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Abstract
In this paper, we study the truncated two-particle correlation function in particle systems
with long range interactions. For Coulombian and soft potentials, we define and give well-
posedness results for the equilibrium correlations. In the Coulombian case, we prove the
onset of the Debye screening length in the equilibrium correlations, for suitable velocity
distributions. Additionally, we give precise estimates on the effective range of interaction
between particles. In the case of soft potential interaction the equilibrium correlations and
their fluxes in the space of velocities are shown to be linearly stable.

Keywords Balescu–Lenard equation · Landau equation · Coulomb potential ·
Long-range interaction

1 Introduction

1.1 Kinetic Limits of Particle Systems with Long-Range Interactions

Aclassical problem studied in statistical physics is the dynamics of systems ofmany identical
particles which interact by means of long range potentials. In particular, this problem has
received a big deal of attention in the community working on plasma physics in the case in
which particles interact via the Coulomb potential.

Early contributions to this topic were made by Bogolyubov [4], and have been extended
by the works of Balescu [1,2], as well as Guernsey [11] and Lenard [17]. These authors
obtained a kinetic equation which describes the behavior of the velocity distribution of
a spatially homogeneous many particle system with long range interaction (in partic-
ular Coulomb forces). Bogolyubov derived the following system of equations for the
density f1(τ, v1) = f1(τ, x1, v1) = f1(τ, ξ1), rescaled truncated correlation function
g̃2(τ, x1, v1, x2, v2) = g̃2(τ, ξ1, ξ2), and a small parameter σ > 0 tending to zero:
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2 J. J. L. Velázquez, R. Winter

∂τ f1 = σ∇v ·
(∫

∇φ(x1 − x3)g̃2(ξ1, ξ3) dξ3

)
(1.1)

∂τ g̃2 +
2∑

i=1

vi∇xi g̃2 −
2∑

i=1

∫
∇φ(xi − x3)∇vi f1(τ, ξi )g̃2(ξζ (i), ξ3) dξ3

= (∇v1 − ∇v2) ( f1(τ, ξ1) f1(τ, ξ2)) ∇φ(x1 − x2). (1.2)

Here φ is the interaction potential, and ζ(1) = 2, ζ(2) = 1 exchanges the variables. Actually,
[4] derives analogous approximations for higher order correlations, but those are of lower
order in σ → 0. In this paper, wewill consider two classes of potentials, namely the Coulomb
potential φ(x) = c

|x | for some c > 0, and so-called soft potentials, that are radially symmetric
functions in the Schwartz class.

In order to find the limit equation for f1 as σ → 0, Bogolyubov argues that all terms in
(1.2) are of the same order of magnitude, so the evolution of g̃2 can be observed in times of
order one. Since g̃2 is of order one, it can be expected that f1 evolves on the longer timescale
t = στ . We assume that for f1 given, g̃2 has a globally stable equilibrium. We will call the
steady state equation

2∑
i=1

vi∇xi gB −
2∑

i=1

∇vi f1

∫
∇φ(xi − x3)gB(ξζ (i), ξ3) dξ3

= (∇v1 − ∇v2) ( f1 f1) ∇φ(x1 − x2).

(1.3)

the Bogolyubov equation and the solution gB the (truncated) Bogolyubov correlation. In
the paper [4], it is argued that the equation (1.3) should be solved subject to the boundary
condition:

gB(x − τv1, v1, x2 − τv2, v2) → 0 as τ → ∞. (1.4)

This condition can be interpreted as particles being uncorrelated before they come close
enough to interact. Then we can immediately predict the limiting kinetic equation for f1 on
the timescale t by plugging g̃2 = gB into (1.1). This yields the Balescu–Lenard equation:

∂t f (t, v) = ∇v ·
(∫

R3
a(v − v′, v)(∇v − ∇v′)( f (t, v) f (t, v′)) dv′

)
(1.5)

ai, j (w, v) =
∫
R3

ki k jδ(k · w)
|φ̂(k)|2

|ε(k, k · v)|2 dk. (1.6)

Here, ε is the so-called dielectric function, which we introduce in Definition 2.6. We remark
that the integral defining a is logarithmically divergent for large values of k in the case of
Coulomb interaction. We will discuss this in detail in Sect. 1.3. The equation (1.5) shares
many properties with classical kinetic equations like the Boltzmann equation and the Landau
equation. In particular, the steady states of (1.5) are the Maxwellian distributions:

M(v) :=
(

m

2πkB T

) 3
2

e
− m|v|2

2kB T . (1.7)

Moreover, the entropy H [ f (t, ·)] = − ∫
f (t, v) log( f (t, v)) dv of a solution f of (1.5) is

(formally) increasing in time, as remarked in [17].
The Balescu–Lenard equation (1.5), was found independently by Guernsey [11] and

Lenard (cf. [17]), following the approach by Bogolyubov, and along a different line by
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Balescu (cf. [2]). There are also stochastic derivations of the Balescu–Lenard equation using
different arguments, which are discussed in Sect. 1.2.

The first characterization of the solution to the steady state equation (1.3) has been obtained
by Lenard in [17], yielding a formal derivation of the Balescu–Lenard equation (1.5). The
Lenard approach, which is based on a Wiener–Hopf argument, yields an explicit formula
for the right-hand side of (1.1), when g̃2 is a steady state of (1.2) with f1 fixed. A Fourier
representation of the full steady state gB was found later by Oberman and Williams [23]
using a similar approach. There are few rigorous results on the Balescu–Lenard equation
(1.5). The linearized equation has been studied in [29].

The results presented in this paper are the following. First we study the well-posedness of
(1.3). Secondly, we study the stability properties of the steady state gB under the evolution
given by (1.2) for fixed f1. Thirdly, we study the decay properties of the steady states gB .
The steady state gB encodes the information on the range of interaction of particles within
the system. To understand this, consider two particles at phase space positions ξ j = (x j , v j ),
j = 1, 2. Let b(ξ1, ξ2) be the impact parameter, and d(ξ1, ξ2) be the signed distance of the
first particle to the collision point. More precisely, the impact parameter b is defined as the
vector from x2 to x1 at their time of closest approach along the free trajectories, so b and d ,
(and the negative part d−) are given by:

b(ξ1, ξ2) = P⊥
v1−v2

(x1 − x2), d(ξ1, ξ2) = (x1 − x2) · v1 − v2

|v1 − v2| , d− = max{0,−d}.
(1.8)

We show that the function gB encodes a characteristic length scale emerging in the system,
the so-called Debe-length L D (cf. (1.12)). In equation (1.3), this length has been rescaled to
one. The correlation of particles that remain at a distance much larger than the Debye length,
i.e. |b| � 1, is expected to be negligible. Moreover, one expects negligible correlations for
particles that (so far) have remained at a distance larger than the characteristic length, that
is d− � 1. In this paper, we prove that for Coulomb interacting systems, the equilibrium
correlations gB satisfy the following estimate, for every compact set K ⊂ R

3 and δ > 0

|gB(ξ1, ξ2)| ≤ C(δ, K )

|v1 − v2|
1

(|b| + d−)(1 + |b| + d−)γ−δ
, v1, v2 ∈ K . (1.9)

Here γ = 0 if f1(v) decays exponentially, and γ = 1 if f1 behaves like a Maxwellian for
large velocities. We observe that the result only shows the onset of a characteristic length
scale, when the one-particle function f1 behaves like a Maxwellian for large velocities, but
not for exponentially decaying functions, indicating that a characteristic length in the system
can only be expected for functions f1 with Maxwellian decay.

We further note that (1.9) indicates that the correlations become singular for particles with
small impact factor b. This is crucial for identifying the kinetic equation for Coulombian
particle systems and is discussed in Sect. 1.3.

In the case of soft potential interaction, we prove that the equilibrium correlations gB

satisfy the estimate (1.9) with γ = 2, even if the potential decays exponentially. In this case,
we do not observe a singularity for |b|, |d−| → 0.

A fact that will play a crucial role in the proof of (1.9) for the Coulomb potential are
the zeros of the function R(ε(k, u)) for k → 0 (ε as in (1.5)), for which �(ε(k, u)) is
exponentially small. These zeros are well-known in the physics literature, and related to
the so-called Langmuir waves (cf. [18]). These are plasma density waves with very large
wavelength which damp out only very slowly. This is the physical cause for the slow Landau
damping of Maxwellian plasmas. More precisely, it has been shown in [9,10] that the rate of
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4 J. J. L. Velázquez, R. Winter

convergence to equilibrium is only logarithmic in time for Maxwellian plasmas, that is when
f1 is a Maxwellian. Furthermore, the zeros of R(ε(k, u)) are crucial to the analysis of the
linearized Balescu–Lenard equation in [29]. In our paper, they account for the dependence
of the screening properties (cf. (1.9)) on the behavior of the one-particle function for large
velocities.

We study the linearized evolution of the truncated correlation function g̃2 (1.2) with fixed
one-particle function. Similar to the Vlasov equation, the equation can be solved in Fourier-
Laplace variables (cf. [13]).We introduce in Definition 2.10 the representation of the solution
in terms of Vlasov propagators, and in Sect. 4 we show linear stability of the Bogolyubov
steady states gB

g̃2(τ, ·) −→ gB(·) in D′(R9) as τ → ∞, (1.10)

as well as stability of the fluxes on the right-hand side of (1.1), for soft potentials φ. The
result (1.10) can be understood as a linear Landau damping result for two particles.

We remark that the reduction of the evolution problem to Vlasov equations stresses the
importance of a good understanding of theVlasov-Poisson equation, in particular the stability
of steady states. In the articles [9,10] it is proved that solutions of the linear Vlasov-Poisson
equation converge to spatially homogeneous states, however the result is restricted to the case
of initial data that are rotationally symmetric in the velocity variable. On a one-dimensional
periodic spatial domain, the spectral theory of the linearizedVlasov equation has been studied
in [6]. Due to the shortcomings of the current stability theory of the linear Vlasov-Poisson
equation, the rigorous stability results for the truncated correlations g̃2 in this work are
obtained for soft potentials.

We now recall, in a more modern language, the main ideas in the original derivation of the
system (1.1)-(1.2) proposed by Bogolyubov. An overview over particle models and scaling
limits in kinetic theory can be gained from [27,28,31].

Consider a system of particles {(X̃ j , Ṽ j )} j∈J with unitary mass, where J is a countable
index set and X̃ j , Ṽ j ∈ R

3 denote the position and velocity of particles. Let the evolution of
the system be given by:

∂τ X̃i (τ ) = Ṽi (τ ), ∂τ Vi = −σ̃
∑
j �=i

∇φ(X̃i − X̃ j ). (1.11)

The parameter σ̃ can be interpreted as the squared charge of an individual particle and will
be passed to zero later. We will assume that the initial configuration of particles is random
and distributed according to a spatially homogeneous Poisson point process with an average
of Ñ = σ̃−κ particles per unit of volume for some κ > 0. More precisely, the process has the
intensity measure λ(dxdv) = Ñ f0(x, v)dxdv, where f0(x, v) = f0(v) is some probability
density in the space of velocities.

The average kinetic energy of a particle, that we also call the temperature of the system, we
will denote by T . By rescaling velocities and time we can assume without loss of generality
that T = 1.We consider scaling limits of (1.11) and try to characterize the statistical behavior
of (1.11) depending on the choice of the parameter κ > 0 that determines the interdependence
of σ̃ , Ñ , as well as the interaction potential φ.

In spite of the fact that the Coulomb potential does not have an intrinsic length scale, a
characteristic length emerges from the dynamics of the system. To this end, we observe that
there are two independent quantities with the unit of a length that can be obtained from the
quantities σ̃ , Ñ and T describing the system. One of them is the typical distance of particles

d = Ñ− 1
3 . The second is the so-called Debye screening length:
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The Two-Particle Correlation Function… 5

L D =
√

T

Ñ σ̃
, (1.12)

which is well-known in plasma physics. Note that the definition (1.12) makes sense without
a well-defined temperature, using the average kinetic energy instead of the temperature. We
assume the average momentum of particles is zero. This way of defining the Debye-length is
widely used in plasmaphysics for systems far away from thermal equilibrium, see for example
[18]. The Debye length will play a crucial role in many results of this paper. It measures the
characteristic (effective) range of interaction between the particles of the system, assuming
that the velocity distribution of particles f1(v) satisfies a suitable stability condition (cf.
Assumption 2.13). Under this assumption, L D is the effective radius of a single particle, that
is the characteristic distance to which the influence of a single particle can be felt in a system
evolving according to (1.11), when φ is the Coulomb potential. We can assume L D = 1
using the change of variables:

L D X = X̃ , L Dτ = τ̃ , L Dθ2 = θ̃2, N = L3
D Ñ . (1.13)

After changing units, the average number of particles per unit volume N and the rescaled
strength σ of the potential satisfy the relation:

N = σ−1, σ → 0 (1.14)

and the particle system {(X j , Vj )} j∈J satisfies (1.11) with σ̃ replaced by σ . Hence, for
systems evolving according to (1.11) with φ the Coulomb potential, we can assume without
loss of generality that (1.14) holds. Therefore, we will consider particle system determined
by the scaling limit (1.14), and compare the case of Coulomb interaction and the case of
interaction with a smooth, decaying potential.

Let φ be a soft potential with characteristic length � = 1. Then per unit of time, a
typical particle will interact with N many particles and each interaction yields a deflection
of order σ with zero average. If the forces of all particles within the range of the potential
are independent, the variance of the sum of the deflections is:

Var(V (τ )) ∼ στ. (1.15)

Therefore, the variance will become of order one on a macroscopic time scale t = στ .
We are interested in the correlation of particles in the scaling limit of particle systems

given by (1.11), (1.14). The presentation will be similar to the one in [30]. Denote phase
space variables by ξ = (x, v), let Fn(τ, ξ1, . . . , ξn) be the n-particle correlation function of
the system, and fn = Fn/N n be the rescaled correlation function. Formally, these functions
satisfy the BBGKY hierarchy (cf. [1]). In the scaling limit (1.14), the hierarchy reads as:

∂τ fn +
n∑

i=1

vi∇xi fn −
n∑

i=1

∫
∇φ(xi − xn+1)∇vi fn+1 dξn+1

= σ
∑
i �= j

∇φ(xi − x j )∇vi fn .

(1.16)

Since we assume that particles are initially independently distributed, the correlation func-
tions at the initial time τ = 0 factorize: fn(0, ξ1, . . . , ξn) = f1(0, ξ1) · · · f1(0, ξn). The
evolution given by (1.11) will create correlations between particles. In order to be able to
study this, we introduce the (rescaled) truncated correlation functions gn :
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6 J. J. L. Velázquez, R. Winter

g2(ξ1, ξ2) = f2(ξ1, ξ2) − f1(ξ1) f1(ξ2),

g3(ξ1, ξ2, ξ3) = f3(ξ1, ξ2, ξ3) − ( f1 f1 f1)(ξ1, ξ2, ξ3)

− f1(ξ1)g2(ξ2, ξ3) − f1(ξ2)g2(ξ1, ξ3) − f1(ξ3)g2(ξ1, ξ2),

. . . .

(1.17)

Rewriting the equations BBGKY hierarchy (1.16) in terms of the functions gn we find that
a consistent assumption on the orders of magnitudes is:

gn ≈ σ n−1. (1.18)

Hence we expect that, to leading order, the equations for f1, g2 (cf. (1.16)) can be approxi-
mated by:

∂τ f1 = ∇v ·
(∫

∇φ(x1 − x3)g2(ξ1, ξ3) dξ3

)

∂τ g2 +
2∑

k=1

vk∇xk g2 −
2∑

k=1

∫
∇φ(xk − x3)∇vk ( f1(ξk)g2(ξζ (k), ξ3)) dξ3

= σ

2∑
k=1

∇vk ( f1(ξ1) f1(ξ2)) ∇φ(xk − xζ(k)).

