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Abstract We prove a large deviations principle for the total spin and the number of edges
under the annealed Isingmeasure on generalized randomgraphs.We also give detailed results
on how the annealing over the Ising model changes the degrees of the vertices in the graph
and show how it gives rise to interesting correlated random graphs.

Keywords Random graphs · Ising model · Annealing · Large deviations

1 Introduction and Main Results

Recently, there has been substantial work on Ising models on random graphs, as a paradig-
matic model for dependent random variables on complex networks. While much work exists
on random graphs with independent randomness on the edges or vertices, such as percolation
and first-passage percolation (see [25] for a substantial overview of results for these models
on random graphs), the dependence of the random variables on the vertices raises many inter-
esting new questions. We refer to [4,5,8,11–13,18,19] for recent results on the Ising model
on random graphs, as well as [25, Chapter 5] and [9] for overviews. The crux about the Ising
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model is that the variables that are assigned to the vertices of the random graph wish to be
aligned, thus creating positive dependence. Since the Ising model lives on a random graph,
we are dealing with non-trivial double randomness of both the spin system as well as the
random environment. While [8,11,12,18] study the quenched setting, in which the random
graph is either fixed (random-quenched) or the Boltzmann–Gibbs measure is averaged out
with respect to the random medium (averaged–quenched), recently the annealed setting, in
which both the partition function and the Boltzmann weight are averaged out separately has
attracted substantial attention [4,5,13,19]. The random graph models investigated are rank-1
inhomogeneous random graphs [13,19], as well as random regular graphs and configuration
models [4,5,18]. Depending on the setting, the annealed setting may have a different critical
temperature. However, as predicted by the non-rigorous physics work [15,22], the annealed
Ising model turns out to be in the same universality class as the quenched model for all
settings investigated [5,12,13].

In this paper, we extend the analysis of the annealed Ising model on inhomogeneous
random graphs to their large deviation properties. We investigate both the large deviations
of the total spin, which is a classical problem dating back at least to Ellis [16,17], but we
also consider the large deviation properties under the annealed measure of purely graph
quantities, such as the number of edges or the vertex degrees. Such problems are in general
difficult since the strong interaction causes the rate function to become non-convex at low
temperatures (β > βc), so the Gärtner–Ellis theorem cannot be used directly.

Our main results provide a formula for the large deviation function of the total spin that
holds true even when the hypothesis of the theorem are not satisfied, i.e., at low temperatures.
This formula is indeed valid for all values of the parameters determining the phase diagram.
To overcome the lack of differentiability of the annealed pressure (which is a necessary con-
dition for the application of the Gärtner–Ellis theorem) at low temperatures, we shall use the
key property that the annealed Ising model on the generalized random graph can be mapped
to an inhomogeneousmean-field (Curie–Weiss) model. As a consequence, the large deviation
function of the total spin can be deduced from classical results for independent variables and
an application of Varadhan’s lemma. Using this analysis, we also obtain alternative forms of
the annealed pressure. In [14], similar techniques have been used to derive the annealed pres-
sure for models with more general spins, including continuous spins on a bounded interval.

The study of large deviations for the number of edges brings the fact to light that, if one
focuses solely on graph observables and properties, then annealing can be described in terms
of a modified law for the graph. Our results show that in the annealed setting, the typical
number of edges present is substantially larger than the typical value under the original law
of the graph, thus quantifying the effect that the annealing has on the structure of the random
graph involved. As explained in more detail below, one could think of the annealed Ising
model on a random graph as giving rise to a random graph with an interesting correlation
structure between the edges. To gainmore understanding on this correlation structure we also
investigate the degrees distribution under the annealed Ising measure. Again we find that the
degree of a fixed vertex (or the degree of a uniformly chosen vertex) under the modified graph
law has a distribution with a larger mean.

1.1 The Annealed Ising Model on Generalized Random Graphs

We now introduce the model. We first define the specific random graph model, the so-called
generalized random graph, and then define the (annealed) Ising model.
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Large Deviations for the Annealed Ising Model on… 1047

1.1.1 Generalized Random Graph

To construct the generalized random graph [3], let Ii j denote the Bernoulli indicator that the
edge between vertex i and vertex j is present and let pi j = P

(
Ii j = 1

)
be the edge probability,

where different edges are present independently. Further, consider a sequence of non-negative
weights w = (wi )i∈[n] whose label i runs through the vertex set [n] = {1, . . . , n}. Then, the
generalized random graph, denoted by GRGn(w), is defined by

pi j = wiw j

�n + wiw j
, (1.1)

where �n = ∑
i∈[n] wi is the total weight of all vertices. Denote the law of GRGn(w) by P

and its expectation by E. There are many related random graph models (also called rank-
1 inhomogeneous random graphs [2]), such as the random graph with specified expected
degrees or Chung–Lu model [6,7] and the Poisson random graph or Norros–Reittu model
[23]. Janson [20] shows that many of these models are asymptotically equivalent. Even
though his results do not apply to the large deviation properties of these random graphs, all
our results also apply to these other models.

We need to assume that the vertex weight sequences w = (wi )i∈[n] are sufficiently nicely
behaved. Let Un ∈ [n] denote a uniformly chosen vertex in GRGn(w) and Wn = wUn its
weight. Then, the following condition defines the asymptotic weight W and set the conver-
gence properties of (Wn)n≥1 to W :

Condition 1.1 (Weight regularity) There exists a random variable W such that, as n → ∞,

(a) Wn
D−→ W, where

D−→ denotes convergence in distribution;
(b) E[Wn] = 1

n

∑
i∈[n] wi → E[W ] < ∞;

(c) E[W 2
n ] = 1

n

∑
i∈[n] w2

i → E[W 2] < ∞;

Further, we assume that E[W ] > 0.

As explained in more detail in [24, Chapter 6], conditions (a) and (b) imply that the
empirical degree distribution of the random graph converges to a mixed Poisson distribution
with mixing distribution W , i.e., the proportion of vertices with degree k is close to the
probability that a Poisson random variable with random parameter W equals k.

We note also that, by uniform integrability, Condition 1.1 (c) implies (b).
Notation Throughout this paper, we denote the average w.r.t. the probability measure μ by
Eμ.

1.1.2 Annealed Ising Model

Let σ = (σi )i∈[n] ∈ {−1,+1}n =: �n be a spin configuration. Then, for a given graph
μ
qe
n (σ ) = ([n], En), where En ⊂ [n] × [n] denotes the edge set, the Ising model is defined

by the following Boltzmann–Gibbs measure

μ
qe
n (σ ) = 1

Zqe
n (β, B)

exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

⎫
⎬

⎭
, (1.2)

where

Zqe
n (β, B) =

∑

σ∈�n

exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

⎫
⎬

⎭

123



1048 S. Dommers et al.

is the quenched partition function. Here β ≥ 0 is the inverse temperature and B ∈ R is the
external field. When Gn is a random graph, this is known as the random quenched Ising
model [18].

To obtain the annealed model, we take expectations with respect to the random graph
measure in both the numerator and denominator of (1.2), i.e., we define the annealed Ising
measure by

μan
n (σ ) =

E

[
exp

{
β
∑

(i, j)∈En
σiσ j + B

∑
i∈[n] σi

}]

Z an
n (β, B)

, (1.3)

where the annealed partition function Z an
n (β, B) is equal to

Z an
n (β, B) = E[Zqe

n (β, B)] =
∑

σ∈�n

E

[
exp

{
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

}]
.

1.1.3 Previous Results for the Annealed Ising Model on the Generalized Random
Graph

In this section, we describe some important results about the annealed Ising model that have
been derived previously. An important quantity in the study of the annealed Ising model is
the annealed pressure defined by

ψan
n (β, B) = 1

n
log Z an

n (β, B).

