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Abstract We consider the sequence of Gibbs measures of Ising models with Kac interaction
defined on a periodic two-dimensional discrete torus near criticality. Using the convergence
of the Glauber dynamic proven by Mourrat and Weber (Commun Pure Appl Math 70:717–
812, 2017) and amethod by Tsatsoulis andWeber employed in (arXiv:1609.08447 2016), we
show tightness for the sequence of Gibbs measures of the Ising–Kac model near criticality
and characterise the law of the limit as the�4

2 measure on the torus. Our result is very similar
to the one obtained by Cassandro et al. (J Stat Phys 78(3):1131–1138, 1995) on Z

2, but our
strategy takes advantage of the dynamic, instead of correlation inequalities. In particular,
our result covers the whole critical regime and does not require the large temperature/large
mass/small coupling assumption present in earlier results.

Keywords Kac potential · Ising model · Stochastic quantization · Glauber dynamic

1 Introduction

Let N > 0 be a positive integer and consider the (periodic) lattice �N = {1 − N , . . . , N }2.
For γ > 0, let K : R

2 → [0, 1] be a twice differentiable, non negative, isotropic function
supported on a ball of radius 3 and define κγ for x ∈ �N

κγ (x) � γ 2K(γ |x |) ,
∑

z∈�N \{0}
κγ (z) = 1. (1.1)
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Consider a spin system formed by a set of spins parametrized by the lattice�N . Each spin can
assume the value+ 1 or− 1 representing two possible states of themagnetization andwewill
denote with �N = {− 1, 1}�N the set of all possible configurations. The Ising–Kac model
on the two-dimensional lattice with periodic boundary condition and external magnetization
b ∈ R is given by the following Hamiltonian

Hγ

β,b(σ ) = β

2

∑

x,y∈�N

κγ (x − y)σxσy + b
∑

x∈�N

σx σ ∈ �N . (1.2)

The Gibbs measure over�N associated to the potential (1.1), with inverse temperature β and
external magnetic field b, is given by

Pγ

β,b(σ )
def=
(
ZN

γ,β,b

)−1
exp
(
Hγ

β,b(σ )
)

, (1.3)

where ZN
γ,β,b is the partition function that makes (1.3) a probability measure. We will also

denote with Eγ

β,b the expectation under Pγ

β,b. For technical reason, we set κγ (0) = 0 and we
remark that its precise value doesn’t affect (1.3).

As in [12], we will let the inverse temperature β converge in a precise way as γ → 0 to
βc = 1 the critical value of the mean-field system. The purpose of this paper is to prove the
tightness of the magnetisation fluctuation field

γ −1
(
σ�N ·� − Eγ

β,b

[
σ�N ·�

])
(1.4)

in the strong topology of S ′(T2) as both N → ∞ and γ → 0 in a precise way that we shall
describe later.

Moreover, in case b = 0, we are also able to characterise the limit as the�4(T2)measure,
formally described by

Z−1 exp

(
−
∫

T2

1

2
|∇�(x)|2 + 1

12
�:4:(x) − A

2
�:2:(x) dx

)
d�, (1.5)

where �:4: denotes the Wick renormalisation of the fourth power of the field. For a more
detailed and formal definition, see for example [6,14].

The Ising–Kac model is a mean-field model with ferromagnetic long range potential
that has been introduced in statistical mechanics for its simplicity and because it provides
a framework to recover rigorously the van der Waals theory [9] of phase transition. It has
been then developed by Lebowitz and Penrose in [11], see also [15] for more details. The
model has already been useful to study the�4

d theory, see [7], where a renormalisation group
approach has been used to approximate �4

d with generalised Ising models, and [16] with
classical Ising spins.

The present work is mainly built upon the article of Weber and Mourrat [12], where the
Glauber dynamic on a periodic two-dimensional lattice is shown to converge to the solution
of the two-dimensional stochastic Allen–Cahn equation on the torus. Their approach however
doesn’t imply the tightness for the invariant measure of the model, which is treated in this
article. The same result about convergence of Glauber dynamics in one space dimension
had previously been proven in [2,5], via a coupling with a simpler model, the voter model.
In a subsequent paper [18], Tsatsoulis and Weber show the exponential convergence to
equilibrium for the dynamical �4

2 model. In [3], the authors show the convergence of the
2d Ising–Kac model on Z

2 to �4
2 by proving the convergence of the discrete Schwinger

functions. In particular they were the first to explain, to the best of our knowledge, the small
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634 M. Hairer, M. Iberti

shift of the critical temperature for the Ising–Kac model with the renormalisation constants
of the Wick powers. That result (see [3, Theorem 2]) is however restricted to temperatures
satisfying a condition allowing to useAizenman’s correlation inequalities, which corresponds
to large negative values of A in (1.5).

Our main result resembles the one obtained in [3], with some differences. We will work
on a periodic lattice instead of Z

2, which we think of as a discretisation of a 2D torus. This
restriction is mainly due to our techniques for bounding the solutions globally in time and a
posteriori doesn’t appear to be strictly necessary since the limiting dynamic can be defined
also on the whole 2D plane (see [13]). Moreover, as our main proof exploits the dynamical
version of the model and not the correlation inequalities, we do not have the restriction on
the temperature present in [3, Theorem 2], so that we cover arbitrary values A ∈ R in (1.5).
A correlation inequality, the GHS inequality, is then employed in a subsequent corollary to
partially extend the result to the case of arbitrary external magnetization b. Corollary 2.3 is
the only place where we use a correlation inequality.

As remarked by one of the referees, one advantage of the strategy described in the present
article is that it is robust enough to also imply tightness of the Gibbs measure of the Kac-
Blume-Capel, using the result about the respectiveGlauber dynamic provided in [17]. In order
to be able to identify the limiting lawwith the�6

2 randomfield, thus generalisingTheorem2.4,
one then also needs a suitable convergence to equilibrium result for the limiting�6

2 dynamical
model. While the result of [18] does not seem to generalised immediately (see Remark 6.2
there), this can be obtained by combining the strong Feller property obtained in [8, Sect. 5.3]
with the fact that one has good control over the return times to bounded/compact sets, as well
as the fact that the �6

2 measure has full support, being equivalent to the free field.
The structure of the present article is as follows: our main result is Theorem 2.1 showing

tightness of the fluctuations of local averages of the magnetic field in a distributional space.
The proof of the theorem is based on the analysis of the dynamical �4

2 model in [18, Sect. 3]
and makes no use of correlation inequalities (not explicitly at least), avoids the restriction of
[3, Eq. (1.8)] and exploits the regularisation provided by the time evolution of the Glauber
dynamic. As a consequence of Theorem 2.1, we obtain in Corollaries 2.2 and 2.3 tightness
in S ′(T2) for the fluctuation fields (1.4).

In Theorem 2.4 we characterise the limit of each subsequence to be an invariant measure
for the dynamical �4

2 model constructed in [4]. Since it was shown in [4] that (1.5) is such
a measure and in [18] that this invariant measure is unique, the result follows. For the proof,
we make use of the uniform convergence to the invariant measure and the convergence of
the Glauber dynamic in [12].

1.1 Notations

We shall consider spins arranged on a periodic lattice that we will think as embedded into a
two-dimensional torusT

2 = [− 1, 1]2. Let ε = N− 1 and�ε
def= ε�N ⊂ T

2 the discretisation
induced on T

2. For f, g : �ε → C we define

‖ f ‖p
L p(�ε)

def=
∑

x∈�ε

ε2| f (x)|p, 〈 f, g〉�ε

def=
∑

x∈�ε

ε2 f (x)g(x),

respectively the discrete L p norm and the scalar product.Wewill use the discrete convolution

( f ∗ g)(x)
def=
∑

y∈�ε

ε2 f (x − y)g(y), for x ∈ �ε,
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Tightness of the Ising–Kac Model on the Two-Dimensional Torus 635

and, when there is no possibility of confusion, we will drop the set �ε from the above
definitions. We will make an extensive use of the Fourier transform

f̂ (w)
def= 〈 f, ew〉�ε

, ew(x) = eiπw·x for w ∈ �N .

It will sometimes be convenient to also set ew = 0 for w ∈ Z
2\�N . With this notation, the

Fourier inversion formula reads

f (x) = 1

4

∑

w∈Z2

f̂ (w)ew(x) for x ∈ �ε. (1.6)

We shall use the same notationExt( f ) as in [12] to denote the extension of f to the continuous
torus T

2 via (1.6) applied to x ∈ T
2. We recall furthermore the fact that the operator Ext

doesn’t commute with the operation of taking the product. (Of course we could have used
extensions that do commute, butExt behaves nicelywith respect to the scale of Besov spaces.)
We will measure the regularity of a function g : T

2 → R (or g : �ε → R) with the Besov
norm, defined for ν ∈ R, and p, q ∈ [1,∞] as

‖g‖Bν
p,q

=
⎧
⎨

⎩

(∑
k≥−1 2

νkq ‖δkg‖qL p(T2)

) 1
q

if q < ∞
supk≥−1 2

νk ‖δkg‖L p(T2) if q = ∞
(1.7)

[see (4.1) below for the definition of the Paley–Littlewood projection δk] and we will denote
by Bν

p,q the completion of the set of smooth test functions over the torus equipped with the
corresponding Besov norm. We shall denote by Cν the (separable) Besov space Bν∞,∞. In
particular, the parameter ν ∈ R represents the regularity of a function and the space Bν

p,q
contains distributions if ν < 0. It will be useful to consider, for g : �ε → R, a discrete
version of the Besov norm, that we shall denote by ‖g‖Bν

p,q (�ε)
(resp. ‖g‖Cν (�ε)

),

‖ f ‖Bν
p,q (�d

ε )
def=
⎧
⎨

⎩

(∑
k≥−1 2

νkq ‖δkExt( f )‖qL p(�d
ε )

) 1
q

if q < ∞
supk≥−1 2

νk ‖δkExt( f )‖L p(�d
ε ) if q = ∞

see Sect. 4 for a more precise description and for some useful properties of this norm used
in the article.

