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Abstract Bipartite networks provide an insightful representation of many systems, ranging
from mutualistic networks of species interactions to investment networks in finance. The
analyses of their topological structures have revealed the ubiquitous presence of properties
which seem to characterize many—apparently different—systems. Nestedness, for example,
has been observed in biological plant-pollinator as well as in country-product exportation
networks. Due to the interdisciplinary character of complex networks, tools developed in
one field, for example ecology, can greatly enrich other areas of research, such as econ-
omy and finance, and vice versa. With this in mind, we briefly review several entropy-based
bipartite null models that have been recently proposed and discuss their application to real-
world systems. The focus on these models is motivated by the fact that they show three very
desirable features: analytical character, general applicability, and versatility. In this respect,
entropy-based methods have been proven to perform satisfactorily both in providing bench-
marks for testing evidence-based null hypotheses and in reconstructing unknown network
configurations from partial information. Furthermore, entropy-based models have been suc-
cessfully employed to analyze ecological as well as economic systems. As an example, the
application of entropy-based null models has detected early-warning signals, both in eco-
nomic and financial systems, of the 2007–2008 world crisis. Moreover, they have revealed a
statistically-significant export specialization phenomenon of country export baskets in inter-
national trade, a result that seems to reconcile Ricardo’s hypothesis in classical economics
with recent findings on the (empirical) diversification industrial production at the national
level. Finally, these null models have shown that the information contained in the nestedness
is already accounted for by the degree sequence of the corresponding graphs.
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1 Introduction

“Data is the New Oil” has become the unofficial slogan for the enthusiasts of technological
progress in the recent decade [95]. New data sources have created new economic and political
possibilities. Catalyzed by the need for new analytical and numerical tools, the theory of
complex networks has gained much attention, since the interplay between different data
agents can often be expressed in the shape of a network, and new methods for the analyses
of such structures have been designed.

A prominent network type found in many real-world systems is the so-called bipartite
network, which is characterized by the presence of two distinct types of nodes. Examples are
user-movie databases, plant-pollinator ecosystems, author-article collaborations, or financial
bank-asset networks. Although purely data-based analyses provide valuable insights into
interaction mechanisms, recent results have shown that such network structures contain more
information than is apparent at first sight. In particular, several techniques have been designed
based on statistical physics and information theory, which provide the possibility to filter
statistically relevant signals from the network that otherwise remain hidden when the data is
taken at face value [50,81,82,87,90].

Network theory is by nature interdisciplinary and has thus created a vast vocabulary and
a plethora of tools. Due to the interaction patterns of many biological systems, the analysis
of bipartite networks has been very popular in ecology and its methodologies have spread
to other ares of research. Here, we present a brief review of insights that have been gained
in the areas of ecological, economic, and financial networks. Our focus, however, lies on
bipartite network modeling, with a particular attention to entropy-based null models and
their applications. We shall show that seemingly genuine network characteristics, such as
nestedness, can be traced back to basic properties like the degree sequence of the nodes. For
this purpose, appropriately defined benchmarks models are used that are as unbiased and
general as possible. Furthermore, we review how such null models can be used to reconstruct
networks when only partial or noisy data is available, and how this method can be applied to
asses systemic risk in financial networks [31,50,87]. In addition, we illustrate how Ricardo’s
specialization hypothesis in international trade [77] can be reconciled with the apparently
contradicting export diversification signal that has been observed [21], and how earlywarning
signs are revealed preceding the financial crisis of 2008 [81].

Network theory has found wide-spread applications in different fields of scientific
research. In this article, we focus on bipartite undirected networks, in which we can dis-
tinguish between two distinct types of nodes. They are ordered in two separate layers such
that links only exists between, but not within, layers. The structure of the network can be
expressed in a biadjacency matrix, with nodes of one type along the rows and nodes of the
other type along the columns. Due to the ubiquity of network structures in science, different
fields have created different vocabularies. For instance, in ecology the biadjacency matrix is
commonly known as the interaction matrix when the interaction between species is studied.
Analogously, research on the occurrence of organisms in different environments uses the
presence-absence matrix. Furthermore, in economic and financial networks one may use
the expression ownership matrix. We will use the general term biadjacency matrix in the
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following. Regarding the number of connections attached to each node, we refer to them as
degrees, which is more common than marginal totals in ecology.

In the following sections, we review major insights that have emerged from the study of
bipartite networks.We shall focus initially on several open problems in ecological, economic,
and financial networks. Subsequently, we present entropy-based null models for bipartite
structures that have appeared in recent literature. Finally, we shall discuss how their applica-
tion has helped in finding solutions for the aforementioned issues.

2 Open Problems in Ecological Networks

The analysis of networks has a long tradition in the field of biology and ecology. Research
on food webs, for instance, can be dated back to the pioneering works of Elton in 1927 [38].
Food webs capture the predator-prey relationships between different species: squirrels eat
plants but are hunted by snakes, which fall prey to foxes. Directed links in these networks
express the flow of biomass, and species can be order in hierarchical layers (known as trophic
levels) according to their position in the food chain.

Ecology studies the interactions among species, or between species and their natural envi-
ronments. Some typical examples are plants and pollinators, or organisms and their habitats.
In these cases, one can distinguish between two different types of nodes that populate two
distinct layer of a bipartite network. If the interactions between the species or environments
are mutually beneficial and cooperative, for example in the case of pollinators and plants,
such bipartite networks are often referred to as mutualistic networks.

2.1 Bipartite Motifs

Motifs are defined as n-node subgraphs that are overrepresented in empirical networks and
have been labeled as “the building blocks of complex networks” [64]. In directed networks,
such as food webs, the smallest nontrivial motifs can be built out of three nodes, leading
to 13 distinct patterns [64]. Different motifs are assumed to serve different functions in the
network. In genetic transcription networks, for example, is has been observed that certain
motifs regulate the expression of genes [4] (for an overview of the motifs and their function,
see, e.g., [85]).

Analyzing networks from ecology, engineering, biochemistry and neurobiology, in [64]
it has been observed that different network types show distinct motif abundances. Hence, the
question arises whether one can predict global network characteristics from the presence and
temporal changes of such structures. Finding motifs in monopartite networks can generally
be computationally intensive and different algorithms have been proposed (see [98] for a
survey).

Here, we will concentrate on bi-cliques, i.e. motifs in undirected bipartite networks. We
shall use the vocabulary presented in [80], since, in our opinion, this nomenclature makes it
easier to grasp the shape of the motifs. As an example, the M-, W-, X-, as well as the V-, Λ-,
and the Vn-motifs, are shown in Fig. 1.

The simplest motifs are the bi-cliques K1,2 and K2,1, also known as Λ- and V-motifs,
that are composed of two nodes in the same and one node in the opposite layer. They draw
exactly a “Λ” and a “V” between the layers, as illustrated in Fig. 1.

Let us call the two layers L andΓ and indicate the respective nodes with i ∈ L and α ∈ Γ .
A binary bipartite network can be represented by a biadjacency matrix, i.e. a rectangular
matrixM of dimension NL × NΓ , whose elements miα are 1 if nodes i and α are connected,
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Fig. 1 Illustration of several
undirected bipartite motifs. The
nomenclature is based on the
visual shape of the structures.
Top: closed motif in which all
nodes of one layer are connected
to those of the other. Bottom:
open motif that capture node
similarities in terms of common
nearest neighbors in the opposite
bipartite layer

0 otherwise. We can easily express the number of V-motifs between the nodes i and j of the
upper layer L as

V i j =
∑

α∈Γ

miαm jα, i, j ∈ L . (1)

The Λαβ -motifs are defined analogously for the nodes of the lower layer, α, β ∈ Γ . Vi j

captures the number of neighbors that the node couple (i, j) has in common. The motifs
can be easily generalized to more than two nodes by including n legs that are all attached to
the same node in the opposite layer, as shown in Fig. 1. We will call them Vn and Λn (with
V = V2 and Λ = Λ2), or in standard graph theory K2,n and Kn,2. V- and Λ-motifs thus
represent the number of connections shared between 2 or more nodes belonging to the same
layer.