The thermodynamic limit of this quantity ψan(β, B) := limn→∞ ψan
n (β, B) is determined

in the following theorem:

Theorem 1.2 (Annealed pressure [19]) Suppose that Condition 1.1 holds. Then for all 0 ≤
β < ∞ and all B ∈ R,

ψan(β, B) = log 2+α(β)+E

[
log cosh

(√
sinh(β)

E[W ] Wz∗(β, B)+B

)]
−z∗(β, B)2/2, (1.4)

where α(β) = limn→∞ αn(β) with αn(β) defined in (1.19) below is given by

α(β) = 1
2 (cosh(β) − 1)E[W ], (1.5)

and z∗(β, B) is, for B 	= 0, given by the unique solution with the same sign as B of the
fixed-point equation

z = E

[
tanh

(√
sinh(β)

E[W ] Wz + B

)√
sinh(β)

E[W ] W

]
, (1.6)

whereas for B = 0, z∗(β, 0) = limB↘0 z∗(β, B).

This theorem is proved in [19, Theorem 1.1]. In Sect. 2.2 we provide an alternative
expression for the annealed pressure that is instrumental for our large deviation analysis.

In [19, Thm 1.1] it is also proved that the annealed Ising model on the generalized random
graph has a second order phase transition at a critical inverse temperature βan

c given by

βan
c = asinh

(
E[W ]
E[W 2]

)
. (1.7)
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Large Deviations for the Annealed Ising Model on… 1049

Denote by
Sn =

∑

i∈[n]
σi ,

the total spin, and by

Man
n (β, B) = Eμan

n

(
Sn
n

)
,

the finite-volume annealed magnetization. It is shown in [19, Theorems 1.2 and 1.3] that a
strong law of large numbers (SLLN) and central limit theorem (CLT) holds for the total spin:

Theorem 1.3 (SLLN and CLT [19]) Suppose that Condition 1.1 (a)–(c) hold. Define the
uniqueness regime of the parameters (β, B) by

U = {
(β, B) : β ≥ 0, B 	= 0 or 0 < β < βan

c , B = 0
}
,

and suppose that (β, B) ∈ U . Then, for all ε > 0 there exists a constant L = L(ε) > 0 such
that, for all n sufficiently large,

Pμan
n

(∣
∣
∣
1

n
Sn − Man

∣
∣
∣
)

≤ e−nL ,

where

Man(β, B) = E

[
tanh

(√
sinh(β)

E[W ] Wz∗(β, B) + B

)]
,

being z∗(β, B) the solution of (1.6), equals the annealed magnetization, that is limn→∞ Man
n

(β, B).
Furthermore,

Sn − Eμan
n

(Sn)√
n

D−→ N (0, χan), w.r.t. μan
n as n → ∞,

where χan(β, B) = ∂
∂B M

an(β, B) is the annealed susceptibility and N (0, σ 2) denotes a
centered normal random variable with variance σ 2.

Analogously one can define the random quenched pressure:

ψqe(β, B) = lim
n→∞ ψ

qe
n (β, B) = lim

n→∞
1

n
log Zqe

n (β, B).

This has been determined for the GRG as well as other locally tree-like random graphmodels
in [8,11], where it is also proven that ψqe(β, B) is a non-random quantity. An SLLN and
CLT for the total spin w.r.t. μ

qe
n have been obtained in [18]. In general, the quenched and

annealed pressures are different, and also the critical temperatures of themodels are different.
The only exception that we are aware of is the random regular graph (see [4]). The critical
temperature in the quenched setting will be denoted by β

qe
c .

1.2 Main Results

In this paper, we study the spin sum in more detail (i.e. beyond the CLT scale) and prove a
large deviation principle for Sn , as well as a weighted version that plays a crucial role in the
annealed Ising model. Let us start by recalling what a large deviation principle is. Given a
sequence of random variables (Xn)n≥1 taking values in the measurable space (X ,B), withX
a topological space and B a σ -field of subsets of X , then the large deviation principle (LDP)
is defined as follows:
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1050 S. Dommers et al.

Definition 1.4 (Large deviation principle [10]) We say that (Xn)n≥1 satisfies an LDP with
rate function I (x) and speed n w.r.t. a probability measure (Pn)n≥1 if, for all F ∈ B,

− inf
x∈Fo

I (x) ≤ lim inf
n→∞

1

n
logPn(Xn ∈ F) ≤ lim sup

n→∞
1

n
logPn(Xn ∈ F) ≤ − inf

x∈F̄
I (x),

where Fo denotes the interior of F and F̄ its closure.

In this definition I : X → [0,∞] is a lower semicontinuous function. Our first main result
is an LDP for the total spin in the high-temperature regime for both the random quenched
and the annealed Ising model.

Theorem 1.5 (Total spin LDPs in high-temperature regime) In the annealed Ising model,
under Condition 1.1, the total spin Sn satisfies an LDP w.r.t. μan

n for β ≤ βan
c and B ∈ R,

with rate function

I an(x) = sup
t

{
x t − ψan(β, B + t)

}+ ψan(β, B). (1.8)

In the random quenched Ising model, under Condition 1.1, the total spin Sn also satisfies an
LDP w.r.t. μqe

n for β ≤ β
qe
c and B ∈ R, with rate function

I qe(x) = sup
t

{
x t − ψqe(β, B + t)

}+ ψqe(β, B).

The proof of Theorem 1.5 is highly general, and applies to settings where the pressure
is known to exist and to be differentiable. As such, the proof is basically identical for the
annealed and quenched Ising models on GRGn(w).

For the annealed Ising model we also prove an LDP for all positive temperatures. For this,
we also introduce the total weighted spin

S(w)

n =
∑

i∈[n]
wiσi .

Theorem 1.6 (LDPs for the annealed Ising model and alternative forms of the pressure) For
all β ≥ 0 and B ∈ R, under Condition 1.1, the couple (Sn, S

(w)
n ) satisfies an LDP w.r.t. μan

n
with rate function

I anβ,B(x1, x2) = I (x1, x2) − sinh(β)

2E[W ] x
2
2 − Bx1 − log 2 − α(β) + ψan(β, B), (1.9)

where
I (x1, x2) = sup

(t1,t2)
(t1x1 + t2x2 − E[log cosh(t1 + Wt2)]) ,

and ψan(β, B) is an alternative form of the annealed pressure given by

ψan(β, B) = − inf
(x1,x2)

(
I (x1, x2) − sinh(β)

2E[W ] x
2
2 − Bx1 − log 2 − α(β)

)
. (1.10)

Furthermore, (Sn, S
(w)
n ) satisfies an LDP with the alternative expression of the rate function

given by

I an(B)

β,B (x1, x2) = I (B)(x1, x2)− sinh(β)

2E[W ] x
2
2 − log cosh B− log 2−α(β)+ψan(β, B), (1.11)
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Large Deviations for the Annealed Ising Model on… 1051

where

I (B)(x1, x2) = sup
(t1,t2)

(t1x1 + t2x2 − E[log cosh(B + t1 + Wt2)]) + log cosh B,

and ψan(β, B) is an alternative form of the annealed pressure given by

ψan(β, B) = − inf
(x1,x2)

(
I (B)(x1, x2) − sinh(β)

2E[W ] x
2
2 − log cosh B − log 2 − α(β)

)
. (1.12)

Naturally, in the high-temperature setting, the large deviation rate functions in (1.8) and
(1.9) [or (1.11)] coincide after the applicationof a contractionprinciple.CombiningTheorems
1.2 and 1.6 we see that the annealed pressure is either given by the optimization of a real
function [as in (1.4)] or it can be expressed as the solution of a two-dimensional variational
problem [as in (1.10) or (1.12)]. In Sect. 2.2 we shall prove Theorem 1.2 starting from
Theorem 1.6, thus obtaining that the expressions for the annealed pressure do coincide.

