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Abstract

If F is a set of subgraphs F of a finite graph E we define a graph-counting polynomial
PF(2) = per z!F! In the present note we consider oriented graphs and discuss some cases
where F consists of unbranched subgraphs E. We find several situations where something
can be said about the location of the zeros of pr.

Let F be a set of subgraphs F of a finite graph E. We denote by | F'| the number of edges of
F and define a polynomial
pr@) =Y "

FeF

(graph-counting polynomial associated with F). The case of unoriented graphs has been
discussed earlier (see [4—6] and [1-3]); here we mostly consider oriented graphs.

We shall find that for suitable F we can restrict the location of the zeros of p = (for instance
to the imaginary axis). The proofs will be based on the following fact:

Lemma (Asano-Ruelle). Let K, K, be closed subsets of the complex plane C such that
K1, K> # 0 and assume that

A+ Bz1+Czp+ Dz1z0 #0  when z1 ¢ K1,220 ¢ K>
Then
A+ Dz #0 when z7¢ —Ki1Kp

where — K1 K7 is minus the set of products of an element of K| and an element of K,. (The
replacement of A 4+ Bz1 + Cz2 + Dz1z22 by A 4 Dz is called Asano contraction and denoted
(z1,22) — 2).

For a proof see for instance the Appendix A of [6]. The results given below follow rather
directly from this lemma.

1 Definitions: Subgraphs of an Oriented Graph

We say that a pair (V, E) of finite sets is an oriented graph if V. # ¢} and we are given
two maps x’, x” : E — V such that x’(e) # x”(e) for all ¢ € E. The elements x of V
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are vertices, and the elements e of E are oriented edges with endpoints x’(e), x” (e); e is
outgoing at x’(e) and ingoing at x”(e) and we write e : x'(e) — x”(e). We allow different
edges e, e suchthate; : x' — x” and ey : x’ — x" orep : x” — x'.

We say that (V, E) is bipartite if we are given a partition of V into nonempty sets V1 and
V> such that for each e € E the points x’(e) and x” (e) are in different sets of the partition
{Vi, Va}.

We call a subset F of E a subgraph of (V, E). We say that F is connected if for each
partition {F;, F»} of F there is an x € V which is an endpoint of both some e; € F; and
some ey € F,. A subgraph is thus a union of connected components F; in a unique way.

We say that F' is an unbranched subgraph if, for eachx € V,

Hee F:x'(e)=x}|<1 and |{feeF:x"(e)=x} <1
We say that an unbranched subgraph is a loop subgraph if for each x € V we have
Hee F:x'(e)=x}|=|{e e F:x"(e) =x}

We denote by U (E), resp. L(E), the set of unbranched subgraphs, resp. loop subgraphs of
the oriented graph (V, E). If F is an unbranched subgraph, we can write I as a disjoint
union of connected components F'; which are either loops (i.e., F; € L(E)) or, if they are not
loops, have different endpoints x} and x’/.’ such that x} —> - (e) > x;.’ foreache € F;.

Introduce now complex variables z,, z//, write Z' = (z)eck, Z” = (2)))ecr and, for each
x eV,let

pZ Z0=[dwm+ Y ) |dw+ Y M
e:x'(e)=x e:x"(e)=x
with some choice of the a’(x), a” (x) € C. For small ¢ > 0 we also write
Pz .z =dm+ Y Gt+eolldw+ Y. @+e
e:x'(e)=x e:x"(e)=x
and
ﬁx =1+px» l}; =1+p§

Choosing between p, and p, for each x and applying Asano contractions (z,, z) — z, for
all e € E to the polynomials

[[pe2. 2" or pe(2'. 2. []S(Z. 2" or 552", 2)) ©)

xeV xeV

we obtain polynomials
P(Z), P(2)
where Z = (z.)ccr and
Gli_r)r}) P(Z) = P(2Z)

We shall obtain examples of p(z) = pz(z) by taking all components z, of Z equal to z.
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2 Unbranched Subgraphs of an Oriented Graph

If there are only p, factors in (2) and we assume a’(x)a” (x) = 1 for all x, we have
conn

P(Z) = Z l_[ [a”(x;‘)a/(x}/)]F_,-nolloop l_[ Ze 3)

FeU(E) FjCF ecF;

where the product is over the connected components F; of F' and x}, x}’ are the endpoints
of F; if j is not a loop; [a”(x})a’(x}’)] is replaced by 1 if F; is a loop.