(1.19)

Since the source term for g2 in (1.19) is of order σ , the function g̃2 = σ−1g2 can be expected
to be of order one. With this definition, (1.19) is equivalent to (1.1)–(1.2).

In scaling limits with weak interaction, e.g. the weak-coupling limit, one can apply a
similar reasoning. In this case, steady state equation for the truncated correlations is

2∑
i=1

vi∇xi gB = (∇v1 − ∇v2) ( f1 f1)∇φ(x1 − x2). (1.20)

Notice that the integral term in (1.3) disappears in the case of weak interaction. The equation
(1.20) can be solved explicitly using the method of characteristics. In this case the resulting
kinetic equation for f1 is formally the Landau equation. Partial results on the derivation can
be found in [3,30]. Global well-posedness and stability for the Landau equation has been
proved in [12].

We then summarize the main implications of the results for the study of scaling limits
of Coulomb particle systems. Most importantly, the Debye screening becomes visible in the
length scale of the two-particle correlation function (1.9). It is worth mentioning that the
different decay exponents γ in the result suggests that the screening properties depend on the
behavior of the one-particle function f1 for large velocities. The Debye screening can also
be observed on the level of the linearized Vlasov equation. We will take a closer look at this
in Sect. 1.2.

Further, the argument identifies two regions in which the assumption f1 � g2 breaks
down, namely for particles ξ1, ξ2 with very small relative velocity v1 − v2 ≈ 0, and very fast
particles. The critical region of particles with very small relative velocity is a result of the
fact that the collision time diverges, when particles only very slowly separate (see [30]).

A mathematical description of scaling limits of Coulomb particle systems requires to
understand the following aspects: Firstly, the emergence of the Debye length L D from the
particle system (1.11). Secondly, one needs to estimate the deflections due to the interaction of
particles with an impact parameter much larger than the Debye length. Due to the screening,
the influence of a single charge decays much faster than the Coulomb potential itself. Thirdly,
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The Two-Particle Correlation Function… 7

one needs to understand the deflections produced by particles that approach closer than the
Debye length. The influence of these deflections turns out to be dominant by a logarithmic
factor log( 1

σ
) and yields the Landau equation in the kinetic limit. This is discussed in Sect. 1.3.

1.2 Debye Screening in theVlasov Equation

In this subsection,we discuss the onset of a screening length in the linearizedVlasov equation.
To this end, we will take a closer look at the steady states of the Vlasov–Poisson equation
in the presence of a point charge. The Debye screening can be observed in the decay of the
equilibrium spatial profile, which has a characteristic length scale that is given by the Debye
length L D (cf. (1.12)), in spite of the fact that the Coulomb potential does not have a length
scale. The screening effect is related to the classical subjects in the Vlasov theory such as
Landau damping and Langmuir waves (cf. [9,10,15,18,20,24]).

We prove in this paper, that the evolution problem (1.2) can be reduced to the Vlasov
system. We remark that one can also formally derive the Balescu–Lenard equation from a
stochasticmodel involvingVlasov equations. Themethod consists in describing the evolution
of the probability density of a tagged particle which interacts with a random medium. The
randommedium is assumed to evolve according to the Vlasov equation, linearized around the
velocity distribution of the tagged particle. The approach of a Vlasov medium is well-studied
in the formal theory in plasma physics [25,26]. Rigorous results on a related model can be
found in [14,16].

Let (X , V ) be the phase space coordinates of the tagged particle traveling through a
continuous background, with which it interacts via the Coulomb potential. Here f0(v) is a
fixed velocity distribution, and h(τ, x, v) the correction that is induced by the particle. Taking
as unit of length the Debye length L D (cf. (1.12)) as before, let the system be given by:

∂τ h + v∇x h − ∇x (φ ∗ �)∇v f0 = σ∇v f0∇φ(x − X(τ )), h(0, x, v) = 0 (1.21)

�(x) =
∫

h(x, v) dv (1.22)

∂τ X = V , ∂τ V = −σ∇x (φ ∗ �)(X(τ )), (X(0), V (0)) = (X0, V0). (1.23)

In the derivations of the Balescu–Lenard equation in [14,16,25], the initial datum h(0, ·) in
(1.21) is random. Then the dynamics describing the evolution of (X , V ) becomes a stochastic
differential equation. Notice that the evolution of randommeasures under theVlasov equation
has already been considered in Braun and Hepp (cf. [5]). In the system (1.21)-(1.23), (X , V )

can be interpreted as a particle traveling through a random background of particles, and
h(x, v), �(x) as the correction of the homogeneous density (or “cloud”) induced by the
particle. It is worth noting that the well-posedness of the problem of a moving point charge
interacting with a fully nonlinear Vlasov-Poisson system has been studied in [7].

For simplicity, assume f0(v) in (1.21) is radially symmetric. In the derivation of theLandau
equation and the Balescu–Lenard equation, we make the assumption that the trajectories
of particles are approximately rectilinear on the microscopic timescale. This suggests to
approximate X(τ ) in (1.21) by

X(τ ) ≈ X0 − τ V0. (1.24)

For the special case V0 = 0, it was observed in [18] that the Debye screening can be derived
from the equation (1.21). The spatial density of the steady state of (1.21) with a point charge
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8 J. J. L. Velázquez, R. Winter

at rest can be computed explicitly (without loss of generality X0 = 0):

�eq(x) = σ

4π |x |e−|x |. (1.25)

Remarkably, even though the potential φ(x) = 1/|x | does not have a length scale, the spatial
profile of �eq decays exponentially with characteristic scale given by the Debye length L D .

Now consider the case of V0 �= 0. Making the assumption of rectilinear motion (1.24), we
can again solve (1.21) explicitly. For τ → ∞, the solution converges to traveling wave with
velocity V0. The spatial profile of the traveling wave can be represented in Fourier variables.
Let f0 be a given one-particle function, then the formula reads:

�̂trav(k) = σ
∫ k∇ f0(v)

k(v−V0)−i0 dv

|k|2D(k, k · V0)
, (1.26)

where D(k, u) is given by:

D(k, u) := 1 − 1

|k|2
∫
R3

k · ∇ f0(v)

k · v − u + i0
dv. (1.27)

We remark that (1.27) suggests that for |V0| → ∞, the spatial profile �trav(x) can have
large oscillations with long wavelength λ = 1/|k| → ∞. To see this, we decompose D =
DR + i DI into its real and imaginary part. For |k| → 0 and u of order one, we have the
asymptotic formula

DR(k, u) ∼ 1 − 1/|u|2, DI (k, u) = 1/|k|2
∫

k·v=u
k/|k|∇ f0(v) dv. (1.28)

Hence, the real part of D in (1.27) has a zero for |k| → 0, u ∼ 1, and the imaginary part
depends on the tail behavior of the one-particle function f0. This suggests that the traveling
wave �trav (cf. (1.26)) surrounding the particle (X , V ) can lead to large deflections in other
particles for |V0| � 1, depending on the decay of f0(v) for large velocities. In the presence of
very fast particles, the rectilinear approximation (1.24) does not hold. However, this should
not affect the validity of the final kinetic equation in the limit σ → 0, since the number of
particles with velocity |V0| � 1 becomes negligible.

This observation explains why the exponent in the estimate (1.9) depends on the decay
properties of the one-particle functions, and the estimate is only valid for velocities varying
on a compact set.

The zero of the real part DR (cf. (1.28)) is also related to other important phenomena in
plasma physics, such as the so-called Langmuir waves. The length of the Langmuir waves
is much larger than the Debye length and the oscillation frequency has been normalized
to �Langmuir = 1 in our setting. The amplitudes of these waves decrease exponentially
at a rate proportional to DI (cf. (1.28)), so the rate strongly depends on the background
distribution of particles. For a Maxwellian distribution of particles f0 = M , the imaginary
part is exponentially small, which results in a very slow Landau damping as observed in
[9,10].

1.3 On the Range of Validity of the Balescu–Lenard Equation for Coulomb Potentials

The goal of this subsection is to determine the correct kinetic equation for scaling limits of
particle systems interacting with the Coulomb potential, or the Coulomb potential smoothed
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The Two-Particle Correlation Function… 9

out at the origin. It was already remarked by Lenard in [17], that the integral (1.5) is not
well-defined for φ(x) = 1/|x |, since the integral

ai, j (w, v) =
∫
R3

ki k jδ(k · w)
|φ̂(k)|2

|ε(k, k · v)|2 dk (1.29)

is logarithmically divergent for large k. This corresponds to the divergence (1.9) for small
values of the spatial variable x , so the main contribution comes from the singularity of the
Coulomb potential at the origin.

In the scaling limit (1.14), particle interaction is given by the potential σφ(x) = σ/|x |.
Therefore, an interaction of particles with impact parameter |b| ≤ σ will result in a deflection
of order one. This yields a Boltzmann collision term in the limit equation, as observed in
[22]. We now analyze the influence of interactions with impact parameter |b| ≥ σ . This
corresponds to a truncation ãi, j of the integral (1.29) to |k| ≤ σ−1. As Lenard observed in
[17], the function ε(k, k · v) → 1 becomes constant for k → ∞. Therefore, the truncated
coefficient ã satisfies:

ãi, j (w, v) = lim
σ→0

| log(σ )|
∫

B
σ−1

ki k jδ(k · w)|φ̂(k)|2
|ε(k, k · v)|2 dk ∼ δi, j − wiw j

|w|2 . (1.30)

Hence, we obtain the Landau kernel in this limit. Now we discuss how this observation
connects to (1.1)-(1.2) for σ → 0. Due to (1.30), the kinetic timescale is not given by
t = στ , but slightly shorter by a logarithmic correction. Therefore, the mathematically
rigorous kinetic equation associated to the scaling limit (1.14) is expected to be the Landau
equation, and the main contribution is due to the interaction of particles with very small
impact factor. However a more accurate description of physical systems might be obtained
by keeping the terms of the order | log(1/σ)|−1 in the equation, since in physical systems,
| log(1/σ)| cannot be expected to be very large (cf. the discussion in §41 of [18]). Therefore,
the physical equation describing plasmas can be expected to involve a Balescu–Lenard term,
the Landau collision operator and a Boltzmann collision operator. The relative size of the
different collision terms would depend on the physical system in question. The Balescu–
Lenard equation is the correct limit equation for systems with soft potential interaction in the
scaling limits (1.14).

Consider particle systems interacting via the Coulomb potential and take as unit of length
the Debye length L D (1.12). As a simplified problem, one can study a smooth variant of
the Coulomb potential, that is φC,r ∈ C∞ radially symmetric and φC,r (x) = 1/|x | for
|x | ≥ 1. Then the kinetic equation associated to the scaling limit (1.14) can be expected to
be the Balescu–Lenard equation. Notice that the equation includes the screening effect, that
is expected since φC,r (x) coincides with the Coulomb potential for large |x |.

A characterization of the limit equations for scaling limits of Lorentz models with long-
range interaction (i.e. a tagged particle in a random, but fixed, background of scatterers) can
be found in [22]. For mathematical results in this direction see also [8,19].

2 Preliminary andMain Results

2.1 Definitions and Assumptions

For future reference we fix the notation for some classical integral transforms.
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10 J. J. L. Velázquez, R. Winter

Notation 2.1 We will use the following conventions for the Laplace transform L( f ), the
Fourier transform f̂ and the Fourier–Laplace transform f̃ :

L( f )(z) =
∫ ∞

0
e−zt f (t) dt (2.1)

F( f )(k) = f̂ (k) = 1

(2π)
n
2

∫
Rn

f (x)e−i x ·k dx (2.2)

f̃ (z, k) = 1

(2π)
3
2

∫
R3

∫ ∞

0
f (t, x)e−zt e−i x ·k dt dx . (2.3)

Definition 2.2 We define operators P+, P− and P on L2(R), that on Schwartz functions
f ∈ S(R) are given by:

P±[ f ](x) := lim
δ→0+

∫
R

f (x ′)
x ′ − x ∓ iδ

dx ′, P[ f ](x) := PV
∫
R

f (x ′)
x ′ − x

dx ′ (2.4)

where the principal value integral PV is defined as: PV
∫

dx ′ = limδ→0+
∫
1(|x − x ′| ≥

δ) dx ′.

Notation 2.3 (Relative velocity and impact parameter) For vectors k, v1, v2 ∈ R
3, v1 �= v2,

k �= 0, we will use the following shorthand notation:

ω = k

|k| , vr = v1 − v2, ϑr = vr

|vr | . (2.5)

The impact parameter b ∈ R
3 and the distance to the collision point d ∈ R of particles

(x1, v1), (x2, v2) with relative position x = x1 − x2 and relative velocity vr = v1 − v2 is
defined as:

d(x, vr ) = x · vr

|vr | , b(x, vr ) = x − Pvr (x) = x − vr (x · vr )

|vr |2 . (2.6)

Due to the translation invariance of the system, the truncated correlation function
g2(x, v, x ′, v′) is a function of x − x ′, v, v′ only. By a slight abuse of notation, we iden-
tify g2 with the function:

g2(x − x ′, v, v′) = g2(x, v, x ′, v′). (2.7)

Also the function should be invariant under exchanging the two particles, so we impose the
symmetry:

g2(x, v, v′) = g2(−x, v′, v). (2.8)

This symmetry we include in the space of functions in which we solve the Bogolyubov
equation.

Definition 2.4 Define the functionals |h|[g], h[g] given by the following formulas:

|h|[g] =
∫

|g(x, v1, v2)| dv2, h[g] =
∫

g(x, v1, v2) dv2. (2.9)

Let W be the function space given by:

W = {g ∈ L1
loc(R

9) : (2.8) holds, |h|[g] ∈ L1
loc, sup

|v|≤R
‖h[g](·, v)‖L2 ≤ C(R) for R > 0}.

(2.10)
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The Two-Particle Correlation Function… 11

We now give a definition of a solution to the Bogolyubov equation. We recall the space
L1 + L2 of functions ζ that can be decomposed as ζ = ζ1 + ζ2 with ζ1 ∈ L1, ζ2 ∈ L2.

Definition 2.5 (Bogolyubov correlation) Let∇φ ∈ L1+L2, and f ∈ W 1,1(R3)∩W 1,∞(R3)

be a probability density. We say gB ∈ W is a solution to the Bogolyubov equation if for all
ψ ∈ C∞

c (R9)

−
∫

(v1 − v2)gB∂xψ −
∫

∇ f (v1)∇φ(x + y)h[gB ](y, v2)ψ(x, v1, v2)

−
∫

∇ f (v2)∇φ(−x + y)h[gB ](y, v1)ψ(x, v1, v2) =
∫

(∇v1 − ∇v2)[ f ⊗ f ]∇φ(x)ψ,

(2.11)

and it satisfies the Bogolyubov boundary condition

gB(x − τ(v1 − v2), v1, v2) → 0, as τ → ∞, a.e. (2.12)

Definition 2.6 (Radon transform and dielectric function) Let f ∈ L1(R3) ∩ L∞(R3). We
define the Radon transform F : R

3 × R → R associated to f by (ω = ω(k) as in (2.5)):

F(k, u) :=
∫

{v: ω·v=u}
f (v) dv. (2.13)

Further we define the dielectric function ε : R
3 × R → R associated to f ∈ W 1,1(R3) ∩

W 1,∞(R3) and a potential φ by:

ε(k,−|k|u) := 1 − φ̂(k)P−[∂u F(k, ·)](u). (2.14)

Here the operator P− defined in (2.4) is applied in the second variable of ∂u F . As a shorthand
we also introduce the functions α, α− given by:

α(χ, u) := P[∂u F(χ, ·)](u), α−(χ, u) := P−[∂u F(χ, ·)](u). (2.15)

Remark 2.7 Note that the dielectric function ε coincides with the function D introduced in
(1.26), which quantifies the correction to the homogeneous density induced by a single point
charge.

