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Abstract Westudy self-avoidingwalks on the four-dimensional hypercubic lattice viaMonte
Carlo simulations ofwalkswith up to one billion steps.We study the expected logarithmic cor-
rections to scaling, and find convincing evidence in support the scaling form predicted by the
renormalization group, with an estimate for the power of the logarithmic factor of 0.2516(14),
which is consistent with the predicted value of 1/4. We also characterize the behaviour of the
pivot algorithm for sampling four dimensional self-avoiding walks, and conjecture that the
probability of a pivot move being successful for an N -step walk is O([log N ]−1/4).

Keywords Self-avoiding walk · Polymer · Monte Carlo · Pivot algorithm

1 Introduction

Self-avoiding walks (SAWs) are the set of walks on a graph, typically the integer lattice
Z
d , where each step is between nearest neighbours, and no vertex is visited twice. The

model has a long history, and has played a pivotal role in our understanding of polymers and
critical phenomena more broadly, and in the development of conformal field theory, the lace
expansion, and Schramm–Loewner Evolution [1,20].

In three dimensions SAWs are in the same universality class as real polymers, and provide
an ideal laboratory for studying universal properties such as critical exponents.

In four dimensions the model is no longer physically relevant, but nonetheless it is worthy
of study as it provides a useful test of renormalization group techniques which have made
various predictions. It can also be regarded as a test-bed problem for physically relevant
models which have logarithmic corrections to scaling, for example the θ -transition in three
dimensions is believed tobe identifiedwith a tricritical point, andhasmean-fieldbehaviorwith
logarithmic corrections. Four-dimensional SAWs have been studied by Monte Carlo [14,24]
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and enumeration [6,11,19] methods, and we note that rigorous results have recently been
obtained for the 4-dimensional continuous-time weakly self-avoiding walk via the rigorous
renormalization group [2–4].

In this work we will restrict ourselves to the study of SAWs on Z
4. The key quantities

of interest are the number of SAWs of N steps, which we denote cN , and the mean size
of SAWs of length N . We can formally describe a walk of N steps as a mapping ω from
the integers 0, 1, · · · , N to sites on Z

4, with |ω(i + 1) − ω(i)| = 1 ∀i ∈ [0, N − 1], and
ω(i) �= ω( j) ∀i �= j . We calculate the two most common measures of size, the squared
end-to-end distance, R2

E, and the squared radius of gyration, R2
G, which are defined as:

R2
E = |ω(N ) − ω(0)|2; (1)

R2
G = 1

2(N + 1)2
∑

i, j

|ω(i) − ω( j)|2. (2)

Our goal is to understand the asymptotic behavior of the mean squared end-to-end distance
and mean squared radius of gyration, in the long-chain limit. Renormalization group argu-
ments [12] give the following asymptotic forms [12,14] for the relevant quantities in four
dimensions:

cN = AμN [log(N/a)]1/4
(
1 − 17 log(4 log(N/a)) − 3

64 log(N/a)
+ · · ·

)
; (3)

〈R2
E〉 = DEN [log(N/a)]1/4

(
1 − 17 log(4 log(N/a)) + 31

64 log(N/a)
+ · · ·

)
; (4)

〈R2
G〉 = DGN [log(N/a)]1/4

(
1 − 17 log(4 log(N/a)) + 97/3

64 log(N/a)
+ · · ·

)
. (5)

Here, 〈· · · 〉 indicates the expectation of the observable over the set of SAWs of length N ,μ =
6.774 043(5) [24] is the growth constant, A, DE, and DG are lattice dependent amplitudes,
and a is a common scale factor. The overall factor of [log N ]1/4 in Eqs. 4 and 5 is universal,
and would occur for any observable which measures the squared size of the walk, such as the
square of the hydrodynamic radius, and the mean squared monomer-to-end distance. While
the amplitudes themselves are not universal, it is expected that the amplitude ratio DE/DG

is a universal quantity. For SAWs in four dimensions this should have the same value as for
simple random walks, i.e. we should have DE/DG = 6. Note that for the four-dimensional
continuous-time weakly SAW, the leading-order behavior has recently been proved to be of
the forms given in Eq. 3 (see [3]) and Eq. 4 (see [4]).

