edges with endpoints x'(e), x''(e); e is outgoing at x'(e) and ingoing at x''(e) and we write $e : x'(e) \to x''(e)$. We allow different edges e_1, e_2 such that $e_1 : x' \to x''$ and $e_2 : x' \to x''$ or $e_2 : x'' \to x'$.

We say that (V, E) is *bipartite* if we are given a partition of V into nonempty sets V_1 and V_2 such that for each $e \in E$ the points x'(e) and x''(e) are in different sets of the partition $\{V_1, V_2\}$.

We call a subset *F* of *E* a *subgraph* of (V, E). We say that *F* is connected if for each partition $\{F_1, F_2\}$ of *F* there is an $x \in V$ which is an endpoint of both some $e_1 \in F_1$ and some $e_2 \in F_2$. A subgraph is thus a union of connected components F_j in a unique way.

We say that F is an *unbranched* subgraph if, for each $x \in V$,

$$|\{e \in F : x'(e) = x\}| \le 1$$
 and $|\{e \in F : x''(e) = x\}| \le 1$

We say that an unbranched subgraph is a *loop subgraph* if for each $x \in V$ we have

$$|\{e \in F : x'(e) = x\}| = |\{e \in F : x''(e) = x\}|$$

We denote by U(E), resp. L(E), the set of unbranched subgraphs, resp. loop subgraphs of the oriented graph (V, E). If F is an unbranched subgraph, we can write F as a disjoint union of connected components F_j which are either loops (i.e., $F_i \in L(E)$) or, if they are not loops, have different endpoints x'_j and x''_j such that $x'_j \to \cdots (e) \cdots \to x''_j$ for each $e \in F_j$.

Introduce now complex variables z'_e, z''_e , write $Z' = (z'_e)_{e \in E}, Z'' = (z''_e)_{e \in E}$ and, for each $x \in V$, let

$$p_x(Z', Z'') = \left(a'(x) + \sum_{e:x'(e)=x} z'_e\right) \left(a''(x) + \sum_{e:x''(e)=x} z''_e\right)$$
(1)

with some choice of the a'(x), $a''(x) \in \mathbb{C}$. For small $\epsilon > 0$ we also write

$$p_{x}^{\epsilon}(Z', Z'') = \left(a'(x) + \sum_{e:x'(e)=x} (z'_{e} + \epsilon)\right) \left(a''(x) + \sum_{e:x''(e)=x} (z''_{e} + \epsilon)\right)$$

and

$$\tilde{p}_x = 1 + p_x, \quad \tilde{p}_x^{\epsilon} = 1 + p_x^{\epsilon}$$

Choosing between p_x and \tilde{p}_x for each x and applying Asano contractions $(z'_e, z''_e) \rightarrow z_e$ for all $e \in E$ to the polynomials

$$\prod_{x \in V} (p_x(Z', Z'') \text{ or } \tilde{p}_x(Z', Z'')), \quad \prod_{x \in V} (p_x^{\epsilon}(Z', Z'') \text{ or } \tilde{p}_x^{\epsilon}(Z', Z''))$$
(2)

we obtain polynomials

$$P(Z), P^{\epsilon}(Z)$$

where $Z = (z_e)_{e \in E}$ and

$$\lim_{\epsilon \to 0} P^{\epsilon}(Z) = P(Z)$$

We shall obtain examples of $p(z) = p_{\mathcal{F}}(z)$ by taking all components z_e of Z equal to z.

Deringer

2 Unbranched Subgraphs of an Oriented Graph

If there are only p_x factors in (2) and we assume a'(x)a''(x) = 1 for all x, we have

$$P(Z) = \sum_{F \in U(E)} \prod_{F_j \subset F}^{\operatorname{conn}} [a''(x'_j)a'(x''_j)]_{F_j \operatorname{not} \operatorname{loop}} \prod_{e \in F_j} z_e$$
(3)

where the product is over the connected components F_j of F and x'_j , x''_j are the endpoints of F_j if j is not a loop; $[a''(x'_j)a'(x''_j)]$ is replaced by 1 if F_j is a loop.