The following definitions will be useful in studying the linear evolution problem (1.2) for g.
When f is time independent, the equation (1.2) for g can be solved explicitly. To this end
we introduce some notation.

Notation 2.8 We introduce the function:

Q(k, v) = k∇ f (v)φ̂(k). (2.16)

Furthermore, for a function h(x, v) and a potential φ we set Eh to be the self-consistent
potential associated to h:

E[h](x) = Eh(x) =
∫ ∫

φ(x − y)h(y, v) dv dy. (2.17)

Definition 2.9 (Vlasov and transport propagator) Let φ be a radially symmetric Schwartz
potential. Let V be the linear Vlasov propagator associated to f , so let V(t)[h0] = h(t) be
the solution to:

∂t h + v∇x h − ∇Eh∇ f = 0, h(0, ·) = h0(·), (2.18)
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12 J. J. L. Velázquez, R. Winter

with Eh as in (2.17). In Fourier-Laplace variables (cf. (2.3)) the solution is given by:

h̃(z, k, v) = ĥ0(k, v)

z + ikv
+ i Q(k, v)�̃(z, k)

z + ikv
, �̃(z, k) =

∫ ĥ0(k,v′)
z+ikv′ dv′

ε(k,−i z)
, (2.19)

with Q as introduced in (2.16). Further let T be the free transport propagator so

T (t)[g](ξ1, ξ2) := g(x − v1t, v1, x2 − v2t, v2). (2.20)

Definition 2.10 Let g̃0(ξ1, ξ2) = g0(x1 − x2, v1, v2), g0 ∈ S((R3)3) be symmetric in
exchanging the variables ξ1, ξ2, and set S(ξ1, ξ2) = δ(ξ1 − ξ2) f (v1). We define the
Bogolyubov propagator G by:

G(t)[g̃0] := Vξ1(t)Vξ2(t)[S + g̃0] − T (t)[S], (2.21)

where Vξ1 is the Vlasov propagator acting the set of variables (x1, v1) = ξ1, and Vξ2 the
propagator acting on (x2, v2) = ξ2.

We will analyze the equilibrium two-particle correlations for so-called soft potentials and
the Coulomb potential. Notice that we restrict our attention to radially symmetric potentials.

Assumption 2.11 (Potentials)LetφC ∈ C(R3\{0})be the Coulomb potential, soφC (x) = c
|x |

for some c > 0. Assume without loss of generality that c =
√

π
2 , when φ̂(k) = 1

|k|2 . We say

φS = φS(|x |) is a soft potential if φS ∈ S(R3).

On the one-particle distribution function f we make the following regularity assumptions.

Assumption 2.12 (Regularity and Decay) Let f ∈ C8(R3) be nonnegative and

|∇m f (v)| ≤ Ce−|v|, for m = 0, 1, . . . , 8. (2.22)

Further let f be normalized to: ∫
f (v) dv = 1. (2.23)

Our proof of existence of Bogolyubov correlations requires the plasma to be stable. This can
be mathematically formulated in terms of the dielectric function ε (cf.(2.14)) associated to
f .

Assumption 2.13 (Plasma stability) We say f is stable if for all k ∈ R
3, χ ∈ S2, u ∈ R we

have:

|k|2 �= P−[∂u F(χ, ·)](u), in particular |ε(k, u)| �= 0, ε as in (2.14). (2.24)

Remark 2.14 The physical relevance of this condition is discussed in [18]. A necessary and
sufficient condition for stability (cf. (2.24)) was given by Penrose in [24]. For example the
condition (2.24) is satisfied by functions f , for which F(u) has precisely one maximum and
no other critical points.

In order to prove (exponential) linear stability of the equilibrium correlations and their
fluxes we make a stronger analytic stability assumption on the plasma, which requires that
we can extend the dielectric function to a strip in the complex plane.
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The Two-Particle Correlation Function… 13

Assumption 2.15 (Strong plasma stability) Let f > 0 be a Schwartz probability density on
R
3. Let F be the Radon transform defined in (2.13) and φ = φS a soft potential. Assume

that there exists c > 0 such that for all χ ∈ S2, F(χ, i z) has a holomorphic extension to the
strip Hc := {z ∈ C : |R(z)| ≤ c} and on Hc satisfies the estimate

|F(χ, i z)| ≤ C

1 + �(z)2
. (2.25)

We will assume that the associated extension of the dielectric function z �→ ε(k,−i |k|z) to
the shifted right half-plane H−−c := {z ∈ C : R(z) ≥ −c} is bounded below uniformly:

|ε(k,−i |k|z)| ≥ c0 > 0, for 0 �= k ∈ R
3, z ∈ H−−c. (2.26)

We now introduce some technical assumptions, that we later use to quantify the rate of decay
of the equilibrium correlations. We distinguish functions f that behave like an exponential
as |v| → ∞, specified in Assumption 2.17, and functions that behave like Gaussians, as
specified in Assumption 2.18.

Notation 2.16 We recall the function α introduced in (2.15). For k ∈ R
3, χ ∈ S2, let

u+
0 (k, χ) > 0, u+

0 (k, χ) < 0 be the solutions to:

|k|2 − α(χ, u±
0 ) = 0, (2.27)

whenever (2.27) has a unique solution with the prescribed sign. Further write I (k, χ) for
the set

I (k, χ) = (u−
0 (k, χ) − 1, u−

0 (k, χ) + 1) ∪ (u+
0 (k, χ) − 1, u+

0 (k, χ) + 1). (2.28)

Let L±(k, χ), �±(k, χ, y) be given by:

L±(k, χ) = ∂u F(χ, u0(k, χ))

∂uα(χ, u0(k, χ))
, for k ∈ R

3, χ ∈ S2, (2.29)

�±(k, χ, y) = u0(k, χ) + y
∂u F(χ, u0(k, χ))

∂uα(χ, u0(k, χ))
, for k ∈ R

3, χ ∈ S2, y ∈ R. (2.30)

Assumption 2.17 (Asymptotically exponential behavior) Let f satisfy the Assumptions 2.12-
2.13. Let L± = L±(k, χ) and �± be as in Notation 2.16. We say f behaves asymptotically
like an exponential if it satisfies the following for some r, c, C > 0:∣∣∣∣∇6

k,χ,y

( |k|3
∂uα(χ,�±)

)∣∣∣∣ ≤ C, for |k| ≤ r , χ ∈ S2, |y| ≤ L±−1
, (2.31)

∣∣∣∣∇6
k,χ,y

( |k|2 − α(χ,�±)

y∂u F(χ,�±)

)∣∣∣∣ ≤ C, for |k| ≤ r , χ ∈ S2, |y| ≤ L±−1
, (2.32)

∣∣∣∣
( |k|2 − α(χ,�±)

y∂u F(χ,�±)

)∣∣∣∣ ≥ c, for |k| ≤ r , χ ∈ S2, |y| ≤ L±−1
, (2.33)

∣∣∣∣∇6
k,χ,y

(
F(χ,�±)

∂u F(χ,�±)

)∣∣∣∣ ≤ C, for |k| ≤ r , χ ∈ S2, |y| ≤ L±−1
. (2.34)

Assumption 2.18 (AsymptoticallyMaxwellianbehavior)Let f satisfy the Assumptions2.12–
2.13. Let L± = L±(k, χ) and �± be as in Notation 2.16. We say f behaves asymptotically
like a Gaussian if it satisfies (2.31)–(2.33) and the following for some r , C > 0:∣∣∣∣∇6

k,χ,y

(
F(χ,�±)

|k|∂u F(χ,�±)

)∣∣∣∣ ≤ C, for |k| ≤ r , χ ∈ S2, |y| ≤ L±−1
. (2.35)
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14 J. J. L. Velázquez, R. Winter

Remark 2.19 For example, the Assumptions 2.17 and 2.18 are satisfied by probability den-
sities of the form:

f (v) ∼
(
1 + �(v)

(2 + |v|2)α
)

e−(1+|v|2) γ
2
. (2.36)

Here γ = 1 if f satisfies Assumption 2.17, γ = 2 if f satisfies Assumption 2.18, α > 0 and
� ∈ C∞

b is smooth with bounded derivatives and |�| ≤ 1. Note that this includes anisotropic
velocity distributions.

2.2 Results of the Paper

The first result of this paper is the well-posedness of the steady state equation (1.3). We prove
that the solutions formally obtained by Oberman and Williams [23] by means of the method
introduced by Lenard in [17] are indeed well-defined solutions to the equation in the sense
of Definition 2.5.

Theorem 2.20 (Bogolyubov correlations) Let f satisfy the Assumptions 2.12 and 2.13 and φ

be either the Coulomb potential or a soft potential. In the Coulomb case, assume further that
f satisfies Assumption 2.17 or 2.18. Then there exists a weak solution gB to the Bogolyubov
equation in the sense of Definition 2.5.

The proof of this theorem is the content of Sect. 2.4.
After making precise the well-posedness of the equation, we study screening properties of

the Bogolyubov correlations. The following theorem describes the decay of the solutions of
the Bogolyubov equation (1.3). Note that the equation is written taking as unit of length the
characteristic length � of the potential in the case φ = φS soft or the Debye length L D (1.12)
for the Coulomb potential. Therefore, the following estimate proves that the characteristic
range of interaction is given by � or L D respectively. Furthermore, we find that the decay
rate of the Bogolyubov correlations differs from the decay rate of the potential.

Theorem 2.21 (Screening estimate for the Bogolyubov correlations) Let f be a function that
satisfies the Assumptions 2.12–2.13 and φ be either Coulomb potential or a soft potential.
We recall the definition of the impact parameter b and the distance to collision d, as well
as d− (cf. (2.6)). Then for x ∈ R

3, and v1,v2 ∈ K varying on a compact set K ⊂ R
3 the

following estimate holds:

|gB(x, v1, v2)| ≤ C(K , δ)

|vr |
1

|b| + d−
1

(1 + |b| + d−)γ−δ
, for δ > 0. (2.37)

If φ = φC , we can choose γ = 1 for f behaving like a Maxwellian in the sense of Assump-
tion 2.18, and γ = 0 for f satisfying Assumption 2.17. For φ = φS the statement holds for
γ = 1 and C(K , δ) can be chosen independently of K .

More precise estimates can be found in the Theorems 3.1 and 3.6.
The derivation of the Balescu–Lenard equation proposed by Bogolyubov postulates that

steady states do not only exist, but are also stable in microscopic times. More precisely,
Bogolyubov’s argument requires that the fluxes in f1 induced by the function g2 (cf. (1.19))
converge to the fluxes associated to the equilibrium correlations gB [ f1]. In the case of soft
potential interaction, we prove the stability of the equilibrium correlations if f1 in (1.19) is
assumed to be time-independent.
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Theorem 2.22 Let φ be a soft potential and f satisfy the strong stability Assumption 2.15.
Further let g̃0(ξ1, ξ2) = g0(x1 − x2, v1, v2), g0 ∈ S((R3)3) be translation invariant and
symmetric:

g̃0(ξ1, ξ2) = g̃0(ξ2, ξ1) for all ξ1, ξ2 ∈ R
3 × R

3, (2.38)

g̃0(x1, v1, x2, v2) = g̃0(x1 + a, v1, x2 + a, v2) for all x1, x2, a, v1, v2 ∈ R
3. (2.39)

Consider the function g̃(t) := (G(t)g̃0) given by (2.21), which (using (2.39)) we identify with

g(t, x1 − x2, v1, v2) = g̃(t, x1, v1, x2, v2). (2.40)

Then we have g, ∂t g ∈ C(R+,S(R9)) and g solves the Bogolyubov equation (1.2) with initial
datum g0. The steady state gB given in Theorem 2.20 is linearly stable, more precisely:

g(t) −→ gB in D′(R3 × R
3 × R

3) as t → ∞. (2.41)

Furthermore, the associated fluxes in the space of velocities are stable, i.e. for all v ∈ R
3 we

have:

∇v ·
(∫

∇φ(x)g(t, x, v, v′) dv′ dx

)
−→∇v ·

(∫
∇φ(x)gB(x, v, v′) dv′ dx

)
as t → ∞.

(2.42)

This theorem is proved in Sect. 4.

2.3 Auxiliary Results

The following lemmas provide a version of the well-known Plemelj-Sokhotski formula,
which allows us to write the original function f in terms of P+[ f ] and P−[ f ] as introduced
in Definition 2.2. In a more general setting, such formulas are discussed in [21].

Lemma 2.23 The operators P± and P are bounded from L2 to L2. Let f ∈ L2(R; R), then
we have P+[ f ] = P−[ f ]. Furthermore for f ∈ L2(R; C) there holds:

f = 1

2π i
(P+[ f ] − P−[ f ]). (2.43)

Proof By a classical result, P± are Fouriermultiplication operatorswith symbols±2π i1ξ>0.
The same holds for P with multiplier iπ sign ξ . Combining this with Plancherel’s theorem,
we find that the operators are bounded on L2 and satisfy the identity (2.43). For real-valued
functions f , the identity P+[ f ] = P−[ f ] holds, since these operators are obtained in a limit
δ → 0 (cf. (2.4)) and the identity holds for all δ > 0. ��

Lemma 2.24 Let f ∈ L2(R), and q+ be analytic on the upper half plane, q− analytic on the
lower half plane and decaying: |q±(z)| → 0, |z| → ∞. Assume that limδ→0+ q±(· ± iδ)
exists in L2(R) and:

lim
δ→0+

1

2π i

(
q+(· + iδ) − q−(· − iδ)

) = f . (2.44)

Then we have: P±[ f ] = q±.
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Proof We consider the differences ζ± := q± − P±[ f ]. The functions are analytic in the
upper, respectively the lower half-plane and decay as |z| → ∞, |�(z)| ≥ 1. We claim the
function ζ , given by ζ+ on the upper half-plane and ζ− on the lower half-plane, is an entire
function. To see this, fix z0 ∈ C arbitrary and consider Z(z) := ∫

γ [z0,z] ζ(z′)dγ (z′), where
γ [z0, z] is an arbitrary curve connecting z0 and z. Then Z is an analytic function above and
below and is continuous at the real line by (2.43) and (2.44), hence an entire function. Using
Z ′ = ζ , we infer that ζ is an entire function as well. Outside the strip with |�(z)| ≤ 1, ζ is
bounded and decays for |z| → ∞. On the strip, we use the L2 convergence of P±[ f ] and
q± together with the mean value property ofR(ζ ),�(ζ ) to obtain:

|ζ(z)| ≤ C
∫

B1(z)
|ζ(z′)| dz′ ≤ C

(
‖ f ‖L2 + sup

|r |<2
‖q±(· ± ir)‖L2(R)

)
≤ C .

So ζ is a bounded entire function, hence constant. By limR→∞ ζ(i R) = 0 we get ζ ≡ 0 as
claimed. ��

We make Assumption 2.13 to ensure that the dielectric function ε does not vanish. In
many arguments later we will make use of quantitative lower bounds on |ε|, one of which is
provided by the following lemma.

Lemma 2.25 (Estimate on the degeneracy of ε) Let f satisfy the Assumptions 2.12–2.13. If
φ = φS is a soft potential, there exists c1 > 0 such that for all k ∈ R

3 and v ∈ R
3 we have:

|ε(k,−k · v)| ≥ c1 > 0. (2.45)

If φ = φC is the Coulomb potential, for any K ⊂ R
3 compact and δ > 0 we have:

|ε(k,−k · v)| ≥ c1(K ) > 0, for all 0 �= k ∈ R
3, v ∈ K (2.46)

|ε(k,−k · v)| ≥ c2(δ) > 0, for all |k| ≥ δ, v ∈ R
3. (2.47)

Proof Let φ = φC be the Coulomb potential. Then we have:

|ε(k,−k · v)| =
∣∣∣∣1 − 1

|k|2 P−[∂u F(ω, ·)](ω · v)

∣∣∣∣ . (2.48)

Since |P−[∂u F(ω, ·)]| is bounded, |ε(k − k · v)| attains its minimum on (k, v) ∈(
R
3 \ Bδ(0)

) × R
3 for any δ > 0. This minimum is nonzero by (2.24), so (2.47) holds.