The logarithmic corrections arise because d = 4 is the upper critical dimension for
SAWs. For d ≥ 5 SAWs are in the same universality class as simple random walks [15,16],
or Brownian motion, where there are no logarithmic corrections and, for example, 〈R2

E〉 =
O(N ).

Logarithmic corrections are notoriously hard to observe, but recent developments inMonte
Carlo simulationmethods havemade it conceivable thatwe could reach the asymptotic regime
and carefully test the asymptotic forms given in Eqs. 4 and 5. The pivot algorithm [18,21]
is a Markov chain Monte Carlo algorithm which is the most efficient known method for
sampling SAWs of fixed length. Recent improvements [7,8,17] have reduced the CPU time
necessary to attempt a pivot move to O(log N ), which makes it possible to reach the regime
of truly large N , where the limit is due to computer memory (RAM) availability, rather than
any constraint of available computer time.
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We have applied the SAW-tree implementation [8] of the pivot algorithm for the first
time to the problem of sampling four-dimensional SAWs, and so generated high precision
estimates of 〈R2

E〉 and 〈R2
G〉 for SAWs of up to one billion steps. In the process we also studied

the behaviour of the SAW-tree implementation, and the characteristics of the pivot algorithm
for sampling SAWs.

In the remainder of this paper, we first describe our Monte Carlo simulations in Sect. 2,
which includes data on the performance of the SAW-tree implementation, analyse the results
in Sect. 3, study the acceptance fraction of the pivot algorithm in Sect. 4, and conclude in
Sect. 5.

2 Monte Carlo Simulation

The pivot algorithm is a Markov chain Monte Carlo algorithm that samples SAWs of fixed
length N . The basic move is a pivot, which involves the application of a lattice symmetry
(rotation or reflection) to one piece of a walk around a chosen site of the walk. A pivot move
is successful if it results a walk that is self-avoiding, and so generates a correlated sequence
of SAW configurations. In the seminal work of Madras and Sokal [21], the pivot algorithm
was proved to sample SAWs uniformly at random, and it was also shown to be remarkably
efficient at sampling global observables, such as R2

E, due to the fact that with each successful
pivot move a large change is made to global observables. As mentioned in the introduction,
recent improvements [7,8,17] have increased the efficiency of the pivot algorithm still further,
to the point that it is now possible to sample SAWs with 109 steps. See [21] for many more
details about the pivot algorithm.

For the present computer experiment, we chose pivot sites uniformly at random along the
chain, and the pivot symmetry operations were chosen uniformly at random from amongst
the 383 lattice symmetries of Z4 that do not correspond to the identity.

To initialize the system we used the pseudo_dimerize procedure, and to eliminate any
initialization bias we then performed approximately 20N successful pivots.

For the longest walks, with N = 109, this initialization procedure took approximately 360
h (or 15 days) to complete. To reduce this computational burden, we performed an additional
trick. We generated seed walks for lengths from 106–109; we expect these walks to be
indistinguishably close to equilibrium.We then used these seedwalks for separate simulations
(8, in the case of N = 109) where instead of performing 20N successful pivots to warm up
the system we only performed approximately N successful pivots. Even though these are not
enough pivot moves to bring an initial configuration such as a straight rod to equilibrium,
given that we are at equilibrium this ismore than sufficient to ensure that correlations between
estimates of global observables between batches are completely negligible.

After 20N successful pivots had been applied for walks with N < 106, or N successful
pivots had been applied to seed walks for N ≥ 106, we started collecting data for our
observables for each time step, and aggregated the results in batches of 108.