A more complex class of motifs is represented by the so called closed motifs. The M-, W-
and X-motifs are illustrated on the top in Fig. 1 and are referred to as K2,2, K3,2 and K2,3 in
graph theory. We can express them in terms of the biadjacency matrix and write, for instance,
for the total number of X-motifs

X =
∑

i< j

∑

α<β

miαm jαmiβm jβ . (2)

The other mentioned closed motifs can be described similarly.
Bipartite motifs can even account for non-existing links, which is the case, for example,

of the popular checkerboards, introduced by Diamond [32] for the study of the avifauna of
Vanuatu’s islands. A checkerboard considers the case of mutual exclusions of two species.
The total number of checkerboards is in the biadjacency matrix is thus

C =
∑

i< j

∑

α<β

miα(1 − m jα)(1 − miβ)m jβ . (3)

Togetherness, T , is defined in a similar way and counts how many times two species interact
together with the same species, avoiding, at the same time, the interaction with other ones.
In formulas,

T =
∑

i< j

∑

α<β

miαm jα(1 − miβ)(1 − m jβ). (4)

In [89], the authors show that C and T differ by a constant term.
As a final comment to the present section, note that although all the motifs so far involve

several links, they are all multi-linear in the corresponding biadjacency matrix. This fact is
particular convenient for analytical calculations, as we will see in the following.
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2.1.1 Motifs Analysis in Mutualistic Networks

In ecology, finding patterns that explain the distribution of species in different habitats,
e.g. islands, forest, or even parasitic hosts, or why certain organisms interact with others,
is a major concern. In this context, the frequency of motifs permits to highlight hidden
structures in the architecture of the biological system. A clear example is the case of the
study of the avifauna of Vanuatu’s islands, [32]. Considering birds and their island habitats
as the two layers of a bipartite network, the abundance of checkerboards is analyzed in
order to understand co-existing behaviors. This question triggered a long debate about the
correct null model to test statistically significance of the measurements [27,33,48,78]. An
agreement was achieved with the work of [78], who proposed a rewiring randomization in
which the degree sequence is fixed for both layers, as well as the average bird population of
the islands bird species occupy. The authors observe a statistically significant abundance of
checkerboards, suggesting a peculiar colonization pattern that increases themutual exclusions
of some species.

Checkerboards and togetherness in a bipartite network canbemeasuredusing, for example,
the package released by Dormann et al. [35].

2.2 Nestedness

From the study of ecological systems, the insight has emerged that species in sites of lower
biodiversity also populate environments with larger biodiversity. This concept is called nest-
edness and in mutualistic networks translates into the fact that specialists’ interactions, i.e.
organisms that interact only with a small number of other species, are a subset of those of gen-
eralist organisms. This phenomenon is also present in other biological bipartite systems [8]:
for example, it has been observed that species occupying different island of an archipelago
describe a nested structure. Larger islands are those able to sustain a greater number of species
and smaller islands host just a subset of them. It has been hypothesized that this observation
is due to an original ecosystem comprising all islands, which has subsequently been divided
into an archipelago by disruptive geological events. From a general heterogeneity of species
in the original environment, the limited resources of the new ecosystems force some species
to (local) extinction, if their population exceed the sustainable limit on the respective island.
Thus, smaller islands host a subset of the species hosted by bigger islands, depending on the
sustainable population of different species. Studying the effect of a fragmented habitat on
the population of animals permits to design the best strategies for the conservation of rare
species [23,34,41,63].

The concept of nestedness is reflected in the structure of the biadjacency matrix: rows and
columns can be sorted in such a way that the matrix is approximately triangular, as shown in
Fig. 2. The role of such a structure is debated, as we will see in the following, but nevertheless
it is constantly present in different mutualistic or antagonistic system.

In the last decades, several metrics to capture the nestedness phenomenon have been pro-
posed in literature, with the first attempt dating back to the nestedness temperature [8]. After
ordering rows and columns in the biadjacency matrix into a state of “maximum packing”, a
line is drawn on the matrix representing the boundary of the expected fully nested matrix.
Then, a quantity called “temperature” is defined by considering the absence in the packed
part and the presence in the empty side of interactions, weighted by their distance from the
boundary. In [3], the authors show that the nestedness temperature is not maximal for disor-
dered system, since random matrices have a intermediate value of nestedness, and proposed
the NODF (“Nestedness metric based on Overlap and Decreasing Fill”) to solve the problem.
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Fig. 2 Illustration of three different matrices of the same dimensions and number of links (filled squares).
The left-most matrix can be packed more densely into a triangular shape than the other two and has the highest
nestedness. Notice how “shorter” rows (columns) are completely contained in “longer” rows (columns). The
nestedness clearly decreases to the right. Figure courtesy of [67] published under CC license

Using the definition Eq. (1), let us define the number of V-motifs for two nodes (i, j) with
different degrees as Ṽi j = (1− δki ,k j )Vi j , where δ is the Kroenecker delta and ki the degree
of node i . The NODF can be written as

NODF = 2

∑
i< j

Ṽi j
min{ki ,k j } + ∑

α<β
Λ̃αβ

min{kα,kβ }
NΓ (NΓ − 1) + NL(NL − 1)

, (5)

where Λ̃αβ is analogous to Ṽi j and defined on the layerΓ . AlthoughEq. (5)may seem slightly
mysterious at first sight, we can observe some interesting properties. First, it is independent
of the order of elements in the matrix and receives a contribution from each node couple
of the same layer, if the respective nodes have different degrees. Second, normalizing each
contribution by the minimum degree restricts it value to the range 0 (no overlap between
neighbors) to 1 (if all the neighbors of the node with the smaller degree are also shared by the
higher degree node). Finally, the overall denominator normalizes theNODFby accounting for
the number of couples considered in the calculation. It can be shown that such a normalization
induces a bias in the NODF towards the longer layer [80]: if, without loss of generality, NL �
NΓ , then the main contribution to the NODF will come from the layer L . Because of this
peculiarity, sometimes the nestedness is captured by considering separately the contribution
from each of the two layers. Nevertheless, some scholars argued about the possibility of
disregarding the contribution of couple of nodes with the same degree and, for instance,
Bastolla et al. [13] provided a different measure considering such terms.

For nested species abundances in different habitats, a certain agreement about the role
of nestedness has been reached: the geological division of a rich original ecosystem in an
archipelago forces species to survive with the limited resources of smaller islands. Thus,
species on smaller islands are more exposed to the risk of extinction, and the surviving
species are a subset of those hosted on bigger islands [8]. Instead, the role of nestedness
for the properties of ecological mutualistic networks underwent a deeper debate. On the one
hand, it has been argued that nestedness generally increases biodiversity by reducing com-
petition [13] and favors the stability of the network [94]. On the other hand, the authors of
[88] claim that nested interactions are inherently less stable compared to random interac-
tions. Although predator-prey interactions seem to stabilize the networks, mutualistic and
competitive interactions do not [2].

An important contribution to the discussion was put forward in [91]: the authors show that
the attempts of a species to increase its abundance in a mutualistic network drives the system
to a more nested configuration. In this scenario, species abundances start from general initial
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conditions and growth is shown to be higher if the number ofmutualistic interactions is lower.
Moreover, the abundance of the rarest species is connected to the resilience of the network,
i.e. the speed at which the system, after small perturbations, returns to an equilibrium.

Despite these efforts, no consensus about the importance of nestedness has yet been
reached. Moreover, also the origin of nestedness is highly debated: James et al. [57] show
that the correlation between persistence and nestedness is present when nestedness correlates
even with the connectance of the network. Hence, it is not clear which variable , i.e. whether
connectance or nestedness, captures at best the properties of the system.

2.3 Monopartite Projections and Communities

When studying mutualistic networks, the question naturally arises whether one can find
groups of highly cooperative species, or groups of organisms that compete for the same
resources. In plant-pollinator networks, an example for the former would be a community of
plants and pollinators that live in symbiosis and benefit from cooperation. Contrary to that,
an example for the latter would be a collection of insects that compete for the same pollen.
In ecology, these substructures are referred to as compartments [93]. In the following, we
shall adopt the network vocabulary and call them modules or communities. They describe
collections of nodes that are more closely related to each other than to individuals in other
communities.

The problem of finding communities between nodes of the same layer can be found
throughout different fields of complex networks analysis, from ecological, to financial, to
economic networks. For this problem, several tools have been presented in the literature (for
an overview, see, e.g. [42]). A popular approach is to perform amonopartite projection, i.e. to
project the bipartite network on one of its layers. In the resulting graph, nodes are connected
if they share at least one neighbor in the original bipartite network. Note that the procedure
discards parts of the original information—in general, it is not possible to reconstruct the
original bipartite network from the projection. Moreover, there is no clear guideline on how
to set the link weights in the projection. It has been shown that the communities found in
binary projections can be incorrect and misleading and that weighted projections should
generally be preferred [51]. Nonetheless, simply setting the weights equal to the number of
neighbors in the original network is quantitatively biased [102]. Inspired by the importance
of collaborations in the author-article network of scientific coauthors, Newman proposed
that links in the author projection should be corrected by a factor 1/(d − 1), where d is the
degree of the collaboration paper [68,69]. Despite these efforts, a systematic exploration of
how weight should be set remains open. At the same time, the question of which links carry
statistically relevant information is neglected.

3 Open Problems in Economic Networks

Seminal works in classical economics date back to Adam Smith’s fundamental “The Wealth
of Nations” in 1776 [86]. In the wake of Smith’s publication, David Ricardo devoted parts
of his intellectual endeavors to economics, which culminated in his famous “Principles of
Political Economy and Taxation” [77]. His most important legacy is probably the concept
of comparative advantage, which expresses the fact that some nations can produce certain
products more efficiently than others. As a result, Ricardo advocated the idea that nations
should concentrate their resources only on their most advantageous industries. According to
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him, combining industrial specialization with free trade would be favorable for all countries
and foster national economic growth.

