
Journal of Statistical Physics (2018) 173:42–53
https://doi.org/10.1007/s10955-018-2119-5

Logarithmic Finite-Size Correction in Non-neutral
Two-Component Plasma on Sphere

Ladislav Šamaj1

Received: 5 April 2018 / Accepted: 10 July 2018 / Published online: 17 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We consider a general two-component plasma of classical pointlike charges +e (e is say the
elementary charge) and −Ze (valency Z = 1, 2, . . .), living on the surface of a sphere of
radius R. The system is in thermal equilibrium at the inverse temperature β, in the stability
region against collapse of oppositely charged particle pairs βe2 < 2/Z . We study the effect
of the system excess charge Qe on the finite-size expansion of the (dimensionless) grand
potential βΩ . By combining the stereographic projection of the sphere onto an infinite
plane, the linear response theory and the planar results for the second moments of the species
density correlation functions we show that for any βe2 < 2/Z the large-R expansion of
the grand potential is of the form βΩ ∼ AV R2 + [

χ/6 − β(Qe)2/2
]
ln R, where AV is

the non-universal coefficient of the volume (bulk) part and the Euler number of the sphere
χ = 2. The same formula, containing also a non-universal surface term proportional to R,
was obtained previously for the disc domain (χ = 1), in the case of the symmetric (Z = 1)
two-component plasma at the collapse point βe2 = 2 and the jellium model (Z → 0) of
identical e-charges in a fixed neutralizing background charge density at any coupling βe2

being an even integer. Our result thus indicates that the prefactor to the logarithmic finite-size
expansion does not depend on the composition of the Coulomb fluid and its non-universal
part −β(Qe)2/2 is independent of the geometry of the confining domain.

Keywords Two-component Coulomb fluid · Non-neutrality · Finite-size correction ·
Conformal field theory

1 Introduction

Let a system of particles with short-ranged interactions in thermal equilibrium at the inverse
temperatureβ = 1/(kBT ), confined to a large two-dimensional (2D) domain of characteristic
size R, be in its critical point. According to the principle of conformal invariance [1,5,7], the
(dimensionless) grand potential βΩ has a large-R expansion

βΩ = AV R
2 + AS R + B ln R + · · · , (1.1)
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where the volume and surface coefficients AV and AS are non-universal, while the coefficient
of the logarithmic term

B = −cχ

6
(1.2)

is universal, dependent only on the conformal anomaly number c of the critical theory and
the Euler number χ of the confining domain (χ = 1 for a disk and χ = 2 for the surface of
a sphere).

In this paper, we are concerned with 2D Coulomb fluids of classical (i.e., non-quantum)
pointlike charges interacting pairwisely by the long-ranged logarithmic potential. Two kinds
of Coulombmodels are of special interest. The one-component plasma (OCP), or the jellium,
consists of identical (say elementary) charges e moving in a fixed neutralizing background
charge density. The symmetric two-component plasma (TCP) is a system of oppositely
charged species ± e. In 2D, the thermodynamics and the particle correlation functions of
both the OCP and the symmetric TCP depend on the only coupling constant Γ = βe2. The
weak-coupling limit Γ → 0 is treated exactly within the nonlinear Poisson-Boltzmann or
linear Debye-Hückel mean-field theories [4]. The 2D OCP is exactly solvable at Γ = 2 by
mapping onto free fermions [2,19]. The symmetric 2D TCP is also exactly solvable at the
coupling Γ = 2, which corresponds to the collapse border for positive-negative pairs of
pointlike charges, by mapping onto the free-fermion point of the Thirring model [9,17]. For
a review about exact results for 2D Coulomb systems, see Refs. [15,20].