We sampled SAWs on Z4 over a range of lengths from 2000 to one billion steps. We used
the SAW-tree implementation of the pivot algorithm as described in [8] to collect data for
the observables 〈R2

E〉, 〈R2
G〉, the probability of a pivot move being successful, f , and the

amount of CPU time for each batch. The computer experiment was run for 130,000 CPU
hours on Dell PowerEdge FC630 machines with Intel Xeon E5-2680 CPUs. In total there
were 4.4×105 batches of 108 attempted pivots, and thus there were a grand total of 4.4×1013

attempted pivots across all walk sizes.
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Fig. 1 CPU time per attempted pivot move as a function of N

Our data for 〈R2
E〉,〈R2

G〉, f , andmean CPU time per pivot attempt, are collected in Tables 1
and 2 in Appendix A. We also include there the estimates for the universal amplitude ratio
〈R2

E〉/〈R2
G〉, as the positive correlation between two observables results in variance reduction

in the final estimates. That is, the error for the ratio is smaller than would naively be expected
from the original observables.

We plot the mean CPU time per attempted pivot against N in Fig. 1, with a logarithmic
scale on the x-axis. The small amount of visible scatter should not be taken too seriously,
as the computers executing the code obey scheduling algorithms which mean that the CPU
time to run computations may vary somewhat. But, the overall trend is consistent with the
behavior demonstrated in our earlier work [8] on SAWs in two and three dimensions: the CPU
time increases logarithmically with N , although there is some degradation in performance at
large N , which is likely due to the larger memory demand, which in turn means that memory
accesses are more frequently out of cache.

Interestingly, the equivalent plots in [8] demonstrated quite starkly the impact of memory
cache on performance by exhibiting a clear kink, whereas here the degradation is far more
gradual. It is plausible that this effect is due to changes in CPU architecture over the past
seven years, i.e. since the earlier computer experiment was performed.

In absolute terms, the performance is exceptionally fast: each pivot attempt takes, on
average, approximately 5 μs for N of the order of thousands, and only takes ten times as
long, or roughly 50μs, for walks of one billion steps.

3 Analysis

Our method of analysis is to perform weighted non-linear fits of our data to the presumed
asymptotic form, by using the ‘nls’ routine of the statistical programming language R. We
truncated our data by only fitting values with N ≥ Nmin. We then varied Nmin to get a
sequence of estimates for which we expect the systematic error due to unfitted corrections-
to-scaling to decrease. We varied Nmin from 2000, which is the smallest value of N for which
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data were collected, to Nmin = 2 × 106, which is the largest value for which we felt that the
parameter estimates were informative (i.e. with sufficiently small error bars that they aided
in extrapolation).

We plotted our estimates against a variable which is of the same relative size as the first
neglected correction-to-scaling term. In principle, this should result in linear convergence
in the plots as the asymptotic regime is reached, although it may be too optimistic to hope
for linear convergence in our case, as the neglected correction terms are O([log N ]−1) and
O([log N ]−2), which suggests that some curvature would likely still be apparent even for
N = 109. We extrapolate the fits from the right to where they intersect the y-axis, which
corresponds to the Nmin → ∞ limit. There is a significant degree of subjectivity in performing
these extrapolations, so we present all of our fits graphically to allow readers to judge for
themselves whether the extrapolations are suitably cautious.

We make the general observation that such analysis is fraught with danger, especially
when one “knows” the answer. It is exceedingly easy to exhibit confirmation bias [22] when
selecting appropriate analysis methods. Given that various methods of analysis are available,
and also variants of the same method,1 it is natural that some of them will result in estimates
which are closer to the expected answer. From there it is a slippery slope to the conclusion
that somehow the methods which give the “correct” answer are the right methods for the
problem at hand. At this point it is possible that only the results from the preferred method
are presented in a research article, so introducing bias, or, equally insidiously, it may be that
the confidence intervals for the preferred methods are estimated to be smaller than for the
non-preferred “wrong” methods.

This is exactly our situation, as the asymptotic forms for 〈R2
E〉 and 〈R2

G〉 given in Eqs. 4 and
5 respectively are widely believed to be correct. We have endeavored to reduce the likelihood
of confirmation bias occurring by including estimates from all of the methods of analysis
which have been used. We are fortunate that the power of the leading logarithm, found in
Eqs. 4 and 5, occurs for two observables, which naturally gives us two somewhat independent
estimates.