Nowadays, international exportations and importations are recorded on a yearly basis and
made available by theUNComtradeDatabase.1 This allowsus to scrutinize trade relations and
test hypotheses of classical economics with the help of state-of-the-art tools in data analysis
and network theory. In fact, the global structure of trade interactions can be expressed as
the so-called International Trade Network (ITN), also known as World Trade Web, in which
nodes correspond to countries and link weights to trade volumes in US$. Countries can share
directed links with different weights, corresponding to products of different categories.

International trade is one of themain global stages onwhich countries interact, and the ITN
has been extensively studied due to its importance for economic growth and to address ques-
tions like globalization and the spreading of economic shocks [36]. For example, regarding
the number of trade partners, it has been shown that the network is generally disassortative, i.e.
that countrieswith few trade partners tend to interact with nationswithmany partners [46,83].
When trade volumes are taken into account, however, it has been observed that high-degree
countries trade most intensively with other high-degree countries [40]. Although product-
specific trade volumes are very heterogeneous [12], the aggregate link weights distribution is
almost log-normal [6,12]. Country-specific trade volumes depend strongly on national GDP
and their distributions reach from truncated log-normality to Pareto-log-normality [6].

Trade can also be studied at an even finer level, when links are drawn among regional
industries instead of countries.Using theWorld Input-OutputDatabase, it has been shown that
global production systems are still regionally organized and industries are asymmetrically
connected, leading to possible shock amplification from regional fluctuations to the global
scale [24].

3.1 Diversification in Trade

Recent developments on the ITN have been triggered by the suggestion that trade networks
should be considered as bipartite with countries in one layer and products in the other
layer [45]. The setup is illustrated in Fig. 3. The proposal is motivated by the observa-
tion that importers and exporters have intrinsically different motivations for connecting to
trade partners [45]. In particular, the rationale is that a strong exporter should also be a good
producer, such that the productive capabilities of a country can be inferred from its exported
products. This statement, however, has its caveats: for instance, a strong exporter may indeed
be good producer, but the inverse may not necessarily be true. In fact, isolated nations have
more problems in exporting wares to other countries, even if the internal production prospers.
Despite these particular cases, in general studying the exports of different countries can give
us information about their industrial production.

For their analyses, the authors of [45] have made use of methodologies developed for
mutualistic networks and analyzed the properties of the country-product network using the
revealed comparative advantage (RCA), also knows as Balassa index [11]. The RCA com-
pares the relative monetary importance of a particular product among all exports of a country
(its export basket) to the global average and assigns a value to each link accordingly, as
explained in detail in Appendix A. By pruning links sequentially for different RCA thresh-
old values, in [45] the authors separate the core and periphery of the network and showed
that degree distributions are truncated power laws. The networks emerging from the pruning

1 The Comtrade Database can be found at https://comtrade.un.org/.
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Fig. 3 Illustration of a part of the country-product exportation network. Both Italy and Germany are strong
exporters of cars and pharmaceutical products, whereas only Italy has a comparative advantage in wine
production (“Wine” by Thengakola, “Car” and “pills” by alrigel from the Noun Project. All icons are under
the CC license)

procedure are considered as binary, since each existing link expresses the fact that a certain
country is a relevant exporter of a particular product at some threshold value.

A fundamental observation that emerges from the binarized ITN, when only relevant
exportations with RCA ≥ 12 are kept, is the approximately triangular structure of its biad-
jacency matrix, as illustrated in Fig. 4: some countries have large export basket and others
have small ones, just like some product have only few exporters and others many. The crucial
fact is that the smaller export baskets are contained in the bigger ones. The ITN therefore
exhibits the nestedness property [22,29,53–55,92,101], which we have already observed for
mutualistic networks in the previous section. In the context of the bipartite trade network,
this observation is striking, since it contradicts theories of classical economics. As men-
tioned above, according to Ricardo one would expect a specialization of exportation, which
should be observable through a block-diagonal structure of the biadjacency matrix. Instead,
the matrix is approximately triangular, as shown in Fig. 4, which corresponds to an increas-
ing diversification of exportations, as has also been mentioned in [21]. The most developed
countries export all products, from the most sophisticated to the most basic ones, whereas
less developed countries are able to export just few low technology items.

3.2 Product and Country Space

Aconsiderable amount ofwork on the bipartite trade network has been devoted to the analyses
of relations among products and among countries. An intuitive approach would be to project
the bipartite network on its two layers, respectively. However, this approach is generally
problematic—in fact, in the case of the ITN the projected networks are almost completely
connected with link densities of over 93% [82], leading to trivial properties.

2 As we will appreciate better in the following, setting the threshold for the RCA values to 1 is quite natural.
In fact, the RCA does nothing more than to compare the observed export values to their expectations provided
by an approximated weighted configuration model, which is known as CAPM (capital asset pricing model) in
the financial context, or “lift” in data science. Thus, the threshold RCA ≥ 1 means that an observed value is
greater than its expectation.
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Fig. 4 Biadjacency matrix of the International Trade Network for the year 2000 with countries sorted from
top to bottom and products from left to right in increasing fitness and complexity, respectively. Links in the
network are shown as black dots. The overall triangularity of the matrix is correlated with the nestedness of
the system

To address this question, in [22] the authors applyMinimal Spanning Forests to the country
and the product projections. Unexpectedly, they find that neighboring countries compete over
the same market rather than diversifying their export baskets [22].

A different approach has been chosen by Hidalgo et al. [55], who construct the “product
space” by connecting products that are similar according to a specific metric. The distance
between two products is essentially measured as the conditional probability that a country
exports both of them as measured on the data [55]. They observe that more sophisticated
goods, such as vehicles and machinery, occupy the core of the network, whereas less sophis-
ticated ones, e.g. vegetables or crude oil, populate the periphery. Given the topology of the
product space, they argue that less developed countries get trapped in the periphery because
of a lack of connections to the more valuable products in the core [55].

Another proposal for inferring the possible evolution of the industrialization of countries
is proposed in [101]: from the binary bipartite network of trade, the authors are able to obtain
a forest of products, discounting the degree sequence of both layers.

All methods revised here do not rely on the application of unbiased null model, but use
different ingredients in order to highlight possible dynamics that may describe the industrial-
ization of countries. None of them discusses the statistical significance of their findings, but
rather use some of the features of the bipartite network to propose an explanation for their
observations. In order to correctly project the information contained in the bipartite network,
more involved methodologies are needed.

3.3 Economic Complexity

The bipartite structure of the ITN encodes information on non-tradable capabilities of coun-
tries [5], such as their infrastructure, education system, patent rights, and industry-specific
knowledge. As mentioned above, the fact that a country is capable of exporting a certain
product signals that its industry is advanced enough to compete in global markets [5]. Conse-
quently, the country has the necessary latent capabilities to manufacture the product, which
should be reflected in the composition of its export basket.

In order to capture how the industrial capabilities shape national economies, Hidalgo
and Hausmann proposed the so-called method of reflections [53,54]. This method is linear
in the biadjacency matrix and consists of iteratively assigning a quantity to each node that
depends on those of its neighbors and their degrees. As the authors point out, the resulting
“complexities” of countries correlate with their GDPs. Unfortunately, the convergence of the
algorithm is not guaranteed [76].
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This problem was remediated in [22,29,92] and a non-linear recursive algorithm was
proposed, which gave rise to the so-called economic complexity framework. The capabilities
of countries were labeled as their fitness and the level of sophistication of the products as
their complexity. Although some convergence issues are still present, it has been shown that
fitness and complexity rankings of countries and products are stable even in absence of
convergence [76].

In [30] the authors study the evolution of countries in terms of their fitness (intangible
assets assessing competitiveness) and GDP per capita (GDPpc, a monetary measure). They
observe a strong heterogeneity in the country dynamics and identify several regimes, such as
a “poverty trap” in the low fitness regime, and a laminar region for high fitness countries. In
conclusion, they argue that the overall heterogeneous evolution dynamics cannot be assessed
with classical regression tools and that methods from dynamical systems theory would be
more appropriate [30].

In a recent study, the evolution of products has been analyzed in an analogous way [5].
Similar to countries, the dynamic of products is observed in the complexity-logPRODY
space, with logPRODY being a monetary measure defined as the average weight of a product
exporter’s GDPpc [5]. As the authors observe, products tend to move towards an asymptotic
zone with product-specific asymptotic markets. Interestingly, the asymptotic markets seem
to be determined by the product complexities and are characterized by high competition [5].

