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Abstract We consider the cardinality of supercritical oriented bond percolation in two
dimensions. We show that, whenever the the origin is conditioned to percolate, the process
appropriately normalized converges asymptotically in distribution to the standard normal
law. This resolves a longstanding open problem pointed out to in several instances in the
literature. The result applies also to the continuous-time analog of the process, viz. the basic
one-dimensional contact process. We also derive general random-indices central limit theo-
rems for associated random variables as byproducts of our proof.

Keywords Oriented bond percolation · Central limit theorems · Association · Contact
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1 Introduction

Weconsider oriented bondpercolation on the two-dimensional integer lattice. For background
on this process, we refer to the review [15]. We show that the process exhibits classic central
limit theorem (CLT) behavior in all of the supercritical phase; meaning that the law of the
diffusively rescaled cardinality of the process started from a site conditioned to percolate
converges asymptotically in distribution to the standard normal law. The continuous-time
analog of two-dimensional oriented percolation is the basic contact process in one (spatial)
dimension. Our result and approach convey analogously to this process. The contact process
on integer-lattices was introduced in [33]. The corresponding strong law of large numbers
(SLLN) was shown in [21]. The CLT has been posed as an open problem originally in [15],
and later in [16], and more recently, in [17]. The contact process falls into the subject of
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interacting particle systems (IPS), for background on which we refer to the classic accounts
[16,26,39], furthermore, we refer to the later, more comprehensive accounts [18,41] as the
subject received additional attention afterward in the literature. Percolation theory originates
in [9] and, for more in this regard, we refer to the classic accounts [8,28].

Harris’ Growth Theorem [35] regards that the rate of growth of the highly supercritical
contact process conditioned to percolate is almost surely linear in all dimensions.1 The cor-
responding L1-LLN for the supercritical process in one dimension was shown by means of
subadditivity and coupling arguments in [14].2 We note that this result is considered a precur-
sor to the general subadditive ergodic theorem shown in [40]. The range of parameter values
for which the Harris’ Growth Theorem holds was extended by means of improvements to
Peierls’ argument in continuous time, shown in [27].3 The SLLN for the process in all dimen-
sions with parameter value larger than the critical value of the one-sided process in dimension
one was derived, as a corollary of the general shape theorem, in [20]. The SLLN, valid for all
of the supercritical phase in dimension one, was shown by means of renormalization group
techniques in [21].4 Furthermore, the important property that the invariant measure possesses
exponentially decaying correlations, together with other exponential estimates, was shown
there.5 This key property, together with the SLLN for the position of the endpoints, result
shown earlier in [14], enabled the proof of the SLLN in [21]. Among other landmark results,
the shape theorem, and hence the SLLN, valid for all of the supercritical phase and in all
dimensions, was shown by means of renormalization techniques in [5], see also the review
[17]. To date the following CLT’s have been derived in the literature regarding other func-
tionals of the contact process. The CLT regarding time-averages of finite support functions
of the infinite one-dimensional supercritical contact process was shown in [52], by means of
following an approach by [12], using an exponential decay property by [20], and applying
general results of [44,45]. Further, we mention that the CLT regarding the endpoints of the
process was shown by means of mixing techniques in [25], and later by means of elementary
arguments in [37]. In addition, for a detailed literature account regarding known CLT’s in
classic percolation, we refer to § 11.6 in [28], see also the later [48,49].

Furthermore, we derive certain CLT’s regarding randomly-indexed partial sums of non-
stationary, associated r.v.’s (random variables), as byproducts of our proof technique. To the
limits of one’s knowledge, randomly-indexed CLT’s for families of associated r.v.’s have
not been considered elsewhere in the literature. The introduction and the appreciation of the
usefulness of association in percolation dates back to the Harris’ Lemma [32],6 with most
prominent extensions to non-product measures, being the FKG inequality [23], the Holley
inequality [36],7 and the Ahlswede–Daykin inequality [1].8 The systematic study of this
concept as a general dependence structure was initiated in [22]. The acknowledgment of that
asymptotics for the correlation structure are useful in studying approximate independence of
associated r.v.’s originates to [38],where necessary and sufficient conditions of this sort for the
ergodic theorem to extend to this case were shown. The first corresponding CLT was derived

1 See Theorem 13.5 in [35]; the appellation is due to [27], see the Remark following Theorem 9 there, see
also Theorem 1.1 in [14].
2 See Theorem 1.2 in [14].
3 See Theorem 9 in [27].
4 See [21], Theorem 9.
5 See [21], Theorems 7 and 8.
6 See Lemma 4.1 in [32]; the appellation is attributed by [8].
7 See also [29] or [24].
8 See also [2].
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804 A. Tzioufas

in [43], whereas the key notion of demimartingales was introduced in [44]. Other notable
CLT’s, which replace the stationarity assumption with moment conditions, are those due to
[13], and also [7]. For background and comprehensive expositions on association, classic
limit theorems for associated r.v.’s in particular, and much more about recent advances on
the subject, we refer to the reviews [10,46,47,50].

Our main result comprises the CLT for supercritical oriented percolation in two dimen-
sions, which we state explicitly in Sect. 2.1, Theorem 2.1. Regarding the CLT’s for
randomly-indexed associated r.v.’s, see Sect. 2.2.

1.1 Definition of the Process

We let L = L (L,B) be the usual two-dimensional oriented percolation lattice graph, for
which the set of sites is L = {(x, n) ∈ Z

2 : x + n ∈ 2Z and n ≥ 0}, 2Z = {2k : k ∈ Z},
and the set of bonds is B = {[(x, n), (y, n + 1)〉 : |x − y| = 1}, and where [s, u〉 means
that an arrow (or bond) directed from site s to site u is present, see fig. 1, p. 1001, [15], for
this and other transpositions of L in the plane. We consider independent bond percolation
on L with open (or retaining) probability parameter p ∈ [0, 1], defined as follows. We
consider the configuration space � = {0, 1}B = {ω : B → {0, 1}}. We let P(= Pp) denote
the joint distribution of (ω(b) : b ∈ B), an ensemble of i.i.d. p-Bernoulli r.v.’s, which is,
μ(ω(b) = 1) = 1 − μ(ω(b) = 0) = p. We note that P yields a probability measure on
�, equipped as usual with F , the σ -field of subsets of � generated by finite-dimensional
cylinders. We may further let G = G (L,B1), B1 = {b : ω(b) = 1}, be the subgraph ofL in
which b is retained if and only if ω(b) = 1.

For givenω ∈ �, bonds b such thatω(b) = 1 are thought of as open (or retained); whereas
if b is assigned value ω(b) = 0, we consider b as closed (or removed), which may be thought
of as flow being disallowed. If sm, sn ∈ L, sm = (xm, m), sn = (xn, n), m ≤ n, then, given
ω ∈ �, we write sm → sn whenever there is a directed path from sm to sn in G (ω), that is,
there is sm+1 = (xm+1, m + 1), . . . , sn−1 = (xn−1, n − 1) such that ω([sk, sk+1〉) = 1 for
all m ≤ k ≤ n − 1.

We let ξ
η
n = {x : (y, 0) → (x, n), for some y ∈ η}, η ⊆ 2Z. We note also that, when

convenient, we shall use the coordinate-wise notation ξ
η
n (x) = 1(x ∈ ξ

η
n ), where we denote

by 1(A) the indicator random variable of an event A. We note that (ξη
n , η ⊂ 2Z) furthermore

admits a Markovian definition, and hence, we may think of the vertices’ first and second
coordinates as space and time, respectively. We also note that, by definition of L, ξη

n ⊂ 2Z,
for n ∈ 2Z+, and ξ

η
n ⊂ 2Z + 1, for n ∈ 2Z+ + 1.