We now proceed with our analysis, starting with the raw data for 〈R2
E〉 and 〈R2

G〉 from
Table 1, to which we will fit the asymptotic forms in Eqs. 4 and 5. We start by fitting the
leading behavior only, where we assume that there is indeed a factor of N , but where we fit
for the amplitude D, the parameter a, and the power of the logarithm, which we denote as κ .
That is, our statistical models are:

〈R2
E〉 = DEN [log(N/a)]κ ; (6)

〈R2
G〉 = DGN [log(N/a)]κ . (7)

We find that this fitting form reproduces theMonte Carlo data quite well for both 〈R2
E〉 and

〈R2
G〉, giving residual standard deviation values of approximately 15–20 for Nmin = 2000,

and declining to approximately 1 for Nmin ≥ 5 × 105. The fact that the statistical models
are capable of reproducing the data to within our error bars is evidence in support of the
correctness of the expressions given in Eqs. 4 and 5.

We show the estimates of κ from our fits in Fig. 2. The estimates appear to smoothly
converge to a value that is above 1/4, and our best estimate from extrapolating the trend is
κ = 0.258(2), which is shown on the y-axis of the plot. If taken at face value this would seem
to exclude κ = 1/4, but we know that the unfitted corrections to scaling may be large and so
are mindful that this may be misleading. (Admittedly, if we did not have prior information

1 E.g., in our case we may choose which how many terms to include in our fits, whereas for differential
approximant analyses of series it is possible to vary the order of the differential equation.
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Fig. 2 Variation of fitted value
of κ with Nmin when only the
leading term is fitted. The lines of
best fit to the final six values are
shown, and our final estimate is
plotted on the y-axis
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that κ = 1/4, or of the details of the correction-to-scaling terms, then the smoothness of the
trend would have given no hints that anything was amiss, and we would have been happy in
that case to report κ = 0.258(2) as our final estimate.)

We now fit the correction term, where we once again assume that there is indeed a factor
of N , but fit D, the parameter a, and κ . Our statistical models are:

〈R2
E〉 = DEN [log(N/a)]κ

(
1 − 17 log(4 log(N/a)) + 31

64 log(N/a)

)
; (8)

〈R2
G〉 = DGN [log(N/a)]κ

(
1 − 17 log(4 log(N/a)) + 97/3

64 log(N/a)

)
. (9)

Wefind that this fitting form reproduces theMonte Carlo data extremelywell for both 〈R2
E〉

and 〈R2
G〉. For 〈R2

E〉, the value of residual standard deviation is only 4.5 for Nmin = 2000,
and hovers around 1 for Nmin ≥ 15,000. For 〈R2

G〉, the residual standard deviation is only
3.7 for Nmin = 2000, and hovers around 1.3 for Nmin ≥ 70,000. We feel that the most
likely explanation for the spectacular fit for 〈R2

E〉 is happenstance, due perhaps to fortuitous
cancellation between competing neglected correction-to-scaling terms over the range of N
that is fitted. We plot 〈R2

E〉/N versus N in Fig. 3 together with the fit from Nmin = 15,000,
and 〈R2

G〉/N versus N in Fig. 4 together with the fit from Nmin = 70,000. The quality of the
data is such that error bars are invisibly small, and the quality of the fits is such that they pass
exactly through each data point to visible precision.

We show the estimates of κ from our fits in Fig. 5. There we observe that the estimates are
much closer to 1/4, and if we extrapolate the trends we obtain an estimate of κ = 0.2516(14)
which is plotted on the y-axis. The value of 1/4 is only just outside our confidence interval,
and we conclude that κ = 1/4 is consistent with these fits.

We now proceed to obtain estimates of the amplitudes by biasing our fits based on the
assumption that κ = 1/4. Once again we include the correction term, and in this case our
statistical models are:

〈R2
E〉 = DEN [log(N/a)]1/4

(
1 − 17 log(4 log(N/a)) + 31

64 log(N/a)

)
; (10)
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Fig. 3 Variation of 〈R2
E〉/N with N , together with the fit with correction term from Nmin = 15,000. Note

that error bars for the data points are invisible on the scale of the plot
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Fig. 4 Variation of 〈R2
G〉/N with N , together with the fit with correction term from Nmin = 70,000. Note

that error bars for the data points are invisible on the scale of the plot

〈R2
G〉 = DGN [log(N/a)]1/4

(
1 − 17 log(4 log(N/a)) + 97/3

64 log(N/a)