2 Definitions and Statements of the Theorem

Assume for the moment that b = 0, which is also the case studied in [12] and consider for
x ∈ �N

hγ (x)
def=
∑

z∈�N

κγ (x − z)σz, (2.1)

where the kernel is the same as in (1.2).
Following [2,12], we define the magnetisation fluctuation field over the lattice �ε as

Xγ (z) = γ −1hγ (ε−1z). We will consider a dynamic of Glauber type on �N in order to
gain insight into the properties of the fluctuations. In order for this dynamic to converge to a
non-trivial limit, we will enforce the relation between the scalings ε and γ given by (3.10).

The dynamic can be described informally as follows. Each site x ∈ �N is assigned an
independent exponential clock with rate 1. When the clock rings, the corresponding spin
changes sign with probability
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636 M. Hairer, M. Iberti

cγ (z, σ ) = 1

2

(
1 − σz tanh

(
βhγ (z)

))
, (2.2)

and remains unchanged otherwise. More formally, the generator of this dynamic is given by

Lγ f (σ ) =
∑

z∈�N

cγ (z, σ )
(
f (σ {z}) − f (σ )

)
, (2.3)

for f : �N → R, where

σ {z}
y =

{
−σz if y = z,

σy if y �= z.

The probabilities cγ (z, σ ) are chosen precisely in such a way that Pγ
β,0 is invariant for this

Markov process. We shall use the notations σx (s) and hγ (s, x) to refer to the process at
(microscopic) space x ∈ �N and time s ∈ R+. We will use the notation P

γ
β,0 (resp. E

γ
β,0)

to refer to the probability (resp. expectation) of the process started with an initial condition
drawn from Pγ

β,0.
In order to rewrite the process in macroscopic coordinates, we speed up the generatorLγ

by a factor α−1 and we will abuse the notation writing

Xγ (s, x)
def= δ−1hγ (α−1s, ε−1x), (2.4)

in (macroscopic) space x ∈ �ε and time s ∈ R+. In [12, Theorem 3.2] it is proven that, if
the parameters δ, α, ε and the inverse temperature β are chosen such that

δ = γ, α = γ 2, ε = γ 2, β − 1 = α
(
cγ + A

)
, (2.5)

where cγ is described in (2.8) below, and if the sequence of initial conditions satisfies
Xγ (0) → X0

γ in C−ν , then the law of Xγ on D(R+, C−ν), converges in distribution to
the solution of the stochastic quantisation equation

∂t X = �X − 1

3
X :3: + AX + √

2ξ, X (0, ·) = X0 ∈ C−ν (2.6)

where Xγ (·, 0) → X0 in C−ν and ξ denotes space-time white noise. The expression X :3:
stands for a renormalised power defined as in [4], where the relevant notion of “solution” to
(2.6) is also given. The solution theory of (2.6) will be briefly summarised in Sect. 2.1. The
use of the renormalised powers is necessary since the solution belongs to a distributional
space.

For x ∈ �ε, let Kγ (x) = ε−2κγ (ε−1x), the macroscopic version of the kernel Kγ , and
define the discrete Laplacian �γ f = ε−2γ 2(Kγ ∗ f − f ). Under the Glauber dynamic, the
process Xγ satisfies on [0, T ] × �ε

Xγ (t, x) = Xγ (0, x)

+
∫ t

0
�γ Xγ (s, x) − 1

3

(
X3

γ (s, x) − cγ Xγ (s, x)
)

+ AXγ (s, x) + O(γ 2X5
γ (s, x)) ds + Mγ (t, x) (2.7)

where Mγ (t, x) is a martingale and cγ is the logarithmically diverging constant

cγ = 1

4

∑

ω∈�N \{0}

|K̂γ (ω)|2
ε−2γ 2(1 − K̂γ (ω))

. (2.8)
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Tightness of the Ising–Kac Model on the Two-Dimensional Torus 637

The next theorem is the main result of the paper. Recall the definition of the Besov norm
given in Sect. 1.1.We think of Xγ (z) as being a random function onT

2, having been extended
to T

2 with the Ext operator.

Theorem 2.1 Assume b = 0. Then for all positive ν > 0 and for all q > 0

lim sup
γ→0

Eγ
β,0

[∥∥Xγ

∥∥qC−ν

]
< ∞.

In particular, the laws of Xγ form a tight set of probability measures on C−ν .

From the above theorem it is possible to deduce

Corollary 2.2 Assume b = 0. Then the law of the field
(
γ −1σ�ε−1x�

)
x∈T2 is tight in S ′(T2)

under Pγ
β,0.

Proof Wewill actually prove the tightness in the stronger norm of H−k(T2), for k sufficiently
big. Let ϕ ∈ S(T2) and consider

〈
γ −1σ�ε−1·�, ϕ

〉
T2 =

∑

x∈�N

ε2
(
γ −1σx

)
ϕ̄(εx)

where ϕ̄(εx) = ε−2
∫
|y|∞≤2−1ε

ϕ(εx + y) dy. Using the differentialbility of ϕ, we replace ϕ̄

with κγ ∗ ϕ̄ at the cost of

ε2γ −2 sup
i1,i2∈{1,2}

∥∥∂i1∂i2ϕ
∥∥
L∞(T2)

,

and this isO(γ 2), as γ → 0, if k is sufficiently big. Therefore (recall the form of the extension
(1.6) of Xγ to the continuous torus)

〈
γ −1σ�ε−1·�, ϕ

〉
T2 = 〈Xγ , ϕ

〉
T2 + O(γ )

the corollary follows from Theorem 2.1. ��
As remarked in the proof, the topology with respect to which the convergence in Corol-

lary 2.2 is proved is not the optimal norm. Indeed we expect the result to hold also with
respect to the norm of C−ν . In the proof of Corollary 2.2 we didn’t only show the tightness
of the sequence of random variable, but we also proved that the limit of

〈
γ −1σ�ε−1·�, ϕ

〉
T2

coincide with limγ→0
〈
Xγ , ϕ

〉
T2 for all ϕ sufficiently smooth.

We now show how to extend the previous result to the case b �= 0. It is clear that, by
symmetry it is sufficient to assume b ≥ 0. In the case of ferromagnetic pair potential κγ ≥ 0
with positive external magnetisation b ≥ 0, one has

Eγ

β,b

[
σx ; σy

] ≤ Eγ
β,0

[
σx ; σy

]
(2.9)

where Eγ

β,b

[
σx ; σy

]
is the covariance between the spins. This follows from the fact that

d
dbEγ

β,b

[
σx ; σy

] ≤ 0, which is an immediate consequence of the GHS inequality (see for
instance [10] for a proof), valid for κγ ≥ 0 and b ≥ 0.

Corollary 2.3 Consider any map γ �→ bγ ≥ 0 and denote by mγ (b) = Eγ

β,b[σx ] the mean
of the spin σx , which is independent of x ∈ �N . Then the law of the field

X̃γ (x) = γ −1(σ�ε−1x� − mγ (bγ )
)
, x ∈ T

2, (2.10)

is tight in S ′(T2) under Pγ

β,bγ
.
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638 M. Hairer, M. Iberti

Proof Fixing a test function φ and replacing ϕ̄ with κγ ∗ ϕ̄ as in Corollary 2.2, we have
〈
X̃γ , ϕ

〉
=
∑

x∈�N

ε2γ −1(σx − mγ (bγ )
)
(κγ ∗ ϕ̄)(εx) + Err,

whereErr converges to 0 in probability as γ → 0. Decompose ϕ = ϕ+ −ϕ− into its positive
and negative part. For each of them, using the correlation inequality (2.9), we have that

Eγ

β,bγ

∣∣∣∣ε
2
∑

x∈�N

σx − mγ (bγ )

γ
(κγ ∗ ϕ±)(εx)

∣∣∣∣
2

≤ Eγ
β,0

∣∣∣∣ε
2
∑

x∈�N

(γ −1σx ) (κγ ∗ ϕ±)(εx)

∣∣∣∣
2

.