We will denote simply by (ξn) the process started from O = {0} and, in general, we will
drop superscripts associated to the starting set in our notation when referring to O = {0}.
1.2 The Critical Value and the Upper-Invariant Measure

We state here some basic definitions and facts, for a more detailed exposition of which, see
for instance, [15,29,42]. We let �

η∞ be the percolation event for initial configurations η,
|η| < ∞, that is, we let

�
η∞ := ∩n≥1�

η
n and �η

n := {|ξη
n | ≥ 1

}
, (1)

where | · | denotes cardinality; and we also note that �
η
n ⊇ �

η
n+1, P-a.s.. Further, we let

ρ = ρ(p) be the so-called asymptotic density, defined as follows

ρ(p) = P(�∞) = lim
n→∞ ρn, ρn := P(�n), (2)

123
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where the appellation derives in view of (5), from the resultant equality of ρ(p) by appro-
priately applying (6) below. We let in addition pc be the critical value, defined as follows

pc = inf{p : ρ(p) > 0}. (3)

Where we recall that it is elementary that pc ∈ (0, 1), and that the well-definedness of pc

comes from that ρ(p) is non-decreasing in p, which is an elementary consequence of the
construction by the superposition ofBernoulli r.v.’s property.We also note that the assumption
that p > pc we require heremay be replaced by the apriori weaker assumption that ρ(p) > 0,
since the two assumptions are equivalent due to that ρ(pc) = 0, shown for all dimensions
in [5], see also [17], and also [4] for the extension of this results to general attractive spin
systems.

Let further,

�0 = {η ⊂ 2Z : |η| < ∞}, � = {η ⊂ 2Z, |η| = ∞}, (4)

We recall also that, if μn denotes the distribution of ξ2Z2n , then we have that

μn ⇒ ν̄, as n → ∞, (5)

where ν̄ is the so-called upper-invariant measure, defined on � and uniquely determined by
its cylinders, which, in view of the so-called self-duality property (see, for example, (34)
below), is such that

ν̄(η : η ∩ B = ∅) = P

(
ξ B

n = ∅, for all n ≥ 1
)

, (6)

B ∈ �0, and where ‘⇒’ denotes weak convergence, which we define as convergence of the
finite-dimensional distributions

P

(
ξ2Z2n ∩ B = C

)
, for C ⊂ B ∈ �0,

as n → ∞. To see the reason that we refer to ρ(p) as the asymptotic density, note that by
(6) we have that ν̄(η : η ∩ O = ∅) = ρ. Further, we note that (5) is denoted below simply
as follows,

ξ2Z2n ⇒ ξ̄ , n → ∞,

where ξ̄ is a random field distributed according to ν̄, denoted as ξ̄ ∼ ν̄ below.
Finally, prior to turning to ourmain statement in the section below,we give some additional

notation first. We note that the shorthands L(Xn)
w−→ N (0, σ 2), as n → ∞, n ∈ N, as

well as Xn
w−→ N (0, σ 2), as n → ∞, will be in force in the sequel in order to denote

weak convergence to a normal distribution with mean 0 and variance σ 2, which is that,
if we let Fn(x) be the cumulative distribution function associated with Xn , we have that
Fn(x) → ∫ x

−∞(2π)−1/2e−u2/2du, as n → ∞.

2 Results

2.1 The CLT

To state next our main result, we let p > pc and we let ξ̄ ∼ ν̄. We let also

σ 2 =
∑

x

Cov(x ∈ ξ̄ , O ∈ ξ̄ ) < ∞. (7)
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806 A. Tzioufas

Furthermore, we let P̄ be the probability measure induced by the original P by conditioning
on �∞, which is, P̄(·) = P(·|�∞). We denote by L(X |�∞) the law of a r.v. X under P̄. In
addition, we let rn = sup ξn and ln = inf ξn , and we further let dn = 1

2 (rn − ln) + 1. We
recall also that ρn = P(�n).

Theorem 2.1 Let p > pc. We have that, as n → ∞,

L
( |ξn | − dnρn

σ
√

dn
�∞

)
w−→ N (0, 1).

Froma technical perspective, themain novelty in our proof approach is the consideration of
the (non-stopping) time regarding the last-intersection of the two infinite endpoints processes.
To briefly elaborate on this coupling observation here (see the Lemmas subsequent to its
definition in (44) for the exact statements), we let

r−
n = sup ξ

2Z−
n and l+n = inf ξ

2Z+
n ,

where 2Z− = {. . . ,−2, 0}, and 2Z+ = {0, 2, . . . }. We note that, as will be seen from
the proof, the distribution of |ξn | = ∑rn

x=ln
ξn(x) conditioned on �∞, is equal to that of

∑r−
n

x=l+n
ξ2Zn (x), for all n after this random time occurs, and therefore, asymptotics for the

latter process permit to infer the same asymptotics for the former one. In this manner, we
circumvent the effects of altering the distribution of ξn when conditioning on �∞, and thus,
we are able to deduce Theorem 2.1 by working on the whole probability space, and dealing

with partial sums of the infinite processes, involved in
∑r−

n

x=l+n
ξ2Zn (x), instead. We further

note that, in order to deal with the fact that this is a non-stopping time in our proof, we
reside on independence inherited from the independence of the underlying Bernoulli r.v.’s in
disjoint parts of L , an observation applied in a different context by [37]. We also note that
this coupling is intrinsic to two-dimensions, since it relies on path intersection properties,
and that hence, we expect that new methods will be required for the extension of this result
to higher dimensions. On the other hand, we believe and pursue in forthcoming work [54]
that the techniques we develop can be used in order to give a proof of the law of the iterated
logarithm corresponding to Theorem 2.1. Furthermore, we note that the method of proof of
Theorem 2.1 relies on Proposition 2.3, stated in Sect. 2.3 below, and also incorporates an
earlier observation due to [15]. We note that a key ingredient for Proposition 2.3 to apply
in the context of supercritical oriented percolation is the Harris’ correlation inequality [34];
see also Theorem B.17 in [41] and the references therein. In addition, we note that our proof
approach, and the techniques involved, differentiate from those devised in known CLT’s for
percolation processes, due to the fact that we consider partial sums that are indexed randomly,
depending on the state of the process itself.

2.2 Random-Indices CLT’s

We recall here the following definition.
Association A collection of r.v.’s (Xi : i ∈ I ), |I | = ∞, is associated if for all finite

sub-collections X1, . . . , Xm and all coordinate-wise non-decreasing f1, f2 : Rm → R we
have that Cov( f̃1, f̃2) ≥ 0, f̃ j := f j (X1, . . . , Xm), j = 1, 2, whenever this covariance
exists.

By known results our proof approach provides with certain random-indices central limit
theorems for associated triangular arrays of r.v.’s, which we effectively obtain as direct
byproducts. One important aspect of those statements is that nothing is assumed regarding

123



The Central Limit Theorem... 807

independence among the summands and the index family of r.v.’s. Corollary 2.2 stated next
in particular is a random-index extended version of the CLT in Theorem 1 due to [13] with
the additional proviso (11) below. Furthermore, we note that we may in addition obtain in
a manner which is directly analogous and is thus omitted the corresponding random-index
CLT’s extensions to Theorem 3 in [7], or Theorem 3 in [44], with the said additional proviso.