We next discuss the LDP for the total number of edges in the annealed Ising model on
GRGn(w):

Theorem 1.7 (LDPs for the edges in the annealed Ising model) Suppose that Condition 1.1
holds. For all β ≥ 0 and B ∈ R, the total number of edges |En | satisfies an LDP w.r.t. μan

n
with rate function that is the Legendre transform of the function which is explicitly computed
in (3.18) below. Further, the number of edges under the annealed Ising model on GRGn(w)

satisfies
1

n
|En | P−→ 1

2
z∗(β, B)

2 + 1

2
cosh(β)E[W ]. (1.13)

We continue by investigating the limiting distribution of the degrees of vertices. Our main
result is as follows:

Theorem 1.8 (Degrees in the annealed Ising model) Suppose that Condition 1.1 holds. For
all β ≥ 0 and B ∈ R, the moment generating function of the degree D j of vertex j under
μan
n satisfies

Eμan
n

[
et D j

] = (1 + o(1))ecosh(β)w j (et−1)
cosh

(
z∗(β, B)etw j

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)w j

√
sinh(β)
E[W ] + B

) . (1.14)

Consequently, the degree DU of a uniformly chosen vertex satisfies

lim
n→∞Eμan

n

[
et DU

] = E

[
ecosh(β)W (et−1)

cosh
(
z∗(β, B)etW

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)W

√
sinh(β)
E[W ] + B

)
]
. (1.15)

In the above, z∗(β, B) is the solution to (1.6).

We remark that in (1.15) we both take the average w.r.t. the annealed measure μan
n as well

as w.r.t. the uniform vertex U ∈ [n].
Remark 1.9 (Degree distribution annealed Ising model) We can restate (1.15) as

1

n

∑

v∈[n]
Eμan

n

[
et Dv

] → E

[
ecosh(β)W (et−1)

cosh
(
z∗(β, B)etW

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)W

√
sinh(β)
E[W ] + B

)
]
. (1.16)
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1052 S. Dommers et al.

In (1.14), we see that the moment generating function of a vertex having weight w is close
to

ecosh(β)w(et−1)
cosh

(
z∗(β, B)etw

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)w

√
sinh(β)
E[W ] + B

) .

We recognize ecosh(β)w(et−1) as themoment generating function of a Poisson random variable
with mean cosh(β)w, which is multiplied by another function. However, this factor does not
turn out to be a moment generating function.

By setting a(β) =
√

sinh(β)
E[W ] for the sake of notation, we can rewrite the product of the

second and third factors in the r.h.s. of (1.14) as

e(w j+B)a(β)z∗ew j (cosh(β)+a(β)z∗)(et−1) + e−(w j+B)a(β)z∗ew j (cosh(β)−a(β)z∗)(et−1)

2 cosh
( (

w j + B
)
a(β)z∗

) .

This shows that the limiting moment generating function of Dj is a mixed Poisson random
variables with parameters w j (cosh(β) + Ya(β)z∗), where

P(Y = 1) = 1 − P(Y = −1) = e(w j+B)a(β)z∗

2 cosh
( (

w j + B
)
a(β)z∗

) ,

provided w j (cosh(β) ± a(β)z∗) are both positive. We lack a more detailed interpretation of
the above two realizations.

Let us next relate Theorems 1.8 to 1.7. We can use (1.15) to show that, as in (1.13),

Eμan
n

[
1

n
|En |

]
→ 1

2
z∗(β, B)

2 + 1

2
cosh(β)E[W ].

Indeed, note that

Eμan
n

[
1

n
|En |

]
= 1

2Eμan
n

[DU ] = 1

2

d

dt
Eμan

n

[
et DU

]∣∣∣
t=0

.

Here, in the middle formula, we again take the average w.r.t. both μan
n as well as the uniform

vertex U ∈ [n]. Convergence of the moment-generating function implies convergence of all
moments, so that

lim
n→∞Eμan

n

[
1

n
|En |

]
= 1

2

d

dt
E

⎡

⎢
⎣ecosh(β)W (et−1)

cosh
(
z∗(β, B)etW

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)W

√
sinh(β)
E[W ] + B

)

⎤

⎥
⎦
∣∣∣
t=0

= 1

2
cosh(β)E[W ] + 1

2
z∗(β, B)E

[

W

√
sinh(β)

E[W ] tanh
(
z∗(β, B)

× W

√
sinh(β)

E[W ] + B

)]

= 1

2
cosh(β)E[W ] + 1

2
z∗(β, B)2, (1.17)

as required, where we have made use of (1.6) in the last step. Thus, for (1.13), it suffices to
prove that 1

n |En | is concentrated. �

123



Large Deviations for the Annealed Ising Model on… 1053

In the next theorem, we extend Theorem 1.8 to several vertices:

Theorem 1.10 (Degrees of m vertices in the annealed Ising model) Suppose that Condi-
tion 1.1 holds. For all β ≥ 0 and B ∈ R and m ∈ N, the moment generating function of the
degrees (D1, D2, . . . , Dm) under μan

n satisfies

Eμan
n

[
e
∑m

i=1 ti Di
]

=
m∏

i=1

ecosh(β)wi (eti −1)
m∏

i=1

cosh
(
z∗(β, B)eti wi

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)wi

√
sinh(β)
E[W ] + B

) (1 + o(1)).

Theorem 1.10 implies that the degrees of different vertices under the annealed measure
are approximately independent.

1.3 Discussion

In this section, we discuss our results and state some further conjectures.

1.3.1 Random-Quenched LDP

For the random-quenched model we only obtain an LDP in the high-temperature regime.
The difficulty in this analysis is that the rate function is non-convex at low temperature. This
means that the usual technique relying on the Gärtner–Ellis theorem, by taking the Legendre
transform of the cumulant generating function, does not work. The cumulant generating
function can easily be expressed in terms of the difference of the pressure for different
values of the external field B. However, this Legendre transform is the convex envelope
of the cumulant generating function. This raises the question how to do this for all inverse
temperatures β.

1.3.2 Averaged–Quenched LDP

The averaged–quenched measure is defined as E[μqe
n (σ )] (recall (1.2)). Here, even in the

high-temperature regime, we are in trouble since the averaged–quenched cumulant generat-
ing function is not a difference of pressures. Independently of the explicit computation, an
interesting question is whether it is possible to relate the random-quenched and the averaged–
quenched large deviation rate functions.

1.3.3 Large Deviations of Random Graph Quantities

As alreadymentioned in the introduction, if one is interested only in graph quantities, then the
effect of the annealing amounts to changing the graph law from P (the law of of GRGn(w)) to
a new lawPβ,B depending on the two parameters β and B. Evidently limβ→0,B→0 Pβ,B = P.
We know that under the law P a uniform vertex has an asymptotic degree that is a mixed
Poisson distributionwithmixing distributionW , see e.g. [24, Theorem 6.10]. In Theorem 1.8,
we derive the asymptotic moment generating function of a uniform degree under Pβ,B , see
(1.15). From this formula, we see that the single degree is still mixed Poisson distributed
(provided a technical condition discussed in Remark 1.9 holds true), however with important
differences. In particular, in zero external field B = 0, the moment generating function of a
uniform degree changes in two ways: firstly, in the high-temperature regime, the mixing dis-
tribution changes to W cosh(β) (since z∗(β, 0) = 0 there); secondly, in the low-temperature
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region a new effect appears due to the non-zero value of z∗(β, 0). It would be of interest
to invert the moment generating function (1.15) and thus explicitly characterize the dis-
tribution of a uniform degree at low temperatures. This can be done once we know that

cosh(β) −
√

sinh(β)
E[W ] z

∗(β, 0) is non-negative (see Remark 1.9), but we do not know this to
be true in general. Also, as of yet, we have no interpretation for this novel mixed Poisson
distribution for the degrees. It might also be interesting to investigate other properties of the
random graph under the annealed Isingmodel. An example would be the distribution of trian-
gles, for which the positive dependence of edges enforced by the annealed Ising model might
have a pronounced effect. A further interesting problem is to identify the large deviation rate
function in a joint LDP for both the spin as well as the total number of edges.