)
. (11)

We find that this fitting form reproduces the Monte Carlo data quite well for both 〈R2
E〉

and 〈R2
G〉, but not as well as when κ was allowed to vary. For 〈R2

E〉, the value of the residual
standard deviation is 31 for Nmin = 2000, and declines to 2.3 for Nmin = 2 × 106. For
〈R2

G〉, the residual standard deviation is 11 for Nmin = 2000, and hovers around 1.5 for
Nmin ≥ 50,000. Now, we see from Fig. 5 that for 〈R2

G〉 that the unbiased estimates for κ are
very close to 1/4 over a wide range of values for Nmin, and so it makes sense that the effect
of biasing κ = 1/4 degrades the fits for 〈R2

G〉 to a lesser extent than for 〈R2
E〉.

We plot estimates for the amplitudes DE and DG in Figs. 6 and 7. For DE, we see
smooth convergence, and some visible upwards curvature leads us to estimate a value of
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Fig. 5 Variation of fitted value of κ with Nmin when correction term is fitted. The lines of best fit to the final
six values are shown, and our final estimate is plotted on the y-axis

DE = 1.3112(3)which is a little above the linear extrapolation shown. For DG, the curvature
over the plot range shown is somewhat larger, and it is difficult to tell to what extent the trend
has really turned upwards (estimates with successive values of Nmin are strongly correlated
and so it is necessary to be careful not to read too much into “trends” from just a few data
points). Thus in this case our central estimate of DG = 0.21849(2) is somewhat below the
linear extrapolation, to guard against the possibility that the upward trend is due to statistical
noise, which could arise from statistical errors in the data points that we are fitting. N.B.,
we expect the curvature to decrease as we reach the large N limit, as unfitted corrections to
scaling become relatively smaller in magnitude, and this is another reason to think that the
actual curvature may be somewhat less than it appears to the eye.

We calculate the ratio of amplitudes, with our confidence interval calculated by treating
them as statistically independent quantities, obtaining DE/DG = 6.0012(14). This confirms
our expectation that the amplitude ratio assumes the same value as for simple random walks.
The estimates of DE and DG were obtained separately, and so the consistency of the ratio
with the exact value of 6 verifies, to some extent, the soundness of the method of analysis.

We now seek to calculate the amplitude ratio DE/DG directly from the ratio 〈R2
E〉/〈R2

G〉,
where the corresponding data are found in Table 1. First we note that

〈R2
E〉

〈R2
G〉 =

DEN [log(N/a)]1/4
(
1 − 17 log(4 log(N/a))+31

64 log(N/a)
+ · · ·

)

DGN [log(N/a)]1/4
(
1 − 17 log(4 log(N/a))+97/3

64 log(N/a)
+ · · ·

) (12)

= DE

DG

(
1 + 1

48 log(N/a)
+ · · ·

)
. (13)

In Fig. 8we plot the ratio 〈R2
E〉/〈R2

G〉 versus (log N )−1; from the equation abovewe expect
that the ratio will converge linearly to DE/DG, and by performing a linear extrapolation we
obtain the estimate DE/DG = 5.997(2).

We now fit the correction term in Eq. 13, allowing the parameter a to vary as before.
For these fits, the residual standard deviation value declines from 70 when Nmin = 2000, to
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Fig. 6 Variation of fitted value of DE with Nmin when correction term is fitted. The line of best fit to the final
six values is shown, and our final estimate is plotted on the y-axis
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Fig. 7 Variation of fitted value of DG with Nmin when correction term is fitted. The line of best fit to the final
six values is shown, and our final estimate is plotted on the y-axis

1.7 when Nmin = 2 × 106, indicating that there is still a degree of systematic error due to
neglected corrections to scaling even for the largest values of Nmin. Extrapolating the fits we
obtain the estimate DE/DG = 6.00001(10) which is consistent with the expected value of 6
from the simple random walk, and considerably more accurate than the value of 6.0012(14)
which was obtained from the ratios of the independently estimated amplitudes (Fig. 9).