Corollary 2.2 Let {Xn( j) : 0 ≤ j ≤ n} be such that E(Xn( j)) = 0, ∀ n, j , and that, for
each n,

{Xn( j)} are associated. (8)

Suppose also that

inf
j,n

Var(Xn( j)) > 0 and sup
j,n

E(|Xn( j)|3) < ∞. (9)

Furthermore, suppose that u(r) = sup j,n
∑

|k− j |≥r Cov(Xn( j), Xn(k)), r ≥ 0, is such that

u(r) < ∞, for all r, and that u(r) → 0, as r → ∞. (10)

Let Sn(i) = ∑i
j=0 Xn( j), and assume in addition that

sup
j,n

Cov (Xn( j), Sn( j − 1)) < ∞. (11)

Let (Nn, n ∈ N) be integer-valued and positive r.v.’s, such that

Nn

n
w−→ θ, as n → ∞, (12)

for some 0 < θ ≤ 1.
We then have that

Sn(Nn)√
Nn

w−→ N (0, σ 2), as n → ∞

and also that

Sn(Nn)√
θn

w−→ N (0, σ 2), as n → ∞,

where σ 2 := limn→∞ Var(S[θn]/
√[θn]), 0 < σ 2 < ∞.

By Theorem 1 in [13], the method of proof of Corollary 2.2 further relies on an application
of Lemma 4.2, which we derive on the way to the proof of Proposition 2.3 below.

2.3 Anscombe’s Condition

Proposition 2.3 next regards a condition about deviations of random partial sums from deter-
ministic ones the interval. This condition in the i.i.d. case was shown in [3].9 The validity
of this condition has not been anticipated to extend in the generality of Proposition 2.3, see

Remark 3.3. To state it, we write Xn
p−→ X , as n → ∞, to denote convergence in probability.

9 Hence the appellation of the condition attributed to by [30].
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808 A. Tzioufas

Further, we let {Xt ( j) : ( j, t) ∈ L } and let St (u, v) = ∑v
j=u Xt ( j). We introduce the

following assumptions, which we will invoke there.

E(Xt ( j)) = 0, for all ( j, t) ∈ L, (13)

{Xt ( j)} is associated for each t, (14)

sup
j,t

E(Xt ( j)2) < ∞; (15)

furthermore, let S+
t (v) = ∑v

j=0 Xt ( j), S−
t (u) = ∑u

j=0 X ′
t ( j), X ′

t ( j) = Xt (− j − 1),
u, v ≥ 0, j ≥ 0 and assume that

C+ = sup
j,t≥0

Cov
(
Xt ( j), S+

t ( j − 1)
)

< ∞, C−

:= sup
j,t≥0

Cov
(
X ′

t ( j), S−
t ( j − 1)

)
< ∞. (16)

We further let (Mt : t ≥ 0) and (mt : t ≥ 0) be such that (Mt , t) ∈ L and that (mt , t) ∈ L;
we assume that, for some 0 < θ < ∞,

Mt

t
w−→ θ and

mt

t
w−→ −θ, as t → ∞. (17)

Proposition 2.3 We let {Xt ( j) : ( j, t) ∈ L} and let St (u, v) = ∑v
j=u Xt ( j). Let us assume

that conditions (13), (14), (15), and (16) are fulfilled. We let (Mt : t ≥ 0) and (mt : t ≥ 0)
be such that (Mt , t) ∈ L and that (mt , t) ∈ L and, further, assume that (17) is fulfilled. We
then have that

St (mt , Mt ) − St (−θ t, θ t)√
θ t

p−→ 0, as t → ∞. (18)

Where we note that throughout here, and in the above statement in particular, we will write
that

∑C
x=−c for

∑[C]
x=−[c]−1, where [·] denotes the largest integer smaller than the argument,

and that we also use the notational convention
∑−1

0 := 0.
The method of proof of Proposition 2.3 extends the direct proof approach due to [51]

for showing the Anscombe condition in the case of i.i.d. summands. We note that our proof
invokes the so-called Hajek–Rényi inequality for associated r.v.’s, due to [11]. The proof of
Theorem 2.1 given here relies on Proposition 2.3 and thus, follows an elementary approach,
see also Remark 3.12 for a different approach. The random-index CLT’s in Sect. 2.2, as we
noted above, are in addition consequences of Proposition 2.3, which we find of independent
interest.

Outline of Proofs The remainder of this paper is organized as follows. The proof of
Theorem 2.1, by means of applying Proposition 2.3, is given in Sect. 3. Preliminaries we
will invoke in this proof are stated first in Sect. 3.1 separately, whereas another proof of
Proposition 3.2 stated below in there is provided with for completeness in the Appendix. In
Sect. 4, the proof of Proposition 2.3 is provided with, see Sect. 4.1. That of Corollary 2.2 is
also given there, in Sect. 4.2.

3 Theorem 2.1

3.1 Preliminaries

We briefly state certain facts on oriented percolation that we use later on.
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The Central Limit Theorem... 809

Some Notation The following definitions, which will also be useful for simplifying nota-
tions below, are introduced. Recall that we let r−

n = sup ξ
2Z−
n and l+n = inf ξ

2Z+
n , where

2Z− = {. . . ,−2, 0}, and 2Z+ = {0, 2, . . . }. We let

In = {x : ln ≤ x ≤ rn, (x, n) ∈ L} (19)

if ln ≤ rn , and In = O , otherwise. Similarly, we let

Jn = {
x : l+n ≤ x ≤ r−

n , (x, n) ∈ L
}

(20)

if l+n ≤ r−
n , and Jn = O , otherwise. To see our motivation for considering Jn , and In

analogously, note that

|Jn | = r−
n − l+n

2
+ 1, on {l+n ≤ r−

n },

and |Jn | = 1, otherwise. We let in addition the family of centered r.v.’s, which will play a
central rôle in our analysis below, (ξ̂2Zn (x) : x ∈ 2Z), as follows. We let

ξ̂2Zn (x) = ξ2Zn (x) − ρn, for all n ≥ 1, (21)

where ρn = P(�n) is defined in (2). We note that (ξ̂2Zn (x) : x ∈ 2Z) are zero-mean, since
by (34) below, E(ξ2Zn (x)) = ρn .

The Basic CouplingWe state an important observation due to [14], which comprises the
following consequence of path intersection properties. We have that

ξn = ξ2Zn ∩ [ln, rn] = ξ2Zn ∩ [
l+n , r−

n

]
on �n, (22)

P-a.s. and, in particular,

rn = r−
n and ln = l+n , on �n, (23)

P-a.s. and further, (22) gives that

|ξn | =
∑

x∈Jn

ξ2Zn (x), on �n (24)

P-a.s.. Furthermore, since �n = {rk ≥ lk,∀k ≤ n}, we also have that

�n = {
r−

k ≥ l+k ,∀k ≤ n
}
. (25)

Further, we note that (25) is in fact a special case of the following statement, regarding
general initial configurations. Let η− and η+ be such that η−(O) = η+(O) = 1, and also
η−(x) = 0, for x ≥ 2, whereas, η+(x) = 0, x ≤ −2, and otherwise arbitrary. Letting

rη−
n = sup{x : ξ

η−
n (x) = 1} and lη

+
n = inf{x : ξ

η+
n (x) = 1}, we have that, for all n ≥ 1, on

�n , rn = rη−
n and ln = lη

+
n and, further that

�n =
{

rη−
m ≥ lη

+
m , for all m ≤ n

}
. (26)

For proofs of these statements, see for instance, §3, [15], see also [14,27].
The Asymptotic Velocity For all p > pc, there is α = α(p) > 0, such that

lim
n→∞

r−
n

n
= α and lim

n→∞
l+n
n

= −α, (27)
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810 A. Tzioufas

P-a.s.. Further, we have that (27) yields from (23), that

lim
n→∞

rn

n
= lim

n→∞
−ln
n

= α, P̄ a.s., (28)

where we refer to α := α(p) as the asymptotic velocity. For a proof of (27) we refer to
Theorem 1.4 in [14], and also (7) in § 3 in [15].