Using Theorem 2.1 we see that, for ν ∈ (0, 1), this quantity is bounded uniformly by a fixed

multiple of
∥∥ϕ±∥∥2Bν

1,1
Eγ

β,0

[∥∥Xγ

∥∥2C−ν

]
, up to an error of order O(γ ). In order to conclude,

we observe that
∥∥ϕ±∥∥Bν

1,1
�
∥∥ϕ±∥∥

L1 + ∥∥ϕ±∥∥ν

Lip

∥∥ϕ±∥∥1−ν

L1 � ‖ϕ‖L1 + ‖∇ϕ‖L∞

where the first inequality is (4.6), generalised to Lipschitz functions. ��

The next theorem shows that in the symmetric case b = 0, the limit of these measures is
given by the �4

2 measures, as already suggested in [12].

Theorem 2.4 Assume b = 0. Then any limiting law of the sequence {Xγ }γ is invariant
for the dynamic (2.6), and hence, by [18] and [4, Remark 4.3], coincides with the �4(T2)

measure.

Proof In order to compare the law of a (discrete) random field Xγ with fields on the torus
T
2, we will use the extension operator Ext defined after (1.6). For the sake of precision we

will explicitly write Ext(Xγ (t)) where the process Xγ has been extended to the whole torus.
We will use the Glauber dynamic and the solution of the stochastic quantisation equation

(2.6) introduced in the previous section: the idea is to exploit the exponential convergence to
the invariant measure of the solution of the SPDE (2.6) proved in [18] and the convergence
of the Glauber dynamic of the Kac–Ising model in [12].

By [12, Theorem 3.2], we know that if for 0 < κ < ν small enough the sequence of initial
conditions Ext(X0

γ ) is bounded in C−ν+κ and converges to a limit X0 in C−ν as γ → 0, one
has

Ext
(
Xγ

) L−→ X in D ([0, T ]; C−ν
)
, (2.11)

where X solves (2.6) starting from X0. In the above equation we took into account the fact
that Xγ is defined on the discrete lattice and therefore has to be extended with the operator
Ext to be comparable with X .

We first want to show that (2.11) holds true when instead of a deterministic sequence
ExtX0

γ → X0 in C−ν , we have the convergence in law of the initial conditions L(ExtX0
γ ) →

L(X0) in the topology of C−ν . In order to do this callLγ (resp.L0) the laws at time zero of the
processes ExtXγ (resp. X ) and assume that Lγ → L0. Consider then a bounded continuous
function G : D ([0, T ]; C−ν

)→ R: we want to show that

lim
γ→0

∣∣∣E
[
G(Ext(Xγ ))

∣∣X0
γ ∼ Lγ

]− E
[
G(X)

∣∣X0 ∼ L0
]∣∣∣ = 0.
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Tightness of the Ising–Kac Model on the Two-Dimensional Torus 639

Conditioning over the initial conditions we can define

f γ

G (X0
γ ) := E

[
G(Ext(Xγ ))

∣∣∣Xγ (0) = X0
γ

]

fG(X0) := E

[
G(X)

∣∣∣X (0) = X0
]
.

The result [12, Theorem 3.2] implies that f γ

G (X0
γ ) → fG(X0) whenever ExtX0

γ → X0 in
C−ν . Since C−ν is separable, we can apply the Skorokhod’s representation theorem to deduce
that there is a probability space (P̃, F̃, �̃) where all the processes Ext(X0

γ ) and X0 can be

realised and the sequence Ext(X0
γ )(ω̃) converge to X0(ω̃) in C−ν for P̃-a.e. ω̃ ∈ �̃.

An application of the dominated convergence theorem then shows that, as γ → 0
∣∣∣E
[
G(Ext(Xγ ))

∣∣X0
γ ∼ Lγ

]− E
[
G(X)

∣∣X0 ∼ L0
]∣∣∣

≤
∫ ∣∣∣ f γ

G (X0
γ (ω̃)) − fG(X0(ω̃))

∣∣∣ P̃(dω̃) → 0, (2.12)

so that we can assume (2.11) to hold even when the initial datum is convergent in law.
By Theorem 2.1 we know that, if at time 0 the configuration σ(0) ∈ �N is distributed

according to Pγ
β,0, then the law of X0

γ (x) = γ −1κγ ∗ σ�ε−1x�(0) is tight, and therefore there
exists a subsequence γk for k ≥ 0 and a measure μ∗ on C−ν such that the law of ExtX0

γk
converges to μ∗. In the following calculations we will tacitly assume γ → 0 along the
sequence γk to avoid the subscript. We will show that, if μ if the unique invariant measure
of (2.6) then μ∗ = μ.

Let F : C−ν → R be a bounded and continuous function, then, by the invariance of the
Gibbs measure under the Glauber dynamic, for t ≥ 0

Eγ
β,0

[
F(ExtX0

γ )
]

= E
γ
β,0

[
F(ExtXγ (t))

]
.

Recall that the evaluation map, that associates to a process in D ([0, T ]; C−ν
)
its value at a

given time, is not continuous with respect to the Skorokhod topology, however the integral
map G : u �→ ∫ T

0 F(u(s)) ds is continuous in its argument in virtue of the the continuity
and boundedness of F . Hence for any fixed T we have

Eγ
β,0

[
F(ExtX0

γ )
]

= E
γ
β,0

[
T−1

∫ T

0
F
(
ExtXγ (s)

)
ds

]

and

lim
γ→0

∣∣∣∣E
γ
β,0

[ ∫ T

0
F
(
ExtXγ (s)

)
ds

]
− E

[ ∫ T

0
F (X (s)) ds

∣∣∣∣X (0) ∼ μ∗
]∣∣∣∣ = 0.

By the uniform convergence to equilibrium of the stochastic quantisation equation [18, Corol-
lary 6.6] there exist constants c,C > 0

∣∣E[F(X (s)
)∣∣X (0) ∼ μ∗] − μ[F]∣∣ ≤ C |F |∞ e−cs .

From the above inequality it follows that
∣∣∣∣T

−1
∫ T

0
E[F(X (s)

)∣∣X (0) ∼ μ∗] − μ[F]ds
∣∣∣∣ � T−1 |F |∞
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640 M. Hairer, M. Iberti

and letting T be large enough the last difference can be made arbitrarily small. From the
above estimates we can see that, for arbitrary T > 0,

lim sup
γ→0

∣∣∣Eγ
β,0

[
F(ExtX0

γ )
]

− μ[F]
∣∣∣ ≤ C |F |∞ T−1

and the result follows. ��
Remark 2.5 For bγ = b constant, we actually expect the limiting points to vanish under
the scaling (2.10). On the other hand, for bγ = bγ , one can follow an argument virtually
identical to the one given in this article to show that the limit is given by the law of the �4

2
measure with external magnetic field b.

2.1 Solution of the Limiting Equation

Before the proof of the main theorem, let us briefly explain the construction of the solution
in [4] to the following SPDE

dX =
(
�X +

n∑

j=1

a2 j−1X
2 j−1

)
dt + √

2dW.

As in (2.6), the powers in the above SPDE have to be renormalised in order to find a nontrivial
solution. The precise way the process is renormalised follows [12,17]. Consider at first Z(t)
the solution of the stochastic heat equation

dZ = �Zdt + √
2dW Z(·, 0) = 0,

and therefore in two dimension Z belongs to C([0, T ]; C−ν) a.s. for any ν > 0. Consider the
Galerkin approximation

dZε = �Zεdt + √
2dWε Zε(·, 0) = 0, (2.13)

where dWε is the L2(T2)-projection of the space time white noise on the span of the Fourier
modes generated by {eω}|ω|≤N .

From the above SPDE we see that Zε has a representation in terms of the stochastic
convolution with the heat kernel Pt = et�

Zε(t, x) = √
2
∫ t

0
Pt−sdŴ (s, x).

Define the renormalisation constant

cε := lim
t→∞ E

[
Z2

ε (t, 0) − t

2

]
=

∑

ω∈�N \{0}

1

4π2|ω|2 .

In order to renormalise the process Zε(t) at finite time, it is more convenient to use its time
dependent version

cε(t)
def= E

[
Z2

ε (t, 0)
] = 1

2

∑

ω∈�N

∫ t

0
e−2(t−s)π2|ω|2ds = t

2
+

∑

ω∈�N \{0}

1 − e−2tπ2|ω|2

4π2|ω|2

We therefore define the renormalised powers of the process Zε as

Z :n:
ε (t)

def= Hn(Zε(t), cε(t)).
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By [4, Lemma 3.2], the process Z :n:
ε (t) is Cauchy in L p

(C([0, T ]; C−ν), P
)
for every p ≥ 1

and we will be referring to its limit as Z :n:. To be precise, the result in [4, Lemma 3.2] is
proven for a fixed time, but the extension to the whole process is immediate.

By the variation of constants formula, the solution to (2.13) started from the initial con-
dition X0

ε
def= �εX0 is given by Z̃ε(t) = e�t X0

ε + Zε(t). To extend the definition of the
renormalised powers to the process Z̃ε(t) one uses the following property of the Hermite
polynomial

Hn(a + b, c) =
n∑

j=0

(
n

j

)
bn− j H j (a, c)

and let

Z̃ :n:
ε (t) =

n∑

j=0

(
n

j

) (
e�t X0

ε

)n− j
Z : j :

ε (t).