In the conducting regime, the long-range tail of the Coulomb potential induces screening
and the electrical-field correlations become long-ranged [3,22,29]. As a consequence, the
grand potential (or the free energy) of any Coulomb system exhibits the universal logarithmic
finite-size term of type (1.1). For both the OCP and the symmetric TCP, the checks of the
universal expansion were done in the weak coupling limit Γ → 0 and at Γ = 2, for periodic
boundary conditions [14], plain hard walls [21], ideal-conductor [23] and ideal-dielectric
[27,33] boundaries, with the result

c = −1. (1.3)

This c is related to the Gaussian one [8] by a change of sign.
A special case of the confining domain for the Coulomb system is the surface of a sphere

[6,10,30]. For such geometry, by combining a stereographic projection of the sphere onto
an infinite plane with linear response theory (TCP, Ref. [24]) or with density functional
method (OCP, Ref. [26]), the prefactor to the universal logarithmic finite-size term was
related to the second moment of the short-range part of the planar direct correlation function.
Based on a renormalized Mayer expansion [11,16], this quantity is known for both sym-
metric TCP [25] and OCP [28]. The case of an asymmetric TCP on a sphere was treated
in Ref. [31]. All results mentioned up to now were derived for strictly neutral Coulomb
systems.

Recently, the symmetric 2D TCP of ±e charges, confined to a disk of radius R and
with a hard-core impurity of charge Qe fixed at the disk origin, was solved exactly at the
collapse βe2 = 2 point [13]. The fixed impurity charge is screened on microscopic scale by
counterions from TCP, so the rest system can be considered as a non-neutral entity of charge
Qe. It was shown that the grand potential still exhibits the finite-size expansion of type (1.1)
where the prefactor to the logarithmic term contains also the Q-dependent term:

B = 1

6
− Q2, (χ = 1, βe2 = 2). (1.4)

This result is related to the minimal free-boson conformal field theory, which is formally
equivalent to the 2D TCP, formulated on the disk [12,18]. Deforming the free-boson con-
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formal theory by spreading out at infinity a charge Qe, the prefactor to the logarithmic term
was found, at an arbitrary coupling, in the form

B = 1

6
− 1

2
β(Qe)2, (χ = 1, arbitrary βe2 < 2). (1.5)

Note that the result (1.4) for the 2D TCP [13] is the special βe2 = 2 case of this formula. The
coefficient B is no longer universal, it depends on the inverse temperature β and the square
of the excess charge (Qe)2.

The case of the non-neutral 2D OCP confined to the disk was studied in Ref. [32]. For any
coupling constant being an even integer, the mapping of the system with an excess charge
Qe onto an anticommuting field theory formulated on a discrete chain provides for the free
energy the large-R expansion of type (1.1), with the coefficient to the logarithmic term B
exactly the same as in the relation (1.5). This result indicates that the B-coefficient does not
depend on the composition of the Coulomb system.

The finite-size expansions for non-neutral Coulombfluids obtained till nowwere restricted
to the disk domain. To investigate the effect of domain’s geometry on the crucial B-coefficient,
we study in this work a non-neutral 2D Coulomb system living on the surface of a sphere of
radius R. In order to test also the independence of the coefficient B on the charged species
composition, we consider a general TCP of charges +e and −Ze (valency Z = 1, 2, . . .)
which involves as special cases the symmetric TCP (Z = 1) as well as the OCP (Z → 0),
after subtracting the kinetic energy of species with charge−Ze. By combining stereographic
projection of the sphere onto a plane with linear response theory and using specific planar
results for the second moments of the species density correlation functions of the asymmetric
TCP derived in [31], it is shown that for the general TCP with an excess charge Qe the B-
coefficient takes the form

B = 1

3
− 1

2
β(Qe)2, (χ = 2, arbitrary βe2 < 2/Z). (1.6)

This result supports the previous suggestion that the prefactor to the logarithmic finite-size
term does not depend on the charge composition of the Coulomb system (in our case, the
parameter Z ). Moreover, while the first universal term depends only on the shape of the
confining domain, the non-universal part, depending on the inverse temperature β and the
square of the excess charge (Qe)2, is the same for both disk and sphere geometries and
therefore it presumably does not depend on domain’s geometry.