The SLLN Let p > pc. Let ρ and α be the asymptotic density and velocity, as defined in
(27) and in (2), respectively. We have that

lim
n→∞

|ξn |
n

= αρ, P̄-a.s., (29)

For a proof of (29) we refer to Theorem 9 in [21], see also (2) in § 13 in [15].Wemention here

that from (22) and (28), since |In | = rn−ln
2 + 1, we have that, as n → ∞,

|In |
n

→ α, P̄ a.s..

Thus, we have that (29) yields that, as n → ∞,

∑
x∈In

ξn(x)

|In | → ρ, P̄ a.s..

Large Deviations Let p > pc. let a < α(p). Then, the following limit exists and is
strictly negative,

lim
n→∞

1

n
logP

(
r−

n < a
)
. (30)

We require in addition below, the following known elementary consequence of (30). There
are C, γ ∈ (0,∞), such that

P
(∃m ≥ n : r−

m < 0
) ≤ Ce−γ n, (31)

n ≥ 1, see, for instance [15], p. 1031, § 12, first display in the proof of (1).
Monotonicity and Self-Duality An immediate consequence of the construction is that

A ⊆ B �⇒ ξ A
n ⊂ ξ A

n , (32)

P-a.s. Further, we have that, for all n even,

P(ξ A
n ∩ B = ∅) = P

(
ξ B

n ∩ A = ∅
)

, (33)

A, B ⊂ 2Z, and analogously, for n odd. The proof of (33), see § 8, (2), p. 1021 in [15]
relies on the observation that, after reversing the direction of all arrows in any realization, the
law of the process started from (B, 2n), defined analogously by these new paths, and going
backwards in time is the same as that of (B, 0); and, moreover, that a path connecting (A, 0)
to (B, 2n) exists in the original sample point if and only if there is a backwards in time path
connecting (B, 2n) to (A, 0) in the corresponding sample point. By an application of (33)
and by the definition of the upper invariant measure ν̄, see (5), we note that,

P

(
ξ A

n = ∅, for all n ≥ 1
)

= lim
n→∞P

(
ξ2Z2n ∩ A = ∅

)

= ν̄(η : η ∩ A = ∅), (34)

A ⊂ �0. Furthermore, by (34) and recalling the definition of ρ from (2), gives that

ρ = ν̄(η : η ∩ {O} = ∅) = lim
n→∞E

(
ξ2Z2n (O)

)
. (35)

CLT for the Upper Invariant Measure: Decay of CorrelationsWhenever p > pc, the
upper invariant measure ν̄ possesses positive, and exponentially decaying, correlations. That
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The Central Limit Theorem... 811

is, if ξ̄ ∼ ν̄, we have that there are C, γ ∈ (0,∞), such that

0 ≤ Cov(ξ̄ (0), ξ̄ (x)) ≤ Ce−γ x , (36)

x ∈ 2Z. As pointed out to in [21], p. 2, see also the final Remark in § 6 in [27], property (36)
implies the following Lemma by general results for random fields, see for instance, Theorem
12 in [46], or the list of references before statement Proposition 4.18 in Chpt. I, [39].

Lemma 3.1 L
(∑αn

x=−αn(ξ̄ (x) − ρ)√
αn

)
w−→ N (0, σ 2), as n → ∞, σ 2 < ∞,

where σ 2 < ∞ because ξ̄ is strictly stationary (translation invariant), and we thus have that
σ 2 = Var(ξ̄ (0)) + 2

∑
x≥2 Cov(ξ̄ (0), ξ̄ (x)), and Var(ξ̄ (0)) = ρ − ρ2, so that σ 2 < ∞, by

(36).
Furthermore in [21] the following stronger than (36) property is shown. To state it, consider

(ξ̂2Zn (x) : x ∈ 2Z), as defined in (21). We have that, for all p > pc, there are C, γ ∈ (0,∞),
such that, for any n, and (xi ∈ 2Z : i = 1, . . . , k), k < ∞, |xi − x j | > 2m, we have that

∣∣∣∣∣
E

(
k∏

i=1

ξ̂2Zn (xi )

)∣∣∣∣∣
≤ Ce−γ m, (37)

and we refer to Theorem 8 in [21], see also (1), p. 1033, [15], for a proof of (37). We also
finally mention two other routes to derive Lemma 3.1. One of them is provided with in the
discussion prior to Theorem 3.23 in Chpt. VI, [39]. This approach relies on deriving, by
means of (30), that the convergence in (5) occurs exponentially fast, which then implies as
shown there by general results that ν̄ has exponentially decaying correlations, from which
the conclusion follows as noted above. The other route is provided with in § 6 of [27],
where Lemma 3.1 is derived under the condition that, there exists C, γ ∈ (0,∞), such that
P(�̄

{0,...,2n}∞ ) ≤ Ce−γ n, for all n ≥ 1, which is shown there to be valid for sufficiently
large values of p, and later shown for all p > pc in [21], where we note that Ē denotes the
complement of event E .

CLT for the Infinite Process in a ConeWe state here an observation, pointed out in [15]
see § 13, (4); see also p. 286 in [16]. Property (37), together with the corresponding extension
of Theorem 3 in [44] to triangular arrays, yields that ξ2Zn obeys classic CLT behavior. To state
this explicitly, recall the definition of ξ̂2Zn (x) = ξ2Zn (x) − ρn in (21). We let p > pc and let
α > 0 be the associated asymptotic velocity, and ξ̄ ∼ ν̄, and σ 2 := ∑

x∈2Z Cov(ξ̄ (O), ξ̄ (x)),
as in (7).

Proposition 3.2 L
(∑αn

x=−αn ξ̂2Zn (x)√
αn

)
w−→ N (0, σ 2), as n → ∞, and σ 2 < ∞.

Remark 3.3 The following heuristic,which is suggested fromproperties of the basic coupling
above, is stated next in (5) there:

|ξ2Zn ∩ [
l+n , r−

n

] ‖ − |ξ2Zn ∩ [−αn, αn]‖ ≈ ρn
r−

n − αn

2
+ ρn

+αn − l+n
2

Note that as expected there, and proved later in [25], and in [37], when diffusively normalized
each term of the RHS converges asymptotically to a normal distribution, which then suggests
that the RHS fluctuations diffusively rescaled would not converge in distribution to zero; see
also the form of the variance conjectured in the latter reference for Theorem 2.1. We note
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812 A. Tzioufas

that Proposition 2.3 will allow us to show that when normalized, the LHS converges in law
to zero.

An Exponential Estimate We require below the following known estimate. Recall that
ρn = P(�n) ρ = P(�∞). Let p > pc. There are C, γ ∈ (0,∞), such that

|ρn − ρ| ≤ Ce−γ n, (38)

n ≥ 1. To see that (38) follows from known facts note that, if p > pc, then there are
C, γ ∈ (0,∞), such that

P(�n ∩ �̄∞) ≤ Ce−γ n,

n ≥ 1, where for a proof of the above display, see [21], see also [15, (1), p. 1031]. By the
law of total probability, and because �n ⊇ �∞, we have that

P(�n) − P(�∞) = P(�n ∩ �̄∞).