On the other hand, since P−[∂u F] �= 0 (cf. (2.24)), themapping v �→ infk∈R3 |ε(k,−k ·v)|
is continuous, so (2.46) holds on compact sets K .

The estimate (2.45) for soft potentials is immediate. ��
Remark 2.26 In the Coulomb case, the estimates (2.46)-(2.47) cannot be improved, since it
is known (cf. [24]) that:

inf
k∈R3,v∈R3

|ε(k,−k · v)| = 0.

Lemma 2.27 (Asymptotics of α(χ, u)) Let f satisfy the Assumptions 2.12–2.13. We recall
the function α introduced in (2.15). There exist constants C, R > 0 such that for |u| ≥ R:

|∂ j
u α(χ, u) − (−1) j ( j + 1)!

u j+2 | ≤ C

u j+3 for j ∈ N0, j ≤ 6, (2.49)

|∂�
χ∂

j
u α(χ, u)| ≤ C

u j+3 for j ∈ N0, � ∈ N, j + � ≤ 6. (2.50)
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Proof The derivative ∂
j

u can be taken inside the operator P:

∂
j

u α(χ, u) = P[∂ j+1
u F(χ, ·)](u). (2.51)

Using that P is a Fourier multiplication operator with multiplier iπ sign(ξ) we write:

̂
∂

j
u α(χ, ·)(ξ) = iπ sign(ξ)F(∂

j+1
u F(χ, ·))(ξ).

Now we perform the Fourier inversion integral and integrate by parts:

∂
j

u α(χ, u) = −
∫ 0

−∞
(π/2)

1
2 ieiξ ·uF(∂

j+1
u F(χ, ·))(ξ) dξ

+
∫ ∞

0
(π/2)

1
2 ieiξ ·uF(∂

j+1
u F(χ, ·))(ξ) dξ

= (π/2)
1
2

∫ 0

−∞
eiξ ·u

u
∂ξF(∂

j+1
u F(χ, ·))(ξ) dξ + (π/2)

1
2
1

u
F(∂

j+1
u F(χ, ·))(0)

− (π/2)
1
2

∫ ∞

0

eiξ ·u

u
∂ξF(∂

j+1
u F(χ, ·))(ξ) dξ + (π/2)

1
2
1

u
F(∂

j+1
u F(χ, ·))(0).

Since ∂
j+1

u F is a derivative, we have F(∂
j+1

u F(χ, ·))(ξ) = 0. Iterating the argument we
find:

∂
j

u α(χ, u) = − (2π)
1
2 i

(−iu) j+2 ∂
j+1
ξ F(∂

j+1
u F(χ, ·))(0) − (2π)

1
2

− (2π)
1
2 i

(−iu) j+3 ∂
j+2
ξ F(∂

j+1
u F(χ, ·))(0)

+
∫ ∞

0

eiξ ·ui

(−iu) j+3 ∂
j+3
ξ F(∂

j+1
u F(χ, ·))(ξ) dξ

−
∫ 0

−∞
eiξ ·ui

(−iu) j+3 ∂
j+3
ξ F(∂

j+1
u F(χ, ·))(ξ) dξ. (2.52)

The leading order term is explicit by (2.23):

∂
j+1
ξ F(∂

j+1
u F(χ, ·))(0) = i j+1( j + 1)!

(2π)
1
2

. (2.53)

Combining (2.52), (2.53) gives (2.49). The derivative of (2.53) in χ vanishes, so we obtain
(2.50). ��
The implicit function theorem gives the following Lemma on the function u0 defined in
Notation 2.16.

Lemma 2.28 Let f satisfy the Assumptions 2.12–2.13. Using (2.49), for |k| ≤ r , r > 0 small
enough there are unique u±

0 (k, χ) such that (2.27) holds, and we have the estimates:

|∂ j u±
0 (k, χ)| ≤ C

|k| j+1 for j ∈ N0, j ≤ 6, (2.54)

|∂�
χ∂ j u±

0 (k, χ)| ≤ C

|k| j
for j ∈ N0, � ∈ N, j + � ≤ 6. (2.55)
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18 J. J. L. Velázquez, R. Winter

We can represent the solution to the Bogolyubov equation (1.3) explicitly in Fourier
variables. The decay properties of the solution are encoded in the singularity of their Fourier
transform at the origin, which motivates to make the following definition.

Definition 2.29 Let 0 < κ ≤ 1 and f : R
n \ {0} → R. Define the functional [ f ]κ by:

[ f ]κ (x) := sup
0<|h|≤1
x+h �=0

| f (x + h) − f (x)|
|h|κ .

The following lemma gives sharp decay estimates for functions that have an isolated singu-
larity in Fourier variables.

Lemma 2.30 Let l ∈ N, f : R
n \ {0} → R be � times continuously differentiable with

|∇ j f | ∈ L1 for 0 ≤ j ≤ �. Further let 0 < κ ≤ 1 and [∇� f ]κ ∈ L1. Then the Fourier
transform f̂ decays like:

| f̂ (x)| ≤ C

1 + |x |�+κ
. (2.56)

Proof Since f ∈ L1 we know f̂ ∈ L∞ with ‖ f̂ ‖L∞ ≤ C‖ f ‖L1 . For the additional decay
we inspect the transformation formula directly. We distinguish the cases � even and � odd.
For � = 2m even, we use

e−iπkx = 1

(π |x |)2m
�m(e−iπxk). (2.57)

Further we use that f is in f ∈ W l,1(Rn) to compute

f̂ (πx) = 1

(2π)
n
2

∫
f (k)e−iπxk dk = 1

(π |k|)2m

1

(2π)
n
2

∫
�m f (k)e−iπxk dk. (2.58)

Now g := �m f satisfies |g| + [g]κ ∈ L1. Therefore we can estimate

ĝ(πx) = − 1

(2π)
n
2

∫
g(k)e

−iπ(k− x
|x |2 )x

dk = 1

2(2π)
n
2

∫ (
g(k) − g(k + x

|x |2 )

)
e−πkx dk.

Taking absolute values and using [g]κ ∈ L1 gives

|ĝ(πx)| ≤ 1

2(2π)
n
2

∫
[g]κ (k)/|x |κ dk ≤ C

|x |κ .

Inserting this into (2.58) gives | f̂ (x)| ≤ C
1+|x |l+κ as claimed. For � = 2m + 1 odd we repeat

the computation, except that we now use e−iπkx = i x
(π |x |)2m ·∇�m(e−iπxk) instead of (2.57).

��
As a corollary we obtain bounds for the (inverse) Fourier transform of functions that depend
on the modulus ω = k

|k| .

Lemma 2.31 Let � ∈ N, �(k, χ) ∈ Cn+�
c (B1(0) × Sn−1). Then the Fourier transform of the

mapping T (k) = |k|��(k, k
|k| ) on R

n decays like:

|T̂ (x)| ≤ C(δ)

1 + |x |n+�−δ
, for δ > 0 arbitrary.
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Proof Follows by applying Lemma 2.30 to T . Differentiating the function we obtain the
estimates:

[∇n+�−1T ]1−δ(k) ≤ C(δ)|k|�‖�‖Cn+�

|k|�+n−δ
, |∇ j T (k)| ≤ C |k|�‖�‖Cn+�

|k| j
0 ≤ j ≤ n + � − 1.

Since T is compactly supported in the unit ball, we can apply Lemma 2.30 and obtain the
claim. ��

2.4 The Oberman–Williams–Lenard Solution

The Fourier representation formula for the Bogolyubov correlations, more precisely a Fourier
representation ĝB of the solution to (1.3) has been obtained by Oberman and Williams in
[23], following the complex-variable approach by Lenard in [17]. We will briefly restate
their result in the mathematically rigorous framework of this work. We will define a function
gB via its Fourier transform ĝB . In order to complete the proof that gB is a solution of the
Bogolyubov equation in the sense of Definition 2.5, we need to show that gB is in W and
satisfies the Bogolyubov condition (2.12). This is the content of Sect. 3, in particular of the
Theorems 3.1, 3.6.

Notation 2.32 We introduce functions A±, B±, derived from ε and F (cf. (2.6), (2.13)):

A±(k, u) := (1 − B±)P±
[

F(k, ·)
|ε(k,−|k|·)|2

]
(u) (2.59)

B±(k, u) := φ̂(k)P±[∂u F(k, ·)](u). (2.60)

Definition 2.33 For v1, v2 ∈ R
3, consider the Schwartz distribution ĝB(·, v1, v2) ∈ S ′(R3)

given by the following linear functional (ϕ, ĝB(v1, v2))S,S ′ on S(R3) (ω as defined in (2.5)):

(ϕ, ĝB(v1, v2))

=
∫ ϕ(k)φ̂(k)ω

(
(∇v1 − ∇v2)( f f ) + ∇ f (v1)ĥ B(k, v2) − ∇ f (v2)ĥ B(k, v1)

)
ω(v1 − v2) − i0

dk.

(2.61)

Here −i0 represents taking the limit δ → 0+ with −iδ in (2.61), and ĥ B is given by the
formula:

ĥ B(k, v) := f (v)
(1 − ε(k,−kv))

ε(k,−kv)
− φ̂(k)

A−(k, ωv)

ε(k,−kv)
(ω∇ f (v)). (2.62)

Then we will call gB(·, v1, v2) ∈ S ′(R3) = F−1
(
ĝB(·, v1, v2)

)
the Bogolyubov correlation

associated to f .

The strategy for solving (1.3) is solving integrated versions of the equation first. To fix
ideas, let g be a solution and consider the functions h(x, v), H(k, u) defined by

h(x, v1) =
∫
R3

g(x, v1, v2) dv2

Ĥ(k, u) =
∫
R3

ĥ(k, v)δ

(
u − kv

|k|
)

dv.
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20 J. J. L. Velázquez, R. Winter

The key observation is that g, h and H solve the equations (as before: ζ(1) = 2, ζ(2) = 1)

(v1 − v2)∂x g

=
2∑

j=1

∇ f (v j )

∫
∇φ((−1) j+1x + y)h(y, vζ( j)) dy + (∇v1 − ∇v2 f )( f f )∇φ(x)

(2.63)

ĥ(k, v) =
∫
R3

−ωφ̂(k)((∇v1 − ∇v2 f )( f f ) + ∇ f (v1)ĥ(k, v2) − ∇ f (v2)ĥ(k, v1))

ω(v1 − v2) − i0
dv2

(2.64)

Ĥ(k, u) = −φ̂(k)
(
∂u F P−[F] − P−[∂u F]F + ∂u F P−[Ĥ ] − P−[∂u F]Ĥ

)
. (2.65)

Note that the equation for H is closed. This suggests to solve the equations (2.63)–(2.65) in
reverse order: Once we have found the solution Ĥ to (2.65), we can use (2.64) to compute
ĥ and then compute ĝ using (2.63). Following this reasoning, we show the existence of a
solution to (2.65) in the first step of our rigorous analysis.

Lemma 2.34 Let f satisfy the Assumptions 2.12–2.13. We recall the definitions of F in (2.13)
and A± in (2.59). The function ĤB : R

3 × R → R given by

ĤB(k, u) := 1

2π i
(A+ − A−) − F(k, u) (2.66)

is measurable in R
3 × R and satisfies ĤB(k, ·) ∈ L2 a.e. in k ∈ R

3. Further, for a.e. k ∈ R
3

it solves the equation:

ĤB(k, u) = −φ̂(k)
(
∂u F P−[F] − P−[∂u F]F + ∂u F P−[ĤB ] − P−[∂u F]ĤB

)
. (2.67)

Proof As a pointwise a.e. limit of measurable functions, ĤB is measurable again. By
Lemma 2.23 we know that A+ = A−, so ĤB is real-valued. By (2.47) |ε| is bounded
below, so F

|ε| is L2. We can rewrite A− using ε (as in cf. (2.14)):

A−(k, ·) = ε(k,−|k|·)
∫
R

F(ω, u′)
|ε(k,−|k|u′)|2(u′ − · + i0)

du′, (2.68)

and find this function is in L2, since P± are bounded on L2. It remains to show that ĤB

satisfies the equation. Since ĤB is real-valued, equation (2.67) is equivalent to

ĤB + F = F − φ̂(k)
(
∂u F P−[F + ĤB ] − (F + ĤB)P−[∂u F]

)
.

Using that |1 − φ̂(k)P+[∂u F]| = |ε| is non-zero, Lemma 2.23 shows that the equation is
equivalent to:

P+[ĤB + F]
1 − φ̂(k)P+[∂u F] − P−[ĤB + F]

1 − φ̂(k)P−[∂u F] = 2π i F(u)

(1 − φ̂(k)P+[∂u F])(1 − φ̂(k)P−[∂u F]) .
(2.69)

So it remains to check (2.69) is satisfied for ĤB as defined in (2.66) above. The equation is
satisfied, if we can show that

P±[ĤB ] = A± − P±[F]. (2.70)
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By the definition (2.66) of ĤB , this is the case if for A± as in (2.59) we have:

A± = P±
[

1

2π i
(A+ − A−)

]
. (2.71)

This however follows from the uniqueness proved in Lemma 2.24. ��
Lemma 2.35 Let f satisfy the Assumptions 2.12–2.13 and consider the function ĥ B defined
by the Fourier representation (2.62). Then ĥ B is a measurable function in R

3 × R
3 and for

k �= 0 it satisfies:

|ĥ B(k, v)| ≤ C(k)e−|v| (2.72)

Furthermore, for k �= 0 the function ĥ B(k, ·), k �= 0 solves the equation:

ĥ B(k, v) =
∫
R3

ωφ̂(k)((∇v1 − ∇v2 f )( f f ) + ∇ f (v1)ĥ B(k, v2) − ∇ f (v2)ĥ B(k, v1))

ω(v1 − v2) − i0
dv2.

(2.73)

Proof Measurability and decay of ĥ B follow from the regularity and decay properties of
f . It remains to show ĥ B(k, ·) solves (2.73). To this end, we first show H∗(k, ·) :=∫
R3 ĥ B(k, v)δ(· − ωv) dv coincides with the function ĤB(k, ·) (cf. (2.66)). This can be
seen by integrating (2.62):

H∗(k, u) = F(k, u)
1 − ε(k,−|k|u)

ε(k,−|k|u)
− A−(k, u)

ε(k,−|k|u)

1

2π i
(B+ − B−).

Since ε(k,−|k|) = 1 − B−(k, u), the claim ĤB = H∗ is equivalent to verifying

Ĥ = 1

2π i
(P+[Ĥ ] − P−[Ĥ ]) = F B−

1 − B− − A−

1 − B−
1

2π i
(B+ − B−). (2.74)

We add F on both sides and use (2.70) to see this is equivalent to

1

2π i
(A+ − A−) = F B−

1 − B− − A−

1 − B−
1

2π i
(B+ − B−) + F .

Rearranging terms, the claim can be rewritten as:

1

2π i
(A+(1 − B−) − A−(1 + B+)) = F,

which is equivalent to (2.69). Hence we have verified (2.74) and proven H∗ = ĤB . Using
this we can prove ĥ B as defined above solves (2.73). To this end, we integrate in v2 and bring
the last summand in (2.73) to the left-hand side, when the equation reads:

ε(k,−kv)ĥ B(k, v1)

=
∫
R3

φ̂(k)ω

ω · (v1 − v2) − i0

(
(∇v1 − ∇v2 f )( f f )(v1, v2) + ∇ f (v1)ĥ B(k, v2)

)
dv2

= −φ̂(k)
(
ω∇ f (v1)P−[F + ĤB ] − P−[F] f (v)

)
.