The paper is organized as follows. The definition and basic relations for the general TCP
living on the surface of a sphere is the subject of Sect. 2. Sect. 3 reviews the stereographic
projection of the system onto the one on an infinite surface. In Sect. 4, the combination
of linear-response arguments with the planar results for the second moments of the species
density correlation functions [31] leads to our main result (1.6). A short recapitulation and
concluding remarks about a phenomenological explanation and generalization of the obtained
results are given in Sect. 5.

2 General TCP on a Sphere

Let (θ, ϕ) be the spherical coordinates of points on the surface of the sphere of radius R.
In Gauss units and with the vacuum dielectric constant ε = 1, the Coulomb potential V (θ)

generated by a unit charge fixed at the north pole θ = 0 is given by [6,10]
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V (θ) = − ln

[
2R

L
sin

(
θ

2

)]
, (2.1)

where L is a length scale, 2R sin(θ/2) is the Euclidean distance from the north pole to the
point (θ, ϕ). In the limit R → ∞, this potential reduces to the standard 2D logarithmic one.
Two particles i = 1, 2 with charges qi and at spatial positions (θi , ϕi ) interact by the potential

V12(τ ) = −q1q2 ln

[
2R

L
sin

(τ12

2

)]
, (2.2)

where τ12 is the angular distance between the points 1 and 2. Using the vector representation
ri = R(sin θi cosϕi , sin θi sin ϕi , cos θi ) (i = 1, 2) and the scalar product formula r1 · r2 =
R2 cos τ12, one gets

sin2
(τ12

2

)
= 1

2
[1 − sin θ1 sin θ2 cos(ϕ1 − ϕ2) − cos θ1 cos θ2] . (2.3)

The non-neutral model under consideration is the general TCP of positive+e and negative
−Ze (valency Z = 1, 2, . . .) charges,with an excess charge Qe. Denoting the surface element
of the sphere by

dσ = R2d(cos θ)dϕ, (2.4)

the grand partition function is given by

Ξ(λ+, λ−, R) =
∞∑

N=0

λ
Q+N Z
+

(Q + N Z)!
λN−
N !

∫ Q+N Z∏

i=1

dσ+
i


2

N∏

i=1

dσ−
i


2
WQ+N Z ,Z (2.5a)

where λ+ = exp(βμ+) and λ− = exp(βμ+) are respectively the fugacities of +e and −Ze
charges, 
 stands for the thermal de Broglie wavelength and

WQ+N Z ,Z =
∏Q+N Z

(i< j)=1

[
2R
L sin

(
τ++
i j
2

)]Γ ∏N
(i< j)=1

[
2R
L sin

(
τ−−
i j
2

)]Γ Z2

∏Q+N Z
i=1

∏N
j=1

[
2R
L sin

(
τ+−
i j
2

)]Γ Z
(2.5b)

is the interaction Boltzmann factor of Q + N Z particles with charge +e and N particles
with charge −Ze. Here, the dimensionless parameter Γ ≡ βe2; for the symmetric Z = 1
two-component plasma, it is equivalent to the coupling constant. The (dimensionless) grand
potential is defined as

βΩ = − lnΞ. (2.6)

The 2D integrals in the expansion (2.5) are stable (i.e., non-diverging) against the collapse
of oppositely charged particles if Γ Z < 2. To simplify the notation, we set the irrelevant
lengths L = 
 = 1.

The grand partition sum (2.5) is the generating function for the total numbers N (s)
+ of +e

charges and N (s)
− of −Ze charges on the sphere according to

N (s)
+ = λ+

∂

∂λ+
lnΞ, N (s)

− = λ−
∂

∂λ−
lnΞ. (2.7)

The presence of the excess charge Qe in the system is equivalent to the constraint

eN (s)
+ − ZeN (s)

− = Qe. (2.8)
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Because of the sphere symmetry all surface points are equivalent and therefore the number
densities of the species per unit surface are constant,

n(s)
+ = N (s)

+
4πR2 , n(s)

− = N (s)
−

4πR2 . (2.9)