Even though the study of the International Trade Network has enjoyed much attention in
the last decade, it is striking that the topic of early warning signals detection in economic
networks has received relatively little attention. This comes as a surprise, since financial
and trade relation are strongly connected: in the aftermath of the crisis, world merchandise
exports fell by 22% [100]. As we shall see in the next section, the problem of detecting early
structural changes in economic systems can be tackled by adopting the same methodology
employed for financial systems, i.e. by comparing the observed networks with properly-
defined benchmarks.

4 Open Problems in Financial Networks

Financial institutions formaglobal systemof investments andmoney lending. In the aftermath
of the 2008 financial crisis, correctly assessing systemic risk and shock propagation has
become a top priority for policy makers and regulators. Contrary to previous beliefs, the
financial network has revealed itself to be more unstable than expected due to the complex
structure of its connections [7,14,19,25,59].

Financial stress can be transmitted through two main channels: direct exposure due to
bilateral agreements, such as credit swap contracts [49], and indirect exposure due to portfolio
overlaps [1,37,44]. Whereas the first gives rise to a monopartite inter-bank network, the
second presents itself naturally as a bipartite financial institutions-assets network.

Interest in the inter-bank network has surged in the fields of public administration and
academic research ever since the bankruptcy of LehmanBrothers and the subsequent turmoil.
An important contribution of network theory has been to shift the paradigm from the dogma
“too big to fail” to “too central to fail” [15]. To quantify the financial risk associated to
different institutions including network effects, the so-called “DebtRank” was introduced
in [15].

Indirect exposures, on the other hand, can be created through bank portfolio overlaps. In
a bank-asset network, financial institutions are ordered along one layer and assets (or asset

123



From Ecology to Finance (and Back?)... 1263

classes) along the other. Financial contagion can be created through the effects of fire sales
spillovers: a sudden drop in the value of an asset can trigger a cascade of sell-orders, which
leads to asset illiquidity [20,28,49,50,84,87]. This phenomenon can put banks in distress,
who may react by selling other assets, thereby causing further devaluation dynamics.

In an recent article, a dynamical model for the analysis of shocks in the bank-asset network
has been presented and applied to the Venezuelan banking system [60]. The authors show that
their model is able to capture temporal changes in the structure of the network and that some
assets with small capitalization can cause significant global shocks [60]. Fire sale spillovers
have also been analyzed by [49], who have introduced a metric to asses the systemic risk of
the bank-asset network.

Despite these significant advancements, the analysis of financial network is often hindered
by a lack of detailed data. The model in [60], for instance, uses balance sheets for the model
construction – but often, such information is available only in aggregate and detailed asset
holdings are undisclosed. Many tools of financial analysis therefore rely on aggregate data,
resulting in unrealistically dense networks and a biased underestimation of systemic risk [87].
As a consequence, improved methods are necessary that reconstructed the network in a more
realistic way while avoiding systematic bias [87].

4.1 Systemic Risk

Be W the weighted biadjacency matrix of a bipartite network in which connections carry
weights. We can obtain the node strengths by summing over the rows and columns, respec-
tively. Let us index the banks with i ∈ L and the assets with α ∈ Γ . In the financial context,
the vertex strengths are often described as the total asset size of a bank (ormarket value of their
portfolio), Vi = ∑

α wiα , and themarket capitalization of an asset, Cα = ∑
i wiα [31,87]. It

is possible to remap the matrix entries in such a way that banks choose their portfolio weights
proportional to their market value and the asset’s capitalization:

wCAPM
iα = ViCα

w
, (6)

where we have used w = ∑
i ′,α′ wi ′α′ This model is called capital asset pricing model

(CAPM, [61,66]). As has been shown in [31] and is illustrated in Fig. 5, these matrix weights
give a good approximation of the systemic risk of the systemmeasured in terms of the metric
introduced by [49], despite the fact that networks of return price correlations show little
agreement with real cases [16,17]. However, without the use of a null model, little can be
said about the precision of the risk predictions [31].

5 Bipartite Exponential Random Graph

Statistical null models can be used as comparison benchmarks in order to verify whether real
systems showunusual properties. For this purpose, they should be unbiased and formulated as
general as possible. This notwithstanding, nullmodelsmaymaintain certain characteristics of
the empirical network that should be discounted. Let us define the set of all possible networks,
called ensemble, with the same node composition as the empirical network, but different
number of links. To eachmember of the ensemblewewill assign a probability that depends on
some property of the original network that should bemaintained. By comparing the ensemble
characteristics with the actual network, we can observe how constraining certain information
on the ensemble captures some features of the real system. If the quantities measured on

123



1264 M. J. Straka et al.

Fig. 5 Aggregate vulnerability of the bank-asset network calculated with the metric calculated by Greenwood
et al. [49] using the whole data (solid black line) and the CAPM matrix weights, which require only the node
strengths (dotted red line). Figure courtesy of [31] (Color figure online)

the real network are correctly reproduced, then the constraints are enough to explain such
a behavior. If, however, the real network shows a statistically significant deviation, this
information cannot be explained by the constraints and represent a non-trivial information
about the structure of the empirical network. In these sections, we review the extension of
the exponential random graph model (ERGM) to bipartite networks, motivated by the fact
that its monopartite version has enjoyed considerable success in the past [47,58,71]. More
detailed derivations of the null models can be found in the Appendix B and in [80,82,90].

5.1 Bipartite Erdős-Rényi Random Graph

Let us consider an empirical binary bipartite network, expressed by its biadjacencymatrixM∗
with layer dimensions NL and NΓ . Quantities measured on the real system will be marked
with an asterisk. We start by constructing the set of all possible networks with the same layer
dimensions: this set, the ensemble GB , runs from the empty network (without any links) to
the fully connected network (in which all possible NL × NΓ links are realized).

Be GB ∈ GB an element of the ensemble GB of bipartite networks with fixed layer
dimensions. The most general and unbiased probability distribution over the ensemble can
be obtained by maximizing the Shannon entropy [71], defined as

S = −
∑

GB∈GB

P(GB) ln
(
P(GB)

)
. (7)

Assume now that we have measured some quantities C of the real network, for example
the number of edges. We want the corresponding ensemble expectation value 〈C〉 to reflect
the same value, i.e. we constrain the expectation value of the observable in such a way that
〈C〉 ≡ C∗. It can be shown that the probability of observing the generic graph GB ∈ GB is,
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as in [58],

P(GB|θ) = e−θ ·C(GB)

Z(θ)
, (8)

where θ is the vector of Lagrange multipliers associated to the constraints C, and C(GB)

is the value of the constraints on the graph GB. Z(θ) is the partition function known from
statistical physics,

Z(θ) =
∑

G ′
B∈GB

e−θ ·C(G ′
B), (9)

and its exponent the graphHamiltonian,H = θ ·C [71]. Assuming that the network quantities
C can be expressed analytically in terms of the biadjacency matrix, C ≡ C(M), we can see
that the probability P(GB |θ) for a given graph only depends on the Lagrange multipliers.
The trick is to derive their values by maximizing the likelihood of observing the real network
in the ensemble, L ≡ ln P(G∗

B) [47]. This is equivalent to explicitly imposing 〈C〉 = C∗ on
the ensemble. Summarizing, the ERGM formulation essentially relies on two steps: first, the
maximization of the entropy under some constraints, and second the likelihoodmaximization.
The result of the former is a functional relation that describes how the probabilities per
link depend on the Lagrangian multipliers. In the latter, on the other hand, the Lagrangian
multipliers are explicitly calculated, essentially deriving them from the real network. In
principle, different approaches can be used in order to obtain the values of the Lagrange
multipliers θ ; the likelihood maximization permits to find the most similar configuration to
the actual network.

The formalism above extends the exponential randomgraph [71] to networkswith bipartite
structure. It is well known that constraining the number of links E∗ in the ERGM framework
returns the Erdős-Rényi random graph [39]. In analogy, imposing the same constraints on
the ensemble GB gives us the bipartite random graph (BiRG, as it is called in [82]), in which
all links have the same probability p = E/NLNΓ . The derivation of the BiRG is shown in
the Appendix B.

5.2 Bipartite Configuration Model

In the previous paragraphs, we have derived the bipartite exponential random graph by
focusing on the simplest constraint possible, the total number of edges E . In this section, we
shall proceed by considering the degree sequence as a local, node specific property.

In the realm of monopartite networks, the configuration model (CM, [26,65,68,71])
has enjoyed a variety of application. It is constructed using the degree sequence of the real
network and can be extended to the bipartite case, giving rise to the bipartite configuration
model (BiCM, [80]). Constraining the degree sequence of both layers, L and Γ , corresponds
to imposing two series of Lagrange multipliers, θ and ρ, respectively. With some algebra, it
can be shown that the probability distribution becomes [80]

P(GB |θ , ρ) =
∏

i,α

(pBiCM)
miα
iα

(
1 − (pBiCM)iα

)1−miα , (10)

where the probability per link reads

(pBiCM)iα = e−(θi+ρα)

1 + e−(θi+ρα)
, i ∈ L , α ∈ Γ (11)

The Lagrange multiplicators can be recovered through the maximization of the likelihood L
of observing the empirical network, as shown in Appendix B.
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Note that Eq. (10) factorizes into the single link probabilities. This is very convenient for
analytical calculations, for example for the multi-linear bipartite motifs, such as the V-motif
in Eq. (1) and the X-motif in Eq. (2).