Combining the two displays above, and noting that by definition, if m ≤ n, then �n ⊆ �m ,
and therefore P(�n) − P(�∞) ≥ 0, we arrive at (38).

Elementary Facts We give next certain elementary probability statements. To this end,
we let (Xn : n ≥ 0) and (Yn : n ≥ 0) be collections of r.v.’s. For a proof of Lemma 3.4 stated
next, see for instance, 5.11.4 in [31]. Lemma 3.5 regards the the basic fact that almost sure
convergence is stronger than convergence in distribution, see for instance, Theorem 5.3.1
in [31]. Finally, Lemma 3.6 follows by noting that, as n → ∞, Xn(ω) − Xk+n(ω) → 0,
∀ω ∈ {τ = k} and any k ≥ 0, and then considering the partition ∪k≥0{τ = k}, to conclude
that Xn − Xτ+n → 0 a.s..

Lemma 3.4 We have that

L(Xn)
w−→ X and L(Xn − Yn)

w−→ 0 �⇒ L(Yn)
w−→ X, (39)

as n → ∞. Furthermore,

L(Xn)
w−→ γ and L(Yn)

w−→ Y �⇒ L
(

Yn

Xn

)
w−→ Y

γ
, (40)

γ ∈ R\{0}, as n → ∞.

Lemma 3.5 We have that, as n → ∞,

Xn → X a.s. �⇒ L(Xn)
w−→ X. (41)

Lemma 3.6 Let τ < ∞ a.s., but otherwise arbitrary. We have that Xτ+n − Xn → 0 a.s..

3.2 Proof of Theorem 2.1

The contents of this section comprise primarily the proof of Theorem 2.1 andmay be outlined
as follows. This proof is given here first, by means of relying on Propositions 3.7 and 3.9
we state in it and prove immediately afterward in the same order as stated. Proofs of various
auxiliary statements, denominated Lemmas, required along the way in our proofs are further
postponed, in order not to interrupt its course, to the end of this section. In Remark 3.12 We
discuss here briefly in regard to modifications required to obtain the IP’s associated to our
Theorem 2.1

Certain remarks regarding other route approaches are provided with at the end of these
proofs.
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The Central Limit Theorem... 813

Proof of Theorem 2.1. Note that, due to that In = {x : ln ≤ x ≤ rn, (x, n) ∈ L}, the result
comprises the statement

L
(∑

x∈In
ξn(x) − |In |ρn√|In |

∣∣∣∣ �∞
)

w−→ N (0, σ 2), as n → ∞.

Taking into account also that
∑

x∈In
(ξn(x) − ρn) = |ξn | − |In |ρn, on �∞, we have that, if

we let An =
∑

x∈In (ξ O
n (x)−ρn)√|In | , then to complete this proof, it suffices to show that

L(An |�∞)
w−→ N (0, σ 2), as n → ∞. (42)

We state next a key Proposition and subsequently state an auxiliary Lemma we require.
We recall that we provide with the proofs of Propositions and Lemmas stated here afterward.
Recall first that r−

n = sup ξ
2Z−
n and l+n = inf ξ2Z

+
n , 2Z− = {. . . ,−2, 0}, 2Z+ = {0, 2, . . . }.

Recall further that we let (ξ̂2Zn (x) : (x, n) ∈ L), ξ̂2Zn (x) = ξ2Zn (x) − ρn , ρn = P(�n), as
defined in (21). Recall also that Jn = {x : l+n ≤ x ≤ r−

n , (x, n) ∈ L}, whenever l+n ≤ r−
n ,

and Jn = O , otherwise, as in (20). ��

Proposition 3.7 Let Ān =
∑

x∈Jn
ξ̂2Zn (x)√|Jn | . We have that

L( Ān)
w−→ N (0, σ 2), as n → ∞. (43)

We state the other key Proposition below, after the following auxiliary Lemma required first.

Lemma 3.8 Let

τ := inf
{
n ≥ 0 : r−

n = l+n and r−
m ≥ l+m ∀ m > n

}
. (44)

We have that τ < ∞, a.s.

We may now give the said Proposition.

Proposition 3.9 L( Ān+τ ) = L(An |�∞), for all n ≥ 0.

Note that, Lemma 3.8 by an application of Lemma 3.6 gives that, as n → ∞,

Ān+τ − Ān → 0, a.s.. (45)

However (45) by Lemma 3.5 gives that L( Ān+τ − Ān) → 0, as n → ∞, and hence,
Proposition 3.7 by an application of (39)an application of (39) yields that

L( Ān+τ )
w−→ N (0, σ 2), as n → ∞. (46)

FromProposition 3.9 and (46),wehave that (42) follows, and, therefore, the proof is complete.
��

Proof of Proposition 3.7. From Proposition 3.2 we have that

L
(∑αn

x=−αn ξ̂2Zn (x)√
αn

)
w−→ N (0, σ 2), as n → ∞
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814 A. Tzioufas

where we recall that α := α(p) > 0, p > pc, is the asymptotic velocity, as defined in (27);

however, note that (27) gives that
√ |Jn |

[αn] → 1, as n → ∞, a.s., therefore, by Lemma 3.4,
(40), we have that

L
(∑αn

x=−αn ξ̂2Z2n (x)√|Jn |

)
w−→ N (0, σ 2), as n → ∞. (47)

Hence, if we assume that
∑

x∈Jn
ξ̂2Zn (x) − ∑αn

x=−αn ξ̂2Zn (x)√|Jn |
p−→ 0, as n → ∞, (48)

then, (47) together with an application of Lemma 3.4, (39), yields (43), and the result is
proved.

We prove the remaining (48). To do this, we will show that the hypotheses of the general
Proposition 2.3 are fulfilled when setting (ξ̂2Zn (x), l+n , r−

n ) equal to (Xt ( j), mt , Mt ) there.
We have that: a)Recall thatE(ξ2Zn (x)) = ρn , where this equality comes from self-duality, see
(33). We therefore have that assumption (13) holds since (ξ̂2Zn (x)) are centered r.v.’s. b)We
now show that assumption (14) is granted for (ξ̂2Zn (x)) as follows. Note that, due to a corollary
to Harris’ correlation inequality [34], see [39, Thm. 2.14, Chpt. II], which applies since
every deterministic configuration is positively correlated, we have that (ξ2Zn ) has positive
correlations for all n. Because ξ2Zn takes values on a partially ordered set, this gives that
{ξ2Zn (x)} are associated, and hence also (ξ̂2Zn (x)) are associated, because increasing functions
of associated r.v.’s are also associated by using the definition. c) Because ξ2Zn (x) ∈ {0, 1},
we have that E|ξ2Zn (x)|2 ≤ 1, and therefore assumption (15) is also fulfilled. d) Furthermore,
we have that (37) gives that (16) is valid, because, by using that the covariance is a linear
operation in the one argument if the other is fixed, we then have that C− = C+ = C

1−γ
< ∞.

e) Finally, we have that (17) is valid for mt = l+n and Mt = r−
n due to (27). Hence, we have

that (48) holds, and the proof is thus complete. ��
Proof of Proposition 3.9. We will show that

P(An ≥ a|�∞) = P( Ān+k ≥ a|τ = k), (49)

for all k ≥ 0, a ∈ R. To see that proving the above display suffices complete this proof note
that, due to Lemma 3.8, we have by the law of total probability and (49), that

P( Ān+τ ≥ a) =
∞∑

k=0

P( Ān+k ≥ a|τ = k)P(τ = k)

= P(An ≥ a|�∞).