Replacing P−[F + ĤB ] = A− by means of (2.70), we have shown the claim to be equivalent
to (2.62), the definition of ĥ B . ��
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Now it is straightforward to check that gB defined in Definition 2.33 is a weak solution of
the Bogolyubov equation, assuming that gB has marginal

∫
ĝB(x, v1, v2) = h B(x, v1) and

satisfies the Bogolyubov boundary condition (2.12). These conditions will be proved in the
Theorems 3.1, 3.6, whose proof does not depend on the results in this section.

Theorem 2.36 Let f satisfy the Assumptions 2.12 and 2.13 and φ be either the Coulomb
potential or a soft potential. In the Coulomb case, assume further that f satisfies Assump-
tion 2.17 or 2.18. If gB defined by (2.33) satisfies

∫
ĝB(x, v1, v2) = h B(x, v1), and the

Bogolyubov boundary condition (2.12), then gB is a weak solution to the Bogolyubov equa-
tion.

Proof Since g ∈ W by assumption, the equation (2.11) holds weakly if the Fourier-
transformed equation

(v1 − v2)ikĝB − ikφ̂∇ f (v1)ĥ B(k, v2) + i φ̂∇ f (v1)ĥ B(k, v2) = ik(∇v1 − ∇v2)( f f )φ̂,

(2.75)

holds in the sense of distributions. This is true by the definition of gB (cf. (2.33)). ��

3 Characteristic Length Scale of the Equilibrium Correlations

In this section, we estimate the Bogolyubov correlations gB , and give sufficient conditions
for the onset of a characteristic length scale. In the Coulomb case, we observe the onset of
a characteristic length scale for one-particle functions f that behave like Maxwellians for
large velocities, and the characteristic length is given by the Debye length L D (cf. (1.12)).
In the soft potential case, the Bogolyubov correlations always have a characteristic length
scale, which coincides with the length scale of the potential. For both types of potentials, we
derive the rate of decay. This will provide the assumptions on h B , gB made in Theorem 2.36,
and hence complete the proof of Theorem 2.20.

To this end, for v1, v2 ∈ R
3 we define �̂(·, v1, v2) ∈ S ′(R3) by:

�̂(k, v1, v2) := φ̂(k)k
(
(∇v1 − ∇v2 f )( f f ) + ∇ f (v1)ĥ B(k, v2) − ∇ f (v2)ĥ B(k, v1)

)
.

(3.1)

This allows us to get a representation of gB (cf. (2.61)) of the form:

ĝB(k, v1, v2) = 1

k(v1 − v2) − i0
�̂(k, v1, v2). (3.2)

Using the notation introduced in (2.5), this yields the identity:

gB(x, v1, v2) = 2π i

|vr | �(x, v1, v2) ∗x
(
1(0,∞)(x · ϑr ) · H1�span{ϑr }

)
. (3.3)

Here we have used the one-dimensional Fourier transform F−1( 1
·−i0 ) = (2π)

1
2 i1(0,∞)(·),

and the notation H1�Y for the one-dimensional Hausdorff-measure supported on a line Y .
The properties of the equilibrium correlations gB can be analyzed by first characterizing the
properties of �, and then using the convolution representation (3.3).
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3.1 Coulomb Interaction

In this paragraph, we analyze the onset of a characteristic length in the Bogolyubov corre-
lations gB (cf. (2.61)) in the case of Coulomb interacting particles. Taking the Debye length
L D (cf. (1.12)) as unit of length, the Bogolyubov equation has the form (1.3) with φ = φC .
The result we will prove in this paragraph is the following.

Theorem 3.1 (Screening in the Coulomb case) Let gB be defined by (2.61), where f satisfies
the Assumptions 2.12–2.13 and φ = φC is the Coulomb potential (cf. Definition 2.11). Fur-
ther let f satisfy Assumption 2.18 (Maxwellian behavior for |v| → ∞) or Assumption 2.17
(Exponential behavior for |v| → ∞). Then the marginal of gB coincides with h B:∫

gB(x, v1, v2) dv2 = h B(x, v1). (3.4)

We recall the definition of vr in (2.5), and b, d, d− in (1.8). Let K ⊂ R
3 be compact and

δ ∈ (0, 1). Under Assumption 2.18, gB, h B satisfy the following estimates for x ∈ R
3,

v1, v2 ∈ K :

|gB(x, v1, v2)| ≤ C(K , δ)

|vr |
1

(|b| + d−)(1 + |b| + d−)1−δ
, (3.5)

|h B(x, v1)| ≤ C(K , δ)

|x |(1 + |x |3−δ)
. (3.6)

Under Assumption 2.17, gB, h B satisfy the following estimates for x ∈ R
3, v1, v2 ∈ K :

|gB(x, v1, v2)| ≤ C(K , δ)

|vr |
(1 + |b| + d−)δ

(|b| + d−)
, (3.7)

|h B(x, v)| ≤ C(K , δ)

|x |(1 + |x |2−δ)
. (3.8)

Note that the result (3.5) shows the onset of a characteristic length in the correlations gB if
f satisfies Assumption 2.18, but the estimate (3.7) indicates this is not in general true for
functions satisfying Assumption 2.17. Furthermore, the estimates (3.5) and (3.7) prove that
gB satisfies the Bogolyubov boundary condition (2.12).

For estimating the decay of the function gB , we use Lemma 2.31, i.e. we expand the
Fourier transform of h B near k = 0 into

ĥ B(k, v) = |k|r T (k, ω, v), (3.9)

where T is some smooth function. Note that the representation formula for ĥ B (2.62) suggests
that (3.9) holds with r = −2, in which case Lemma 2.31 gives an estimate of |h(x, v)| ≤
C/|x | for |x | → ∞. In other words, naively one might expect the decay of the correlations to
be the same as the decay of the Coulomb potential. However, since φ̂(k) appears also in the
dielectric constant ε in the denominator, we obtain r > −2 in (3.9). Computing the precise
value of r is subtle, since the denominator |ε(k,−|k|u′)|2 in P−[A] (appearing in (2.62))
becomes singular for |u′| ∼ 1/|k|, k → 0 as observed in Remark 2.26. The following lemma
allows to separate the critical region from the remainder.

Lemma 3.2 Assume that f satisfies the Assumptions 2.12–2.13 and φ = φC is the Coulomb
potential. There exists r0 > 0 and T (k, χ, v) ∈ C6(Br0(0) × S2 × R

3) such that for |k| ∈
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(0, r0), χ ∈ S2, v ∈ R
3:

∫
R

φ̂(k)(ω · ∇ f (v))F(ω, u′)
|1 − φ̂(k)α−(ω, u′)|2(ω · v − u′ + i0)

du′ = D(k, ω, v) + |k|2T (k, ω, v). (3.10)

Here D is given by the formula (u±
0 , I as in Notation 2.16)

D(k, χ, v) =
∫

I (k,χ)

φ̂(k)(χ · ∇ f (v))F(χ, u′)
|1 − φ̂(k)α−(χ, u′)|2(χ · v − u′)

du′. (3.11)

Moreover, T satisfies the estimate:

‖T (·, ·, v)‖C6(Br0 (0)×S2) ≤ C . (3.12)

Proof We decompose α− (cf. (2.15)) into its real and imaginary part:

α−(χ, u) = α(χ, u) − iπ∂u F(χ, u). (3.13)

By Lemma 2.28, for |k| ∈ (0, r0) small enough and χ ∈ S2 there exist u±
0 (k, χ) such that

(2.27) holds. By the estimate (2.49), after possibly choosing a smaller r0 > 0, the following
holds for |k| ∈ (0, r0) and u �= I (k, χ):

1

||k|2 + α−(χ, u)| ≤ C(1 + |u|3). (3.14)

Now the claim follows by decomposing:

∫
R

φ̂(k)(ω · ∇ f (v))F(ω, u′)
|1 − φ̂(k)α−(ω,−|k|u′)|2(ω · v − u′ + i0)

du′

= |k|2
∫
R\I (k)

(ω · ∇ f (v))F(ω, u′)
||k|2 + α−(ω, u′)|2(ωv − u′ + i0)

du′

+
∫

I (k)

φ̂(k)(ω · ∇ f (v))F(ω, u′)
|1 − φ̂(k)α−(ω, u′)|2(ωv − u′)

du′,

since by (3.14) the function T given by:

T (k, χ, v) :=
∫
R\I (k)

(χ · ∇ f (v))F(χ, u′)
||k|2 + α−(χ, u′)|2(χ · v − u′ + i0)

du′ (3.15)

satisfies the estimate (3.12). ��

Now we have decomposed the integral (3.10) into a well-behaved part T , and the singular
integral D. The behavior of D for large v depends on the behavior of f as v → ∞. If
f behaves like a Maxwellian, we have D(k, v) ≈ |k| for small k. If f behaves like an
exponential, the function is of order one close to the origin.

Lemma 3.3 (Expansion of D at k = 0) Let f satisfy the Assumptions 2.12–2.13. Rewrite the
function D defined by (3.11) in the following form:

D(k, χ, v) = γh(k, χ, v) if f satisfies Assumption 2.17, (3.16)

D(k, χ, v) = |k|γh(k, χ, v) if f satisfies Assumption 2.18. (3.17)
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We can choose γh ∈ C(Br0(0) × S2 × R
3) (r0 as in Lemma 3.2) such that for any K ⊂ R

3

compact

|∇ j
k,χ γh(k, χ, v)| ≤ C(K ), for j = 0, 1 . . . , 6, k ∈ Br0(0), χ ∈ S2 and v ∈ K . (3.18)

Similarly, for χ ∈ S2, k ∈ Br0(0), v1, v2 ∈ R
3 write :

χ(∇ f (v2)D(k, χ, v1) − ∇ f (v1)D(k, χ, v2)) = |k|γg(k, χ, v1, v2) under Assumption 2.17,
(3.19)

χ(∇ f (v2)D(k, χ, v1) − ∇ f (v1)D(k, χ, v2)) = |k|2γg(k, χ, v1, v2) under Assumption 2.18.
(3.20)

In both cases, we can choose γg ∈ C(Br0(0) × S2 × R
3 × R

3) such that for all K ⊂ R
3

compact:

|∇ j
k,χ γg(k, χ, v1, v2)| ≤ C(K ), for 0 ≤ j ≤ 6, k ∈ Br0(0), χ ∈ S2 andv1, v2 ∈ K .

(3.21)

Proof After changing variables with �(k, χ, ·), D reads:

D(k, χ, v) =
∫ 1/L

−1/L

|k|2χ∇ f (v)F(χ,�(y))L(k, χ)

||k|2 − α(�(y))|2 + |∂u F(χ,�(y))|2
1

χ · v − �(y)
dy (3.22)

=
∫ 1/L

−1/L

|k|3
∂uα(χ,�)

χ∇ f (v)(F/∂u F)(χ,�)∣∣∣ |k|2−α(�)
y∂u F(χ,�)

∣∣∣2 y2 + 1

|k|−1

χ · v − �(y)
dy. (3.23)

If f satisfies Assumption 2.17, then for |k| ≤ λ small enough, the functions F/∂u F , |k|3
∂uα(χ,�)

and |k|2−α(�)
y∂u F(χ,�)

are bounded, as well as their derivatives in k, χ . Furthermore, | |k|2−α(�)
y∂u F(χ,�)

| ≥
c > 0 is bounded below. Additionally, we use ψ(k, χ, y) ∈ I (k, χ) and |χ · v| ≤ C(K ) to
infer that the function

z(k, χ, v, y) = |k|−1

χ · v − �(y)
(3.24)

is bounded as well as its derivatives in k, χ . Hence, under Assumption 2.17 the expansion
(3.16) with the estimate (3.18) follow by differentiating through the integral. Similarly, we
prove (3.17) with the estimate (3.18) under Assumption 2.18.

The expansions (3.19)-(3.20) with the estimate (3.21) are proved analogously, using the
fact that

zsym(k, χ, v1, v2, y) =
( |k|−2

χ · v1 − �(y)
− |k|−2

χ · v2 − �(y)

)

= |k|−2χ(v2 − v1)

(χ · v1 − �(y))(χ · v1 − �(y))
, (3.25)

is a bounded function, as well as its derivatives in k, χ . ��
We now prove an integral estimate for ĥ B(k, v) (cf. (2.62)).

Lemma 3.4 Let f satisfy the Assumptions 2.12–2.13, and Assumption 2.17 or 2.18. Further
let φ = φC be the Coulomb potential and h B be given by (2.62). Then there exists C > 0
such that
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∫
B2

∣∣∣∣
∫
R3

ĥ B(k, v) dv

∣∣∣∣ dk ≤ C . (3.26)

Proof We start by performing the integration in the direction orthogonal to ω using Fubini’s
Theorem:

∫
B2

∣∣∣∣
∫
R3

ĥ B(k, v) dv

∣∣∣∣ dk =
∫

B2

∣∣∣∣
∫
R

∫
R3

ĥ B(k, v)δ(u − ωv) dv du

∣∣∣∣ dk

≤
∫

B2

∣∣∣∣
∫
R

F(ω, u)
1 − ε(k,−|k|u)

ε(k,−|k|u)
− φ̂(k)

A−(k, u)

ε(k,−|k|u)
∂u F(k, u) du

∣∣∣∣ dk

≤C +
∫

B2

∣∣∣∣
∫
R

F(ω, u)

ε(k,−|k|u)
du

∣∣∣∣ dk +
∫

B2

∣∣∣∣
∫
R

φ̂(k)
A−(k, u)

ε(k,−|k|u)
∂u F(k, u) du

∣∣∣∣ dk.

(3.27)

Now the estimates follow similar to the proof of the last Lemma. We observe that for |k| ≥
λ > 0 bounded away from the origin, the integrand in the first integral in (3.27) is bounded.
Further, for λ > 0 small enough we know that |F(u)/ε(k,−|k|u)| ≤ |F(u)/∂u F | is bounded
for |u − u±

0 (k, ω)| ≤ 1. Finally, on the region |k| ≤ λ, |u − u0| ≥ 1, the integral is bounded
since |ε(k,−|k|u)|−1 ≤ C(1 + |u|3).

In order to bound the second integral in (3.27), we recall the definition of A− (2.59) to
rewrite:

∫
B2

∣∣∣∣
∫
R

φ̂(k)
A−(k, u)

ε(k,−|k|u)
∂u F(k, u) du

∣∣∣∣ dk

=
∫

B2

∣∣∣∣
∫
R

φ̂(k)P−
[

F(k, ·)
|ε(k,−|k|·)|2

]
(u)∂u F(k, u) du

∣∣∣∣ dk.

Now the claim follows if we can show that
∣∣∣∫ P−[ F

|ε|2 ](u)∂u F(k, u) du
∣∣∣ ≤ C is uniformly

bounded, for |k| sufficiently small. For I (k, ω) as introduced in (2.28) we can estimate

∣∣∣∣
∫

P−[ F

|ε|2 ](u)∂u F(k, u) du

∣∣∣∣ ≤ C +
∣∣∣∣
∫

I (k)

∫
I (k)

F(k, u′)∂u F(u)

|ε(k,−|k|u′)|2(u − u′ − i0)
du′ du

∣∣∣∣ .
(3.28)

Now since f satisfies Assumption 2.17 or 2.18, the function F(k,u′)∂u F(u)

|ε(k,−|k|u′)|2 and its derivative

in u′ is bounded for u, u′ ∈ I (k) and |k| sufficiently small. Therefore, the integral (3.28) is
uniformly bounded and the claim follows. ��

From the expansion of D near k = 0 in Lemma 3.3, we can now obtain an expansion of ĥ B

and ĝB near k = 0.