1.3.4 Organisation of this Paper

We start in Sect. 1.4 by describing an enlightening computation that is at the heart of our
analysis. In Sect. 2, we derive the LDP for the total spin and the total weighted spin. In
Sect. 3, we investigate the large deviation properties, as well as the weak convergence, of
the number of edges in the annealed Ising model, thus quantifying the statement that under
the annealed Ising model, there are more edges in the graph than for the typical graph. In
Sect. 4, we investigate the degree distribution under the annealed Ising model. Finally in the
Appendix we re-derive the LDP for the total spin by combinatorial arguments.

1.4 Preliminaries: An Enlightening Computation

Our large deviations results are obtained from exact expressions for moment generating
functions of spin or of edge variables under the annealed GRGn(w) measure. Such exact
expressions follow from the observation (already contained in [19, Sect. 2.1]) that the
annealed GRGn(w) measure can be identified as an inhomogeneous Ising model on the
complete graph, which is called the rank-1 inhomogeneous Curie–Weiss model in [19]. In
this paper, we will extend such computations significantly, for example by also including the
edge statuses. We can write the numerator in the Definition (1.3) of μan

n as

E

[
exp

{
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

}]
= E

[
exp

{
β

∑

1≤i< j≤n

Ii jσiσ j + B
∑

i∈[n]
σi

}]

= eB
∑

i∈[n] σi
∏

i< j

E

[
eβ Ii jσiσ j

]

= eB
∑

i∈[n] σi
∏

i< j

[
eβσiσ j pi j + 1 − pi j

]
,

where we have used the independence of the edges in the second equality. Define

βi j = 1

2
log

1 + pi j (eβ − 1)

1 + pi j (e−β − 1)
, and Ci j = 1 + pi j (cosh(β) − 1)

cosh(βi j )
. (1.18)

Then, we can write
eβσiσ j pi j + 1 − pi j = Ci je

βi jσiσ j .
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Hence, also using the symmetry βi j = β j i ,

E

⎡

⎣exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

⎫
⎬

⎭

⎤

⎦ = Gn(β) e
1
2

∑
i, j∈[n] βi jσiσ j+B

∑
i∈[n] σi ,

where

Gn(β) =
⎛

⎝
∏

1≤i< j≤n

Ci j

⎞

⎠

⎛

⎝
∏

i∈[n]
e−βi i /2

⎞

⎠

and βi i is defined as in (1.18) with pii = w2
i /(�n + w2

i ). Defining

αn(β) = 1

n
logGn(β) (1.19)

one has

E

⎡

⎣exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

⎫
⎬

⎭

⎤

⎦ = enαn(β)e
1
2

∑
i, j∈[n] βi jσiσ j+B

∑
i∈[n] σi .

We observe that the quantity e
1
2

∑
i, j∈[n] βi jσiσ j+B

∑
i∈[n] σi can be regarded as the Hamiltonian

of an inhomogeneous Curie–Weissmodel with couplings given by (βi j )i j . Thus, the annealed
Isingmodel on theGRGn(w) is equivalent to such inhomogeneousmodel, see [13,19].More-
over, since βi j is close to factorizing into a contribution due to i and to j , one can prove
[13,19] that:

E

⎡

⎣exp

⎧
⎨

⎩
β

∑

(i, j)∈En

σiσ j + B
∑

i∈[n]
σi

⎫
⎬

⎭

⎤

⎦ = enαn(β)e
1
2
sinh(β)

�n (
∑

i wiσi)
2+B

∑
i∈[n] σi+o(n)

.

(1.20)
This computation shows that, in the large n-limit, the annealed measure μan

n at inverse tem-
perature β is close to the Boltzmann–Gibbs measure μICW

n of the rank-1 inhomogeneous
Curie–Weiss model at inverse temperature β̃ = sinh(β)

μICW
n (σ ) = exp(H ICW

n (σ ))

Z ICW
n (β̃, B)

(1.21)

with Hamiltonian

H ICW
n (σ ) = 1

2

β̃

�n

(
∑

i

wiσi

)2

+ B
∑

i∈[n]
σi (1.22)

and normalizing partition function

Z ICW
n (β̃, B) =

∑

σ∈�n

eB
∑

i∈[n] σi e
1
2

β̃
�n

(∑
i∈[n] wiσi

)2
. (1.23)

The above analysis can be simply extended to moment generating functions involving (some
of) the edge variables (Ii j )1≤i< j≤n , as these can be incorporated into the exponential term
and the expectation w.r.t. them can then again be taken. Of course, in such settings, the
connection to the rank-1 inhomogeneous Curie–Weiss model is changed as well, and a large
part of our paper deals precisely with the description of such changes, as well as their effects.
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2 LDP for the Total Spin

2.1 LDP in the High-Temperature Regime

We first prove the LDP in the high-temperature regime for the annealed Ising model using
the Gärtner–Ellis theorem.

Proof of Theorem 1.5 To apply the Gärtner–Ellis theorem we need the thermodynamic limit
of the cumulant generating function of Sn w.r.t. μan

n , given by

c(t) = lim
n→∞

1

n
logEμan

n

[
exp (t Sn)

]
.

Observe that

Eμan
n

[
exp (t Sn)

] = Z an
n (β, B + t)

Z an
n (β, B)

.

Hence,

c(t) = lim
n→∞

1

n
log

Z an
n (β, B + t)

Z an
n (β, B)

= ψan(β, B + t) − ψan(β, B),

where the existence of the limit follows from Theorem 1.2. We know that, for B 	= 0,

d

dB
ψan(β, B) = Man(β, B).

For β ≤ βan
c ,

lim
B↘0

Man(β, B) = lim
B↗0

Man(β, B) = 0,

so that c(t) is differentiable in t . Hence, it follows from the Gärtner–Ellis theorem [10,
Thm. 2.3.6] that Sn satisfies an LDP with rate function given by the Legendre transform of
c(t) which is given by (1.8). The proof for the random quenched Ising model is analogous. �

Let us now elaborate on the interpretation of the above results. The stationarity condition
for (1.8) is

x = Man(β, B + t), (2.1)

which defines a function ť = ť(x;β, B) such that

I an(x) = x ť(x;β, B) − ψan(β, B + ť(x;β, B)) + ψan(β, B).

Given (β, B), the total spin per particle will concentrate around its typical value Man(β, B)

coinciding with the magnetization. To observe the atypical value x the field must be changed
from B to B+t , where t is determined by requiring that x is themagnetizationMan(β, B+t).
Note that we have not made use of any specifics about the graph sequence, or whether we
are in the annealed or quenched setting. Hence, the above holds for Ising models on any
graph sequence, as long as the appropriate thermodynamic limit of the pressure exists. It also
shows that in the high-temperature regime, the Gärtner–Ellis theorem can be applied, since
the spins in Sn are weakly dependent.

For β > βan
c ,

m+ := lim
B↘0

Man(β, B) > 0 > lim
B↗0

Man(β, B) = −m+,

and hence c(t) is not differentiable for t = −B and the Gärtner–Ellis theorem can no longer
be applied directly. This is caused by the strong interaction, and hence dependence, between
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the spins at low temperature. Since the spontaneousmagnetization is not zero, it is not possible
to find a t such that (2.1) holds for−m+ < x < m+. Therefore, the Legendre transform (1.8)
has a flat piece. By the Gärtner–Ellis theorem, this Legendre transform still gives a lower
bound on the rate function, but it is only an upper bound for so-called exposed points of
the Legendre transform, i.e., for x outside this flat piece. In fact, we show that the Legendre
transform in general does not give the correct rate function, since the Legendre transform of
the pressure is convex and we show that the rate function in the low temperature regime in
general is not.