Finally, we note that estimates for a vary dramatically between fits; this was already
observed by Grassberger et al. [14]. In principle, it should have the same value regardless of
observable, and regardless of the number of terms used in the fits. We will not report in full
the values obtained, but note that for the fits of 〈R2

E〉 the estimates of a change monotonically
from 2.56 to 3.53 for the leading order fits as Nmin is increased, from 0.201 to 0.207 for the
fits with a correction term, and from 0.219 to 0.231 for the fits with a correction term and
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are vanishingly small on the scale of the plot
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Fig. 9 Variation of fitted value of DE/DG with Nmin when correction term is fitted. The line of best fit to the
final six values is shown, and our final estimate is plotted on the y-axis

biasing κ = 1/4. The corresponding trends for the same fits for 〈R2
G〉 are 3.54 to 4.45, 0.273

to 0.254, and 0.265 to 0.263 respectively (the last sequence of estimates is not monotonic).
We plot estimates for κ versus estimates for a for the fits with a correction term in Fig. 10, as
these are the fits which most accurately describe the data. There we observe approximately
linear covariance between the estimates, perhaps indicating that κ and a are simultaneously
capturing the effect of unfitted higher order corrections to scaling.The approximate agreement
between estimates coming from 〈R2

E〉 and 〈R2
G〉 could mean that these estimates of a are

meaningful and converging to their true values, butwe do not have a high degree of confidence
in this statement. If the next correction-to-scaling term could be determined via theory then
the resulting fits would likely reveal whether convergence is truly occurring.
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Fig. 10 Variation of fitted value of κ with fitted values of a when the correction term is fitted

4 Analysis of the Pivot Algorithm Acceptance Fraction

We now consider the behavior of f , the probability that a pivot move is successful, as a
function of N . In the literature f is referred to as the acceptance fraction [21].

In [21], it is argued that a good first approximation for the probability that a pivot on a
walk of 2N steps is successful, is the probability that two independently chosen N -step walks
are self-avoiding when they are concatenated. For SAWs in dimension d �= 4, it is believed
that cN ∼ N γ−1μN , with γ = 43/32 = 1.34375 for d = 2 [23], γ = 1.15695300(95) for
d = 3 [9], and γ = 1 for d ≥ 5 [15,16]. This argument suggests that f is O(N 1−γ ), but in
practice it is observed that f = O(N−p) with p ≈ 0.19 for d = 2 (c.f. γ − 1 ≈ 0.344) and
with p ≈ 0.11 for d = 3 (c.f. γ − 1 ≈ 0.157). Thus it seems that for d = 2 and d = 3 this
heuristic is overly pessimistic and the two parts of the walk are less likely to intersect than
independently chosen SAWs which are concatenated.

For d ≥ 5 the above argument strongly suggests that the probability of a pivot move being
successful should be O(1), although to the best of our knowledge this has not been tested.

But, it is less clear what should happen for d = 4, and hence we will attempt to extract
information about the asymptotic behavior of f from the data. Firstly, the probability that two
independently chosen N -step walks are self-avoiding when they are concatenated is exactly
c2N/c2N . From Eq. 3 we expect that the asymptotic behavior of this ratio is given by:

c2N
c2N

=
Aμ2N [log(2N/a)]1/4

(
1 − 17 log(4 log(2N/a))−3

64 log(2N/a)
+ · · ·

)

(
AμN [log(N/a)]1/4

(
1 − 17 log(4 log(N/a))−3

64 log(N/a)
+ · · ·

))2 (14)

= 1

A
[log(N/a)]−1/4 (1 + · · · ) . (15)

This expression, together with the heuristic argument given above, implies that f should be
no larger than O([log N ]−1/4) for d = 4.