Lemma 3.5 (Expansion of ĥ B for |k| → 0 and |k| → ∞) Assume that f satisfies the
Assumptions 2.12–2.13 and φ = φC is the Coulomb potential. Let ĥ B be given by (2.62) and
K ⊂ R

3 compact. Then there exists a function ĥ B,0(k, χ, v) ∈ C6(B1(0) × S2 × R
3) such

that:
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‖ĥ B,0(·, ·, v)‖C6(B1(0)×S2) ≤ C(K ), for v ∈ K
(3.29)

ĥ B(k, v) = − f (v) + |k|ĥ B.0(k, k/|k|, v), under Assumption 2.18
(3.30)

ĥ B(k, v) = − f (v) + ĥ B.0(k, k/|k|, v), under Assumption 2.17.
(3.31)

Furthermore for |k| ≥ 1 and � ∈ 1, · · · , 6 we have:

|∇�
k ĥ B(k, v)| ≤ C

1 + |k|�+2 e−|v|. (3.32)

Proof On the region |k| ∈ (r0, 1), the function ĥ B(k, v) is smooth by (2.47). For |k| ∈ (0, r0)
small, we use φ̂(k) = 1

|k|2 and the decomposition (3.10):

ĥ B(k, v) = − f (v) + |k|2
(

f (v)

|k|2 − α−(ω · v) + i∂u F(ω, ω · v)
) − T (k, ω, v)

)

+ D(k, ω, v). (3.33)

The first two summands can be written in the forms (3.30), (3.31) respectively, as can be
inferred from from Lemma 3.2 and (2.24). For the last summand, the claim follows from
Lemma 3.3. It remains to prove the estimate (3.32). This however follows from the lower
bound (2.47) on |ε| for |k| ≥ 1. ��
Proof of Theorem 3.1 Let η ∈ C∞

c be a cutoff function with η(k) = 1 for |k| ≤ 1/2 and
η(k) = 0 for |k| ≥ 1. We recall the functions � (cf. (3.1)) and h B (cf. (2.62)), and separate
the contributions of large and small Fourier modes:

�̂(k, v1, v2) = η(k)�̂ + (1 − η)(k)�̂ =: �̂1 + �̂2 (3.34)

ĥ B(k, v) = η(k)ĥ B + (1 − η)(k)ĥ B =: ĥ B,1 + ĥ B,2. (3.35)

The function h B,1 satisfies the estimates (3.6),(3.8), which can be seen by applying
Lemma 2.30 to the expansions (3.30),(3.31). The function h B,2 satisfies the estimates
(3.6),(3.8) by (3.32).

In order to estimate �1, we again apply Lemma 2.30. To this end, we insert the expansion
of ĥ B into the definition of � (cf. (3.1)) to find:

�̂(k, v1, v2) = k/|k|2(∇ f (v1)h B,0(k, v2) − ∇ f (v2)h B,0(k, v1)), for |k| ≤ 1.

Hence for any δ > 0 and R > 0, Lemma 2.30 shows that �1 decays like

|�1(x, v1, v2)| ≤ C(K , δ)

1 + |x |m−δ
, for x ∈ R

3, |v1|, |v2| ≤ R, (3.36)

where m = 3 if f1 satisfies Assumption 2.18, and m = 2 under Assumption 2.17. On the
other hand, the estimate (3.32) shows that∣∣∣∇ j

k

(
�̂(k, v1, v2) − k/|k|2(∇v1 − ∇v2)( f f )(v1, v2)

)∣∣∣
≤ C(K )

1 + |k|2+ j
, for j = 0, . . . , 6, |k| ≥ 1.
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28 J. J. L. Velázquez, R. Winter

Therefore, �2 satisfies the estimate:

|�2(x, v1, v2)| ≤ Ce−(|v1|+|v2|)

|x |(1 + |x |)4 . (3.37)

Now inserting the estimates (3.36) and (3.37) into the representation (3.3) shows the estimates
(3.5) and (3.7).

It remains to show that gB is in the space W introduced in (2.10)). We remark that by
construction ĝB(k, v1, v2) = ĝB(−k, v2, v1), so gB satisfies the symmetry property (2.8).

To show that |h|[gB] ∈ L1
loc we use the decomposition (3.34):

gB = 2π i

|vr | (�1 + �2)(x, v1, v2) ∗x
(
1(0,∞)(x · ϑr ) · H1�span{ϑr }

) =: gB,1 + gB,2.

(3.38)

From the estimate (3.37) we deduced that gB,2 satisfies |h|[gB,2] ∈ L1
loc.

We now estimate |h|[gB,1]. To this end, we decompose the function further into:

ĝB,1(k, v1, v2) = 1|ω(v1−v2)|>1ĝB,1 + 1|ω(v1−v2)|≤1ĝB,1 =: ĝB,a + ĝB,b. (3.39)

Inserting the definition of gB (2.61), and using |v1| ≤ R we can estimate gB,a by:
∫
R3

|gB,a(x, v1)| dv2 ≤C

(
1 +

∫ ∫
B2

|∇ f (v2)||ĥ B(k, v1)| dk dv2

)

+
∫

B2

∣∣∣∣
∫
R3

ĥ B(k, v) dv

∣∣∣∣ dk

≤C(R) + C
∫

B2

∣∣∣∣
∫
R3

eikx ĥ B(k, v) dv

∣∣∣∣ dk,

which is bounded by (3.26). Hence |h|[gB,a] ∈ L1
loc.

In order to estimate gB,b given by (3.39), we use the fact that |ω(v1 − v2)| ≤ 1 and
|v1| ≤ R implies |ωv2| ≤ R + 1. Hence |ε(k,−kv2)| ≥ c > 0 is bounded below uniformly
on the support of ĝB,b, and |h|[gB,b] ∈ L1

loc follows. Hence also |h|[gB] ∈ L1
loc as claimed.

It then immediately follows that h B is indeed the marginal of gB (cf. (2.61)), since:
∫

ĝB(k, v1, v2) dv2

=
∫ φ̂(k)ω

(
(∇v1 − ∇v2)( f f ) + ∇ f (v1)ĥ B(k, v2) − ∇ f (v2)ĥ B(k, v1)

)
ω(v1 − v2) − i0

dv2,

and ĥ B satisfies the equation (2.73). The estimates (3.6)-(3.8) imply sup|v|≤R ‖h[gB](·, v)‖L2

≤ C(R) as claimed. ��

3.2 Soft Potential Interaction

Theorem 3.6 (Decay estimate for soft potentials) We recall gB as introduced in Defini-
tion 2.33, and assume f satisfies the Assumptions 2.12–2.13 and φ = φS is a soft potential
(cf. Definition 2.11). Further we use the shorthand notation vr , ϑr in (2.5), and b, d, d−
introduced in (1.8). Write vr = v1 − v2, ϑr = vr/|vr | and let δ ∈ (0, 1). For almost every
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(x, v1) ∈ R
3 × R

3, there holds gB(z, v1, ·) ∈ L1(R3), and the marginal of g coincides with
h B: ∫

gB(x, v1, v2) dv2 = h B(x, v1). (3.40)

Furthermore, for n ∈ N the function gB satisfies the estimate:

|gB(x, v1, v2)| ≤ C(δ)

|vr |
1

(1 + |b| + d−)2−δ
e−(|v1|+|v2|), (3.41)

|h B(x, v1)| ≤ C(δ)

1 + |x |3−δ
e−(|v1|+|v2|). (3.42)

Proof The identity (3.40) follows analogously to theCoulomb case. For proving the estimates
(3.41), (3.42), we recall the definition of h in Fourier variables:

ĥ B(k, v) := f (v)
(1 − ε(k,−kv))

ε(k,−kv)
− φ̂(k)

A−(k, kv)

ε(k,−kv)
(ω∇ f (v)). (3.43)

Since ε is non-degenerate by Assumption, the functions (1 − ε)/ε and A−/ε are bounded,
as well as their first three derivatives in k. Using the exponential decay of f (v) and ∇ f (v),
the decay estimate (3.42) follows from Lemma 2.31. A similar argument proves (3.41). ��

We observe that the result shows that the rate of decay is independent of the rate of the decay
of the soft potential. Further, we do not observe a singularity for small impact parameters b.

4 Stability of the Linearized Evolution of the Truncated Two-Particle
Correlation Function

4.1 The Linearized Evolution Semigroup

The goal of this subsection is to prove that the Bogolyubov propagator G introduced in
Definition 2.10 provides a strong solution to the linear Bogolyubov evolution equation (1.2).
We start by proving the well-posedness of the propagator. Since the definition involves the
action of the Vlasov semigroup both on smooth initial data and on Dirac masses, we first
derive properties for both cases. We recall that for translation invariant functions, we can
reduce the number of variables using (2.7).

Since we prove the well-posedness of the linear evolution problem in the Schwartz space,
we recall the seminorms generating this space.

Definition 4.1 For k, l ∈ N0 and n ∈ N, let ‖ · ‖Ck,l (Rn) be the seminorm defined by:

‖ f ‖Ck,l (Rn) := sup
x∈Rn

(1 + |x |)l(| f (x)| + |∇k f (x)|). (4.1)

Remark 4.2 The collection of norms ‖·‖Ck,l (Rn) with k, l ∈ N0 generates the Schwartz space,
which can be equipped with the associated Frechèt-metric.

Lemma 4.3 (Solution of the Vlasov equation for Dirac masses) Let φ = φS be a soft poten-
tial, let f ∈ S(R3) satisfy Assumption 2.15 and let x0, v0 ∈ R

3. We set h0(x, v) =
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δ(x − x0)δ(v − v0) f (v). Consider the function h(t) = V(t)[h0] defined by the Fourier-
Laplace representation (2.19). Then there exists a function Y ∈ C(R+,S((R3)3)) such that
∂t Y (t, x) ∈ C(R+,S((R3)3)) and:

h(t, x, v) = Y (t, x − x0, v, v0) + δ(x − x0 − tv)δ(v − v0) f (v). (4.2)

Furthermore, h is a weak solution to the Vlasov equation (2.18), and Y solves:

∂t Y + v∇x Y − ∇Eh∇ f = 0, Y (0, ·) = 0. (4.3)

Proof We start by proving that h can be decomposed as claimed in (4.2). W.l.og. let x0 = 0.
By the Fourier-Laplace representation of h in (2.19) we have:

ĥ(t, x, v) = 1

2π i

∫
L1

h̃(z, k, v)ezt dz

= 1

2π i

(∫
L1

ĥ0(k, v)

z + ikv
ezt dz +

∫
L1

i Q(k, v)�̃(z, k)

z + ikv
ezt dz

)
(4.4)

where Lγ := {z ∈ C : �(z) = γ } is the line with real part γ , oriented upwards. The line
integral is evaluated in the improper sense∫

Lγ

f (z) dz = lim
T →∞

∫
Lγ

f (z)1(|z| ≤ T ) dz. (4.5)

The first line integral in (4.4) is explicit and yields:

1

2π i

∫
L1

ĥ0(k, v)

z + ikv
dz = e−ikvt ĥ0(k, v),

so we obtain the second term in (4.2). It remains to show that the second line integral in (4.4)
gives a function Y with the desired properties. Using the formula (2.19), the term can be
rewritten as:

Ŷ (t, k, v, v0) = f (v0)

(2π)
3
2

1

2π i

∫
L1

i Q(k, v)ezt

ε(k,−i z)(z + ikv)(z + ikv0)
dz. (4.6)

Now ε(k,−i z) is smooth and bounded below by Assumption 2.15. The line integral is
absolutely convergent and differentiating through it shows that for all �1, �2, �3 ∈ N0, T > 0,
there exists a C > 0 such that:

‖∇�1
v0

∇�2
v ∇�3

k
1

2π i

∫
L1

ezt

ε(k,−i z)(z + ikv)(z + ikv0)
dz‖C([0,T ]×R9) ≤ C . (4.7)

Using that Q and f in (4.6) are Schwartz functions, we obtain Y ∈ C(R+,S(R9)). Next
we observe that

∫
h(t, x, v) dv = �(t, x). To see this, we use

∫
h̃(z, k, v) dv = �̃(z, k).

The integration in v commutes with the Laplace inversion (4.4), so � is the spatial density
of h. Hence the Fourier-Laplace definition (2.19) of h gives a weak solution of the Vlasov
equation. Combining this with the decomposition (4.2) we find that Y is a weak solution to
(4.3). Using equation (4.3) we find ∂t Y ∈ C(R+,S(R9)) as claimed. ��

Lemma 4.4 (Vlasov equation with Schwartz initial data) Let φ = φS be a soft potential, let
f ∈ S(R3) satisfy Assumption 2.15. Further assume h0 ∈ S((R3)2). Let h(t) = V(t)[h0]
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be defined by formula (2.19). There exists an m ∈ N0 such that for any k, l ∈ N0, there is a
C > 0 such that:

‖h‖C1([0,T ];Ck,l ) ≤ C‖h0‖Ck+m,l+m . (4.8)

Further, the function is a strong solution to the Vlasov equation (2.18).

Proof For proving the estimate (4.8), we use the definition of V(t)[h0] in Fourier-Laplace
variables (cf. (2.19)) to obtain the representation:

ĥ(t, x, v) = 1

2π i

(∫
L1

ĥ0(k, v)

z + ikv
ezt dz +

∫
L1

i Q(k, v)�̃(k, z)

z + ikv
ezt dz

)
, (4.9)

�̃(k, z) :=
∫ ĥ0(k,v′)

z+ikv′ dv′

ε(k,−i z)
. (4.10)

Since ε(k,−i z) is uniformly bounded below on the line L1, the claim follows by differenti-
ating through the integrals in (4.9). ��
We recall the Bogolyubov propagator G introduced in (2.21). The previous two lemmas
allow us to prove that the Bogolyubov propagator is well-defined. In order to show that the
function g(t) := G(t)[g0] indeed solves the Bogolyubov equation, we show commutativity
for Vlasov operators acting on different sets of variables. To this end we introduce the
following shorthand notation.

Notation 4.5 Let S be the Schwartz distribution given by:

S(ξ1, ξ2) = δ(ξ1 − ξ2) f (v1). (4.11)

Lemma 4.6 Let g0(ξ1, ξ2) = g0(x1 − x2, v1, v2) + S(ξ1, ξ2), where g0 ∈ S and S as intro-
duced in (4.11). Then the compositions of operators Vξ1Vξ2 [g0], Vξ2Vξ1 [g0] as introduced
in Definition 2.10 are well-defined and the following commutation relation between Vξ1 and
Vξ2 holds:

Vξ1(t
′)Vξ2(t)[g0] = Vξ2(t)Vξ1(t

′)[g0]. (4.12)

Proof By Lemma 4.3, Vξ2(t)[g0] is the sum of a Schwartz function and a Dirac mass, so the
composition with Vξ1(t

′) is well defined. The commutativity relation (4.12) follows from the
explicit Fourier-Laplace representation (2.19). ��
Now can now prove that G(t) gives the solution of the Bogolyubov equation (1.2). For
convenience we introduce the following notation.