2.2 LDPs for the Total Spin and Weighted Spin

In this section we prove Theorem 1.6 and then we deduce from it a new proof of Theorem
1.2 (thus by a method different from that of [19]). Following Ellis’ approach [16], we can
compute the annealed pressure ψan(β, B) and the large deviation function of Yn(σ ) :=
(mn(σ ),m(w)

n (σ )) ≡ (Sn(σ )/n, S(w)
n (σ )/n) w.r.t. the annealed measure μan

n , starting from
the LDP of (mn,m

(w)
n ) w.r.t. the product measure

Pn =
n⊗

i=1

(
1

2
δ−1 + 1

2
δ+1

)
. (2.2)

The large deviations of Yn = (mn,m
(w)
n ) w.r.t. Pn can easily be obtained by applying the

Gärtner–Ellis theorem.

Proof of Theorem 1.6 Let t = (t1, t2) and compute

EPn [exp(n t · Yn)] = EPn [exp(t1Sn + t2S
(w)

n )]
= EPn [�i∈[n] exp(t1 + wi t2)σi ]
= �i∈[n] cosh(t1 + wi t2),

where EPn denotes average w.r.t. Pn . Thus, the cumulant generating function of the vector
Yn = (mn,m

(w)
n ) w.r.t. Pn equals

cn(t) = 1

n
logEPn [exp n(t · Yn)] = 1

n

∑

i∈[n]
log cosh(t1 + wi t2) = E[log cosh(t1 + Wnt2)],

here E represents the average w.r.t. the uniformly chosen vertex Wn . Since | log cosh(t1 +
Wnt2)| ≤ |t1 + Wnt2| ≤ |t1| + Wn |t2| it follows from Condition 1.1(b) and the dominated
convergence theorem that

c(t) := lim
n→∞ cn(t) = E[log cosh(t1 + Wt2)],

with W limiting weight of the graph. By the Gärtner–Ellis theorem, we conclude that Yn

satisfies an LDP with rate function

I (x1, x2) = sup
(t1,t2)

(t1x1 + t2x2 − E[log cosh(t1 + Wt2)]) .

We have

I (x1, x2) =
{
t∗1 x1 + t∗2 x2 − E[log cosh(t∗1 + Wt∗2 )], if |x1| < 1, |x2| < E[W ],
+∞, otherwise,
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where t∗1 = t∗1 (x1, x2) and t∗2 = t∗2 (x1, x2) are given by the stationarity condition
{
x1 = E[tanh(t1 + Wt2)],
x2 = E[W tanh(t1 + Wt2)], (2.3)

for |x1| < 1, |x2| < E[W ].
For any function f : �n → R we can write

∑

σ∈�n

f (σ ) = 2n
∫

�n

f (σ )dPn(σ ).

Hence, also using (1.20),

Z an
n (β, B) = 2nenαn

∫

�n

e
1
2

sinh(β)
nE[Wn ] (

∑
i wiσi)

2+B
∑

i∈[n] σi+o(n)dPn(σ )

= 2nenαn

∫

�n

e
n
2
sinh(β)
E[Wn ] (m(w)

n )2+nBmn+o(n)dPn(σ )

and, similarly,

μan
n (·) = 2nenαn

Z an
n (β, B)

∫

�n

(·) e n
2
sinh(β)
E[Wn ] (m(w)

n )2+nBmn+o(n)dPn(σ ).

Then, by applying Varadhan’s lemma [17, Thm. II.7.1],

ψan(β, B) = lim
n→∞

1

n
Z an
n (β, B) = log(2) + α(β) + sup

(x1,x2)

[
sinh(β)

2E[W ] x
2
2 + Bx1 − I (x1, x2)

]

which is equivalent to (1.10), and the rate function of (mn,m
(w)
n ) w.r.t. the annealed measure

is [17, Thm. II.7.2]

I anβ,B(x1, x2) = I (x1, x2) − sinh(β)

2E[W ] x
2
2 − Bx1 − log(2) − α(β) + ψan(β, B).

This shows that indeed (Sn, S
(w)
n ) satisfies an LDPw.r.t.μan

n with rate function given by (1.9).
By applying the contraction principle, we obtain the rate functions I anβ,B of mn and J anβ,B of

m(w)
n as

I anβ,B(x1) = inf
x2

I anβ,B(x1, x2), J anβ,B(x2) = inf
x1

I anβ,B(x1, x2). (2.4)

In a similar way, we can also immediately obtain an LDP by incorporating the magnetic field
in the a priori measure on the spins. For this, define

P (B)

n =
n⊗

i=1

(
e−B

eB + e−B
δ−1 + eB

eB + e−B
δ+1

)
.

Then

E
P(B)
n

[exp(n t · Yn)] = E
P(B)
n

[
∏

i∈[n]
exp(t1 + wi t2)σi ] =

∏

i∈[n]

cosh(t1 + wi t2)

cosh(B)
,

where E
P(B)
n

denotes average w.r.t. P (B)
n . Hence, the cumulant generating function is given

by
c(B)

n (t) = E[log cosh(B + t1 + Wnt2)] − log cosh B,
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(with E the average w.r.t. the uniformly chosen vertex Wn) which, as in the previous case,
converges to

c(B)(t) = E[log cosh(B + t1 + Wt2)] − log cosh B.

We can apply the Gärtner–Ellis theorem to obtain that (mn,m
(w)
n ) satisfies an LDP w.r.t. P (B)

n

with rate function

I (B)(x1, x2) = sup
t1,t2

(t1x1 + t2x2 − E[log cosh(B + t1 + Wt2)]) + log cosh B. (2.5)

The stationarity conditions are given by
{
x1 = E[tanh(B + t1 + Wt2)],
x2 = E[W tanh(B + t1 + Wt2)]. (2.6)

Note that ∑

σ∈�n

f (σ )eB
∑

i∈[n] σi = (2 cosh B)n
∫

�n

f (σ )dP(B)
n (σ ).

Hence,

μan
n (·) = (2 cosh B)nenαn

Z an
n (β, B)

∫

�n

(·) e n
2
sinh(β)
E[Wn ] (m(w)

n )2+o(n)dP(B)
n (σ ) (2.7)

where

Z an
n (β, B) = (2 cosh B)nenαn

∫

�n

e
n
2
sinh(β)
E[Wn ] (m(w)

n )2+o(n)dP(B)
n (σ ).

As above, it immediately follows that (mn,m
(w)
n ) satisfies an LDPw.r.t. the annealed measure

with rate function

I an(B)

β,B (x1, x2) = I (B)(x1, x2) − sinh(β)

2E[W ] x
2
2 − log cosh B − log 2 − α(β) + ψan(β, B),

where the pressure is given by

ψan(β, B) = sup
x1,x2

(
sinh(β)

2E[W ] x
2
2 − I (B)(x1, x2)

)
+ log cosh B + log 2 + α(β). (2.8)

This proves that also (1.11) is a rate function for the LDP of (Sn, S
(w)
n ). The uniqueness of

the large deviation function [17, Thm. II.3.2] implies that (1.11) and (1.9) coincide. �
We can rewrite the pressure in (2.8) to prove Theorem 1.2:

Proof of Theorem 1.2 Note that (2.8) is equivalent to

ψan(β, B) = sup
x2

(
sinh(β)

2E[W ] x
2
2 − inf

x1
I (B)(x1, x2)

)
+ log cosh B + log 2 + α(β), (2.9)

where it should be noted that, by the contraction principle, infx1 I
(B)(x1, x2) is equal to the

rate function I (w) for the LDP of m(w)
n w.r.t. P (B)

n . Setting t1 = 0 in the above computations,
this can be proved to be

I (w)(x) = sup
t

(t x − E[log cosh(B + Wt)]) + log cosh B, (2.10)

so that

ψan(β, B) = sup
x2

(
sinh(β)

2E[W ] x
2
2 − I (w)(x2)

)
+ log cosh B + log 2 + α(β). (2.11)
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The supremum in (2.10) is attained for t satisfying

x = E[W tanh(B + Wt)] =: f (t).