Other less strict null models can be defined through the relaxation of the constraints.
For instance, imposing only the degree sequence of one layer leads to the bipartite partial
configuration model (BiPCM, [82]). The choice of the null model generally depends on the
information that one wishes to discount.

5.2.1 Validated Projections

The BiCM can be used to safely project the information contained in the bipartite network
on one network layer, discounting the information from the degree sequence [50,82,90]. The
idea is to compare the observed co-occurrence of links between nodes on the same layer (or,
otherwise stated, the number of V-motifs between nodes on the same layer) with the expecta-
tions from the null model. In the BiCM, given a node couple, the probabilities for theV-motifs
insisting on them are independent and, in general, different [82]. Thus, the distribution of
such V-motifs is Poisson-Binomial, the generalization of a binomial distribution to indepen-
dent events with different success probability [56]. The comparison between the observations
with the expectation of the null model can be captured by a p-value, such that we obtain one
p-value for every node couple: p-values are analyzed through a multiple hypothesis test and
only statistically significant V-motif abundances are validated, leading to a monopartite net-
work with only statistically relevant links. This methods is known in literature as the grand
canonical projection algorithm and is described in detail in [50,82,90].

5.3 Bipartite Configuration Models for Weighted Networks

The ERGM bipartite framework can be easily extended from binary to weighted networks.
In weighted bipartite networks, nodes are characterized by their degrees and strengths, i.e.
the sum over the weight of their edges. One may intuitively be inclined to extend the BiCM
to its weighted counterpart, the bipartite weighted configuration model (BiWCM [31], see
Appendix B), by simply exchanging the degree with strength constraints. However, it has
been shown formonopartite networks that such a null model performs very badly in capturing
the essential features of the actual network [62]. This is due to the fact that it ignores the
information on the network topology that is contained in the binary degree sequence. As the
authors of [62] point out, non-trivial degree and strength sequences complement each other in
the network reconstruction. The constraints should thus be modified accordingly: in Sect. 8
we shall see how a bipartite system guides us to the definition of a proper null model in the
financial context.

6 Results in Ecological Networks

6.1 Degree Sequence in Biological Bipartite Networks

Entropy-based approaches for the analysis of biological systems are well present in litera-
ture [9,52], but they have rarely been employed for the analysis of bipartite networks.Contrary
to this general tendency, Williams [97] has used the aforementioned BiRG to assess the sig-
nificance of the degree distribution in mutualistic networks. The author has sampled the
ensemble of the BiRG and compared the observed degree distribution with the frequencies
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expected from the null model by implementing the likelihood ratio statistics. The calculation
is repeated for every element of a sample of the BiRG ensemble and the values are compared.
The comparison shows that the degree distribution of mutualistic networks, besides being
strongly skewed, can be usually explained just by the total number of links. The result is
even more striking, considering that its monopartite analogous has not such a good perfor-
mance [96].

6.2 Nestedness (Reprise)

The study of nestedness has enjoyed considerable attention in ecology. Yet despite those
efforts, doubts about its origin and significance persist, as we have seen in Sect. 2. To address
this matter, Johnson et al. [67] highlight that a null model should be implemented in order
to state if the nestedness of a particular system is a genuine quantity, or whether it is already
captured by the degree sequence. By applying an approximation of the configuration model
presented in [26,65,68,71], which is valid for sparse networks, they argue that nestedness
naturally derives from degree heterogeneities and disassortative degree-degree correlation,
i.e. the tendency of low degree nodes to connect to high degree nodes. As they point out,
finite null models, such as the approximated configuration model [26,65,68,71], tend to be
dissassortative and nested. Studying 60 empirical networks, they conclude that in almost 90%
of them the observed nestedness can be described by a degree-conserving null model.

The results of Johnson et al. [67] have been refined and re-interpreted in a recent work
by Payrató Borrás et al. [72], which has been published during the writing of the present
review. Based on a comparison between the NODF values and the BiCM expectations of
167 different biological systems, they conclude that the observed nestedness can indeed be
explained by the null model and are thus accounted for by the degree sequence.

7 Results in Economic Networks

7.1 Network Validation in Trade

In the following paragraphs, we review some recent results that have been obtained through
the application of the binary BiCM in the area of international trade.

To compare the empirical network with the null model, we shall make us of z-scores. Be
Q(GB) a quantities that we can measure on the network GB . Eq. (11) gives us the tools to
calculate its expectation value 〈Q〉 and the standard deviation σQ on the BiCM ensemble.
The z-score is defined as

z(Q) = Q∗ − 〈Q〉
σQ

(12)

and expresses the discrepancy between the observed and the expectation value in terms of
standard deviations.

7.1.1 Nestedness and Specialization

The bipartite export network of countries and products is nested, meaning that smaller export
baskets are contained in larger ones [22,29,53–55,92,101]. As we have seen in the previous
paragraph, byusing theBiCMit is possible to show that the nestedness ofmutualistic networks
is explained by their degree sequence [67,72]. The same idea has been tested for the trade
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Fig. 6 Boxplots for the expected fitness rankings against the actual values for the year 2000. The country
with the highest rank 1 (Germany) has the highest fitness, the one with lowest rank 146 (Iraq) has the lowest
fitness. Red dots represent the averages on the ensemble. While the expected ranks are close to the observed
ones, the vertical distribution intervals are quite large. We annotate those countries whose ranks diverge the
most from the expectations of the null model: the countries whose real fitness values are much higher than
expected are above the identity line. Ireland, Norway, Singapore and Israel have thus much higher empirical
ranks, whereas Morocco’s, Kenya’s and Gambia’s are much lower (Color figure online)

network [80]: the authors show that the nestedness of the International Trade Network (ITN)
could be reproduced by theBiCM, thereby highlighting that the observed connection between
degree sequence and nestedness also holds in non-ecological systems. However, the authors
also argue that the BiCM cannot fully reproduce the disassortativity of the ITN, leading to
the conclusion that the degree sequence alone is not enough to explain why strong exporters
preferably connect to weak exporters.

In the nested representation of the bipartite trade matrix (as shown in Fig. 4), countries
and products are typically ordered in increasing fitness and complexity along the rows and
columns, respectively. Although the algorithm for calculating their values may not converge,
it has been shown that the rankings are stable nonetheless [75]. Since the degree-constrained
BiCM recovers the nestedness of the network, one may thus question its ability to reproduce
the fitness and complexity rankings. This matter was addressed in [80], in which the authors
show that the degree distributions for countries and products can be accurately reproduced
when they are ranked by fitness and complexity, respectively. However, the model does not
reproduce the exact fitness and complexity rankings: even when the observed values are
close to the null model expectations, the distributions over the BiCM ensemble are broad, as
shown in Fig. 6. Despite the fact that fitness is positively correlated with the degree sequence,
highlighted by the tendency of the expectations to follow the real ranks in Fig. 6, it contains
information that is not accounted for by the latter.3 A similar behavior is observed for the
product complexity rankings.

3 We thank the anonymous reviewer for suggesting this test.
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Fig. 7 The images shows the biadjacency matrix in Fig. 4 with links as white dots. The z-scores of the
connectivity with respect to the BiCM are shown as a superimposed color map (gray shading). Higher link
abundances than expected are shown as lighter colors, and lower abundances as dark colors. The smaller
exporters on the top focus on the most basic products, as shown in the upper-left corner by the z-scores
(z ∼ 30). The most developed countries on the bottom, on the other hand, specialize on the most sophisticated
products, as measured by the scores in the lower-right (z ∼ 25). Moreover, they export basic products much
less than expected, as can be seen in the the lower-left corner (z ∼ −20). This suggests that countries diversify
their export baskets as much as possible while specializing on the most sophisticated products they are able
to export. Figure modified from [90] (Color figure online)

Fig. 8 Illustration of the product network with colors according to the occupation density of country com-
munities, i.e. the density of links existing between the corresponding product and country communities [90].
Left: Advanced economies occupy the core of the network, which contains high technology items. Right:
Developing economies occupy much more the periphery with less sophisticated product rather than the center.
Figure courtesy of [90] (Color figure online)

The analysis of the triangular structure of the country-product matrix has been extended
in [90]. Discounting the degree sequence and comparing empirical with expected link abun-
dances, the authors observed a specialization signal within the overall export diversification
tendency. Figure 7 shows the phenomenon quantitatively using the empirical biadjacency
matrix and the z-scores of the expected number of links as a heat map. “Hotter” (whitish)
colors represent higher z-score values, “colder” (dark) colors lower values. The high z-scores
stretch from the upper-left to the lower-right and illustrate that countries concentrate their
exports on more complex products more than expected, while still exporting basic goods as
well. As a consequence, stating that exports baskets are nested is only partially true, since the
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density in the baskets of more developed countries remains biased towards more exclusive
products.