If we take a’(x) = a”(x) = 1 and set all z, equal to z we obtain the unbranched subgraph
counting polynomial

Punbranched (2) = Z Z‘Fl “4)
FeU(E)

Proposition 2.1 The zeros of the unbranched subgraph counting polynomial (4) are all real
and strictly negative.
To prove this let o', a” € (—m /2, w/2). Assuming

Re(z,+€)e @ >0 |, Re@ +ee ™ >0

foralle € E and all € > 0, we have [[,cy pS(Z', Z") # 0 and therefore by the Asano-
Ruelle Lemma P€(Z) # 0 i]‘e_i(o‘/+“//)ze is in a neighborhood of the positive real axis and
- <o +a” < 7. Let p(z) and p¢(z) be obtained by taking all z, equal to z in P(Z)
and P€(Z). Then p(z) # 0 ifargz € (—m, ). Using Hurwitz’s theorem we let € — 0 in
¢ (2) and find that either p(z) vanishes identically or p(z) # 0 ifargz € (—mn, ). Clearly
p(0) # 0 because @ C U(E) and we obtain thus punbranched (2) = p(z) # 0 if 7 is not real
strictly negative. O

[In fact since a’(x) = @’ (x) = 1 we could have done without € in the present situation].

Let now deg, be the max over x € V of the number d; of outgoing edges at x times the
max over x of the number d; of ingoing edges at x. Then p,(Z’, Z") # 0if |z}| < 1/d,
and |z]| < 1/d] forall e € E, so that P(Z) # 0 if all z, < 1/deg,. Finally p(z) # 0 if
|z| < 1/deg,, i.e., the zeros of p(z) are negative and bounded above by —1/deg,.

Remark 2.2 Given Vo C V letd'(x) = d’(x) = 1ifx € Vyand d'(x) = a”"(x) = 0 if
x ¢ Vp. The polynomial p counts then unbranched polynomials going through all x ¢ Vj.
The proof of the Proposition 2.1 still applies (but now e is indeed needed) and one finds that
the zeros of p are real less then or equal zero if p does not vanish identically.

The following result is relevant to Sect. 3.2 below.

Proposition 2.3 Let (V, E) be bipartite corresponding to a partition {Vy, V»} of V and let
Ueven(E) consist of the unbranched subgraphs F such that |F;| is even for each connected
component F; of F. We define

Dunbranched even (2) = Z ZlFl ©)
Fe Ueven (E)

Assume that the odd connected subgraphs in U(E) come in pairs (G, G) connecting the
same vertices and both G, G are loops or not loops. If x', x" (resp. X', X" ) are the endpoints
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of non-loop G (resp. G) we also assume x’ = x”, x” = x. Under these conditions the zeros
of the polynomial (5) are all purely imaginary.

To prove this let us in Eq. (1) take a’(x) = (1 +i)/v/2ifx € Vi, d'(x) = (1 — i) /2 if
x € V and let a” (x) be the complex conjugate a’(x)* of a’(x) in all cases. We use thus the
px(Z',Z"), pS(Z', Z") corresponding to those a’ (x), a” (x).

We obtain polynomials P(Z), resp. P€(Z), by Asano contractions of [ | px(Z', Z"), resp.
[1p5(Z', Z2"), and (3) gives

conn
pzy= . [TrEp ]z ©)
FeU(E) F_/‘CF eeF_/

with y(Fj) = a”(x/i)a/(x}/) if Fj is not a loop, and y(F;) = 1 if F; is a loop. If |F;| is
even, x} and x}’ are both in either Vi or Vs, so that y (F;) = 1. If |F}| is odd, x} and x}’
are in different sets of the partition (Vy, V), so that a”(x})a’(x}’) = (1 £i)/v2)? and
y(Fj) = %i. Choose now a pair (G, G) with odd |G| = |G| then y (G) + y(G) = 0 so that
the terms in p(z) corresponding to F containing a connected component G or G cancel.
This holds for all pairs (G, G) with odd |G| = |G| and therefore

conn

p(z) = Z 1_[ V(Fj)lej‘ = Z ZlFl = Punbranched even (2)