If we take a'(x) = a''(x) = 1 and set all z_e equal to z we obtain the *unbranched subgraph* counting polynomial

$$p_{\text{unbranched}}(z) = \sum_{F \in U(E)} z^{|F|}$$
(4)

Proposition 2.1 The zeros of the unbranched subgraph counting polynomial (4) are all real and strictly negative.

To prove this let $\alpha', \alpha'' \in (-\pi/2, \pi/2)$. Assuming

$$\operatorname{Re}(z'_e + \epsilon)e^{-i\alpha'} > 0$$
 , $\operatorname{Re}(z''_e + \epsilon)e^{-i\alpha''} > 0$

for all $e \in E$ and all $\epsilon > 0$, we have $\prod_{x \in V} p_x^{\epsilon}(Z', Z'') \neq 0$ and therefore by the Asano-Ruelle Lemma $P^{\epsilon}(Z) \neq 0$ if $e^{-i(\alpha' + \alpha'')} z_e$ is in a neighborhood of the positive real axis and $-\pi < \alpha' + \alpha'' < \pi$. Let p(z) and $p^{\epsilon}(z)$ be obtained by taking all z_e equal to z in P(Z)and $P^{\epsilon}(Z)$. Then $p^{\epsilon}(z) \neq 0$ if $\arg z \in (-\pi, \pi)$. Using Hurwitz's theorem we let $\epsilon \to 0$ in $p^{\epsilon}(z)$ and find that either p(z) vanishes identically or $p(z) \neq 0$ if $\arg z \in (-\pi, \pi)$. Clearly $p(0) \neq 0$ because $\emptyset \subset U(E)$ and we obtain thus $p_{unbranched}(z) = p(z) \neq 0$ if z is not real strictly negative.

[In fact since a'(x) = a''(x) = 1 we could have done without ϵ in the present situation].

Let now deg₂ be the max over $x \in V$ of the number d'_x of outgoing edges at x times the max over x of the number d''_x of ingoing edges at x. Then $p_x(Z', Z'') \neq 0$ if $|z'_e| < 1/d'_x$ and $|z''_e| < 1/d'_x$ for all $e \in E$, so that $P(Z) \neq 0$ if all $z_e < 1/\deg_2$. Finally $p(z) \neq 0$ if $|z| < 1/\deg_2$, i.e., the zeros of p(z) are negative and bounded above by $-1/\deg_2$.

Remark 2.2 Given $V_0 \subset V$ let a'(x) = a''(x) = 1 if $x \in V_0$ and a'(x) = a''(x) = 0 if $x \notin V_0$. The polynomial p counts then unbranched polynomials going through all $x \notin V_0$. The proof of the Proposition 2.1 still applies (but now ϵ is indeed needed) and one finds that the zeros of p are real less then or equal zero if p does not vanish identically.

The following result is relevant to Sect. 3.2 below.

Proposition 2.3 Let (V, E) be bipartite corresponding to a partition $\{V_1, V_2\}$ of V and let $U_{\text{even}}(E)$ consist of the unbranched subgraphs F such that $|F_j|$ is even for each connected component F_j of F. We define

$$p_{\text{unbranched even}}(z) = \sum_{F \in U_{\text{even}}(E)} z^{|F|}$$
(5)

Assume that the odd connected subgraphs in U(E) come in pairs (G, \overline{G}) connecting the same vertices and both G, \overline{G} are loops or not loops. If x', x'' (resp. $\overline{x}', \overline{x}''$) are the endpoints

🙆 Springer

of non-loop G (resp. \overline{G}) we also assume $x' = \overline{x}''$, $x'' = \overline{x}'$. Under these conditions the zeros of the polynomial (5) are all purely imaginary.