These conclusions can also be drawn fromvalidatedmonopartite projection of the bipartite
trade network (see Sect. 5.2.1). Figure 8 shows the link density between different areas of the
product network and advanced economies (left) and developing economies (right): in both
cases, the network is not populated uniformly, since the former tend to occupy preferentially
the highly technological items in the core of the network, whereas the latter focus their export
on lower complexity products that belongs to the periphery of the validated product network.
In this sense, developed countries, given the size of their export basket, tend to specialize
their exports towards the most exclusive products.

The previous result on the biadjacency matrix and the product network therefore reconcile
the apparent conflict between Ricardo’s argument of export specification and the overall
diversification reported in literature [21]. Nevertheless, let us stress that the specialization
phenomenon is a higher-order feature of the bipartite network of trade: in fact, it can be
uncovered only by discounting the degree sequence information.

7.1.2 Motif Validation in Trade
Evolution of BipartiteMotifs of Countries In the economic literature, acronyms are often used
to refer to countries that supposedly share similar features in their economic development
and institutional frameworks. Famous examples are the G7 (Canada, the USA, Italy, France,
Germany, the UK, Japan), which share a large part of the global GDP, and the five rising
BRICS economies (Brazil, Russia, India, China, South Africa). Further groups are, e.g.,
the MINT countries (Mexico, Indonesia, Nigeria, Turkey) that show interesting economic
developments [70] and the south European “PIGS” (Portugal, Italy Greece, Spain) that were
struggling during the 2008 financial crisis [43].

Using the bipartite International Trade Network, it is possible to quantify the similarities
within these country groups in terms of their Vn-motifs, n being the number of members.
In [81], the authors compare the real trade network with the randomized BiCM ensemble
to observe if such similarities are genuine or can just be attributed to the dimension of the
export baskets, i.e. the country node degrees. They applied the BiCM to the product-country
trade network and calculated the number of Vn-motifs for each country group, where n is
the number of members.

Figure 9 compares the number of Vn-motifs for different country groups [81]: green
dots represent the values observed in the data, whereas the box-plots capture the probability
distribution of the ensemble. In panel (c) we can see that the observations for the “PIGS” lie
clearly above the box-plot whiskers, which indicates that the similarities are not merely due
to their export baskets sizes. This is true even before the 2008 crisis, although the discrepancy
gradually increases over time. The BRICS in panel (a), on the contrary, show export basket
overlaps that are compatible with the null model. TheMINT countries in panel (f) do not have
a single export item in common. As a consequence, bothMINT and BRICS groupings cannot
be justified from the observation of similar industrial capabilities alone (see also [29,92]).

Contrary to that, strong similarities can be observed in theTigerCubs (Thailand, Indonesia,
Malaysia, Philippines, Vietnam), which have experienced a recent industrialization process
similar to the original Four Asian Tigers (Hong Kong, Singapore, South Korea, Taiwan).
Panel (d) in Fig. 9 shows a statistically significant signal of Vn-motifs, which gradually
diminishes in intensity. This indicates that their recent industrial developments have begun
to diverge, progressively turning into a differentiation in their exports. Similarly, the impact
of a common communist industrialization program can be observed in the exports of ex-
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Comparison of the observed numbers of Vn -motifs (see Sect. 2.1). The green dots represent the
empirical quantitymeasured on the real network, the box plot the expectation value distribution according to the
BiCM. The whiskers capture the 0.15th and the 99.85th percentile. Whereas the BRICS and G7 are compatible
with the null model predictions, PIGS, Tiger Cubs and the ex-Warsaw Pact countries show abundances that
are not explainable in terms of the degree sequences alone. Figure courtesy of [81] (Color figure online)

Warsaw Pact countries that are now part of the European Union (such as Poland, Romania,
and Hungary) well into the years 2000, see panel (e) in Fig. 9. After joining the EU, the
signal has progressively declined. The composition of the G7 group, on the other hand, can
be simply attributed to their degrees, i.e. to the dimensions of their export baskets: panel (b)
shows that no statistically significant signal can be detected.

Closed Motifs evolution Closed motifs are more complex combinations of links and capture
mesoscopic structural properties of the network. For instance, a X-motif measures howmany
times two countries compete on the world market by sharing more than two products in their
export basket. A high number of X-motifs indicates that their export baskets are very similar
on a global level. Several scholars [99] suggest that an excessive degree of similarity in
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(a) (c)

(b) (d)

Fig. 10 a–c show the abundance of closed motifs (see Sect. 2.1) in the ITN network from 1995 until 2010.
It is apparent that they increased until the financial crisis struck and dropped after 2007. The values are
compared with the BiCM expectations in (d) using z-scores. Before the crisis, abundances were strongly
underrepresented and increasing significantly already from 2003 onwards, indicating a global change of the
network. Figure courtesy of [81] (Color figure online)

industrialization and exportation weakens the International Trade Network and makes is
more prone to stress. A diversification of industrial capabilities, on the other hand, would
make the system more resilient.

Following the trends in Fig. 10a–c, we can observe an increase in the number of closed
motifs, i.e. of the similarity of export baskets, before the financial crisis [81]. This develop-
ment comes to an abrupt halt in 2008 and abundances drop from that point on. Notice that
this evolution only illustrates what happened in the wake of the crisis and does not provide
any early-warning signal. However, comparing the observations with the null model, a very
different picture arises, as illustrated in panel (d): all three motifs occur less in the network
than would be expected from the BiCM. Z-scores are predominantly negative, with values as
small as -3 to -4 for the X- and M-motifs. They are relatively stable until 2003, from which
point on we observe a clear trend towards greater z-scores, i.e. towards a better agreement
with the null model. Thus when the crisis struck in 2008, the ITN had already undergone
significant structural changes in the preceding five years, which eventually fade out around
2010.

Note that the latter results do not imply any causal relation, as discussed in [81]. However,
the dramatic evolution of the closed motifs anticipated the crisis. In that sense it can be
regarded as an early-warning signal, since it informs us that the network is changing globally
such that the resilience of thewhole system ismodified, making it more vulnerable to external
shocks.

Moreover, it is worth underlining that these observations cannot be made without the
benchmark of the null model. Considering only the data limits us to the simple observation
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of abrupt trend changes in motif abundances. Only the comparison with the BiCM reveals
a clear signal of anticipating structural change. Analyses as the one presented here provide
effective tools to monitor systems such as the ITN, and offer deep insights to policy makers.

In summary, recent results on the International Trade Network obtained through the com-
parison with the BiCM have shown that many apparently genuine properties can be traced
back to the degree sequence, i.e. the number of exporters of a product and the size of the
export basket of a country.

8 Results in Financial Networks

8.1 Systemic Risk (Reprise)

Financial stress can propagate among banks through asset portfolio overlaps. As indicated
in Sect. 4.1, the capital asset pricing model (CAPM) performs well at assessing the sys-
temic risk due to fire sales spillover effects in the bipartite bank-asset network of financial
US institutions [31]. Their data is derived from quarterly reports which disclose the single
positions in the bank portfolios. Hence, the authors could compare the risk estimations due
to aggregate exposures, considering only the node strengths, with measures that take also the
degrees into account. Risk is measured using the metric defined by Greenwood et al. [49].

Although the CAPM framework replicates the systemic risk well (see Fig. 5), without a
proper model little can be said about the precision of the risk prediction. Hence, themaximum
entropy capital asset pricing model has been proposed (MECAPM, [31], see Appendix B),
for which the portfolio weights are constrained as 〈wiα〉 = wCAPM

iα . With NL and NΓ being
the numbers of banks and portfolios, theMECAPM thus uses NL ×NΓ conditions. As shown
in Appendix B, the single link probabilities read [31,87]

(pCAPM )iα = wCAPM
iα

1 + wCAPM
iα

(13)

and the probability for a particular graph, P(GB), is geometrically distributed [31].
Since strength and degree information can complement each other, in analogy to the

monopartite case in [62] the authors of [31] have also included the so-called bipartite
enhanced configuration m odel (BiECM, [31]), on which degrees and strength constraints
are imposed.

The results of the analysis are summarized inFig. 11 for the bankswith the highest systemic
exposures in the data. The BiWCM refers to the weighted counterpart of the BiCM, in which
node strengths instead of node degrees are constrained (see Appendix B and [31]). Although
all three models systematically underestimate risk, the MECAPM clearly outperforms the
other two models [31]. Notice that the BiWCM performs very badly, underestimating the
risk as much as −80%. Errors are relatively large, as we can see from the shaded areas.