Now, it is possible to calculate correction terms for Eq. 15, but because the probability
of a pivot move being successful is, at best, only loosely related to c2N/c2N , there would not
be any point in doing so. Instead, we fit f with a statistical model which is inspired by the
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Fig. 11 Variation of λ with Nmin
from fitting data for f
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functional form of Eq. 15, given by:

f = [log(N/a)]−λ
(
1 + O([log N ]−1)

)
. (16)

We perform fits of the data for f in Table 2 for a and λ, finding that the residual standard
deviation of the fits declines from 66 when Nmin = 2000, to 2.1 when Nmin = 2 × 106.
Clearly there are still significant systematic errors even for the largest value of Nmin, but
the fact that the residual standard deviation is steadily declining, presumably towards 1,
suggests that the statistical model is correct, and that deviations from the model are due to
large unfitted correction terms. The assumption that the first neglected termwas of magnitude
O([log N ]−1) appears reasonable based on the plot, which appears to a good approximation
to be behaving linearly as the fitted values approach the y-axis. Extrapolating the trend results
in the estimate λ = 0.257(2) (Fig. 11).

If the previous heuristic argument holds in a weakened sense, and a pivot move is at least
as likely to be successful as the probability that two independent SAWs can be concatenated,
then this would imply that λ ≤ 1/4. Since λ is very close to 1/4, and we are not able to
imagine any plausible reason for there to be fine tuning with λ close to but different from
1/4, we make the conjecture that λ = 1/4 exactly.

Aswas the case for our leadingorder fits of 〈R2
E〉 and 〈R2

G〉, our estimatedvalue is somewhat
different from the conjectured exact value, but as there are likely to be strong corrections to
scaling it is perfectly reasonable to suppose that if we had a better statistical model (as we
do for 〈R2

E〉 and 〈R2
G〉) then we would obtain an estimate for λ that is closer to 1/4.

5 Discussion and Conclusion

We found that model fits are far poorer for four-dimensional SAWs than for comparable
computer experiments involving SAWs in three dimensions [9,10]. In those cases, fitting
the leading correction-to-scaling term (or eliminating it by creating an improved observable)
resulted in “perfect” fits with residual standard deviation approximately 1 for Nmin of the
order of thousands, whereas here we found that although fits were acceptable there were still
significant systematic errors even for Nmin = 2 × 106. This is perhaps not surprising given
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the occurrence of logarithmic corrections, but it does makes the task of extracting reliable
parameter estimates considerably more difficult.

Nonetheless, by designing the computer experiment to collect high quality data for N
as high as 109, we have found that we are able to get a good handle on these logarithmic
corrections. This was especially so when correction-to-scaling terms were included in the
fits, but we had modest success in our analyses for the leading exponent of 〈R2

E〉 and 〈R2
G〉,

κ , and the exponent for the probability of a successful pivot move, λ, even when only the
leading behavior was fitted.

Our best estimate of κ = 0.2516(14) is consistent with the renormalization group estimate
of κ = 1/4. If further evidence were needed, the coincidence of our best estimate of the ratio
DE/DG = 6.00001(10) with the simple random walk value of 6 is confirmation that four-
dimensional SAWs are indeed at the boundary of the simple random walk universality class.

We should mention that the parameter a, found in Eqs. 3–5, which was expected to be
a constant, turned out to vary between different choices of fits, and choices of observables.
This is perhaps not terribly surprising given the logarithmic corrections to scaling, but does
warrant further investigation. If a further correction-to-scaling term could be determined via
theory thismay help resolve the question of whether estimates of a from different observables
are converging.

We studied the behavior of the pivot algorithm for four-dimensional SAWs.We found that
the probability of a pivot move being successful, f , for a SAW of length N , is consistent
with f = O([log N ]−1/4), and conjectured that this relation is exact.

Finally, one of our keymotivations for studying four-dimensional SAWswas to act as a test-
case for attacking problems with logarithmic corrections to scaling, of which the θ -transition
in three dimensions [5,13,25] is another example. Although the capacity for quantitative
understanding of the logarithmic corrections for four-dimensional SAWs would seem to be
a necessary pre-condition for coming to grips with the θ -transition, it is not sufficient. This
is because the pivot algorithm for SAWs is remarkably efficient, whereas at the present time
no comparably efficient method exists for sampling interacting self-avoiding walks (ISAWs)
in the vicinity of the θ -transition. If progress is to be made for the quantitative understanding
of the θ -transition, then significant improvements will need to be made in the efficiency of
Monte Carlo sampling algorithms.
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A Data

See Tables 1 and 2.