Since f (t) is strictly increasing, its inverse f −1 is well defined. Hence,

I (w)(x) = f −1(x)x − E[log cosh(B + W f −1(x))] + log cosh B,

and

d

dx

(
sinh(β)

2E[W ] x
2 − I (w)(x)

)
= sinh(β)

E[W ] x − f −1(x) − (
x − E[W tanh(B + W f −1(x))])

× d

dx
f −1(x)

= sinh(β)

E[W ] x − f −1(x).

Hence, the supremum in (2.11) for x satisfying f −1(x) = sinh(β)
E[W ] x , or equivalently,

x = f

(
sinh(β)

E[W ] x

)
= E

[
W tanh

(
B + sinh(β)

E[W ] Wx

)]
. (2.12)

For any solution x∗ of (2.12),

F(x∗) := sinh(β)

2E[W ] x
∗2 − I (w)(x∗) + log cosh B + log 2 + α(β)

= − sinh(β)

2E[W ] x
∗2 + E

[
log cosh

(
B + sinh(β)

2E[W ] Wx∗
)]

+ log 2 + α(β).

For B > 0, f (t) is an increasing, bounded and concave function for t ≥ 0 with f (0) > 0,
and hence there is a unique positive solution x+ to (2.12). For any negative solution to (2.12),
x− say,

F(x−) < F(−x−) ≤ F(x+),

since x+ is the unique positive local maximum. An analogous argument holds for B < 0.
Hence,

ψan(β, B) = − sinh(β)

2E[W ] x
∗2 + E

[
log cosh

(
B + sinh(β)

2E[W ] Wx∗
)]

+ log 2 + α(β),

where x∗ is the unique solution to (2.12) with the same sign as B. The value for B = 0
follows from Lipschitz continuity. This is equivalent to the formulation in (1.4) by making a

change of variables z∗ =
√

sinh(β)
E[W ] x∗. �

3 LDP for the Number of Edges: Proof of Theorem 1.7

So far we have considered large deviations of the total spin.We now consider observables that
depend only on the graph and investigate their large deviation properties w.r.t. the annealed
Ising measure. Such an analysis sheds light on what graph structures optimize the Ising
Hamiltonian.
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3.1 Strategy of the Proof

In this section, we investigate the large deviation properties for the number of edges |En | =∑
i< j Ii j under the annealed Ising model on the generalized random graph, where we recall

that (Ii j )1≤i< j≤n denote the independent Bernoulli indicators of the event that the edge i j
is present in the graph, which occurs with probability pi j in (1.1). We aim to apply the
Gärtner–Ellis theorem, for which we need to compute the generating function of |En | w.r.t.
the annealed measure μan

n given by

Eμan
n

[
et |En |

]
=

E

[∑
σ e

∑
i< j Ii j (t+βσiσ j )+B

∑
i∈[n] σi

]

E

[∑
σ e

∑
i< j Ii j (βσiσ j )+B

∑
i∈[n] σi

] . (3.1)

For later purposes, we will generalize the above computation and, introducing the variables
ti j , instead compute the generating function of the Bernoulli indicators (Ii j )i j defined for
t = (ti j )i j ∈ R

n(n−1)/2

Rβ,B,n(t) := Eμan
n

[
e
∑

1≤i< j≤n ti j Ii j
]

=
E

[∑
σ e

∑
i< j Ii j (ti j+βσiσ j )+B

∑
i∈[n] σi

]

E

[∑
σ e

∑
i< j Ii j (βσiσ j )+B

∑
i∈[n] σi

] . (3.2)

This can be carried out in a similar way as in [19]. Let us focus on the numerator in the
previous display, which we denote by An(t, β, B), so that

Rβ,B,n(t) = An(t, β, B)

An(0, β, B)
. (3.3)

We have

An(t, β, B) =
∑

σ∈�n

eB
∑

i∈[n] σiE

[
e
∑

i< j Ii j (ti j+βσiσ j )
]

=
∑

σ∈�n

eB
∑

i∈[n] σi
∏

i< j

E
[
eIi j (ti j+βσiσ j )

]

=
∑

σ∈�n

eB
∑

i∈[n] σi
∏

i< j

(
eti j+βσiσ j pi j + (

1 − pi j
))

.

We rewrite
eti j+βσiσ j pi j + (

1 − pi j
) = Ci j (ti j )e

βi j (ti j )σiσ j ,

where βi j (ti j ) and Ci j (ti j ) are chosen such that

eti j−β pi j + (
1 − pi j

) = Ci j (ti j )e
−βi j (ti j ) and

eti j+β pi j + (
1 − pi j

) = Ci j (ti j )e
βi j (ti j ).

From the above system, we get

βi j (ti j ) = 1

2
log

eti j+β pi j + (
1 − pi j

)

eti j−β pi j + (
1 − pi j

) , Ci j (ti j ) = eti j pi j cosh(β) + (
1 − pi j

)

cosh
(
βi j (ti j )

) .

(3.4)
By symmetry βi j (ti j ) = β j i (ti j ). Furthermore, defining t j i = ti j for 1 ≤ i < j ≤ n and

βi i (tii ) = 1

2
log

eti i+β pii + (1 − pii )

eti i−β pii + (1 − pii )
with pii = w2

i /(�n + w2
i ) (3.5)
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we obtain

An(t, β, B) = Gn(t, β)
∑

σ∈�n

eB
∑

i∈[n] σi e
1
2

∑
i, j∈[n] βi j (ti j )σiσ j , (3.6)

where
Gn(t, β) =

∏

1≤i< j≤n

Ci j (ti j )
∏

1≤i≤n

e−βi i (ti i )/2. (3.7)

The Equations (3.3) and (3.6) give us an explicit formula for the moment generating function
of the edge variables (Ii j )i j in the annealed GRGn(w) that will prove useful throughout the
remainder of this paper.

3.2 Moment Generating Function for the Number of Edges

Since the moment generating function for the number of edges in (3.1) can be obtained from
Rβ,B,n(t) in (3.2) by choosing ti j = t for all 1 ≤ i < j ≤ n, we continue by studying
the asymptotics of An(t, β, B) for such case, which we denote as An(t, β, B). By a Taylor
expansion of x �→ log(1 + x),

βi j (t) = 1

2
log
(
1 + pi j (e

t+β − 1)
)− 1

2
log
(
1 + pi j (e

t−β − 1)
)

= 1

2
pi j (e

t+β − 1) − 1

2
pi j (e

t−β − 1) + O(p2i j (e
t+β − 1)2) + O(p2i j (e

t−β − 1)2)

= et sinh(β)pi j + O(p2i j (e
t±β − 1)2), (3.8)

therefore

An(t, β, B) = Gn(t, β)
∑

σ∈�n

eB
∑

i∈[n] σi exp

⎧
⎨

⎩
1

2
et sinh(β)

∑

i, j∈[n]
pi jσiσ j

+ O

⎛

⎝
∑

i, j∈[n]
p2i j (e

t±β − 1)2

⎞

⎠

⎫
⎬

⎭
.