To state the next auxiliary lemma we require, we let Fn denote the σ -algebra associated
to the part of the construction of the processes with bonds the end-vertices of which have
time-coordinate no greater than n. ��
Lemma 3.10 We let

ξ (x,n)
m = {y : (x, n) → (y, m + n)}, �(x,n) =

{
ξ (x,n)

m = ∅, for all m ≥ 0
}

, (50)

(x, n) ∈ L, m ≥ 0. We have the following representation
{
τ = n, r−

n = l+n = x
} = �(x,n) ∩ F, (51)
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The Central Limit Theorem... 815

for some F ∈ Fn−1.

We state next another general auxiliary statement we will use below.

Lemma 3.11 Let η−, η+ be such that η−(O) = η+(O) = 1 and η−(x) = 0, x ≥ 2,

η+(x) = 0, x ≤ −2. Let rη−
n = sup{x : ξ

η−
n (x) = 1} and lη

+
n = inf{x : ξ

η+
n (x) = 1}. We

have that �∞ = {rη−
n ≥ lη

+
n , for all n ≥ 1}.

We now have that, for any (x, k) ∈ L,

P( Ān+k ≥ a|τ = k, r−
k = l+k = x) = P

(
Ān+k ≥ a|�(x,k), r−

k = l+k = x, F
)

(52)

= P
(

Ān+k ≥ a|�(x,k), r−
k = l+k = x

)
(53)

= P( Ān ≥ a|�∞) (54)

= P(An ≥ a|�∞), (55)

where in (52) we plug in (51) from Lemma 3.10, in (53) we use independence of events
measurable with respect to disjoint parts of L by construction, in (54) we use translation-
invariance with respect to (x, k), and finally in (55) we use that, by (22), Ān = An a.s. on
�∞.

The law of total probability gives

P( Ān+k ≥ a|τ = k) =
∑

x :(x,k)∈L
P

(
Ān+k ≥ a|τ = k, r−

τ = x
)
P(r−

τ = x |τ = k)

= P(An ≥ a|�∞)
∑

x :(x,k)∈L
P

(
r−
τ = x |τ = k

)
(56)

= P(An ≥ a|�∞), (57)

where (56) follows from (55), and (57) follows from that, P(|r−
k | < ∞|τ = k) = 1, for all

k, due to that P(|r−
n | < ∞) = 1, which follows from (27) by considering the contrapositive

statement. This proof is thus complete. ��
We prove the remaining Lemmas 3.8, 3.10, and 3.11 that we stated and used above.

Proof of Lemma 3.8. We will derive the estimate that there are C, γ ∈ (0,∞) such that

P(τ ≥ n) ≤ Ce−γ n, (58)

for all n ≥ 1.
Let Er

n = {∃m ≥ n : r−
m < 0} and El

n = {∃m ≥ n : l+m > 0}. From (31), we have that

P(Er
n) ≤ Ce−γ n, (59)

n ≥ 1. Further, note that

{τ ≥ n} ⊆ Er
n ∪ El

n, (60)

where (60) follows by (44) and considering the contra-positive relation, i.e. that

Ēr
n ∩ Ēl

n ⊆ {τ ≤ n}.
Hence, subadditivity and noting that by symmetry P(Er

n) = P(El
n), gives

P(τ ≥ n) ≤ 2P
(
Er

n

)
,

from which the proof of (58) is complete by (59). ��
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Proof of Lemma 3.10. To prove (51), note that it suffices to show that

τ = inf
{
n ≥ 0 : ∪(x,n)∈L

{
r−

n = l+n = x
} ∩ �(x,n)

}
. (61)

However, Lemma 3.11 and translation invariance give that, for any (x, n) ∈ L,

�(x,n) = {
r−

m ≥ l+m , ∀m > n
}
, on

{
r−

n = l+n = x
}
,

hence (61) is identical to (44), and (51) follows. ��
Proof of Lemma 3.11. Note that, since �∞ = ∩n≥1�n , this statement follows directly from
(26). ��
Remark 3.12 To derive the IP corresponding to Proposition 3.2, that is that, if we let V n

t =
1

σ
√

αn

∑αn
x=−αn ξ̂2Zn (x), then we have that

V n ⇒ W, (62)

which means that the random functions V n converge to the Wiener measure, W , in the space
D, see Section 13 in [6] for definitions and background in this regard. To derive (62) one may
either modify the proof of Theorem 3 in [44] to the case of arrays of r.v.’s in which the length
of each row grows linearly with the row number, or alternatively, one may modify the proof
of Proposition 3.2 in the Appendix by invoking the IP extension of Lemma 3.1 instead there.
Letting U n

t = 1
σ
√

αn

∑
x∈Jn

ξ̂2Zn (x), we then have that by (62) and (27) the assumptions of
Theorem 14.4 in [6] are fulfilled, hence yielding that

U n ⇒ W. (63)

By appropriately modifying the argument from (44) onwards in the proof above we have that
the corresponding IP to Theorem2.1may also be derived from (63). Our proof of Theorem2.1
contrasts to the approach we briefly sketched here in that the former does not prerequisite
invoking any general statements. Further, note that the latter approach does not go through
Proposition 2.3 and hence, does not provide with the random-indices CLT’s we provide with
in Sect. 2.2.

4 Proposition 2.3 and Corollary 2.2

4.1 Proof of Proposition 2.3.

The proof of Proposition 2.3 is divided into two parts. We will first derive Proposition 2.3
by means of relying on Lemma 4.2, stated below here next, and proved below immediately
thereafter, in this section. Prior to that, we also state here the Hajek–Rényi inequality for
associated r.v.’s, due to [11], see also [53]. Recall the definition of association given in
Sect. 2.2.

Lemma 4.1 Let (X j : j = 1, . . . , n) be associated r.v.’s such that E(X j ) = 0 for all j ,
and let also (c j : j = 1, . . . , n) be a sequence of non-increasing and positive numbers. Let
Sk = ∑k

j=1 X j . Then, we have that

P

(
max
1≤k≤n

ck |Sk | ≥ ε

)
≤ 2ε−2

⎛

⎝2
n∑

j=1

c2jCov
(
X j , S j−1

) +
n∑

j=1

c2jE
(

X2
j

)
⎞

⎠ .
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We may now state the following Lemma.

Lemma 4.2 Let {Xt ( j) : j, t ≥ 0} be such that E(Xt ( j)) = 0, ∀ t, j . Let also
St (i) = ∑i

j=0 Xt ( j). We assume the following:

{Xt ( j) : j ≥ 0} is associated for each t. (64)

sup
j,t

E(Xt ( j)2) < ∞, (65)

sup
j,t

Cov (Xt ( j), St ( j − 1)) < ∞, (66)

Furthermore, we let (Nt : t ≥ 0) be integer-valued and non-negative r.v.’s, such that, for
some 0 < θ < ∞,

L
(

Nt

t

)
w−→ θ, as t → ∞. (67)

Then, we have that

St (Nt ) − St ([θ t])√[θ t]
p−→ 0, as t → ∞.