A possible reason for the large error intervals in Fig. 11 has been suggested in [87],
pointing to the fact that the MECAPM predicts very dense network configurations. In fact,
from Eq. (13) we can see that the link probabilities quickly approach 1 for wCAPM

iα � 1.
This issue has been taken up in [87], which proposes the so-called enhanced capital asset
pricing model (ECAPM, [87]). Using only the strength sequences Ci and Vα of the asset
capitalization and portfolio market value, respectively, this approach aims at reconstructing
the network topology while imposing the CAPM link weights.
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Fig. 11 Quartile of banks with the highest indirect risk as measured by [31] during the interval 2001–2014.
Top: MECAPM (dashed line, grey shading); Middle: BiECM (blue squares, blue shading); Bottom: BiWCM
(red crosses, red shading). The shaded areas and their partial overlaps illustrate the corresponding distributions.
Although all three models systematically underestimate the systemic risk, MECAPM outperforms the best.
Figure courtesy of [31] (Color figure online)

Firstly, the topology of the network is established by using the BiCMunder the assumption
that the Lagrange multipliers are proportional to node-specific fitness values, represented by
their strengths [87]. In analogy to the BiCM (see Appendix B), this yields

(pECAPM )iα = zViCα

1 + zViCα

, ∀i ∈ L , α ∈ Γ, (14)

where z absorbs the proportionality constants.
Secondly, the link weights are reconstructed using the CAPM model while taking the

network topology into consideration. Instead of settingwiα = ViCα/w, a correction factor is
applied [87]

wiα = miα
ViCα

w (pECAPM )iα

= (ViCα + z−1)
miα

w
, (15)

where miα is 0 or 1 depending on the link presence. As pointed out in [87], the weight
expectations of the ECAPMcorrespondwith those of theMECAPMand thus theCAPM[87].
However, the former reconstructs the network topology separately, which compensates the
high network densities for the latter.
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Fig. 12 Relation between the strengths and degrees of the nodes in [87]. The security holder portfolios
have certain market values Vi (the “banks”) and issued security assets have a market capitalization Cα (the
“assets”). The ECAPM follows the real empirical data much closer than the MECAPM, which systematically
overestimates the degrees. Figure courtesy of [87] (Color figure online)

The difference between the ECAPMand theMECAPMhas been tested in [87] on a data set
of security holdings of European institutions (Security Holding Statistics, SHS) collected by
the European Central Bank from 2009 to 2015. The empirical difference is visible in Fig. 12,
which compares the node degrees with node strengths. The MECAPM shows continuously
high degrees and does not capture the real distribution, which illustrates the observationmade
for Eq. (13). Even though the ECAPM underestimates degrees for small strength values, it
better reproduces the data.

Since both MECAPM and ECAPM reproduce the same weights, they estimate the same
systemic risks as measured with the metric introduced in [49]. However, reconstructing the
topology as in [87] significantly decreases the uncertainty of the risk metric. In particular,
comparing the errors of the MECAPM and ECAPM yields

σ MECAPM
Si ∝ V 1/2

i σ ECAPM
Si , (16)

where Vi is the value of institution i and Si its systematicness [87]. The fluctuations in
the ECAPM framework are thus systematically smaller than in MECAPM and motivate the
application of a degree as well as strength reconstruction.

8.2 Portfolio Overlap Projection

The risk of fire sales has also been treated in [50] using a different methodology. Contrary
to [31] and [87], they do not consider weighted networks but instead the binary bipartite net-
work between financial institutions and their assets holding in the years 1991–2013. Instead
of calculating the systemic riskmeasure on the null model, they focus on the overlapmatrix of
portfolios, which expresses the number of assets that financial institutions share, i.e. the num-
ber of their V-motifs (see Eq. (1)). By applying the grand canonical projection algorithm [82]
with a Bonferroni correction for the p-value testing, and thus comparing the observed val-
ues V∗ with their BiCM expectations and validating only statistically significant links, they
obtain a network of financial institutions containing only relevant links that are not accounted
for by the degree sequences.
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Fig. 13 Left: Fraction of financial institutions in the validated monopartite projection. The values decrease
only slightly, with temporary reduction around 2009. Right: Average degree in the monopartite projection of
financial institutions. Notice the salient dip in 2009 after the beginning of the crisis. Figure courtesy of [50]
(Color figure online)

As Fig. 13 shows, the fraction of institutions that have at least one significant edge in the
validated network remains relatively constant. In spite of this seemingly innocuous devel-
opment, the similarity of these nodes increase very quickly, as illustrated in Fig. 13. In
particular, notice how the similarity increases before the 2007–2008 financial crisis. After a
drop in 2009, it took up pace and has reached levels even higher than before the crisis [50].

In conclusion, the authors point out that the validated projection method can recover those
financial institutions that would be at risk of suffering the greatest losses in cases of financial
distress [50].

9 Conclusions and Outlook

In this review,we have presented several recentmethods designed for the statistical analysis of
bipartite network. Interestingly, despite the fact that bipartite networks have been considered
deeply in ecology, and many analytical quantities of interest originate from the study of, e.g.,
species interaction networks, recent techniques for statistical significance testing have been
formulated in a -seemingly- completely different context, namely economic and financial
systems. However, while the latter has benefited greatly from the progress made in ecology,
many of the analytical tools commonly employed in socio-economic networks seem not
to have been recognized yet as potentially useful for ecological systems, apart from few
exceptions [67,72,97]. However, the recent application of the bipartite configuration model,
originally formulated for the study of international trade, has already shed some light on
a better understanding of the origin of nestedness. In a similar way, validating similarities
among insect species could provide insights on their competition in isolated environments.
Furthermore, the resilience studies of economic and financial bipartite networks can catalyze
the study of extinction spillovers in the standard ecological framework. This work aims at
bridging the gap between these two—apparently—distant areas which can benefit greatly
from sharing advancements across scientific fields.

A straightforward example is provided by the detection of mesoscale structures in bipar-
tite networks, such as communities and motifs. Although motifs have been popularized in
biological science, recently proposed techniques to overcome the limitations of modular-
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ity maximization have not yet crossed the borders of graph theory, and their application in
ecological networks is still in an embryonic stage [10]. The same holds true for the mul-
tiplex formalism [73]. The cross-disciplinary importance of these topics is clearly shown
by the idea of considering social networks as “mutualistic” information ecosystems. In this
context, has been found that mesoscale structures may be correlated to the emergence of
collective attention [18], in particular when a transition from a modular to a nested structure
is observed. These results also underline the general need to develop dynamical models to
study the evolution of bipartite networks.

An application that has benefited from both, the concepts developed in ecology and the
methods designed for social networks, are so-called recommender systems [102]. Briefly
speaking, these algorithms suggest “users” their next “choices”, be they movies to watch
or items to buy, among others. Although many recommendation algorithms exist, an inter-
esting example is provided by those which are built upon the idea of a resource-allocation
dynamic taking place on the network. Other concepts such as specialization and interac-
tion have inspired models able to reproduce observed patterns in both ecological and social
systems [79].

Some of the statistical methods presented in this review have been recently employed and
extended for the study of tripartite structures to asses the relationship between technology
and economic development [74]. In this network, the three layers consist of technologies,
countries, and products, and the analysis aims at quantifying the probability of jumping from
a given technology in one layer to a given product in another one, while accounting for all
possible paths through the intermediate countries layer. Although the null model employed
in this approach is, in fact, a combination of two distinct bipartite configuration models, the
paper certainly represents an interesting direction for future research.

Acknowledgements Thisworkwas supported by theEUProjectsCoeGSS (GrantNo. 676547),MULTIPLEX
(Grant No. 317532), Openmaker (Grant No. 687941), SoBigData (Grant No. 654024), and the FET Projects
SIMPOL (Grant No. 610704), DOLFINS (Grant No. 640772).

A Appendix: Revealed Comparative Advantage

The revealed comparative advantage (RCA, also knows as Balassa index [11]), rescales the
product export volumes in order to determine whether countries are relevant exporters of
products. Be e(c, p) the export value of product p in country c’s export basket. The RCA
is calculated by comparing the monetary importance of p in c’s export basket to the global
average,

RCAc,p = e(c, p)∑
p′ e(c, p′)

/ ∑
c′ e(c′, p)∑

c′,p′ e(c′, p′)
. (17)

A country is a relevant exporter if RCA ≥ 1. Using the RCA, the weighted country-product
biadjacencymatrix can be binarized by keeping only thosematrix entries that identify relevant
exports and setting them to 1.

B Appendix: Bipartite Exponential Random Graph Model

We report some of the null models that have been obtained through entropy maximization
and which have been applied to binary and weighted bipartite networks. In the following, all

123



1278 M. J. Straka et al.

quantities marked with an asterisk refer to the real networks, expressed by their binary (M∗)
or weighted (W∗) biadjacency matrix. The layer dimensions are NL and NΓ .