In terms of the surface number densities, the condition (2.8) is written as

n(s)
+ − Zn(s)

− = Q

4πR2 . (2.10)

Let us consider the N th term in the expansion (2.5). Extracting all R-dependent parts, this
term equals to

λ
Q
+ RΓ Q2/2RQ(4−Γ )/2

[
λZ+λ−R(1+Z)(4−Γ Z)/2

]N
(2.11)

times a dimensionless 2N -dimensional integral which depends on Γ and Z . Thus,

lnΞ = Q ln λ+ +
[
Q

2
(4 − Γ ) + Γ Q2

2

]
ln R + g(x), (2.12)

where the unknown function g depends on λ+, λ+ and R through the combination

x = λZ+λ−R(1+Z)(4−Γ Z)/2. (2.13)

Based on the homogeneity relation (2.12), we get the following equalities

λ+
∂

∂λ+
lnΞ = Q + Zxg′(x), (2.14a)

λ−
∂

∂λ−
lnΞ = xg′(x), (2.14b)

2R
∂

∂R
lnΞ = (4 − Γ )Q + Γ Q2 + (1 + Z)(4 − Γ Z)xg′(x). (2.14c)

With regard to the definition of species number densities (2.7) and (2.9), these relations imply

n(s)
+ = Q

4πR2 + 1

2πR2

Z

(1 + Z)(4 − Γ Z)

×
{
R

∂

∂R
lnΞ − 1

2

[
(4 − Γ )Q + Γ Q2]

}
, (2.15a)

n(s)
− = 1

2πR2

1

(1 + Z)(4 − Γ Z)

×
{
R

∂

∂R
lnΞ − 1

2

[
(4 − Γ )Q + Γ Q2]

}
. (2.15b)

Note that the charge constraint (2.10) is automatically satisfied.
In the large-R limit, lnΞ behaves as

lnΞ = βP(4πR2) + f (R), (2.16)

where P is the bulk pressure of an infinite planar system and f (R) a finite-size correction.
Since the sphere has no boundary, there is no term proportional to R and therefore f (R) =
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o(R). Substituting (2.16) into (2.15) and taking the R → ∞ limit, we obtain

n+ = Z

1 + Z

(
1 − Γ Z

4

)−1

βP, (2.17a)

n− = 1

1 + Z

(
1 − Γ Z

4

)−1

βP, (2.17b)

where n+ and n− are the species densities of an infinite system which satisfy the obvious
neutrality condition

en+ − Zen− = 0. (2.18)

The equation of state reads as

βP =
(
1 − Γ Z

4

)
n (2.19)

with n = n+ + n− being the total number density of charged particles. Finally, inserting the
expansion (2.16) into (2.15) results in the couple of equations for the deviations of species
densities on the sphere of radius R from their asymptotic R → ∞ planar values:

n(s)
+ − n+ = Q

4πR2 + 1

2πR2

Z

(1 + Z)(4 − Γ Z)

×
{
R

∂

∂R
f (R) − 1

2

[
(4 − Γ )Q + Γ Q2]

}
, (2.20a)

n(s)
− − n− = 1

2πR2

1

(1 + Z)(4 − Γ Z)

×
{
R

∂

∂R
f (R) − 1

2

[
(4 − Γ )Q + Γ Q2]

}
. (2.20b)

3 Stereographic Projection

The surface of the sphere can be mapped by a stereographic projection from the south pole
(θ = π) on the infinite plane tangent to the north pole (θ = 0). The complex coordinate in
this plane is

z = 2R tan

(
θ

2

)
eiϕ. (3.1)

The surface element (2.4) transforms as

dσ = d2r
(
1 + r2

4R2

)2 (3.2)

and the angular distance τ12 between points 1 and 2 on the sphere, see Eq. (2.3), is given by

2R sin
(τ12

2

)
= |z1 − z2|

(
1 + z1 z̄1

4R2

)1/2 (
1 + z2 z̄2

4R2

)1/2 . (3.3)