To prove this let us in Eq. (1) take $a'(x) = (1 + i)/\sqrt{2}$ if $x \in V_1$, $a'(x) = (1 - i)/\sqrt{2}$ if $x \in V_2$ and let a''(x) be the complex conjugate $a'(x)^*$ of a'(x) in all cases. We use thus the $p_x(Z', Z'')$, $p_x^*(Z', Z'')$ corresponding to those a'(x), a''(x).

We obtain polynomials P(Z), resp. $P^{\epsilon}(Z)$, by Asano contractions of $\prod p_x(Z', Z'')$, resp. $\prod p_x^{\epsilon}(Z', Z'')$, and (3) gives

$$P(Z) = \sum_{F \in U(E)} \prod_{F_j \subset F}^{\text{conn}} \gamma(F_j) \prod_{e \in F_j} z_e$$
(6)

with $\gamma(F_j) = a''(x'_j)a'(x''_j)$ if F_j is not a loop, and $\gamma(F_j) = 1$ if F_j is a loop. If $|F_j|$ is even, x'_j and x''_j are both in either V_1 or V_2 , so that $\gamma(F_j) = 1$. If $|F_j|$ is odd, x'_j and x''_j are in different sets of the partition (V_1, V_2) , so that $a''(x'_j)a'(x''_j) = ((1 \pm i)/\sqrt{2})^2$ and $\gamma(F_j) = \pm i$. Choose now a pair (G, \bar{G}) with odd $|G| = |\bar{G}|$ then $\gamma(G) + \gamma(\bar{G}) = 0$ so that the terms in p(z) corresponding to F containing a connected component G or \bar{G} cancel. This holds for all pairs (G, \bar{G}) with odd $|G| = |\bar{G}|$ and therefore

$$p(z) = \sum_{F \in U(E)} \prod_{F_j \subset F} \gamma(F_j) z^{|F_j|} = \sum_{F \in U_{\text{even}}(E)} z^{|F|} = p_{\text{unbranched even}}(z)$$

With our choice of a', a'' we see that if α' , $\alpha'' \in (-\pi/4, \pi/4)$ and

0000

$$\operatorname{Re}(z'_e + \epsilon)e^{-i\alpha'} > 0$$
 , $\operatorname{Re}(z''_e + \epsilon)e^{-i\alpha''} > 0$

for all $e \in E$, we have $\prod_{x \in V} p_x^{\epsilon}(Z', Z'') \neq 0$. Therefore by the Asano-Ruelle Lemma $P^{\epsilon}(Z) \neq 0$ if

$$-\pi/2 < \alpha' + \alpha'' < \pi/2$$
 and $(\forall e \in E) \ (z_e + \epsilon')e^{-i(\alpha' + \alpha'')} > 0$

for some $\epsilon' > 0$. We take all z_e equal to z and use Hurwitz's theorem to let $\epsilon \to 0$. Since $\emptyset \in U_{\text{even}}$, p does not vanish identically and we obtain $p(z) \neq 0$ if Re(z) > 0, or by symmetry if $Re(z) \neq 0$.

3 Oriented Subgraphs of a Non-oriented Graph

Let (V, E_0) be a non-oriented graph. There are different ways to associate an oriented graph with (V, E). Here we define the oriented graph (V, \tilde{E}_0) where each non-oriented edge $e \in E_0$ with endpoints $x_1, x_2 \in V$ is replaced by two oriented edges $e', e'' \in \tilde{E}_0$ such that $x'(e') = x_1, x''(e') = x_2$ and $x'(e'') = x_2, x''(e'') = x_1$. We have thus $|\tilde{E}_0| = 2|E_0|$. The subgraphs \tilde{F} of (V, \tilde{E}_0) , i.e., the subsets of \tilde{E}_0 may be called oriented subgraphs of (V, E_0) .