For any fixed t , the term O(
∑

i, j∈[n] p2i j (et±β − 1)2) can be controlled by using pi j ≤
wiw j/�n and Condition 1.1(c), which implies that

∣∣∣
∑

i, j∈[n]
p2i j

∣∣∣ ≤
∑

i, j∈[n]

(wiw j

�n

)2 =
(∑

i∈[n] w2
i

�n

)2

= o(n),

so that

An(t, β, B) = Gn(t, β)eo(n)
∑

σ∈�n

eB
∑

i∈[n] σi exp
{1
2
et sinh(β)

∑

i, j∈[n]
pi jσiσ j

}
.

We can proceed further and write

An(t, β, B) = Gn(t, β)eo(n)
∑

σ∈�n

eB
∑

i∈[n] σi e
1
2 e

t sinh(β)
∑

i, j∈[n]
wiw j

�n
σiσ j

= Gn(t, β)eo(n)
∑

σ∈�n

eB
∑

i∈[n] σi e
1
2
et sinh(β)

�n

(∑
i∈[n] wiσi

)2
,
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where we have also used that, under Condition 1.1(c),

∑

i∈[n]

w2
i

�n
= o(n),

∑

i, j∈[n]

[wiw j

�n
− pi j

]
=

∑

i, j∈[n]

w2
i w

2
j

�n(�n + wiw j )
= o(n).

Recalling the definition of the partition function of the inhomogeneous Curie–Weiss model
we can thus rewrite

An(t, β, B) = Gn(t, β)eo(n) Z ICW
n (et sinh(β), B) ,

while the denominator in (3.1) equals

An(0, β, B) = Gn(0, β)eo(n) Z ICW
n (sinh(β), B).

Therefore, the annealed cumulant generating function of the number of the edges is

ϕβ,B,n(t) : = 1

n
logEμan

n

[
et |En |]

= 1

n
log Z ICW

n (et sinh(β), B) − 1

n
log Z ICW

n (sinh(β), B)

+ 1

n
log

Gn(t, β)

Gn(0, β)
+ o(1). (3.9)

In order to apply theGärtner–Ellis theorem,we need to compute the limit ofϕβ,B,n(t).We can
deal with the first and second term in the r.h.s. of (3.9) by using the results obtained in [19],
in which the limit pressure of the Inhomogeneous Curie–Weiss model has been computed.
Indeed, by [19],

ψ ICW(sinh(β), B): = lim
n→∞

1

n
log Z ICW

n (sinh(β), B)

= log 2 +
[

E log cosh

(√
sinh(β)

E [W ]
Wz∗(β, B) + B

)]

− z∗(β, B)2

2
,

(3.10)

with z∗(β, B) defined in Theorem 1.2. Similarly

ψ ICW(et sinh(β), B) := lim
n→∞

1

n
log
(
Z ICW
n

(
et sinh(β), B

))

= log 2 +
⎡

⎣E log cosh

⎛

⎝

√
et sinh(β)

E [W ]
Wz∗(t, β, B) + B

⎞

⎠

⎤

⎦

− z∗(t, β, B)2

2
. (3.11)

with z∗(t, β, B) the unique fixed point having the same sign as B of the equation

z = E

⎡

⎣tanh

⎛

⎝

√
et sinh(β)

E[W ] Wz + B

⎞

⎠

√
et sinh(β)

E[W ] W

⎤

⎦ . (3.12)
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Next, we have to deal with the third term in (3.9) which, recalling (3.7) and (3.4), we write
explicitly as

1

n
log

Gn(t, β)

Gn(0, β)
= 1

n

∑

i< j

log

(
et pi j cosh(β) + 1 − pi j
pi j cosh(β) + 1 − pi j

)
+ 1

n

∑

i< j

log

(
cosh(βi j (0))

cosh(βi j (t))

)

+ 1

n

∑

i∈[n]

(
βi i (0) − βi i (t)

2

)
. (3.13)

We start by computing the first term in the r.h.s. of (3.13), then we show that the remaining
terms vanish in the limit. We start by recalling that, on the basis of the Weight Regularity
Condition 1.1(a) and (c), �n = n(E[W ] + o(1)) = O(n) and

∑
1≤i< j≤n p2i j = O(n−1).

Thus, we write the first term in (3.13) as

1

n

∑

i< j

log

(
et pi j cosh(β) + 1 − pi j
pi j cosh(β) + 1 − pi j

)
= 1

n

∑

i< j

log

(
1 + (et − 1)pi j cosh(β)

1 + pi j (cosh(β) − 1)

)

= 1

n

∑

i< j

log
(
1 + (et − 1)pi j cosh(β) + O(p2i j )

)

= (et − 1) cosh(β)
1

n

∑

i< j

pi j + O(n−1),

where the Taylor expansions of 1/(1 + x) and log(1 + x) have been used. Therefore,

lim
n→∞

1

n

∑

i< j

log

(
et pi j cosh(β) + 1 − pi j
pi j cosh(β) + 1 − pi j

)
= 1

2
(et − 1) cosh(β)E[W ], (3.14)

since 1
n

∑
i< j pi j → 1

2E[W ]. By (3.8) and a Taylor expansion

log

(
cosh(βi j (0))

cosh(βi j (t))

)
= O(p2i j ).

Then, by Condition 1.1(c) and pi j ≤ wiw j/�n ,

1

n

∑

i< j

log

(
cosh(βi j (0))

cosh(βi j (t))

)
= 1

n

∑

i< j

O(p2i j ) = O(n−1). (3.15)

Furthermore,
1

n

∑

i∈[n]

(
βi i (0) − βi i (t)

2

)
= 1

n

∑

i∈[n]
O(pii ) = O(n−1), (3.16)

where the definition of βi i (t) in (3.5) has been used. Combining (3.13) with the estimates in
(3.14), (3.15) and (3.16) leads to

lim
n→∞

1

n
log

Gn(t, β)

Gn(0, β)
= 1

2
(et − 1) cosh(β)E[W ]. (3.17)
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Considering the limit n → ∞ in (3.9) and using (3.17), (3.11) and (3.10), we conclude that

ϕβ,B(t) := lim
n→∞ ϕβ,B,n(t) = E

⎡

⎣log cosh

⎛

⎝

√
et sinh(β)

E [W ]
Wz∗(t, β, B) + B

⎞

⎠

⎤

⎦

− E

[

log cosh

(√
sinh(β)

E [W ]
Wz∗(β, B) + B

)]

+ 1

2

(
z∗(β, B)2 − z∗(t, β, B)2

)

+ 1

2
(et − 1) cosh(β)E[W ]. (3.18)

3.3 Conclusion of the Proof

With (3.18) in hand, we are finally ready to prove Theorem 1.7. Equation (3.18) identifies
the infinite-volume limit of the cumulant generating function of the number of edges. By
the Gärtner–Ellis theorem, this also identifies the rate function as its Legendre transform,
provided that t �→ ϕβ,B(t) is differentiable.

We compute the derivative of t �→ ϕβ,B(t) in (3.18) explicitly as

d

dt
ϕβ,B(t) = E

⎡

⎣tanh

⎛

⎝

√
et sinh(β)

E[W ] Wz∗(t, β, B) + B

⎞

⎠

√
et sinh(β)

E[W ] W

⎤

⎦

×
(
1

2
z∗(t, β, B) + d

dt
z∗(t, β, B)

)

− z∗(t, β, B)
d

dt
z∗(t, β, B) + 1

2
et cosh(β)E[W ]. (3.19)

Since z∗(t, β, B) is the fixed point for the ICW with β̃ = et sinh(β), which is an analytic
function of t , it holds that z∗(t, β, B) is analytic in t for B 	= 0 and hence d

dt z
∗(t, β, B)

exists. By (3.12), the first expectation equals z∗(t, β, B), so that the two terms containing the
factors d

dt z
∗(t, β, B) cancel, and

d

dt
ϕβ,B(t) = 1

2
z∗(t, β, B)2 + 1

2
et cosh(β)E[W ]. (3.20)

For B = 0, d
dt z

∗(t, β, B) might not exist in the critical point et sinh(β) = β̃c. However,
since the specific heat is finite, both the left and right derivative exist. Therefore, the above
argument can be repeated for the left and right derivative, which both give the r.h.s. of (3.20),
so that this equation is also true for B = 0.