The application of the stereographic projection to the grand partition function (2.5) leads
to the standard interaction Boltzmann factors of the 2D Coulomb potential multiplied by
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one-body Boltzmann weights which depend on the specie type. For the particle with positive
charge +e at position r, one has

w+(r) = 1
(
1 + r2

4R2

)2
1

(
1 + r2

4R2

)Γ (Q+N Z−1)/2

(
1 + r2

4R2

)Γ N Z/2

= 1
(
1 + r2

4R2

)2+Γ (Q−1)/2
, (3.4)

where the rhs of the first line involves successively the contribution from the surface element
transformation (3.2), the effect of the remaining Q + N Z − 1 positive +e charges and the
effect of N negative −Ze charges. Similarly, for the particle with negative charge −Ze,
considering the effect of Q + N Z positive +e charges and the effect of the remaining N − 1
negative −Ze charges, one obtains

w−(r) = 1
(
1 + r2

4R2

)2
1

(
1 + r2

4R2

)Γ (N−1)Z2/2

(
1 + r2

4R2

)Γ (Q+N Z)Z/2

= 1
(
1 + r2

4R2

)2−Γ Z(Z+Q)/2
. (3.5)

The grand partition function (2.5) is rewritten in the planar format as

Ξ(λ+, λ−, R) =
∞∑

N=0

λ
Q+N Z
+

(Q + N Z)!
λN−
N !

∫ Q+N Z∏

i=1

dr+
i w+(r+

i )

N∏

i=1

dr−
i w−(r−

i )

×WQ+N Z ,Z , (3.6a)

where the interaction two-body Boltzmann factor

WQ+N Z ,Z =
∏Q+N Z

(i< j)=1 |z+i − z+j |Γ ∏N
(i< j)=1 |z−i − z−j |Γ Z2

∏Q+N Z
i=1

∏N
j=1 |z+i − z−j |Γ Z

. (3.6b)

As concerns the planar number densities of species, in the expansion (3.6) we introduce
for each term with Q+N Z charges+e and N charges−Ze the microscopic species number
densities

n̂+(r) =
∑

i

δ(r − r+
i ), n̂−(r) =

∑

i

δ(r − r−
i ). (3.7)

Within the grand canonical formalism, the mean number densities of species are defined as
the averages

n±(r) = 〈n̂±(r)〉. (3.8)

At the same time, with regard to the Jacobian (3.2) of the stereographic projection, the
constant densities on the sphere n(s)

± are transformed to the position-dependent ones on the
plane n±(r) with the polar symmetry,

n±(r) = n(s)
±

(
1 + r2

4R2

)2 . (3.9)
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The number of particles is invariant with respect to the stereographic projection, as follows
directly from the equality ∫ ∞

0
dr 2πrn±(r) = N (s)

± . (3.10)

Note that the planar number densities at the r = 0 origin coincide with the ones on the sphere,

n±(0) = n(s)
± . (3.11)

4 Linear Response

It is useful to use a potential representation of the one-body Boltzmann weights (3.4) and
(3.5):

w±(r) = e−βV±(r). (4.1)

For large R, the one-body potentials V± exhibit the leading behaviors of the form

βV+(r) ∼
[(

1 − Γ

4

)
+ Γ Q

4

]
r2

2R2 , (4.2a)

βV−(r) ∼
[(

1 − Γ Z2

4

)
+ Γ ZQ

4

]
r2

2R2 . (4.2b)

In the strict R → ∞ planar limit, there is no external potential and the species number
densities n± are uniform in space. Taking into account that for a finite r the potentials
V±(r) are small in the large-R limit, we intend to make a linear-response perturbation of
our inhomogeneous system around the homogeneous planar one. Let us denote by 〈· · · 〉0
the thermal average over the planar system with no external one-body potential in order to
distinguish it from the thermal average 〈· · · 〉 with one-body potentials V± included. Writing