3.1 Unbranched Subgraphs of a Non-oriented Graph

From Proposition 2.1 we know that the polynomial counting oriented unbranched subgraphs of (V, E_0) , i.e.,

$$p_{\text{oriented unbranched}}(z) = \sum_{\tilde{F} \in U(\tilde{E}_0)} z^{|\tilde{F}|} = \sum_{\tilde{F} \in U(\tilde{E}_0)} \prod_{\tilde{F}_j \subset \tilde{F}} z^{|\tilde{F}_j|} z^{|\tilde{F}_j|}$$

🖄 Springer

has all its zeros real strictly negative. Note that without orientation

$$p_{\text{unbranched}}(z) = \sum_{F \in U(E_0)} z^{|F|} = \sum_{F \in U(E_0)} \prod_{F_j \subset F}^{\text{conn}} z^{|F_j|}$$

and it is known (see [5]) that this has all its zeros with real part strictly negative. [The set $U(E_0)$ of unbranched subgraphs of E_0 and the connected components of a non-oriented F are defined in the obvious manner].

Let us now assume that (V, E_0) has only simple edges between vertices. It is interesting to compare the connected components F_j of some non-oriented unbranched subgraph F with the possible corresponding oriented connected components $\tilde{F}_{j\alpha}$ of an unbranched oriented subgraph \tilde{F} such that, for each edge e of F, one or both of the corresponding edges e', e''belongs to \tilde{F} . If $|F_j| = 1$ then $F_j = e$ for some non-oriented $e \in E_0$ with endpoints x_1, x_2 and there are two oriented edges $e', e'' \in \tilde{E}_0$ corresponding to e. Then, corresponding to F_j there are three possible connected components $\tilde{F}_{j\alpha} \subset \tilde{E}_0$, namely $\{e'\}, \{e''\}, \{e', e''\}$, and $|\tilde{F}_{j\alpha}|$ is 1 or 2. If $|F_j| > 1$, there correspond to F_j two oriented $\tilde{F}_{j\alpha}$. We obtain thus for \tilde{E}_0 the polynomial

$$p_{\text{oriented unbranched}}(z) = \sum_{F \in U(E_0)} \prod_{F_j : |F_j| = 1}^{\text{conn}} (2z + z^2) \prod_{F_j : |F_j| > 1}^{\text{conn}} (2z^{|F_j|})$$

3.2 Even Oriented Unbranched Subgraphs of a Non-oriented Graph

For a bipartite graph E_0 we obtain pairs (G, \overline{G}) of subgraphs of \widetilde{E}_0 as in Proposition 2.3 by orientation reversal so that

$$p_{\text{oriented unbranched even}}(z) = \sum_{\tilde{F} \in U_{\text{even}}(\tilde{E}_0)} z^{|\tilde{F}|}$$

has all its zeros purely imaginary by Proposition 2.3.

Let (V, E_0) have only simple edges between vertices. We define

 $U'(E_0) = \{F : \text{ for all connected components } F_i \text{ of } F \text{ either } |F_i| = 1 \text{ or } |F_i| \text{ iseven}\}$

Then we have

$$P_{\text{oriented unbranched even}}(z) = \sum_{F \in U'(E_0)} z^{2|\{|j:|F_j|=1\}|} \prod_{j:|F_j|>1} (2z)^{|F_j|}$$

for the unbranched even subgraph counting polynomial of \tilde{E}_0 .

References

- Lebowitz, J.L., Pittel, B., Ruelle, D., Speer, E.R.: Central limit theorems, Lee-Yang zeros, and graphcounting polynomials. J. Comb. Theory Ser. A 142, 147–183 (2016)
- Lebowitz, J.L., Ruelle, D.: Phase transitions with four-spin interactions. Commun. Math. Phys. 311, 755– 768 (2011)
- Lebowitz, J.L., Ruelle, D., Speer, E.R.: Location of the Lee-Yang zeros and absence of phase transitions in some Ising spin systems. J. Math. Phys. 53, 095211 (2012)
- 4. Ruelle, D.: Zeros of graph-counting polynomials. Commun. Math. Phys. 200, 43–56 (1999)

- 5. Ruelle, D.: Counting unbranched subgraphs. J. Algebr. Comb. 9, 157–160 (1999)
- 6. Ruelle, D.: Characterization of Lee-Yang polynomials. Ann. Math. 171, 589-603 (2010)