The above randomvariable iswell definedbecause e�t X0
ε is a smooth function and the product

with Z : j :
ε (t) is in C−ν for any t > 0 (see for instance [13, Corollary 3.2] or Theorems 2.82

and 2.85 in [1] for a proof).
We then set Xε(t) the Galerkin approximation of X (t) solving

{
dXε(t) =

(
�Xε(t) +∑n

j=1 a2 j−1Hn(Xε(t), cε)
)
dt + √

2dWε(t)

Xε(0) = �εX0 ∈ C−ν
(2.14)

Since Hn is a polynomial in both variables, it is possible to replace cε in the above formula
with cε(t) provided one compensates it in the coefficient of the polynomial.

n∑

j=1

a2 j−1Hn(Xε(t), cε) =
n∑

j=1

a2 j−1(t, ε)Hn(Xε(t), cε(t))

with new coefficients a2 j−1(t) depending polynomially only on the old coefficients and on
the difference cε − cε(t). From the definitions of cε and cε(t) one can see that their difference
is diverging logarithmically as t → 0 and therefore each power of a2 j−1(t) is integrable in
[0, T ]. Hence we can rewrite (2.14) as

{
dXε(t) =

(
�Xε(t) +∑n

j=1 a2 j−1(t, ε)Hn(Xε(t), cε(t))
)
dt + √

2dWε(t)

Xε(0) = �εX0 ∈ C−ν
(2.15)

We decompose Xε(t) = Z̃ε(t)+Vε(t)where, for a.e. realisation of Zε, the process Vε solves
the PDE

{
∂t Vε(t) = �Vε(t) +∑n

j=1 a2 j−1(t, ε)Hn

(
Z̃ε(t) + Vε(t), cε(t)

)

Vε(0) = 0
(2.16)

where

Hn

(
Z̃ε(t) + Vε(t), cε(t)

)
=

n∑

j=0

(
n

j

)
V n− j

ε (t)Z̃ : j :
ε (t).

The last product is again well-posed thanks to the fact that Vε(t) ∈ C2−ν−κ for any κ > 0,
from the regularizing properties of the parabolic Eq. (2.16).
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As proven in [4], the processes Vε converge in C([0, T ]; C2−ν) to the solution of
{
dV = �V (t) +∑n

j=1 a2 j−1(t)
∑n

j=0

(n
j

)
V n− j (t)Z̃ : j :(t)

V (0) = 0
(2.17)

where Z̃ : j :(t) def= limε→0 Pt X0 + Z : j :
ε (t). For all κ > 0, the solution of the above PDE is

unique and V ∈ C([0, T ]; C2−ν−κ ) and only depends on the realisation of the process Z
via the tuple (Z̃ , . . . , Z̃ :2n−1:) ∈ L∞([0, T ]; C−ν)n . We summarise it with the following
proposition, essentially proven in [4].

Theorem 2.6 For all ν > 0 and T > 0 there exists a locally Lipschitz continuous function

ST : L∞([0, T ]; C−ν)n → C([0, T ]; C2−ν−κ )

that associates to (Z̃ , Z̃ :2: . . . , Z̃ :2n−1:) the solution of (2.17).

Using the definitions above, we now outline the skeleton of the proof in [12]. First of
all we want to remark that we made the decision of absorbing the initial conditions in the
process Z̃ε , instead we could have started (2.16) from �εX0

γ and defined a similar solution

map SX0

T . Consider Zγ the solution to the linearised part of (2.7) satisfying

Zγ (t, x) =
∫ t

0
�γ Zγ (s, x)ds + Mγ (t, x), (2.18)

which is an approximation to the stochastic heat equation. In [4] and [12] the authors provided
a useful definition of Z :n:

γ the renormalized powers of Zγ that we will not introduce here. In
this article will only use the fact that for any T > 0, q > 0, ν > 0, j ≥ 0 and λ > 0,

lim sup
γ→0

E

[
sup

s∈[0,T ]
sλ
∥∥Hj

(
Zγ (s, ·), cγ

)∥∥qC−ν

]
< ∞, (2.19)

which follows from [12, Eq. (3.15), Propositions 5.3 and 5.4].

In [12, Sect. 6] it is proven that processes
(
Zγ , Z :2:

γ , . . . , Z :2n−1:
γ

)
jointly converge in law

to
(
Z , Z :2:, . . . , Z :2n−1:). Using the decomposition Xγ = Zγ + Vγ , it is possible to see that

Vγ satisfies an equation similar to (2.16), with initial condition X0
γ and

∥∥∥∥Vγ − SX0
γ

T

(
Zγ , Z :2:

γ , . . . , Z :2n−1:
γ

)∥∥∥∥
L∞([0,T ];C−ν )

→ 0.

Therefore, by the continuity of ST , we have that, as γ → 0,

Xγ ∼ Zγ + SX0
γ

T

(
Zγ , Z :2:

γ , . . . , Z :2n−1:
γ

) L−→ Z + SX0

T

(
Z , Z :2:, . . . , Z :2n−1:) = X,

as required.

3 Proof of Theorem 2.1

We are now going to prove the statements used in Sect. 2 and in particular Theorem 2.1.
We first obtain a very suboptimal bound on Xγ which can be used as a starting point for the
derivation of sharper bounds.
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Proposition 3.1 Let p ≥ 2 an even integer, and λ ∈ [0, 1] then there exists C(p, λ) > 0
such that

E
[ ∥∥Xγ (t, ·)∥∥pL p(�ε)

] ≤ C
(
E
[ ∥∥Xγ (0, ·)∥∥pL p(�ε)

]1−λ
t−

p
2 λ
)

∨ γ − p
2 .

In particular, if we start the process from the invariant measure, we obtain that there exists
C = C(p) > 0 such that for all t ≥ 0

Eγ
β,0

[ ∥∥Xγ

∥∥p
L p(�ε)

] = E
γ
β,0

[ ∥∥Xγ (t, ·)∥∥pL p(�ε)

] ≤ Cγ − p
2 (3.1)

Proof In the following proof we will denote with C a generic constant whose value depends
on p and might change from line to line. Recall the action of the generator of the Glauber
dynamic (2.3):

Lγ h
p
γ (t, x) =

∑

z∈�N

cγ (z, σ (t))
( (

hγ (t, x) − 2σz(t)κγ (z − x)
)p − h p

γ (t, x)
)

≤ p
(− hγ + κγ ∗ tanh(βhγ )

)
(t, x)h p−1

γ (t, x) + C
(|hγ (t, x)| + γ 2)p−2

γ 2.

The second inequality is a consequence of the fact that
∥∥κγ

∥∥∞ � γ 2 and
∥∥κγ

∥∥
L1 � 1. We

can take the average over x ∈ �N to obtain

Lγ

∥∥hγ (t)
∥∥p
L p(�N )

≤ p
〈
h p−1

γ (t), κγ ∗ tanh(βhγ (t))
〉

�N
− p

∥∥hγ (t)
∥∥p
L p(�N )

+Cγ 2
∥∥hγ (t)

∥∥p−2
L p−2(�N )

+ Cγ 2p−2.

We use the fact that p is even and the hyperbolic tangent is monotone to bound
〈
h p−1

γ (t), κγ ∗ tanh(βhγ (t))
〉

�N
=
〈
h p−1

γ (t), tanh(βhγ (t))
〉

�N

+1

2

∑

x,y∈�N

κγ (x − y)
(
h p−1

γ (t, x) − h p−1
γ (t, y)

)(
tanh(βhγ (t, y)) − tanh(βhγ (t, x))

)

≤
〈
h p−1

γ (t), tanh(βhγ (t))
〉

�N
.

Moreover, it is easy to see that there exists a constant c0 > 0 such that

tanh(βh)

h
≤ β − c0h

2 for h ∈ [1, 1].

Since |hγ (t, x)| ≤ 1 and β = 1 + γ 2(cγ + A), we can bound Lγ

∥∥hγ (t)
∥∥p
L p(�N )

by

p[β − 1] ∥∥hγ (t)
∥∥p
L p(�N )

− c0 p
∥∥hγ (t)

∥∥p+2
L p+2(�N )

+ Cγ 2
∥∥hγ (t)

∥∥p−2
L p−2(�N )

+ Cγ 2p−2

≤ C(γ 2cγ )
p+2
2 − c0

2
p
∥∥hγ (t)

∥∥p+2
L p(�N )

+ Cγ
p+2
2 + Cγ 2p−2

≤ −c0
2
p
∥∥hγ (t)

∥∥p+2
L p(�N )

+ Cγ
p+2
2 ,

where we used the fact that |A| ≤ cγ ≤ γ −1 for γ small enough and the generalised Young
inequality in the last line. Therefore, taking the expectation

E
[ ∥∥hγ (α−1t)

∥∥p
L p(�N )

]

≤ E
[ ∥∥hγ (0)

∥∥p
L p(�N )

]+ α−1
∫ t

0
−c0

2
pE
[ ∥∥hγ (α−1s)

∥∥p+2
L p(�N )

]+ Cγ
p+2
2 ds
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and multiplying both sides by γ −p and applying Jensen’s inequality we obtain

E
[ ∥∥Xγ (t)

∥∥p
L p(�ε)

] = E
[ ∥∥Xγ (0)

∥∥p
L p(�ε)

]+
∫ t

0
E
[
Lγ

∥∥Xγ (s)
∥∥p
L p(�ε)

]
ds

≤ E
[ ∥∥Xγ (0)

∥∥p
L p(�ε)

]− c0
2
pγ 2

∫ t

0
E
[ ∥∥Xγ (s)

∥∥p
L p(�ε)

] p+2
p ds + Cγ

2−p
2 .