Table 1 Monte Carlo estimates of 〈R2
E〉, 〈R2

G〉, and 〈R2
E〉/〈R2

G〉

N 〈R2
E〉 〈R2

G〉 〈R2
E〉/〈R2

G〉

2000 3.9910993(66)×103 6.605999(11)×102 6.0416285(53)

3000 6.083070(11)×103 1.0074613(18)×103 6.0380186(57)

5000 1.0332096(20)×104 1.7122817(33)×103 6.0341098(62)

7000 1.4636643(31)×104 2.4265458(50)×103 6.0318840(65)
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Table 1 continued

N 〈R2
E〉 〈R2

G〉 〈R2
E〉/〈R2

G〉

10,000 2.1161594(47)×104 3.5095129(78)×103 6.0297809(70)

15,000 3.2158126(78)×104 5.335114(13)×103 6.0276366(73)

20,000 4.325970(11)×104 7.178500(18)×103 6.0262867(78)

30,000 6.567591(18)×104 1.0901342(30)×104 6.0245715(82)

50,000 1.1105327(33)×105 1.8439156(55)×104 6.0226874(89)

70,000 1.5689845(49)×105 2.6056040(83)×104 6.0215771(96)

100,000 2.2624262(76)×105 3.757878(13)×104 6.020488(10)

150,000 3.428582(12)×105 5.695894(21)×104 6.019392(11)

200,000 4.603711(17)×105 7.649043(29)×104 6.018676(11)

500,000 1.1756555(50)×106 1.9539824(85)×105 6.016715(12)

1,000,000 2.386946(10)×106 3.968017(17)×105 6.015463(12)

2,000,000 4.842315(23)×106 8.051226(39)×105 6.014382(14)

5,000,000 1.2322250(65)×107 2.049226(11)×106 6.013123(15)

10,000,000 2.495866(14)×107 4.151237(24)×106 6.012343(17)

20,000,000 5.052437(38)×107 8.404463(65)×106 6.011613(21)

50,000,000 1.282394(10)×108 2.133490(18)×107 6.010780(24)

100,000,000 2.592982(23)×108 4.314303(40)×107 6.010201(25)

200,000,000 5.240702(49)×108 8.720211(85)×107 6.009834(27)

500,000,000 1.327686(20)×109 2.209457(35)×108 6.009104(43)

1,000,000,000 2.680993(46)×109 4.461847(80)×108 6.008707(49)

Table 2 Monte Carlo estimates of the probability of a pivot move being successful, f , and the mean CPU
time per pivot attempt

N f CPU time per pivot attempt (μs)

2000 0.65753599(32) 4.6474(19)

3000 0.64883702(35) 5.1224(20)

5000 0.63857892(37) 5.7122(24)

7000 0.63221031(39) 6.1387(26)

10,000 0.62576662(42) 6.6230(30)

15,000 0.61879528(44) 7.1649(33)

20,000 0.61406233(47) 7.7895(40)

30,000 0.60766748(50) 8.3581(42)

50,000 0.60003595(54) 9.3899(52)

70,000 0.59524796(57) 10.2674(60)

100,000 0.59036053(60) 11.1021(59)

150,000 0.58502890(65) 12.1095(66)

200,000 0.58138186(66) 12.7724(72)
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Table 2 continued

N f CPU time per pivot attempt (μs)

500,000 0.57043938(75) 14.9183(88)

1,000,000 0.56277669(76) 17.2602(92)

2,000,000 0.55558165(82) 19.317(11)

5,000,000 0.54670734(89) 22.200(13)

10,000,000 0.54042239(95) 24.754(15)

20,000,000 0.5344713(12) 26.809(21)

50,000,000 0.5270577(13) 30.642(25)

100,000,000 0.5217689(14) 33.540(27)

200,000,000 0.5167230(14) 36.676(32)

500,000,000 0.5103988(22) 40.506(83)

1,000,000,000 0.5058602(24) 50.426(65)
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