∑

i

V+(r+
i ) +

∑

i

V−(r−
i ) =

∑

q ′=±

∫
d2r ′ n̂q ′(r′)Vq ′(r′), (4.3)

the mean species densities are expressible as

〈n̂q(r)〉 = 〈n̂q(r)e−β
∑

q′=±
∫
d2r ′ n̂q′ (r′)Vq′ (r′)〉0

〈e−β
∑

q′=±
∫
d2r ′ n̂q′ (r′)Vq′ (r′)〉0

, q = ±. (4.4)

Expanding this relation linearly in V±, we arrive at

nq(r) − nq = −
∑

q ′=±

∫
d2r ′ 〈n̂q(r)n̂q ′(r′)〉T0βVq ′(r′), (4.5)

where
〈n̂q(r)n̂q ′(r′)〉T0 = 〈n̂q(r)n̂q ′(r′)〉0 − nqnq ′ (4.6)

is the truncated bulk two-body density of species q at point r and species q ′ at point r′.
Setting r at the origin 0, using the relation (3.11) and denoting by

Iqq ′ =
∫

d2r r2〈n̂q(0)n̂q ′(r)〉T0 (4.7)
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the second moment of the bulk two-body densities of species, we find in the large-R limit
that

n(s)
q − nq ∼ −Iq+

[(
1 − Γ

4

)
+ Γ Q

4

]
1

2R2 ,

−Iq−
[(

1 − Γ Z2

4

)
+ Γ ZQ

4

]
1

2R2 . (4.8)

The explicit form of the second moments Iqq ′ for the planar asymmetric TCP was derived
by using the renormalized Mayer expansion [11,16] in Ref. [31]. The asymmetric TCP was
defined in that work as a mixture of charges +1 and −1/Q. To match our notation with Eqs.
(4.31) of Ref. [31], we have to identify 1 → + and 2 → −, to substitute β by βe2 = Γ and
Q by 1/Z , with the result

I++ = − 2(3Γ Z2 − 8)(Γ Z2 − 6)

3πΓ (Γ Z − 4)2(Z + 1)2
, (4.9a)

I−− = − 2(3Γ − 8)(Γ − 6)

3πΓ (Γ Z − 4)2(Z + 1)2
, (4.9b)

I+− = 2
[
3Γ 2Z2 − 2Γ (6Z2 − Z + 6) + 48

]

3πΓ (Γ Z − 4)2(Z + 1)2
(4.9c)

and I−+ = I+−.
Substituting these explicit formulas for the second moments into Eq. (4.8), we obtain

(
n(s)

+ − n+
)

− Z
(
n(s)

− − n−
)

= Q

4πR2 . (4.10)

This equality is consistent with the previous couple of equations (2.20) for the number density
deviations which is a check of the formalism. Taking either (n(s)

+ − n+) or (n(s)
− − n−) and

comparing Eqs. (2.20) and (4.8), we find in the large-R limit that

R
∂

∂R
f (R) ∼ −1

3
+ 1

2
Γ Q2 (4.11)

is independent of Z , as was anticipated. Consequently,

f (R) ∼
(

−1

3
+ 1

2
Γ Q2

)
ln R. (4.12)

Finally, substituting f (R) into (2.16) and considering the definition of the grand potential
(2.6), we end up with the finite-size expansion (1.1) with the coefficients AV = −4π(βP),
AS = 0 and B given by (1.6).

5 Conclusion

The aim of this work was to study the effect of charge non-neutrality of a 2D Coulomb
system on the finite-size expansion of its grand potential, in particular on the prefactor to the
logarithmic term. The previous studies of the symmetric TCP of mobile ±e charges at the
collapse point Γ = βe2 = 2 [13] and of the OCP (jellium) of equivalent mobile e charges in
the fixed neutralizing background at the couplingΓ being an even integer [32] were restricted
to the disk geometry of the confining domain with the Euler number χ = 1. The previously
obtained results suggest that the prefactor to the logarithmic term as a whole does not depend
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on the charge composition of the Coulomb system. The prefactor consists in two terms: The
first one χ/6 is equivalent to the universal prefactor of neutral systems while the second one
−β(Qe)2/2 is non-universal.