From the comparison test in Lemma 4.10 we have that

E
[ ∥∥Xγ (t)

∥∥p
L p(�ε)

]
�

E
[ ∥∥Xγ (0)

∥∥p
L p

]

(
1 + CtE

[ ∥∥Xγ (0)
∥∥p
L p(�ε)

] 2
p
) p
2

∨ γ − p
2 ,

and the result follows. ��
Remark 3.2 Despite its simplicity, Proposition 3.1 has the advantage of making the proof
of [12, Theorem 6.1] simpler, avoiding the need for the stopping time τγ,m and providing
sufficient control over [12, Eq. (6.7)].

Proposition 3.3 Recall the definitions given in Sect. 2 of the processes Xγ , Zγ and Vγ :=
Xγ − Zγ . We want to remark that Vγ is not similar to of Vε, because of the initial condition
[see (2.17)]. Let p ≥ 2 an even integer. Then there exist ν0 > 0, λ j,i > 0 for i = 1, 2 and
j = 0, 1, 2 such that for all 0 < ν < ν0 and 0 ≤ s ≤ t ≤ T

∥∥Vγ (t, ·)∥∥pL p(�ε)
− ∥∥Vγ (s, ·)∥∥pL p(�ε)

+C1

∫ t

s

∥∥Vγ (r, ·)∥∥p+2
L p(�ε)

dr + C1

∫ t

s

〈
V p−1

γ (r), (−�γ )Vγ (r)
〉

�ε

dr

≤ C2

∫ t

s

3∑

j=0

∑

i=1,2

∥∥Hj (Zγ (r, ·), cγ )
∥∥λ j,i

C−ν (�ε)
dr +

∫ t

s
Err(r) dr (3.2)

where, for every q > 0

sup
0≤r≤T

E
γ
β,0

[
Errq(r)

] 1
q � C3(p, q, T )γ

p−2
6 −2ν (p−2)

3 . (3.3)

Proof The proof follows the argument provided in [18, Proposition 3.7] for the dynamical
�4

2 model, but applied to the model of [12], with the important difference that in our case all
the operators are discrete operators. Without loss of generality, we will prove (3.2) starting
at time s = 0 from V 0

γ = X0
γ .

In the following calculations, since there is no possibility of confusion, we will use L p

instead of L p(�ε), and 〈·, ·〉 instead of 〈·, ·〉�ε
. From (2.7) and (2.18) we see that Vγ (t, x)

satisfies, for x ∈ �ε, t ≥ 0

Vγ (t, x)

= V 0
γ (x) +

∫ t

0
�γ Vγ (s, x)ds +

∫ t

0
γ −2Kγ ∗ (γ −1 tanh(βγ Xγ (s, x)) − Xγ (s, x)

)
ds

and in particular Vγ (t, x) is continuous and weakly differentiable in time, for all γ > 0.
Recall that β = 1 + γ 2(cγ + A) and expand the hyperbolic tangent up to third order

tanh(βγ Xγ (s)) = γ Xγ (s) + γ 3(cγ + A)Xγ (s) − γ 3

3
X3

γ (s)

+ γ 3(β − 1)O
(
X3

γ (s)
)

+ O
(
γ 5X5

γ (s)
)

.
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With the above formula the derivative of the discrete L p norm of Vγ is calculated

∥∥Vγ (t)
∥∥p
L p =

∥∥∥V 0
γ

∥∥∥
p

L p
+ p

∫ t

0

〈
V p−1

γ ,�γ Vγ

〉
(s) ds + 1

3
D(s) + B(s) ds (3.4)

where

D(s) = −
〈
Kγ ∗ V p−1

γ (s), X3
γ (s) − 3(cγ + A)Xγ (s)

〉

and B(s) is produced by the remainder of the Taylor expansion of the hyperbolic tangent

B(s) ≤ Cγ 2
〈
|V p−1

γ |(s), cγ |Xγ |3(s) + |Xγ |5(s)
〉
. (3.5)

where we used the fact that |A| ≤ cγ for γ small enough.We will first replace D(s) with

D1(s) := −
〈
V p−1

γ (s), X3
γ (s) − 3cγ Xγ (s)

〉
+ 3A

〈
V p−1

γ (s), Xγ (s)
〉

≤ −
∥∥∥V p+2

γ (s)
∥∥∥
L1

+ 3
∣∣∣
〈
V p+1

γ (s), Zγ (s)
〉∣∣∣+ 3

∣∣∣
〈
V p

γ (s), H2(Zγ (s), cγ )
〉∣∣∣

+
∣∣∣
〈
V p−1

γ (s), H3(Zγ (s), cγ )
〉∣∣∣+ 3A

∥∥∥V p
γ (s)

∥∥∥
L1

+ 3A
∣∣∣
〈
V p−1

γ (s), Zγ (s)
〉∣∣∣
(3.6)

Let

Ls
def= ∥∥Vγ (s)

∥∥p+2
L p+2 , Ks

def=
〈
V p−1

γ (s),�γ Vγ (s)
〉
.

Those terms are the good terms of (3.4), and the idea is now to bound all the other errors
|D(s) − D1(s)| with expression containing Ls and Ks . In the following calculations we
assume γ to be small enough such that |A| ≤ cγ . The cost of replacing D(s) with D1(s) is
given by

|D(s) − D1(s)| ≤
∑

x,y∈�ε

ε4Kγ (x − y)
∣∣∣V p−1

γ (s, y) − V p−1
γ (s, x)

∣∣∣

× ∣∣(X3
γ (s, y) − X3

γ (s, x)
)− 3(cγ + A)

(
Xγ (s, y) − Xγ (s, x)

) ∣∣

≤ 3
∑

x,y∈�ε

ε4Kγ (x − y)
∣∣∣V p−1

γ (s, y) − V p−1
γ (s, x)

∣∣∣

× (∣∣Vγ (s, y) − Vγ (s, x)
∣∣+ ∣∣Zγ (s, y) − Zγ (s, x)

∣∣ )
(
2cγ + X2

γ (s, x)
)

.

Denote with

D2 = 3
∑

x,y∈�ε

ε4Kγ (x − y)
∣∣∣V p−1

γ (s, y) − V p−1
γ (s, x)

∣∣∣

× ∣∣Vγ (s, y) − Vγ (s, x)
∣∣
(
2cγ + X2

γ (s, x)
)

D3 = 3
∑

x,y∈�ε

ε4Kγ (x − y)
∣∣∣V p−1

γ (s, y) − V p−1
γ (s, x)

∣∣∣

× ∣∣Zγ (s, y) − Zγ (s, x)
∣∣
(
2cγ + X2

γ (s, x)
)

.

We will now bound D3 with a small multiple of Ls and Ks plus an error in (3.3), the term
D2 can be bounded in a similar way.
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By an − bn = (a − b)(an−1 + · · · + bn−1) and the generalized Young inequality

a p−1 − bp−1 = (a − b)(a p−2 + · · · + bp−2)

≤ |a p−1 − bp−1| |a − b|
2λ

+ (|a|p−1 + |b|p−1)λ2p−2

Therefore, applying the previous inequality to each summands of D3 and choosing λ =
c−1
1 (γ −1ε)2

∣∣Zγ (s, y) − Zγ (s, x)
∣∣
(
2cγ + X2

γ (s, x)
)
we have that

D3 ≤ c1Ks + Cc−1
1 (ε2γ −2)

∑

x∈�ε

ε2|V p−1
γ (s, x)||Zγ (s, x)|

(
cγ + X2

γ (s, x)
)

≤ c1Ks + c1Ls + Cc−1
1

∥∥∥ε2γ −2|Zγ (s)|
(
cγ + X2

γ (s)
)∥∥∥

(p−2)/3

L
p−2
3

(3.7)

where c1 > 0 can be chosen to be for instance c1 = 1/8. The last term will be part of the
error (3.3). Recall that ε = γ 2 and the last term of (3.7) is bounded in expectation using
Proposition 3.1, Lemma 4.2 and (2.19)

E
γ
β,0

[∥∥∥ε2γ −2|Zγ (s)|
(
cγ + X2

γ (s)
)∥∥∥

(p−2)/3

L
p−2
3

]

≤ E
γ
β,0

[∥∥Zγ (s)
∥∥2(p−2)/3
C−ν (T2)

]1/2 (
(γ 2cγ )

2(p−2)
3 + E

γ
β,0

[∥∥γ Xγ (s)
∥∥2(p−2)/3
L2(p−2)/3

])1/2

≤ C(T )γ
p−2
6 −2ν (p−2)

3 (3.8)

which is negligible if ν is small enough and p > 2. It is immediate to generalize (3.8) to any
power, as in (3.3).