Proof of Proposition 2.3 Let M ′
t = Mt · 1{Mt ≥ 0} and m′

t = mt · 1{mt ≤ 0}, where we
recall that Mt and mt are as in (17). Note that in the notation introduced we have that

St (m
′
t , M ′

t ) = S−
t (m′

t ) + S+
t (M ′

t ), and St (−[θ t], [θ t]) = S−
t ([θ t]) + S+

t ([θ t]),
and thus, by the triangle inequality, we have that

|St (m′
t , M ′

t ) − St (−[θ t], [θ t])|√[θ t] ≤ |S−
t (m′

t ) − S−
t ([θ t])|√[θ t] + |S+

t (M ′
t ) − S+

t ([θ t])|√[θ t] . (68)

However, the assumptions of Lemma 4.2 are appropriately satisfied, yielding that

|S−
t (m′

t ) − S−
t ([θ t])|

√
[ θ t
2 ]

p−→ 0, and
|S+

t (M ′
t ) − S+

t ([θ t])|
√

[ θ t
2 ]

p−→ 0.

as t → ∞. Hence, from (68) and the display above, we have that

St (m′
t , M ′

t ) − St (−[θ t], [θ t])√[θ t]
p−→ 0, as t → ∞. (69)

To conclude the proof of (18), note that, again by the triangle inequality,

|St (mt , Mt ) − St (−[θ t], [θ t])|√[θ t] ≤ |St (mt , Mt ) − St (m′
t , M ′

t )|√[θ t]
+|St (m′

t , M ′
t ) − St (−[θ t], [θ t])|√[θ t] ,

so that in view of (69), it suffices to show that

lim
t→∞P(|St (mt , Mt ) − St (m

′
t , M ′

t )| > ε) = 0, (70)

which follows simply by noting that, for all ε > 0,

P(|St (mt , Mt ) − St (m
′
t , M ′

t )| > ε) ≤ P(Mt ≤ −1 or mt ≥ 1),

and hence (70) follows, since from (17) we have that limt→∞ P(Mt ≤ −1) = 0 and
limt→∞ P(mt ≥ 1) = 0. The proof is thus complete. ��
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Proof of Lemma 4.2 Note that without loss of generality we may take θ = 1. Let ε ∈ (0, 1),
and also let m(t) = [t (1 − ε3)] + 1 and n(t) = [t (1 + ε3)]. Let Yi (t) = Xt (t + i),
i = 1, . . . , n(t) and denote their partial sums as Zk(t) = ∑k

i=1 Yi (t), then we have that

max
k=t,...,n(t)

|St (k) − St (t)| = max
k=t+1,...,n(t)

∣∣∣∣∣∣

k∑

j=t+1

Xt ( j)

∣∣∣∣∣∣

= max
k=1,...,[tε3]

|Zk(t)|. (71)

From (64) we have that Lemma 4.1 applies and choosing there ck = 1√
t
, gives that

P

(
max

k=t,...,n(t)
|St (k) − St (t)| ≥ ε

√
t

)
= P

(
max

k=1,...,[tε3]
|Zk(t)| ≥ ε

√
t

)

≤ 2

ε2t

⎛

⎝2
[tε3]∑

j=1

Cov(Y j (t), Z j−1(t)) +
[tε3]∑

j=1

E(Y j (t))
2

⎞

⎠

≤ Cε, (72)

where C is independent of t , and (72) comes from (65) and (66). Similarly, letting Y ′
i (t) =

Xt (t + 1 − i), for i = 1, . . . t − m(t) + 1 and Z ′
k(t) = ∑k

j=1 Y ′
i (t), we have that

max
k=m(t),...,t

|St (k) − St (t)| = max
k=m(t),...,t−1

∣∣∣∣∣∣

t∑

j=k+1

Xt ( j)

∣∣∣∣∣∣

= max
k=1,...,[tε3]−1

|Z ′
k(t)|. (73)

Again, we can apply Lemma 4.1 with ck = 1√
t
from (64), so that

P

(
max

k=m(t),...,t
|St (k) − St (t)| ≥ ε

√
t

)
= P

(
max

k=1,...,[tε3]−1
|Z ′

k(t)| ≥ ε
√

t

)

≤ 2

ε2t

⎛

⎝2
[tε3]−1∑

j=1

Cov(Y ′
j (t), Z ′

j−1(t)) +
[tε3]−1∑

j=1

E(Y ′
j (t))

2

⎞

⎠

≤ Cε, (74)

where again we use (65) and (66) in (74).
Partitioning according to the event Nt ∈ [m(t), n(t)] and its complement and then using

(72) and (74) gives that

P(|SNt − St | ≥ ε
√

t) ≤ P(|SNt − St | ≥ ε
√

t, Nt ∈ [m(t), n(t)]) + P(Nt /∈ [m(t), n(t)])
≤ P

(
max

m(t)≤k≤t
|Sk − St | ≥ ε

√
t

)

+ P

(
max

t≤k≤n(t)
|Sk − St | ≥ ε

√
t

)
+ P(Nt /∈ [m(t), n(t)])

≤ 2Cε + P (Nt /∈ [m(t), n(t)]) , (75)

where for the last inequality we invoke (72) and (74). However, (67) gives

lim sup
t→∞

P (Nt /∈ [m(t), n(t)]) = 0,
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and hence, from (75) we get that

lim sup
t→∞

P(SNt − St ≥ ε
√

t) ≤ 2Cε,

which due to that ε is arbitrary, completes the proof. ��
4.2 Proof of Corollary 2.2

The following Theorem, due to [13], is applied in the proof of this Corollary following next.

Theorem 4.3 Let {Xn( j) : 0 ≤ j ≤ n} be such that E(Xn( j)) = 0, ∀ n, j , and suppose that
(8), (9), and (10) hold. Letting Sn(n) = ∑n

j=0 Xn( j), we then have that

Sn(n)√
n

w−→ N (0, σ 2), as n → ∞, (76)

where σ 2 := limn→∞ Var(Sn(n)/
√

n), 0 < σ 2 < ∞.

Proof of Corollary 2.2. Note that it suffices to only show the first conclusion Corollary 2.2,
for the second one follows from that by an application of Lemma 3.4. Note also that there is
no loss of generality in assuming θ = 1.We thus have that the hypotheses of Theorem 4.3 are
met, and hence, (76) holds. From it and Lemma 4.2, the proof is complete by an application
of Lemma 3.4. ��
Acknowledgements This work has been supported during non-overlapping periods of time by CONICET,
by FAPESP grant 2016/03988-5, and, currently, by PNPD/CAPES.

Appendix

Proof of Proposition 3.2. We let (ξ2Zn ) and (ξ̄n) be the processes with starting sets 2Z and
ξ̄0 ∼ ν̄, wherewe enlarge our probability space to support a ν̄-distributed independent random
set S by setting ξ̄0 = S, on {S = S}. We also let Kn(a) be the set of points of L inside a cone
of slope a > 0 and apex (O, 0), as follows Kn(a) = {x : −an ≤ x ≤ an and (x, n) ∈ L},
n ≥ 0. We have the next Lemma. ��
Lemma 5.1 {∀x ∈ Kn(a), ξ2Zn (x) = ξ̄n(x)}, ∀n large, P-a.s.

Proof From the Borel-Cantelli lemma and the union bound, since |Kn(a)| grows linearly in
n, it suffices to show that, for all a > 0, there are C, γ such that, for any x ∈ Kn(a),

P

(
ξ̄n(x) = ξ2Zn (x)

)
≤ Ce−γ n,

n ≥ 1. However, we have that

P(ξ̄n(x) = ξ2Zn (x)) = P

(
ξ2Zn (x) = 1, ξ̄n(x) = 0

)

= P

(
ξ2Zn (x) = 1

)
− P(ξ̄n(x) = 1)

= P(�n) − P(�∞)

≤ Ce−γ n,

n ≥ 1, where in the first line we used that, by (32), ξ̄n ⊇ ξ2Zn , and in the second one we used
that and, in addition, the law of total probability; in the third line we used (33), and also (35)
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together with stationarity; and the last inequality comes from (38). This completes the proof.
��

We also note here the following consequence of Lemma 3.1 above.