B.1 Bipartite Random Graph

Constraining the expected number of links in the graph ensemble yields an extension of the
Erdős-Rényi random graph to bipartite networks, the bipartite random graph (BiRG). The
constraint C ≡ E = ∑

i,α miα , and thus the Lagrange multiplier θ as well, is scalar. The
partition function can be calculated easily:

ZBiRG(θ) =
∑

GB∈GB

e−θE(GB)

= (1 + e−θ )NL NΓ . (18)

The probability per graph reads

P(GG |θ) = e−θE

(1 + e−θ )NL NΓ

= (pBiRG)E (1 − pBiRG)NL NΓ −E , (19)

where pBiRG ≡ e−θ

1 + e−θ
is the probability of observing a bipartite link between any

node couple i ∈ L , α ∈ Γ . Notice that pBiRG is uniform and independent of the links.
Since Eq. (19) is a Binomial distribution, we see that the probability of observing a
generic graph GB in the ensemble reduces to the problem of observing E(GB) success-
ful trials with the same probability pBiRG. We can obtain an analytical expression for the
Lagrange multiplier θ and thus for the link probability by maximizing the likelihood, which
reads

L = ln P(G∗|θ) = −θ E∗ − NLNΓ ln(1 + e−θ ), (20)

and returns

pBiRG = E∗

NL NΓ

. (21)

B.2 Bipartite Partial Configuration Model

Without loss of generality, we constrain the degree sequence on the layer L such that 〈ki 〉 =
k∗
i , ∀i ∈ L . For each node degree ki , we introduce one associated Lagrange multiplier, θi .
This gives us the bipartite partial configuration model (BiPCM, [82]). Following the same
procedure as in Eq. (18), we can obtain

ZBiPCM(θ) =
∏

i,α

1 + e−θi . (22)

The probability per graph reads

P(GB |θ) =
∏

i,α

(pBiPCM)
miα
i

(
1 − (pBiPCM)i

)1−miα

=
∏

i

(pBiPCM)
ki
i

(
1 − (pBiPCM)i

)NΓ −ki , (23)

where (pBiPCM)i = e−θi

1+e−θi
is the probability of connecting the node i with any of the node

of the opposite layer Γ . The link probabilities are not uniform, but depend on the Lagrange
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multipliers of the nodes i ∈ L . The factors in the product in Eq. (23) express the probabilities
of observing exactly the constrained node degrees: the probability of the degree ki of the node
i ∈ L is given by the probability of observing ki successes trials of a binomial distribution
with probability (pBiPCM)i . Maximizing the likelihood L returns the explicit expressions for
the link probabilities:

(pBiPCM)i = k∗
i

NΓ

. (24)

B.3 Bipartite Configuration Model

In the monopartite configuration model, the degrees of all the nodes are constrained. Analo-
gously, in the bipartite configuration model (BiCM, [80]) the degrees of the two layer degree
sequences are constrained, such that 〈ki 〉 = k∗

i , ∀i ∈ L , and 〈kα〉 = k∗
α, ∀α ∈ Γ . If θ and ρ

are the corresponding Lagrange multipliers, the partition function reads [80]

ZBiCM(θ , ρ) =
∏

i,α

1 + e−(θi+ρα), (25)

following essentially the same strategy used in Eq. (18). Again, the probability per graph
factorizes in a product of probabilities per link:

P(GB |θ , ρ) =
∏

i,α

e−(θi+ρα)miα

1 + e−(θi+ρα)

=
∏

i,α

(pBiCM)
miα
iα

(
1 − (pBiCM)iα

)1−miα , (26)

where the probability per link reads

(pBiCM)iα = e−(θi+ρα)

1 + e−(θi+ρα)
, i ∈ L , α ∈ Γ (27)

Compared to the probability distributions of the BiRG and BiPCM, we can see that the BiCM
distribution is more general and corresponds to the product of different Bernoulli events with
link-specific success probabilities. Note that the distribution factorizes and link probabilities
are independent. Maximizing the likelihood returns the equation system [80]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
α

e−(θi+ρα)

1 + e−(θi+ρα)
= k∗

i , ∀i ∈ L ,

∑
i

e−(θi+ρα)

1 + e−(θi+ρα)
= k∗

α, ∀α ∈ Γ.

(28)

Solving this system allows us to evaluate the Lagrange multipliers and ultimately obtain the
graph probabilities.

B.4 Bipartite Weighted Configuration Model

Constraining the node strengths as 〈si 〉 = s∗
i ,∀i ∈ L , and 〈sα〉 = s∗

α,∀α ∈ Γ , yields
the bipartite weighted configuration model (BiWCM, [31]). Be θ and ρ the corresponding
Lagrange multipliers. As shown in [31], the partition function is

ZBiCM(θ , ρ) =
∏

i,α

1

1 − e−(θi+ρα)
. (29)
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The graph probability yields

P(GB |θ , ρ) =
∏

i,α

(
e−(θi+ρα)

)wiα
(1 − e−(θi+ρα)). (30)

Similar to the BiCM, the Lagrangemultipliers can be obtained by solving an equation system,
which reads [31] ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
α

e−(θi+ρα)

1 − e−(θi+ρα)
= s∗

i , ∀i ∈ L ,

∑
i

e−(θi+ρα)

1 − e−(θi+ρα)
= s∗

α, ∀α ∈ Γ.

(31)

B.5 Bipartite Enhanced Configuration Model

The bipartite enhanced configuration model (BiECM, [31]) is a bipartite extension of the
monopartite enhanced configuration model introduced in [62]. Both, degrees as well as
strengths, are constrained.

Be θi and θα the constraints associated to the degrees, and ρi and ρα those associated to
the strengths for the nodes i ∈ L and α ∈ Γ , respectively. Using the short-hand notation
φi = e−ρi , ξα = e−ρα , ψi = e−θi and γα = e−θα , the partition function reads [31]

ZBi ECM (θ , ρ) =
∏

i,α

1 − φiξα(1 − ψiγα)

1 − φiξα

. (32)

Consequently, the network probability is given by

P(GB) =
∏

i,α

(1 − φiξα)(φiξα)wiα (ψiγα)Θ(wiα)

1 − φiξα(1 − ψiγα)
(33)

and factorizes in single link probabilities. The values of the Lagrange multipliers can be
obtained through a nonlinear system of equations, as shown in the Appendix of [31].

B.6 Maximum Entropy Capital Asset Pricing Model

The elements of the weighted biadjacencymatrix can be rescaled to yield the quantities of the
capital asset pricing model (CAPM, [61,66]). In the financial context, the vertex strengths
are often described as the total asset size of a bank (or market value of their portfolio),
Vi = ∑

α wiα , and the market capitalization of an asset, Cα = ∑
i wiα [31,87]. In the

CAPM, banks choose their portfolio weights proportional to their market value and the
asset’s capitalization:

wCAPM
iα = ViCα

w
, (34)

where we have used w = ∑
i ′,α′ wi ′α′ The probability distribution for the MECAPM

yields [31]
P(GB) =

∏

i,α

[
1 − (pCAPM )iα

]wiα (pCAPM )iα , (35)

where the probability per link reads

(pCAPM )iα = wCAPM
iα

1 + wCAPM
iα

. (36)
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Note that P(GB) is geometrically distributed for wiα ∈ N [31]. The link probabilities can
be easily calculated using the identity in Eq. (34).

B.7 Enhanced Capital Asset Pricing Model

The so-called enhanced capital asset pricing model (ECAPM, [87]) reconstructs the link
topology and subsequently the link weights. Their method makes only use of the strength
sequence and is composed of two steps.

Firstly, the topology of the network is reconstructed by using the BiCM under the assump-
tion that the exponential Lagrange multipliers xi ≡ e−θi and yα ≡ e−θα are proportional to
node-specific fitness values, represented by their strengths:

xi ≡ √
zΓ si , ∀i ∈ L

yα ≡ √
zLsα, ∀α ∈ Γ. (37)

Constraining the network density with the total number of links 〈E〉 ≡ E∗, the parameter
z = √

zΓ zL can be estimated using [87]

〈E〉 =
∑

i,α

zViCα

1 + zViCα

, ∀i ∈ L , α ∈ Γ, (38)

Subsequently, the single link probabilities are simply given by the BiCM expression in
Eq. (11), substituting the Lagrange multipliers with the expressions (37):

(pECAPM )iα = zViCα

1 + zViCα

, ∀i ∈ L , α ∈ Γ, (39)

where z absorbs the proportionality constants.
Secondly, the link weights are reconstructed using the CAPM model while taking the

network topology into consideration. Instead of setting wiα = ViCα/w, a correction factor
is applied [87]

wiα = miα
ViCα

w (pECAPM )iα

= (ViCα + z−1)
miα

w
, (40)

where miα is 0 or 1,depending the link is present in the graph or not.
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