We will then bound the term B(t) in (3.5) with Proposition 3.1. Using Young’s inequality
we have that

B(s) ≤ Cγ 2
〈
|V p−1

γ |(s), cγ +
∣∣∣Z2

γ (s) + 2Vγ (s)Zγ (s) + V 2
γ (s)

∣∣∣ |Xγ |3(s)
〉

≤ 1

24

∥∥Vγ (s)
∥∥p+2
L p+2 + Cc

p+2
3

γ

∥∥(γ
2
3 Xγ (s))p+2

∥∥
L1

+C
∥∥Z

2p+4
3

γ (γ 2X3
γ (s))

p+2
3
∥∥
L1 +

∥∥Z
p+2
2

γ (γ 2X3
γ (s))

p+2
2
∥∥
L1 +

∥∥∥(γ 2X3
γ (s))p+2

∥∥∥
L1

.

The constant 1/24 has been arbitrarily chosen in order to control B(s) with a small multiple
of Ls plus a quantity that will be part of the error in (3.3) and can be bounded in expectation,

as we did in (3.8), by C(T )γ
p+2
6 −2ν 2p+4

3 , which is negligible for ν small enough.
We are now in the setting of [18, Eq. (3.13)], namely the discrete process Vγ satisfies

∥∥Vγ (t)
∥∥p
L p − p

∫ t

0

5

6
Ks + 5

24
Ls ds

≤
∥∥∥V 0

γ

∥∥∥
p

L p
+ p

3

∫ t

0

2∑

j=0

(
3

j

) 〈
V p−1+ j

γ (s), H3− j (Zγ (s), cγ )
〉
ds

+ A
∫ t

0

∣∣∣
〈
V p−1

γ (s), (Vγ (s) + Zγ (s))
〉∣∣∣ ds +

∫ t

0
Err(s)ds, (3.9)
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where E
γ
β,0[|Err(s)|q ]

1
q ≤ C(T, p, q)γ

p−2
6 −2ν (p−2)

3 for any positive q . We will now show
that, for ν small enough and j = 0, 1, 2, there exist λ j,1, λ j,1 > 0

〈
V p−1+ j

γ , H3− j (Zγ (s), cγ )
〉

�
(
L

p−1+ j
p+2 −ν

p
p+2

s K ν
s + L

p−1+ j
p+2

s

)∥∥H3− j (Zγ (s), cγ )
∥∥C−ν (�ε)

≤ 1

7
Ks + 1

30
Ls + C

∑

i=1,2

∥∥H3− j (Zγ (s), cγ )
∥∥λi
C−ν (�ε)

(3.10)

where the last line follows from the Young inequality for ν sufficiently small. In a similar
way,

A
∣∣∣
〈
V p−1

γ (s), (Vγ (s) + Zγ (s))
〉∣∣∣ ≤ 1

7
Ks + 1

30
Ls + C(A)

(
1 + ∥∥Zγ (s)

∥∥λi
C−ν (�ε)

)
(3.11)

Recall that all the norms appearing the proof so far are norms on the discrete lattice. The
same proof of [18, Prop. 3.7] can be used to prove (3.10) and (3.11), provided the same
inequalities hold in the discrete setting.

We are going to prove (3.10), (3.11) being essentially the same. Using the duality for
discrete Besov spaces proved in Proposition 4.6,
〈
V p−1+ j

γ (s), H3− j (Zγ (s), cγ )
〉

�ε

≤
∥∥∥V p−1+ j

γ (s)
∥∥∥Bν

1,1(�ε)

∥∥H3− j (Zγ (s), cγ )
∥∥C−ν (�ε)

.

We then control
∥∥V p−1+ j

γ (s)
∥∥Bν

1,1(�ε)
with Lemma 4.7. From (4.7) applied to f (x) =

V p−1+ j
γ (s, x)

‖ f ‖Bν
1,1(�ε)

� ‖ f ‖1−2ν
L1(�ε)

⎛

⎝
∑

x,y∈�ε

ε4Kγ (x − y)ε−1γ | f (x) − f (y)|
⎞

⎠
2ν

+ ‖ f ‖L1(�ε)
.

We will now estimate the term inside the brackets. For p even and j ∈ N, we have

∣∣∣a p−1+ j − bp−1+ j
∣∣∣

p−1
p−1+ j ≤ ∣∣a p−1 − bp−1

∣∣

the above equation follows easily from the Minkowski inequality if one assumes a and b to
have the same sign. If the a and b have different signs, the inequality follows by the fact that
p is an even integer and hence the right-hand-side is equal to |a|p−1 + |b|p−1. Therefore
from the generalized Young inequality for λ > 0

∣∣∣a p−1+ j − bp−1+ j
∣∣∣ ≤ ∣∣a p−1 − bp−1

∣∣ ∣∣a p−1 − bp−1
∣∣

j
p−1

≤ λ
∣∣a p−1 − bp−1

∣∣ |a − b| + C

λ

(
|a|p−2+2 j + |b|p−2+2 j

)
,

we have for every λ > 0
∑

x,y∈�ε

ε2Kγ (x − y)ε−1γ

∣∣∣V p−1+ j
γ (s, x) − V p−1+ j

γ (s, y)
∣∣∣

� λ
〈
V p−1

γ (s),�γ Vγ (s)
〉
+ 1

λ

∥∥∥V p+2+2 j
γ (s)

∥∥∥
L1
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and optimizing in λ we get (3.10). Finally we can combine (3.9) and (3.10) to conclude the
proof.

We remark that the right-hand-side of (3.10) is slightly different from [18] sincewe have to
use�γ , the discrete (long range) Laplacian, which is a good approximation of the continuous
Laplacian only on low frequencies. ��

We now turn to the proof of Theorem 2.1, which follows the lines of [18, Corollary 3.10].

Proof of Theorem 2.1 By the monotonicity of Lq norms it is sufficient to prove the statement
of Theorem 2.1 for q large enough. In the following proof C will denote a constant possibly
changing from line to line. The Gibbs measure Pγ

β,0 is an invariant measure for the Glauber
dynamic. Let T ≥ 0 and consider

Eγ
β,0

[ ∥∥Xγ

∥∥qC−ν

] = 2

T

∫ T

T/2
E

γ
β,0

[ ∥∥Xγ (s)
∥∥qC−ν

]
ds. (3.12)

From the definition of Vγ we can write
∥∥Xγ (s)

∥∥C−ν ≤ ∥∥Zγ (s)
∥∥C−ν + ∥∥Vγ (s)

∥∥C−ν

By (2.19) proven in [12, Proposition 5.4], we have that

E
γ
β,0

[
sup

s∈[T/4,T ]
∥∥Hj (Zγ (s), cγ )

∥∥qC−ν

]
≤ C(T, q, j) (3.13)

where the proportionality constantmay depend on T and q . From the definition of the discrete
Besov norm it follows that (3.13) holds true also when we replace the Besov norm with the
discrete Besov Norm. By Proposition 4.4 and Lemma 4.2, for any q > d/ν and κ > 0 there
exists C(p, κ)

∥∥Vγ (s)
∥∥C−ν ≤ ∥∥ExtVγ (s)

∥∥
Lq (T2)

�
∥∥Vγ (s)

∥∥
Lq (�ε)

+ ε−κ
∥∥Vγ (s)

∥∥1−
1
q

L2q−2(�ε)

{ ∑

|x−y|=ε
x,y∈�ε

ε2(Vγ (s, y) − Vγ (s, x))2
} 1

2q

(3.14)

where the proportionality constant depends on q and κ .
In Proposition 3.3, using (3.13) and (3.3) we obtain that

E
γ
β,0

[∥∥Vγ (t)
∥∥q
Lq (�ε)

]
+ C1

∫ t

s
E

γ
β,0

[∥∥Vγ (r)
∥∥q
Lq (�ε)

] q+2
p

dr

+C1

∫ t

s
E

γ
β,0

[〈
V q−1

γ (r), (−�γ )Vγ (r)
〉

�ε

]
dr

≤ E
γ
β,0

[∥∥Vγ (s)
∥∥q
Lq (�ε)

]
+ C(q, T ) (3.15)

From Lemma 4.10, applied to E
γ
β,0

[∥∥Vγ (t)
∥∥q
Lq (�ε)

]
we have that there exists C(q, T ) such

that for all T/4 ≤ s ≤ t ≤ T we have

E
γ
β,0

[∥∥Vγ (t)
∥∥q
Lq (�ε)

]
� C(q, T )

(
|t − s|− q

2 ∨ 1
)

.
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Let us choose s = T/4 and t ∈ [T/2, T ]: from the above inequality we have that

E
γ
β,0

[∥∥Vγ (t)
∥∥p
L p(�ε)

]
≤ C(p, T ). (3.16)

At this point we only need to provide a bound for
∑

|x−y|=ε
x,y∈�ε

ε2(Vγ (s, y) − Vγ (s, x))2 � ε2
∑

ω∈�N

|ω|2|V̂γ (s)|2.