Notation 4.7 We write E j [g], j = 1, 2 for the following expressions:

E2[g](x, v2) =
∫

φ(x + y)g(y, v1, v2) dv1,

E1[g](x, v1) =
∫

φ(−x + y)g(y, v1, v2) dv2. (4.13)

Theorem 4.8 (Solution of the linearized evolution equation) Let g0, f be as in Theo-
rem 2.22. The function g given by g(t) = G(t)[g0] satisfies g ∈ C(R+,S((R3)3)),
∂t g ∈ C(R+,S((R3)3)) and solves the Bogolyubov equation (1.2).
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Proof First we observe that using the notation (4.13), the Bogolyubov equation (1.2) reads:

∂τ g + (v1 − v2)∇x g − ∇ f (v1)∇x E2[g](x, v2) − ∇ f (v2)∇x E1[g](x, v1)

= (∇v1 − ∇v2) ( f (v1) f (v2)) ∇φ(x).
(4.14)

We decompose g(t) = G(t)[g0] into two parts:

g(t) = Vξ1Vξ2 [g0] + (Vξ1Vξ2 [S] − T (t)S
) = G1 + G2. (4.15)

We take the time derivative of both expressions. For the first term, the existence of the time
derivative follows from Lemma 4.4, and using Lemma 4.6 we find:

∂t G1 = −
∑
i �= j

vi∇xi G1 + ∇ f (v j )∇xi Ei [G1]. (4.16)

To prove differentiability in time for G2 we observe that

G2(t) = Vξ1(t)[Vξ2(t)[S] − T (t)S] + (Vξ1(t)[S] − T (t)S
)

(4.17)

satisfies G2, ∂t G2 ∈ C(R+,S((R)9)) by Lemma 4.3 and Lemma 4.4. Differentiating G2

yields:

∂t G2(t) = −
∑
i �= j

vi∇xi G2 + ∇ f (v j )∇xi Ei [Vξ1Vξ2 [S]]. (4.18)

Now the claim follows from
∑2

i �= j=1 ∇ f (v j )Ei [T (t)[S]] = (∇v1−∇v2)( f (v1) f (v2))∇φ(x).
��

4.2 Distributional Stability of the Bogolyubov Correlations

In Theorem 4.8 we have proved that the Bogolyubov propagator G(t) gives a solution to the
Bogolyubov equation. In this subsection we prove the result (2.41) claimed in Theorem 2.22,
that is the distributional stability of the Bogolyubov correlations. We split the problem into
analyzing the solution � of (4.14) with non-zero initial datum g0, but without the right-hand
side in (4.14), and the solution � of (4.14) with zero initial datum. The following lemma
gives this decomposition in Fourier-Laplace variables.

Lemma 4.9 Let g0 ∈ S((R3)3) be a function such that g0(x1 − x2, v1, v2) is symmetric in
exchanging ξ1 = (x1, v1), ξ2 = (x2, v2). We make the decomposition

g(t, ξ1, ξ2) = G(t)[g0] = �(t, t, ξ1, ξ2) + �(t, t, ξ1, ξ2), (4.19)

where �(t, t ′, ξ1, ξ2) := Vξ1(t)Vξ2(t
′)[S] − T (t)[S], �(t, t ′) = Vξ1(t)Vξ2(t

′)[g0]. Then the
Fourier-Laplace representation of �, written in the form (2.7), satisfies:

�(z, z′, k, v1, v2) := �1(z, z′, k, v1, v2) + �2(z, z′, k, v1, v2) + �2(z
′, z,−k, v2, v1)

�1(z, z′, k, v1, v2) := −
Q(k, v1)Q(−k, v2)

∫ δ(v′
1−v′

2) f (v′
1)

(z+ikv′
1)(z

′−ikv′
2)

dv′
1 dv

′
2

ε(k,−i z)ε(−k,−i z′)(z + ikv1)(z′ − ikv2)

�2(z, z′, k, v1, v2) := f (v1)

(z + ikv1)

i Q(−k, v2)

ε(−k,−i z′)(z2 − ikv1)(z′ − ikv2)

(4.20)

123



The Two-Particle Correlation Function… 33

and the Fourier-Laplace representation of � is given by:

�(z, z′, k, v1, v2) = �1(z, z′, k, v1, v2) + �2(z, z′, k, v1, v2) + �2(z
′, z,−k, v2, v1)

�1(z, z′, k, v1, v2) := g0(k, v1,−k, v2)

(z + ikv1)(z2 − ikv2)

−
Q(k, v1)Q(−k, v2)

∫ ĝ0(k,v′
1,−k,v′

2)

(z+ikv′
1)(z

′−ikv′
2)

dv′
1 dv

′
2

ε(k,−i z1)ε(−k,−i z2)(z1 + ikv1)(z2 − ikv2)

�2(z, z′, k, v1, v2) := i Q(−k, v2)
∫ ĝ0(k,v1,−k,v′)

z′+ikv′ dv′

ε(−k,−i z2)(z1 + ikv1)(z2 − ikv2)
.

(4.21)

Proof Follows directly from the Fourier-Laplace representation of V in (2.19) and the defi-
nition of the Bogolyubov propagator in Definition 2.10. ��

We will start by proving two Lemmas that we will use throughout this whole section.

Lemma 4.10 Let Hγ = {z ∈ C : |�(z)| ≤ γ } and f (k, z) ∈ L1
loc(R

3, C), such that there
exist R, c > 0 with ‖ f (k, i ·)‖L∞(Hc|k|) ≤ R for all k ∈ R

3. Define the function

I (t, k, v, v′) :=
∫

iR−|c|k
ezt f (k, i z)

(z + ikv)(z + ikv′)
dz.

Then for all M, N ∈ N0, there exists C > 0 such that

|∇M
v ∇N

v′ I (t, k, v, v′)| ≤ Ce−c|k|t

|k| . (4.22)

Moreover, let I be a function satisfying (4.22) and κ ∈ S(R3) be a Schwartz function. Then
for p(k, v) := PV

∫
κ(v′)I (t,k,v,v′)

k(v−v′) dv′ we have

‖p(k, ·)‖C1
b (R3) ≤ Ce−c|k|t

|k| . (4.23)

Proof We start by proving (4.22). To this end, let M, N ∈ N0 be arbitrary. Since f is bounded
on Hc|k| , we can differentiate through the integral:

|∇M
v ∇N

v′ I (t, k, v, v′)| ≤ e−c|k|t
∫

iR−c|k|
|k|N+M | f (k, i z)|

|z + ikv|M+1|z + ikv′|N+1 dz

≤ Ce−c|k|t
∫
R

|k|N+M

(|k| + |r − kv|)M+1(|k| + |r − kv′|)N+1 dr

≤ Ce−c|k|t
∫
R

|k|N+M+1

(|k| + |r |k| − kv|)M+1(|k| + |r |k| − kv′|)N+1

≤ Ce−c|k|t

|k| sup
a,b∈R

∫
R

1

(1+|t − a|)M+1(1 + |t − b|)N+1 dt≤Ce−c|k|t

|k| .

To prove (4.23) we remark that P(t, k, v, u) := ∫
I (t, k, v, v′)κ(v′)δ(kv′ − u) dv′ satisfies

|∇M
v ∇N

u P(t, k, v, u)| ≤ Ce−c|k|t

|k|(1 + |u|)2 .
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On the other hand p(k, v) = PV
∫ P(t,k,v,u′)

kv−u′ du′ and the principal value integral can be
bounded by ∣∣∣∣PV

∫
P(u′)
u − u′ du′

∣∣∣∣ ≤ C
(‖P‖C1 + ‖P‖L1

)
.

��
Lemma 4.11 Let f ∈ S(R3 × R

3) be a Schwartz function.

(i) For t → ∞, the following convergence holds in the sense of Schwartz distributions:

PV
e−ik(v1−v2)t

k(v1 − v2)
−→ −iπδ(k(v1 − v2)) ∈ S ′(R9). (4.24)

(ii) For M ∈ N0 arbitrary, the following convergence holds in C M
b (R3) as t → ∞:

PV
∫

f (k, v2)
e−ik(v1−v2)t

k(v1 − v2)
dk dv2 → −iπ

∫
R3×R3

δ(k(v1 − v2)) f (k, v2) dv2 dk.

(4.25)

Proof We start by proving the convergence (4.24). Let w(k, v1, v2) be a Schwartz function
and W (k, u) := ∫

R6 δ(k(v1 − v2) − u)w(k, v1, v2) dv1 dv2. Let Ŵ be the Fourier transform
in u, then:

PV
∫ ∫

R3×R3

e−ik(v1−v2)t

k(v1 − v2)
w(k, v1, v2) dv1 dv2 dk = PV

∫ ∫
R

e−iut

u
W (k, u) du dk

=
∫

−i

√
π

2
sign(ξ + t)Ŵ (k, ξ) dξ dk → −iπ

∫
W (k, 0) dk, as t → ∞.

For proving (4.25), we observe that f ∈ S implies that F(k, u) := ∫
δ(kv + u) f (k, v) dv is

also Schwartz. Furthermore, we have

PV
∫

f (k, v2)
e−ik(v1−v2)t

k(v1 − v2)
dk dv2

=
∫

PV
∫
R

F(k, u)e−i(kv1+u)t

kv1 + u
du dk =

∫
PV

∫
R

F(k, u − kv1)e−iut

u
du dk

→
∫

F(k, k · v1) dk, as t → ∞.

Differentiating through the integral, we obtain the convergence for arbitrary derivatives in
v1. ��
Lemma 4.12 The solution g(t) = G(t)[N0] to (1.2) with zero initial datum N0 :≡ 0 converges
to the Lenard solution in the sense of distributions, so

G(t)[N0] −→ gB inS ′(R9)as t → ∞.

Proof By Lemma 4.9 we have g(t, ·) = G(t)[N0](·) = �(t, t, ·). We use the Fourier-
Laplace representation �(z1, z2, k, v1, v2) = �1(z1, z2, k, v1, v2) + �2(z1, z2, k, v1, v2) +
�2(z2, z1,−k, v2, v1) in (4.20). We will show the distributional convergence term by term,
starting with �1.
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Lemma 4.13 The following convergence holds in the sense of distributions:

�1(t, t, k, v1, v2) −→ Q(k, v1)Q(−k, v2)

k(v1 − v2) − i0

∫ f (v′)
|ε(k,−kv′)|2

k(v1 − v′) − i0
dv′ (4.26)

+ Q(k, v1)Q(−k, v2)

k(v1 − v2) − i0

∫ f (v′)
|ε(k,−kv′)|2

k(v2 − v′) − i0
dv′, as t → ∞.

(4.27)

Proof First we perform the integration in v′
2

�1(z1, z2, k, v1, v2) = − Q(k, v1)Q(−k, v2)
∫ f (v′)

(z1+ikv′)(z2−ikv′) dv
′

ε(k,−i z1)ε(k2,−i z2)(z1 + ikv1)(z2 − ikv2)

= −
∫ Q(k, v1)Q(−k, v2)

f (v′)
(z1+ikv′)(z2−ikv′)

ε(k,−i z1)ε(k2,−i z2)(z1 + ikv1)(z2 − ikv2)
dv′.

Now for k fixed, we can perform the Laplace inversion integral both in z1 and z2. For
�(zi ) > 0 the integrand has no singularities, so we can carry out the Laplace inversion
on the contour with �(zi ) = 1. By Assumption (2.26), |ε(k,−i z)| is bounded below for
�(z) = −ic|k| and some c > 0. The estimate (2.25) allows to use Cauchy’s residual theorem
to move the contour to the left of the imaginary line:

1

2π i

∫
iR+c

Q(k, v)ezt

ε(k,−i z)(z + ikv)(z + ikv′)
dz

= 1

2π i

∫
iR−c|k|

Q(k, v)ezt

ε(k,−i z)(z + ikv)(z + ikv′)
dz + PV

Q(k, v)e−ikvt

ε(k,−kv)ik(v′ − v)

+ PV
Q(k, v)e−ikv′t

ε(k,−kv′)ik(v − v′)

= Q(k, v)

⎛
⎝ 1

2π i

∫
iR−c|k|

ezt

ε(k,−i z)(z + ikv)(z + ikv′)
dz + PV

e−ikvt

ε(k,−kv)
− e−ikv′ t

ε(k,−kv′)
ik(v′ − v)

⎞
⎠

=: Q(k, v)(I (t, k, v, v′) + R(t, k, v, v′)).

Writing �1 in terms of the functions I and R we obtain

�1(t1, t2, k, v1, v2) = −
∫

f (v′)Q(k, v1)Q(−k, v2)(I + R)(t, v1, v
′)(I + R)(t, v2, v

′) dv′.

We expand the product (I + R)(I + R) inside the integral. We claim all terms containing an
integral term I tend to zero in the limit t → ∞ by Lemma 4.10. For the terms containing
products of the form I R this follows from (4.22), for the products of the form I I this can be
inferred from (4.23) and the fact that the singularity in k in estimate (4.23) is integrable. It
remains to study the limiting behavior of the residual part:

�1(t, k, v1, v2) +
∫

f (v′)R(t, v1, v
′)R(t, v2, v

′) dv′ → 0 in D′(R9).
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In order to find the distributional limit of �1 we have to determine the limit of

�∞(t, k, v1, v2) := −
∫

f (v′)R(t, v1, v
′)R(t, v2, v

′) dv′

= −Q(k, v1)Q(−k, v2)

PV
∫

f (v′)
e−ikv1 t

ε(k,−kv1)
− e−ikv′ t

ε(k,−kv′)
k(v′ − v1)

eikv2 t

ε(−k,kv2)
− eikv′ t

ε(−k,kv′)
k(v′ − v2)

dv′.

The denominator we split as

1

k(v′ − v1)k(v′ − v2)
= 1

k(v1 − v2)

(
1

k(v′ − v1)
− 1

k(v′ − v2)

)
. (4.28)

Using this we can split �∞ = ∑2
j=1

∑4
l=1 �

j,l∞ , where �
j,l∞ are given by (here ζ(1) = 2,

ζ(2) = 1):

�
j,1∞ (t, k, v1, v2) := (−1) j Q(k, v1)Q(−k, v2)

∫
f (v′)

e−ik(v1−v2)t

ε(k,−kv1)ε(−k,kv2)

k(v′ − v j )k(v1 − v2)
dv′

�
j,2∞ (t, k, v1, v2) := (−1) j Q(k, v1)Q(−k, v2)

∫
f (v′)

− e(−1) j ik(v j −v′)t
ε(k,−kv1)ε(−k,kv′)

k(v′ − v j )k(v1 − v2)
dv′

�
j,3∞ (t, k, v1, v2) := (−1) j Q(k, v1)Q(−k, v2)

∫
f (v′)

1
ε(k1,−k1v′)ε(−k1,k1v′)

k(v′ − v j )k(v1 − v2)
dv′

�
j,4∞ (t, k, v1, v2) := (−1) j Q(k, v1)Q(−k, v2)

∫
f (v′)

− e(−1) j ik(v′−vζ( j)))t

ε(k,−kv′)ε(−k,kvζ( j)))

k(v′ − v j )k(v1 − v2)
dv′.

We compute the limits of these terms separately. Applying the Lemmas 4.10 and 4.11 yields
for t → ∞:

�
j,1∞ (t, v1, v2) → (−1) j+1 iπδ(k(v1 − v2))

ε(k,−kv1)ε(−k, kv2)
Q(k, v1)Q(−k, v2)PV

∫
f (v′)

k(v′ − v1)
dv′

�
j,2∞ (t, v1, v2) → iπ

k(v1 − v2)
Q(k, v1)Q(−k, v2)

∫
f (v′)

δ(k(v′ − v j ))

|ε(k,−kv′)|2 dv′

�
j,3∞ (t, v1, v2) → (−1) j Q(k, v1)Q(−k, v2)

k(v1 − v j )

∫
f (v′)

|ε(k,−kv′)|2k(v′ − v1)
dv′

�
j,4∞ (t, v1, v2) → 0 for v1 �= v2.