To understand the effect of charge composition and domain geometry on the non-universal
term, we studied the asymmetric TCP of pointlike charges +e and −Ze (Z = 1, 2, . . .)
on the surface of a sphere with χ = 2. We used the special symmetry properties of the
sphere, the stereographic projection of the sphere onto an infinite plane combined with
linear response theory [24] and specific results for the second moments of the species density
correlation functions [31]. The final result is surprising: The non-universal term is again equal
to −β(Qe)2/2. This fact indicates that this term does not depend neither on the composition
of the Coulomb system (the valency parameter Z ) nor on the domain topology (the Euler
number χ).

There exist other relatively simple models, e.g., the symmetric TCP in a disk at arbitrary
βe2 < 2, for testing our surmise.

Another task is to propose a general argument explaining the common form of the non-
universal term in the prefactor to the logarithmic finite-size term for all kinds of 2D Coulomb
fluids in an arbitrarily shaped domain. For the sphere domain of radius R studied in this paper,
a phenomenological type of assumption might be based on the fact that due to the rotational
invariance the excess charge Qe is spread uniformly overΛ after thermal averaging, with the
mean surface charge density Qe/(4πR2). With the Coulomb potential (2.1), the interaction
excess-charge energy is given by

E = −1

2

(
Qe

4πR2

)2 ∫

Λ

d2r
∫

Λ

d2r ′ ln
[
2R

L
sin

τ(r, r′)
2

]
, (5.1)

where τ(r, r′) is the angular distance between the points r and r′. The separation of the
ln R-term is obvious and we end up with the large-R result

βE ∼ −1

2
β(Qe)2 ln R. (5.2)

This is the expected non-universal excess-charge contribution to the ln R term in βΩ .
If Λ is the 2D disk (logarithmic interaction), the repulsion of the excess charges causes

their accommodation at the disk boundary with the line charge density Qe/(2πR). The
interaction excess-charge energy

E = −1

2

(
Qe

2πR

)2 ∫ 2π

0
Rdϕ

∫ 2π

0
Rdϕ′ ln

[
2R

L
sin

(
ϕ − ϕ′

2

)]

= −1

2
(Qe)2 ln R + cst. (5.3)

coincides in the R → ∞ limit with the previous one (5.2) for the sphere.
In three dimensions, let us consider a system of charged particles interacting via the 1/r

Coulomb potential, constrained to the interior of the sphere Λ of radius R and with the total
excess charge Qe. Due to repulsion to the sphere surface boundary ∂Λ, the excess charges
produce the homogeneous surface charge density Qe/(4πR2). The self-energy of the surface
excess-charge distribution is given by

E = 1

2

(
Qe

4πR2

)2 ∫

∂Λ

dσ
∫

∂Λ

dσ ′ 1

|r − r′| , (5.4)
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where r = R(sin θ cosϕ, sin θ sin ϕ, cos θ) and dσ is the surface sphere element (2.4).
Rescaling r and r′ by R implies that βE ∝ 1/R, i.e. the effect of the (finite) excess charge
in the system on the grand potential is negligible in the limit R → ∞.

Finally, we recall that the asymmetric TCP of pointlike charges+e and−Ze is thermody-
namically stable against collapse of oppositely charged pairs if βZe2 < 2 and all derivations
and proofs presented in this work were restricted to this temperature region. As soon as
βZe2 ≥ 2, the Coulomb particle interactions have to be regularized at short distances, e.g.
by hard-core potentials. We would like to mention that the system stays in its fluid (con-
ducting) phase also in the region βZe2 ≥ 2, up to the Kosterlitz-Thouless (KT) transition to
an insulating phase where our analysis does not apply; it was suggested in Ref. [31] that in
the limit of a small hard-core radius the KT temperature is given by βKTZe2 = 4. It is not
clear how the short-distance regularization of the Coulomb potential affects our results for
the prefactor to the ln R term in the fluid phase 2 ≤ βZe2 < 4.
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