By (4.9), the operator �γ approximates the discrete Laplacian only for low frequencies
|ω| ≤ γ −1

|�̂γ Vγ (s)(ω)| = γ −2(1 − K̂γ (ω))|V̂γ (s)(ω)| ≥ c|ω|2|V̂γ (s)(ω)|.
On the other hand, for high frequencies γ −1 ≤ |ω| ≤ γ −2, we have

|�̂γ Vγ (s)(ω)| ≥ γ −2(1 − K̂γ (ω))|V̂γ (s)(ω)| � γ −2|V̂γ (s)(ω)|,
hence for all ω ∈ �N ,

|ω|2|V̂γ (s)|2 ≤ γ −2(|ω|2 ∧ γ −2)|V̂γ (s)(ω)|2 ≤ γ −4(1 − K̂γ (ω))|V̂γ (s)(ω)|2

and therefore
∑

ω∈�N

|ω|2|V̂γ (s)|2 ≤ γ −2 〈Vγ (s), (−�γ )Vγ (s)
〉
�ε

.

Equation (3.15) holds for any positive even integer q ≥ 2 and T/4 ≤ s ≤ t ≤ T , if we
choose s = T/2, t = T and q = 2 we can conclude that

∫ T

T/2

∑

|x−y|=ε

ε2(Vγ (s, y) − Vγ (s, x))2ds

≤ ε2γ −2
∫ T

T/2
E

γ
β,0

[〈
Vγ (r), (−�γ )Vγ (r)

〉
�ε

]
dr ≤ C(T ). (3.17)

It is sufficient now to control the right-hand-side of (3.12)with (3.14). Again choose s = T/2,
t = T in (3.15): by (3.13), (3.16) and (3.17)

Eγ
β,0

[ ∥∥Xγ

∥∥qC−ν

] ≤ 2

T

∫ T

T/2
E

γ
β,0

[ ∥∥Zγ (s)
∥∥qC−ν

]+ E
γ
β,0

[ ∥∥Vγ (s)
∥∥qC−ν

]
ds

≤ C(T, q, κ)

∫ T

T/2
E

γ
β,0

[ ∥∥Zγ (s)
∥∥qC−ν

]+ E
γ
β,0

∥∥Vγ (s)
∥∥q
Lq ds

+ C(T, q, κ) E
γ
β,0

∫ T

T/2

∥∥Vγ (s)
∥∥q−1
L2q−1 ε−qκ

⎧
⎪⎪⎨

⎪⎪⎩

∑

|x−y|=ε
x,y∈�ε

ε2(Vγ (s, y) − Vγ (s, x))2

⎫
⎪⎪⎬

⎪⎪⎭

1
2

ds

≤ C(T, q, κ)

(
1 + ε−qκεγ −1

{∫ T

T/2
E

γ
β,0

[〈
Vγ (r), (−�γ )Vγ (r)

〉
�ε

]
dr

}1/2)
,

where in the last line we applied the Cauchy-Schwarz inequality. The claim follows by
choosing κ > 0 small enough. ��
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4 Bounds for Discrete Besov Spaces

In this sectionwe collect and prove some results in the context of discrete Besov spaces which
are difficult to find. Let us first define the Besov norm on the discrete torus as follows. The
definitions and proofs are based upon [12,13] and [1]. In [1, Proposition 2.10] it is proven
the existence of continuous functions χ̃ , χ : R

d → R such that

supp(χ̃) ⊆ B0(4/3), supp(χ) ⊆ B0(8/3) \ B0(3/4)

and such that, setting

χ−1
def= χ̃ , χk(·) def= χ(2−k ·) for (k ≥ 0)

one has χ̃ (r) +∑∞
k=0 χ(2−k r) = 1 for all r ∈ R

d .
For g : T

d → R define the projection onto the k-th Paley-Littlewood block as

δkg(x) = 2−d
∑

ω∈Zd

χk(ω) ĝ(ω)eω(x) (4.1)

for x ∈ T
d and k ≥ −1. [The factor 2−d is such that

∑
k δkg = g, see also (1.6).] Recall that

the continuous Besov norm given in (1.7) is then defined in terms of these projections.
Wenowdefine a version of theBesov norm for functions defined in the discrete lattice. This

is obtained by not only extending the functionwith the extension operator of Sect. 1.1, but also
performing the L p norm in (1.7) on the discrete space �d

ε instead of T
d . Let f : �ε → R,

for ν ∈ R, p, q ∈ [1,∞], with ‖·‖Bν
p,q (�d

ε ) we define

‖ f ‖Bν
p,q (�d

ε )
def=
⎧
⎨

⎩

(∑
k≥−1 2

νkq ‖δkExt( f )‖qL p(�d
ε )

) 1
q

if q < ∞
supk≥−1 2

νk ‖δkExt( f )‖L p(�d
ε ) if q = ∞

(4.2)

It is clear, from the definitions of Ext(g), (4.1) and (4.3), that for x ∈ �d
ε

δkExt( f )(x) = 2−d
∑

ω∈�d
N

χk(ω) f̂ (ω)eω(x) = ηN
k ∗ f (x) for x ∈ �ε

where ηN
k (x) is defined, for k ≥ −1 and x ∈ T

d , by

ηN
k (x)

def= 2−d
∑

ω∈�d
N

χk(ω)eω(x), (4.3)

where we abused the notations omitting N from the definition of ηN
k .

Remark 4.1 We could have easily avoided the definition of a discrete version of the Besov
norm. There is only one point where such definition is really needed, and this is in Propo-
sition 3.3 and Lemma 4.7, where we need to control the Besov norm with a combination of
discrete L p norms.

The next lemma is a minor generalisation of [12, Lemma B.6].

Lemma 4.2 For p ∈ [1,∞] and κ > 0, there exists a constant C such that for all f : �ε →
R,

‖Ext( f )‖L p(T2) ≤ C log2(ε−1) ‖ f ‖L p(�ε)
(4.4)
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‖Ext( f )‖L p(T2) ≤ C ‖ f ‖L p(�ε)

+ Cε−κ ‖ f ‖1−
1
p

L2p−2(�ε)

⎧
⎪⎪⎨

⎪⎪⎩

∑

|x−y|=ε
x,y∈�ε

ε2( f (y) − f (x))2

⎫
⎪⎪⎬

⎪⎪⎭

1
2p

. (4.5)

The same lemma holds true in any dimension, with a factor C(d) logd(ε−1) in (4.4).

Proof Wefirst show (4.4).Recall that from the definition of the extension operatorExt f (x) =
f (x) for x ∈ �2

ε , and

Ext( f )(x) =
∑

z∈�ε

ε2 f (z)
∏

j=1,2

sin
(
πε−1(x j − z j )

)

2 sin
(

π
2 (x j − z j )

) x ∈ T
2.

Using the inequality sin(2ε−1a)/ sin(a) � ε−1 ∧ |a|−1 we can bound

|Ext( f )(x)| �
∑

z∈�ε

ε2| f (z)|
∏

j=1,2

ε−1 ∧ |zi − xi |−1.

For x ∈ T
2, denote with [x]ε the closest point to x in �ε. We can then rewrite the above

inequality as

|Ext( f )(x)| �
∑

z∈�ε

ε2| f (z + [x]ε)|
∏

j=1,2

ε−1 ∧ |zi + [x]ε,i − xi |−1.

we observe now that if |zi | ≤ ε, then |zi + [x]ε,i − xi |−1 � ε−1, while if |zi | > ε we have
that |zi + [x]ε,i − xi |−1 � |zi |−1 � ε−1, hence

|Ext( f )(x)| �
∑

z∈�ε

ε2| f (z + [x]ε)|
∏

j=1,2

ε−1 ∧ |zi |−1,

and taking the L p(T2, dx) norm yields

( ∫

T2
| f ([x]ε)|pdx

) 1
p
(
1 + 2

∑

1≤k≤ε−1

k−1
)2

� ‖ f ‖L p(�ε)
log2(ε−1),

as claimed. The inequality (4.5) is a consequence of Hölder’s inequality

‖Ext( f )‖p
L p(T2)

� ‖ f ‖p
L p(�ε)

+
∫

|y|≤ε/2
|Ext f (x + y) − f (x)|pd2y

≤ ‖ f ‖p
L p(�ε)

+ ‖Ext f ‖p−1
L2p−2(T2)

⎛

⎝
∑

x∈�ε

∫

|y|≤ε/2
| f (x + y)− f (x)|2d2y

⎞

⎠

1
2

≤ ‖ f ‖p
L p(�ε)

+ ‖Ext f ‖p−1
L2p−2(T2)

⎛

⎝
∑

x∈�ε

∫

|y|≤ε/2
| f (x + y)− f (x)|2d2y

⎞

⎠

1
2

≤ ‖ f ‖p
L p(�ε)

+ ε ‖Ext f ‖p−1
L2p−2(T2)

‖Ext f ‖Ḣ1(T2)
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wherewedenoted by‖Ext f ‖Ḣ1(T2) the homogeneousSobolev seminorm.From thedefinition
of the extension operator it is easy to see that

‖Ext f ‖2
Ḣ1(T2)

=
∑

ω∈�N

|ω|2| f̂ (ω)|2 �
∑

|x−y|=ε
x,y∈�ε

ε2
( f (y) − f (x))2

ε2
,

and an application of (4.4) yields (4.5). ��
Let d ∈ N

+ and �d
ε a discretisation of the d-dimensional torus T

d = [−1, 1]d .
Lemma 4.3 Let χ : R

d → R be a smooth function with compact support. For every p ∈
[0,∞] we have supλ∈(0,1) λ

d
(
1− 1

p

) ∥∥∥
∑

w∈�N
χ(λw)ew

∥∥∥
L p(�d

ε )
< ∞.