Corollary 5.2 L
(∑

x∈Kn(α)(ξ̄n(x) − ρ)√
αn

)
w−→ N (0, σ 2), as n → ∞.

Proof Let ξ
′
n be such that

ξ
′
n(x) =

{
ξ̄n(x), if n ∈ 2Z+
ξ̄n(x − 1) if n ∈ 2Z+ + 1,

and note that, for all n, ξ
′
n ∼ ν̄. Applying Lemma 3.1, completes the proof. ��

Note that Lemma 5.1 gives that
∑

x∈Kn(α) ξ2Zn (x) = ∑
x∈Kn(α) ξ̄n(x),∀n large, P-a.s., so

that from Corollary 5.2, and Lemma 3.4, (39), we have that

L
(∑

x∈Kn(α)(ξ
2Z
n (x) − ρ)√
αn

)
w−→ N (0, σ 2), as n → ∞.

By the last display above, since ξ̂2Zn (x) = ξ2Zn (x) − ρn , again by applying Lemma 3.4, (39),
we have that it suffices to show that

√
αn(ρn − ρ) → 0, as n → ∞, which holds by (38),

and hence the proof is complete. ��

References

1. Ahlswede, R., Daykin, D.E.: An inequality for the weights of two families of sets, their unions and
intersections. Probab. Theory Relat. Fields 43(3), 183–185 (1978)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2016)
3. Anscombe, F.: Large-sample theory of sequential estimation. Math. Proc. Camb. Philos. Soc. 48(4),

600–607 (1952)
4. Bezuidenhout, C., Gray, L.: Critical attractive spin systems. Ann. Probab. 22, 1160–1194 (1994)
5. Bezuidenhout, C., Grimmett, G.: The critical contact process dies out. Ann. Probab. 18, 1462–1482 (1990)
6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1995)
7. Birkel, T.: The invariance principle for associated processes. Stoch. Process. Appl. 27, 57–71 (1987)
8. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)
9. Broadbent, S.R., Hammersley, J.M.: Percolation processes: I. Crystals and mazes. Math. Proc. Camb.

Philos. Soc. 53(3), 629–641 (1957)
10. Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems, vol. 10.

World Scientific, Hackensack (2007)
11. Christofides, T.:Maximal inequalities for demimartingales and a strong lawof large numbers. Stat. Probab.

Lett. 50(4), 357–363 (2000)
12. Cox, J., Griffeath, D.: Occupation time limit theorems for the voter model. Ann. Probab. 11, 876–893

(1983)
13. Cox, T., Grimmett, G.: Central limit theorems for associated random variables and the percolation model.

Ann. Probab. 12, 514–528 (1984)
14. Durrett, R.: On the growth of one dimensional contact processes. Ann. Probab. 8, 890–907 (1980)
15. Durrett, R.: Oriented percolation in two dimensions. Ann. Probab. 12, 999–1040 (1984)
16. Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont (1988)
17. Durrett, R.: The contact process, 1974-1989. Cornell University, Mathematical Sciences Institute (1991)
18. Durrett, R.: Ten Lectures on Particle Systems. Lecture Notes in Math, vol. 1608. Springer, New York

(1995)
19. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)

123



The Central Limit Theorem... 821

20. Durrett, R., Griffeath, D.: Contact processes in several dimensions. Probab. Theory Relat. Fields 59(4),
535–552 (1982)

21. Durrett, R., Griffeath, D.: Supercritical contact processes on Z. Ann. Probab. 11, 1–5 (1983)
22. Esary, J.D., Proschan, F., Walkup, D.W.: Association of random variables, with applications. Ann. Math.

Stat. 38(5), 1466–1474 (1967)
23. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Com-

mun. Math. Phys. 22(2), 89–103 (1971)
24. Georgii, H.O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. Phase Transit.

Crit. Phenom. 18, 1–142 (2001)
25. Galves, A., Presutti, E.: Edge fluctuations for the one-dimensional supercritical contact process. Ann.

Probab. 15, 1131–1145 (1987)
26. Griffeath, D.: Additive and Cancellative Interacting Particle Systems. Springer, New York (1979)
27. Griffeath, D.: The basic contact processes. Stoch. Proc. Appl. 11, 151–185 (1981)
28. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)
29. Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices. Cambridge University

Press, Cambridge (2012)
30. Gut, A.: Stopped Random Walks. Springer, New York (2009)
31. Gut, A.: Probability: A Graduate Course, 2nd edn. Springer, New York (2012)
32. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb.

Philos. Soc. 56, 13–20 (1960)
33. Harris, T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)
34. Harris, T.E.: A correlation inequality for Markov processes in partially ordered state spaces. Ann. Probab.

5, 451–454 (1977)
35. Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6, 355–378

(1978)
36. Holley, R.: Remarks on the FKG inequalities. Commun. Math. Phys. 36(3), 227–231 (1974)
37. Kuczek, T.: The central limit theorem for the right edge of supercritical oriented percolation. Ann. Probab.

17, 1322–1332 (1989)
38. Lebowitz, J.L.: Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems.

Commun. Math. Phys. 28(4), 313–321 (1972)
39. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)
40. Liggett, T.M.: An improved subadditive ergodic theorem. Ann. Probab. 13, 1279–1285 (1985)
41. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New

York (1999)
42. Liggett, T.M.: Continuous Time Markov Processes: An Introduction, vol. 113. American Mathematical

Soc, Providence, RI (2010)
43. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119–128

(1980)
44. Newman, C.M., Wright, L.: An invariance principle for certain dependent sequences. Ann. Probab. 9,

671–675 (1981)
45. Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys. 91(1), 75–80

(1983)
46. Newman, C.M.: Asymptotic Independence and Limit Theorems for Positively and Negatively Dependent

Random Variables. Lecture Notes-Monograph Series, pp. 127–140 (1984)
47. Oliveira, P.E.: Asymptotics for Associated Random Variables. Springer, New York (2012)
48. Penrose, M.D.: A central limit theorem with applications to percolation, epidemics and Boolean models.

Ann. Probab. 29, 1515–1546 (2001)
49. Penrose, M.D.: Multivariate spatial central limit theorems with applications to percolation and spatial

graphs. Ann. Probab. 33(5), 1945–1991 (2005)
50. Rao, B.P.: Associated Sequences, Demimartingales and Nonparametric Inference. Springer, New York

(2012)
51. Rényi, A.: On the central limit theorem for the sum of a random number of independent random variables.

Acta Math. Hung. 11, 97–102 (1960)
52. Schonmann, R.: Central limit theorem for the contact process. Ann. Probab. 14, 1291–1295 (1986)
53. Sung, S.: A note on the Hajek-Renyi inequality for associated random variables. Stat. Probab. Lett. 78(7),

885–889 (2008)
54. Tzioufas, A.: The law of the iterated logarithm for supercritical 2D oriented percolation (in preparation)
55. Williams, D.: Probability with Martingales. Cambridge University Press, Chicago (1991)

123


	The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions
	Abstract
	1 Introduction
	1.1 Definition of the Process
	1.2 The Critical Value and the Upper-Invariant Measure

	2 Results
	2.1 The CLT
	2.2 Random-Indices CLT's
	2.3 Anscombe's Condition

	3 Theorem 2.1
	3.1 Preliminaries
	3.2 Proof of Theorem 2.1

	4 Proposition  2.3 and Corollary 2.2
	4.1 Proof of Proposition  2.3.
	4.2 Proof of Corollary 2.2

	Acknowledgements
	Appendix
	References