FeU(E) F_]‘CF FeUeyen(E)
With our choice of a’, a”’ we see that if &', a” € (—m /4, w/4) and
Re(z, +€)e @ >0 ., Re@@/ +ee ™ >0
or all e € E, we have | AVARVAD) 0. Therefore by the Asano-Ruelle Lemma
xeV Px
P(Z) #0if
—n/2<d +a" <n/2 and (Ve € E) (zo +€)e '@+ <

for some € > 0. We take all z, equal to z and use Hurwitz’s theorem to let ¢ — 0. Since

() € Ueyen, p does not vanish identically and we obtain p(z) # 0ifRe(z) > 0, or by symmetry
ifRe(z) # 0. O

3 Oriented Subgraphs of a Non-oriented Graph

Let (V, Eo) be a non-oriented graph. There are different ways to associate an oriented graph
with (V, E). Here we define the oriented graph (V, Eo) where each non-oriented edge
e € Eq with endpoints x, xy € V is replaced by two oriented edges €', ¢’ € E such that
x'(e') = x1, x"(e') = x2 and x'(e") = x2, x""(e") = x1. We have thus |Eo| = 2|Eo]|. The
subgraphs F of (V, Eg), i.e., the subsets of Eo may be called oriented subgraphs of (V, Ey).

3.1 Unbranched Subgraphs of a Non-oriented Graph

From Proposition 2.1 we know that the polynomial counting oriented unbranched subgraphs
of (V, Eyp), i.e.,

conn

F F;
Doriented unbranched (2) = Z Zl I = Z 1_[ Zl il

FeU(Ey) FeU(Ey) FjcF
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has all its zeros real strictly negative. Note that without orientation
conn

Punbranched (2) = Z ZlF‘= Z HZ'F’

FeU(Eo) FeU(Eg) F;CF

and it is known (see [5]) that this has all its zeros with real part strictly negative. [The set
U (Ey) of unbranched subgraphs of Eg and the connected components of a non-oriented F
are defined in the obvious manner].

Let us now assume that (V, E¢) has only simple edges between vertices. It is interesting to
compare the connected components F'; of some non-oriented unbranched subgraph F with
the possible corresponding oriented connected components I:“ jo of an unbranched oriented
subgraph F such that, for each edge ¢ of F, one or both of the corresponding edges ¢’, ¢
belongs to F.If |F;j| = 1 then F; = e for some non-oriented e € Eq with endpoints xp, x2
and there are two oriented edges ¢/, ¢” € Eo correspondlng to e. Then, corresponding to F;
there are three possible connected components F; e C Eo, namely {e}, {¢"}, {e/, "}, and
|F]a| islor2.If |F;| > 1, there correspond to F; two oriented F]a. We obtain thus for £
the polynomial

conn conn

PDoriented unbranched () = Z 1_[ 2z + Zz) 1_[ (ZZlFJ‘)

FEU(E())F_/':|F]'|:1 FjZ\Fj|>l

3.2 Even Oriented Unbranched Subgraphs of a Non-oriented Graph

For a bipartite graph Eo we obtain pairs (G, G) of subgraphs of Ep as in Proposition 2.3 by
orientation reversal so that

Poriented unbranched even (Z ) = Z Z IFl
FeUeven(EO)

has all its zeros purely imaginary by Proposition 2.3.
Let (V, Ep) have only simple edges between vertices. We define
U’'(Eg) = {F : for all connected components Fj of F either |F;| =1 or | F}| iseven}

Then we have

201j: 1 Fi|=1 F;
Poriented unbranched even (2) = Z Z 171 1=1H ]_[ (ZZ)‘ il
FeU'(Eg) JiIFj 11

for the unbranched even subgraph counting polynomial of E.
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