The above result is proven in [12, Lemma B.1] for the continuous L(Td ) norm, the gen-
eralisation to �d

ε follows trivially from the same argument. See also [13] for a proof in the
case of a continuous Fourier transform. We quote in the next proposition a useful embedding
between Besov and L p spaces proven, for instance, in [1, Proposition 2.39].

Proposition 4.4 For any ν > 0, and p ≥ d
ν
there exists C > 0

‖ f ‖B−ν∞,∞(Td ) ≤ C ‖ f ‖L p(Td )

We also mention some classical estimates for Besov norms restated in case of discrete
Besov spaces. The proofs are omitted since they follow closely their continuous counterparts.

Proposition 4.5 (Product estimates for discrete Besov spaces) Let β < 0 < α and p, q ∈
[1,∞]. There exists C > 0 such that, uniformly over ε ∈ (0, 1],

‖ f ‖Bβ
p,q (�ε)

≤ C ‖ f ‖Bα
p,q (�ε)

‖g‖Bβ
p,q (�ε)

.

Proposition 4.6 (Duality for discrete Besov spaces) Let α ∈ R, p, q, p′, q ′ ≥ 1 with
1
p + 1

p′ = 1
q + 1

q ′ = 1. There exists C > 0 such that, uniformly over ε ∈ (0, 1],
〈 f, g〉�ε

≤ C ‖ f ‖Bα
p,q (�ε)

‖g‖B−α

p′,q′ (�ε)
.

The next proposition is the main technical tool of the paper, and it allows to control the
discrete Besov norm with the same discrete Laplacian of the dynamic. Recall that, in the
case of continuous Besov spaces, for a differentiable function f and ν ∈ (0, 1), one has [13,
Proposition 3.8]

‖ f ‖Bν
1,1

� ‖ f ‖L1 + ‖ f ‖1−ν

L1 ‖∇ f ‖ν
L1 . (4.6)

We have the following analogue of this result.

Lemma 4.7 For f : �ε → R and ν ∈ (0, 1/2)

‖ f ‖Bν
1,1(�ε)

� ‖ f ‖1−2ν
L1(�ε)

⎛

⎝
∑

x,y∈�ε

ε4Kγ (x − y)ε−1γ | f (x) − f (y)|
⎞

⎠
2ν

+ ‖ f ‖L1(�ε)

(4.7)

where the constant is independent of ε or f .
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Remark 4.8 Here we write x − y for the shortest element in the corresponding equivalence
class (viewing�ε as a quotient ofZ

2
ε withZε = εZ). In cases where this might be ambiguous

one has Kγ (x − y) = 0 for all possible interpretations anyway. Another equivalent interpre-
tation is that one of the variables runs over �ε and the other one runs over all of Zε , f being
identified with its periodic continuation.

Compare (4.7) with (4.6). The factor 2 in front of ν depends on the scale at which �γ

changes its behaviour, and this is not the best result that is possible to obtain.

Proof Rewrite the definition of ‖ f ‖Bν
1,1(�ε)

in (4.2) as

‖ f ‖Bν
1,1(�ε)

=
∑

k≥−1

2νk
∥∥∥ηN

k ∗ f
∥∥∥
L1(�ε)

(4.8)

where ηN
k are the projections on the Paley-Littlewood blocks defined in (4.3). In the discrete

case the summation over k extends up to a multiple of log(ε−1). In the proof, since there is
no possibility of confusion, we will use L p instead of L p(�ε). We will divide the sum into

∑

−1≤k≤L

2νk
∥∥∥ηN

k ∗ f
∥∥∥
L1

+
∑

L<k≤− log2(ε)

2νk
∥∥∥ηN

k ∗ f
∥∥∥
L1

where L will be chosen later. We bound the first part with
∑

−1≤k≤L

2νk
∥∥∥ηN

k ∗ f
∥∥∥
L1

≤
∑

−1≤k≤L

2νk sup
k′≤L

∥∥∥ηN
k′
∥∥∥
L1

‖ f ‖L1 � 2νL ‖ f ‖L1 . (4.9)

In order to control the second summation we will now prove, for k ≥ 0, the inequality
∥∥∥ηN

k ∗ f
∥∥∥
L1

�
(
2−k ∨ εγ −1

) ∑

x,y∈�ε

ε4Kγ (x − y)
| f (y) − f (x)|

εγ −1 . (4.10)

If k ≥ 0 the projection kernel ηN
k has mean zero and therefore

∥∥∥ηN
k ∗ f

∥∥∥
L1

=
∑

x∈�ε

ε2

∣∣∣∣∣∣

∑

y∈�ε

ε2ηN
k (−y)

(
f (x + y) − f (x)

)
∣∣∣∣∣∣
.

At this point the treatment differs from the proof of [13, Proposition 3.8], because of the
particular form of the Laplacian. The definition of Kγ (in particular the continuity of K)
implies that there exists b0 > 0 such that

inf
|w|≤b0εγ −1

∑

z∈Zε

ε2
(
Kγ (z) ∧ Kγ (w − z)

) ≥ 1/2.

If |y| ≤ b0εγ −1, then
∣∣∣ f (x + y) − f (x)

∣∣∣ ≤ 2
( ∑

z∈Zε

ε2
(
Kγ (z) ∧ Kγ (y − z)

))∣∣∣ f (x + y) − f (x)
∣∣∣

≤ 2ε2
∑

z∈Zε

Kγ (y − z)
∣∣∣ f (x + y) − f (x + z)

∣∣∣+ Kγ (z)
∣∣∣ f (x + z) − f (x)

∣∣∣.

If |y| ≥ b0εγ −1 on the other hand, then there exists a path {y0, y1, . . . , yn} in Zε of length n
proportional to |y|γ ε−1 connecting y0 = 0 with yn = y and such that |y j+1− y j | ≤ b0εγ −1
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for j = 0, . . . , n − 1. We can then apply the above inequality to every step of the path.
Combining these bounds, we obtain
∥∥∥ηN

k ∗ f
∥∥∥
L1

�
∑

y∈�ε

ε2|ηN
k (−y)|{|y|γ ε−1 ∨ 1}

∑

x∈�ε,z∈Zε

ε4Kγ (z)| f (x + z) − f (x)|,

(4.11)

and (4.10) follows from the fact that
∑

y∈�ε

ε2|ηN
k (y)|{|y|ε−1γ ∨ γ } �

∥∥∥ηN
k

∥∥∥
L1

+ ε−1γ 2−k
∑

y∈�ε

2k |y||ηN
k (y)| � 1 ∨ ε−1γ 2−k .

Summing over k yields
∑

L<k≤log2(ε−1)

2νk
∥∥∥ηN

k ∗ f
∥∥∥
L1

�
∑

L<k≤log2(ε−1)

2νk{εγ −1 ∨ 2−k}
∑

x∈�ε,z∈Zε

ε4Kγ (z)

εγ −1 | f (x + z) − f (x)|.

At this point we use the fact that εγ −1 ∨ 2−k ≤ 2− k
2 for k ≤ − log2(ε) = −2 log2(εγ

−1)

and, recalling (4.8) and (4.9), we obtain

‖ f ‖Bν
1,1(�ε)

� 2νL ‖ f ‖L1 + 2

(
ν− 1

2

)
L ∑

x∈�ε,z∈Zε

ε3γ Kγ (z)| f (x + z) − f (x)|.

The claim now follows by optimising this expression over L . (The second term in (4.7) comes
from the fact that we had to impose L > 1.) ��

The next proposition quantifies the decay in the Fourier space of the kernel Kγ used in
the article. The proof is given in [12, Lemma 8.2]

Proposition 4.9 (Estimates on the kernel) For ω ∈ �N and γ small enough the following
inequalities hold

• There exists a positive constant C > 0 such that,

|K̂γ (ω)| ≤ 1 ∧ γ −2

|ω|2
• There exists a positive constant c > 0 such that, for |ω| ≥ γ −1

1 − K̂γ (ω) ≥ c
(|γω|2 ∧ 1

)

For completeness, we state the following simple but crucial comparison test which can be
found in this specific form in [18].

Lemma 4.10 (Comparison test) Let λ > 1 and f : [0, T ] → R
+ differentiable satisfying

for t ∈ [0, T ]
f ′(t) + 2c1 ( f (t))λ ≤ c2.

Then for t ∈ [0, T ]

f (t) ≤ f (0)
(
1 + c1(λ − 1)t f (0)λ−1

) 1
λ−1

∨
(
c2
c1

) 1
λ ≤ (c1(λ − 1)t)−

1
λ−1 ∨

(
c2
c1

) 1
λ

.
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