The terms �
1,1∞ and �

2,1∞ cancel. The remaining terms can be rearranged to:

�1(t, v1, v2) → Q(v1)Q(−k, v2)

k(v1 − v2) − i0

∫
f (v′)

|ε(k,−kv′)|2k(v′ − v1) − i0
dv′

+ Q(k, v1)Q(−k, v2)

k(v1 − v2) − i0

∫
f (v′)

|ε(k,−kv′)|2k(v′ − v2) − i0
dv′, as t → ∞,

using Plemelj’s formula. ��
Lemma 4.14 For �2 we have the following convergence in the sense of distributions:

�2(t, t, k, v1, v2) → − f (v1)Q(−k, v2)

ε(−k,−kv1)k(v1 − v2) − i0
, as t → ∞.
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Proof We argue similarly to the case of �1. We start from the definition of �2

�2(z1, z2, k, v1, v2) = f (v1)

(z1 + ikv1)

i Q(−k, v2)

ε(−k,−i z2)(z2 − ikv1)(z2 − ikv2)

and invert the Laplace transforms to obtain:

�2(t1, t2, v1, v2) = R(t1, t2, v1, v2) + I (t1, t2, v1, v2)

R(t1, t2, v1, v2) := e−ikv1t1 f (v1)Q(−k, v2)

eikv2 t2

ε(−k,−kv2)
− eikv1 t2

ε(−k,−kv1)

−k(v1 − v2)

I (t1, t2, v1, v2) = f (v1)e
−ikv1t1 1

2π i

∫
iR−c|k|

iez2t2 Q(−k, v2)

ε(−k,−i z2)(z2 − ikv1)(z2 − ikv2)
dz2.

We have I (t, t, ·) → 0 for t → ∞, arguing as in the previous lemma. Hence we are left with
the residual term R, which by Lemma 4.11 converges to

R(t, t, v1, v2) =e−ikv1t f (v1)Q(−k, v2)

eikv2 t

ε(−k,−kv2)
− eikv1 t

ε(−k,−kv1)

−k(v1 − v2)

→ δ(v1 − v2)
iπ f (v1)Q(−k, v2)

ε(−k,−kv2)
− f (v1)Q(−k, v2)

ε(−k,−kv1)k(v1 − v2)
,

as t → ∞. Using Plemelj’s formula this proves the claim of the lemma. ��
Combining the two previous lemmas, we obtain the following convergence in the sense of
distributions:

g(t, v1, v2) → Q(k, v1)Q(−k, v2)

k(v1 − v2) − i0

∫
f (v′)

|ε(k,−kv′)|2k(v′ − v1) − i0
dv′

+ Q(k, v1)Q(−k, v2)

k(v1 − v2) − i0

∫
f (v′)

|ε(k,−kv′)|2k(v′ − v2) − i0
dv′

− f (v1)Q(−k, v2)

ε(−k,−kv1)k(v1 − v2) − i0
+ f (v2)Q(−k, v2)

ε(−k,−kv2)k(v1 − v2) + i0
,

which by a rearrangement of terms coincides with gB (cf. (2.33)). This finishes the proof of
Lemma 4.12. ��
We now prove that the memory of the initial datum is erased by the evolution.

Lemma 4.15 Let g0 ∈ S((R3)3) be a function such that g0(x1 − x2, v1, v2) is symmetric in
exchanging ξ1, ξ2. Then the following holds:

�(t, t, x, v1, v2) = Vξ1(t)Vξ2(t)[g0](x, v1, v2) −→ 0 in S′(R9) as t → ∞.

Proof We start with the Fourier Laplace representation in (4.21):

�(z1, z2, k, v1, v2) = �1(z1, z2, k, v1, v2) + �2(z1, z2, k, v1, v2) + �2(z2, z1,−k, v2, v1)

The first term in �1 is simply given by the action of the transport operator

T (t)g0(x, v1, v2) = g0(x − t(v1 − v2), v1, v2).

Since g0 ∈ S(R9), this term converges to zero in distribution. In the second term we perform
the Laplace inversion, to split into a residual part and a contour integral left of the imaginary
line:
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∫
γc

∫
γc

ez1t ez2t Q(k, v1)Q(−k, v2)
∫ ∫ 1

2 g0(k,v′
1,−k,v′

2)

(z1+ikv′
1)(z2−ikv′

2)
dv′

1 dv
′
2

ε(k,−i z1)ε(−k,−i z2)(z1 + ikv1)(z2 − ikv2)

= Q(k, v1)Q(−k, v2)

∫ ∫
1

2
g0(k, v′

1,−k, v′
2)(I + R)(t, k, v1, v

′
1)

(I + R)(t,−k, v2, v
′
2) dv

′
1 dv

′
2

I (t, k, v, v′) :=
∫

γ−c|k|

ezt

ε(k,−i z1)(z1 + ikv1)(z + ikv′)
dz

R(t, k, v, v′) := e−ikvt

ε(k,−kv)
+ e−ikv′t

ε(k,−kv′)
.

Arguing as in the proof of Lemma (4.13), all terms containing an I converge to zero in
distribution after expanding the product (I + R)(I + R). The residual part R converges to
zero since ei(v−w)t → 0 in S ′(R3 ×R

3). The convergence �2 → 0 follows by an analogous
computation. ��

4.3 Stability of the Velocity Fluxes

In this Subsection we prove the convergence result (2.42) in Theorem 2.22. Consider the
marginal j(t, x, v1) := ∫

g(t, x, v1, v2) dv2 of g(t, ·). From (2.19) we obtain the represen-
tation formula

j(t, x, v1) = ψ(t, t, x1 − x2, v1) + λ(t, t, x1 − x2, v1)

ψ(t, t, k, v1) = ψ1(t, t, k, v1) + ψ2(t, t, k, v1) − f (v1)

ψ1(z1, z2, k, v1) :=
i Q(k, v1)

∫ ∫ δ(v′
1−v′

2) f (v′
1)

(z1+ikv′
1)(z2−ikv′

2)
dv′

1 dv
′
2

(z1 + ikv1)ε(k,−i z1)ε(−k,−i z2)

ψ2(z1, z2, k, v1) :=
∫ δ(v1−v′

2) f (v1)

z2−kv′
2

dv′
2

(z1 + ikv1)ε(−k,−i z2)

λ(z1, z2, k, v1) = λ1(z1, z2, k, v1) + λ2(z1, z2, k, v1)

λ1(z1, z2, k, v1) :=
∫

g0(k, v1, v2)

(z1 + ikv1)(z2 − ikv2)
dv2 +

1
2

∫ ∫ i Q(k,v1)g0(k,v′
1,v

′
2)

(z1+ikv′
1)(z2−ikv′

2)
dv′

1 dv
′
2

ε(k,−i z1)ε(−k,−i z2)(z1 + ikv1)

λ2(z1, z2, k, v1) :=
∫ 1

2

∫ ĝ0(k,v1,v
′)

z2+ikv′ dv′

ε(−k,−i z2)(z1 + ikv1)
dv2.

(4.29)

Further, we define the flux operator J given by

J [ψ](v1) := ∇ ·
(∫

−ikφ̂(k)ψ(k, v1) dk

)
. (4.30)

Lemma 4.16 The flux J [�] (cf. (4.30)) converges to

J [ψ](t, v1) −→ ∇v1

(∫
ψ∞(k, v1) dk

)
for all v1 ∈ R

3 as t → ∞

ψ∞(k, v1) :=
∫

(∇v1 − ∇v′ f )( f f )(v1, v
′) δ(k(v1 − v′))(k ⊗ k)|φ̂(k)|2

|ε(k,−kv1)|2 dv′.
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which is the velocity flux on the right-hand side of the Balescu–Lenard equation (1.5).

Proof We show the convergence term by term, considering J [�1], J [�2] separately. Observe
that J [ f (v1)] = 0, since the function is independent of the space variable. Let us first take
a look at ψ2. The integration in v′

2 can be carried out, and in the usual fashion we split the
Laplace inversion in a contour integral left of the imaginary line and a residual:

ψ2(t, t, k, v1) = f (v1)

ε(−k, kv1)
+ I (t, k, v1),

I (t, k, v1) := e−i tkv1

∫
iR−c|k|

ez2t

ε(−k,−i z2)(z2 − ikv1)
dz2.

The contour integral vanishes in the limit t → ∞, i.e. J [I ](t, v1) → 0. Therefore the
contribution of J [ψ2] is

J [ψ2] → −∇v1

(∫
ikφ̂(k)

f (v1)

ε(−k, kv1)
dk

)
= −∇v1

(∫
ikφ̂(k)

f (v1)ε(k,−kv1)

|ε(k,−kv1)|2 dk

)

= −∇v1

(∫
(k ⊗ k)|φ̂(k)|2 δ(k(v1 − v′

1)) f (v1)∇ f (v′
1)

|ε(k,−kv1)|2 dk

)
. (4.31)

It remains to find the limit of J []ψ1(t)]. Again we can perform the integration in v′
2, obtaining

ψ1(z1, z2, k, v1) =
i Q(k, v1)

∫ ∫ δ(v′
1−v′

2) f (v′
1)

(z1+ikv′
1)(z2−ikv′

2)
dv′

1 dv
′
2

(z1 + ikv1)ε(k,−i z1)ε(−k,−i z2)

=
i Q(k, v1)

∫ f (v′
1)

(z1+ikv′
1)(z2−ikv′

1)
dv′

1

(z1 + ikv1)ε(k,−i z1)ε(−k,−i z2)
.

As in the previous lemmas, the Laplace inversion integral can be proved to be exponentially
decaying in time up to a residual, which is given by

lim
t→∞ J [ψ1] = lim

t→∞ ∇v1 ·
(∫

kφ̂(k)Q(k, v1)

∫
f (v′

1)R(t, k, v1, v
′
1) dv

′
1 dk

)

R(t, k, v, v′) = eitkv′

ε(−k, kv)

(
e−i tkv

ε(k,−kv)ik(v′ − v)
− e−i tkv′

ε(k,−kv′)ik(v + v′)

)
.

Applying Lemma 4.11, we identify the limit as:

lim
t→∞ J [ψ1](t, v1) = ∇v1 ·

(∫
k ⊗ k|φ̂(k)|2∇ f (v)

∫
δ(k(v1 − v′

1)) f (v′
1)

|ε(k,−kv′
1)|2

dv′
1 dk

)
.

(4.32)

Summing (4.31) and (4.32), we obtain as a limit of J [ψ]

lim
t→∞ J [ψ] = ∇v1 ·

(∫
(∇v1 − ∇v′ f )( f f )(v1, v

′)δ(k(v1 − v′))k ⊗ k|φ̂(k)|2)
|ε(k,−kv1)|2 dk dv′

)

as claimed. ��
By a similar computation we obtain the following lemma.

Lemma 4.17 Let J be the operator introduced in (4.30). For all v1 ∈ R
3 there holds:

J [λ](t, v1) −→ 0 as t → ∞.

123



40 J. J. L. Velázquez, R. Winter

Combining Lemma 4.17 with Lemma 4.16 shows the convergence of the velocity fluxes
claimed in (2.42). This concludes the proof of Theorem 2.22.

Acknowledgements The authors acknowledge support through the CRC 1060 The mathematics of emergent
effects at the University of Bonn that is funded through the German Science Foundation (DFG).

References

1. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Interscience Publishers, London
(1975)

2. Balescu, R.: Statistical Mechanics of Charged Particles. Monographs in Statistical Physics and Thermo-
dynamics, vol. 4. Interscience Publishers, London (1963)

3. Bobylev, A., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency
result. Commun. Math. Phys. 319(3), 683–702 (2013)

4. Bogoliubov, N.: Problems of a Dynamical Theory in Statistical Physics. Studies in Statistical Mechanics,
vol. I, pp. 1–118. North-Holland, Amsterdam (1962)

5. Braun, W., Hepp, K.: TheVlasov dynamics and its fluctuations in the 1/N limit of interacting classical
particles. Commun. Math. Phys. 56(2), 101–113 (1977)

6. Degond, P.: Spectral theory of the linearized Vlasov-Poisson equation. Trans. Am. Math. Soc. 294(2),
435–453 (1986)

7. Desvillettes, L., Miot, E., Saffirio, C.: Polynomial propagation of moments and global existence for a
Vlasov-Poisson system with a point charge. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(2), 373–400
(2015)

8. Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from
particle systems. Math. Models Methods Appl. Sci. 09(08), 1123–1145 (1999)

9. Glassey, R., Schaeffer, J.: On time decay rates in Landau damping. Commun. Part. Differ. Equ. 20(3–4),
647–676 (1995)

10. Glassey, R., Schaeffer, J.: Time decay for solutions to the linearized Vlasov equation. Transp. Theory
Stat. Phys. 23(4), 411–453 (1994)

11. Guernsey, R.: Kinetic equation for a completely ionized gas. Phys. Fluids 5, 322–328 (1962)
12. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)
13. Krommes, J.: Two new proofs of the test particle superposition principle of plasma kinetic theory. Phys.

Fluids 19(5), 649–655 (1976)
14. Lancellotti, C.: On the fluctuations about the Vlasov limit for N -particle systems with meanfield interac-

tions. J. Stat. Phys. 136(4), 643–665 (2009)
15. Lancellotti, C.: On the Glassey-Schaeffer estimates for linear Landau damping. J. Comput. Theor. Transp.

44(4-5), 198–214 (2015)
16. Lancellotti, C.: Time-asymptotic evolution of spatially uniformGaussian Vlasov fluctuation fields. J. Stat.

Phys. 163(4), 868–886 (2016)
17. Lenard, A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–

400 (1960)
18. Lifshitz, E., Pitaevskii, L.: Course of Theoretical Physics. Pergamon Press, Oxford (1981)
19. Marcozzi, M., Nota, A.: Derivation of the linear Landau equation and linear Boltzmann equation from

the Lorentz model with magnetic field. J. Stat. Phys. 162(6), 1539–1565 (2016)
20. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)
21. Muskhelishvili, N.: Singular Integral Equations. Dover Publications Inc, New York (1992)
22. Nota, A., Simonella, S., Velázquez, J.: On the theory of Lorentz gases with long range interactions. Rev.

Math. Phys. 30(03), 1850007 (2018)
23. Oberman, C., Williams, E.: Theory of fluctuations in plasma. Ann. Phys. 20, 78–118 (1983)
24. Penrose, O.: Electrostatic instabilities of a uniform non-Maxwellian plasma. Phys. Fluids 3(2), 258–265

(1960)
25. Piasecki, J., Szamel, G.: Stochastic dynamics of a test particle in fluids with weak long-range forces.

Physica A 143, 114–122 (1987)
26. Rostoker, N.: Superposition of Dressed Test Particles. Phys. Fluids 7(4), 479–490 (1964)
27. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52(3),

569–615 (1980)
28. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (2012)

123



The Two-Particle Correlation Function… 41

29. Strain, R.: On the linearized Balescu-Lenard equation. Commun. Part. Differ. Equ. 32(10–12), 1551–1586
(2007)

30. Velázquez, J.J.L., Winter, R.: From a non-Markovian system to the Landau equation. Commun. Math.
Phys. 361(1), 239–287 (2018)

31. Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical
Fluid Dynamics, vol. 1. North-Holland, Amsterdam (2002)

123


	The Two-Particle Correlation Function for Systems with Long-Range Interactions
	Abstract
	1 Introduction
	1.1 Kinetic Limits of Particle Systems with Long-Range Interactions
	1.2 Debye Screening in the Vlasov Equation
	1.3 On the Range of Validity of the Balescu–Lenard Equation for Coulomb Potentials

	2 Preliminary and Main Results
	2.1 Definitions and Assumptions
	2.2 Results of the Paper
	2.3 Auxiliary Results
	2.4 The Oberman–Williams–Lenard Solution

	3 Characteristic Length Scale of the Equilibrium Correlations
	3.1 Coulomb Interaction
	3.2 Soft Potential Interaction

	4 Stability of the Linearized Evolution of the Truncated Two-Particle Correlation Function
	4.1 The Linearized Evolution Semigroup
	4.2 Distributional Stability of the Bogolyubov Correlations
	4.3 Stability of the Velocity Fluxes

	Acknowledgements
	References