This shows that t �→ ϕβ,B(t) is differentiable and it concludes the proof of the main
statement in Theorem 1.7 about the large deviations function for the number of edges in
the annealed GRGn(w). Formula (1.13) for the expected number of edges is immediately
obtained by evaluating (3.20) in t = 0.

Finally, we note that by the LDP derived in the previous section, and the fact that the
limiting rate function is strictly convex (this can be seen by noting that both terms on the r.h.s.
of (3.20) are strictly increasing) the rate function has a unique minimum, which immediately
shows that |En |/n is concentrated around its mean, which has already been derived in (1.17)
as well as in (3.20). �
Remark 3.1 (Moment generating function of total degree for GRGn(w)) At zero magnetic
field B = 0 and infinite temperature β = 0, the annealed average of any function of the
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1066 S. Dommers et al.

graph coincides with the average with respect to the law of the graph. Then, ϕ0,0,n(t) is the
cumulant generating function of the number of edges of the GRGn(w). In this case, (3.18)
gives

ϕ0,0(t) = 1

2
(et − 1)E[W ], (3.21)

because z∗(0, 0) = 0, which can also be seen by direct computation.

4 Degree Distribution Under Annealed Measure: Proof of Theorem 1.8

Given (Di )i∈[n], the degree sequence of the GRGn(w) we want to compute its moment
generating function with respect to the annealed measure μan

n , i.e.,

gβ,B,n(s) = Eμan
n

[
e
∑

i∈[n] si Di
]
,

for s = (s1, s2, . . . , sn) ∈ R
n . Since Di = ∑

j 	=i Ii j , where (Ii j )1≤i< j≤n are the independent
Bernoulli variables with parameters pi j representing the indicator that the edge i j exists and
I ji = Ii j , we can write

∑
i∈[n] si Di = ∑

i< j Ii j (si + s j ), then recalling (3.2) we have

gβ,B,n(s) = Rn,β,B(t(s)) (4.1)

where we define ti j (s) := si + s j for 1 ≤ i < j ≤ n. Furthermore, by (3.3),

gβ,B,n(s) = An(t(s), β, B)

An(0, β, B)
, (4.2)

wherewe recall thatAn(t, β, B)was defined in (3.6). This is the starting point of our analysis.
In Sect. 4.1 we simplify the expression for the moment generating function of the degrees by
using the mapping of the annealed Ising measure to the rank-1 inhomogeneous Curie–Weiss
model. We then investigate the degree of a fixed vertex under the annealed Ising model in
Sect. 4.2 and we consider finitely many degrees in Sect. 4.3.

4.1 Moment Generating Function of the Degrees

We start by rewriting the generating function of the degreegβ,B,n(s). To this aim, due to (4.2),
we need to rewrite An(t(s), β, B). This can be done using again the Hubbard-Stratonovich
identity. Introducing the standard Gaussian variable Z , we will show that we can extend the
arguments in [19] to show that

An(t(s), β, B) = Gn(t(s), β) 2n e−κ(t)
EZ

[

exp

{
n∑

i=1

log cosh
(
an(β)esi wi Z + B

)
}]

× (1 + o(1)), (4.3)

where an(β) = √
sinh(β)/�n , κ(t) is some appropriate constant and EZ denotes the expec-

tation w.r.t. the Gaussian variable Z . This boils down to proving convergence of the moment
generating function, which requires sharp asymptotics for An(t(s), β, B), while in [19], it
sufficed to study the logarithmic asymptotics.

To see (4.3), we define the s-dependent rank-1 inhomogeneous Curie–Weiss model mea-
sure as

μICW
n,s (σ ) = 1

Z ICW
n,s (sinh(β), B)

e
1
2

∑
i, j sinh(β)esi es j

wiw j
�n

σiσ j+B
∑

i∈[n] σi ,
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with Z ICW
n,s (sinh(β), B) the appropriate partition function. Then, using (3.6), we can follow

[13, (4.64)] to obtain that

An(t(s), β, B) = Gn(t(s), β)Z ICW
n,s (sinh(β), B)EμICW

n,s

[
eFn(s)

]
, (4.4)

where now

Fn(s) = 1

2

∑

i, j

[
βi j (si + s j ) − esi+s j sinh(β)

wiw j

�n

]
σiσ j ,

and we have adapted notation from En in [13, (4.64)] to Fn here to avoid confusion with the
total number of edges. To further simplify (4.4), we observe that, following the proof of [13,
Lemma 4.1], one has

Z ICW
n,s (sinh(β), B) = 2nEZ

[

exp

{
n∑

i=1

log cosh
(
an(β)esi wi Z + B

)
}]

.

Further, under Condition 1.1(a)–(c), we can follow the proof of [13, Lemma 4.7] to identify

the limit of EμICW
n,s

[
eFn(s)

]
, as formulated in the next lemma:

Lemma 4.1 (Asymptotics correction term) Define Wn(s) = wU esU , where U ∈ [n] is a
uniform vertex. Assume that s is such that Wn(s)

D−→ W (s) and E[Wn(s)2] → E[W (s)2].
Then, there exists κ(s) ≥ 0 such that

lim
n→∞EμICW

n,s

[
eFn(s)

]
= e−κ(s).

In particular, κ(s) = κ(0) when s = (s1, . . . , sn) only contains finitely many non-zero
coordinates.

Proof of Lemma 4.1. We follow the proof of [13, Lemma 4.7] to obtain that

Fn(s) = −1

2
sinh(β) cosh(β)

⎛

⎝
∑

i∈[n]
esi σi

w2
i

�n

⎞

⎠

2

+ o(1).

Due to the negativity of this term, Lemma 4.1 follows when we prove that, for some κ̄(s),

∑

i∈[n]
esi σi

w2
i

�n

P−→ κ̄(s), (4.5)

and then Lemma 4.1 follows with κ(s) = 1
2 (κ̄(s))2 sinh(β) cosh(β). We proceed to prove

(4.5), which, in turn, is equivalent to proving that as n → ∞

EμICW
n,s

[
er
∑

i∈[n] esi σi
w2
i

�n

]
→ er κ̄(s).

Following [19, (4.71)]] we start by applying again the Hubbard-Stratonovich identity that
gives

EμICW
n,s

[
er
∑

i∈[n] esi σi
w2
i

�n

]
=
∑

σ∈�n
EZ

[
exp

{∑
i

(
r
�n
esi w2

i +
√

sinh(β)
�n

esi wi Z + B
)
σi

}]

∑
σ∈�n

EZ

[
exp

{∑
i

(√
sinh(β)

�n
esi wi Z + B

)
σi

}] .
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The sum over the spins can now be performed yielding

EμICW
n,s

[
er
∑

i∈[n] esi σi
w2
i

�n

]
=

EZ

[
exp

{∑
i log cosh

(
r
�n
esi w2

i +
√

sinh(β)
�n

esi wi Z + B
)}]

EZ

[
exp

{∑
i log cosh

(√
sinh(β)

�n
esi wi Z + B

)}] .

By introducing the random variables Wn(s) = wU esU , where U ∈ [n] is a uniform vertex,
the previous expression can be rewritten as

EμICW
n,s

[
er
∑

i∈[n] esi σi
w2
i

�n

]

=
∫
R
exp

{
− z2/2 + nE

[
log cosh

(
r
�n
W 2

n (s/2) +
√

sinh(β)
�n

Wn(s)z + B
)]}

dz

∫
R
exp

{
− z2/2 + nE

[
log cosh

(√
sinh(β)

�n
Wn(s)z + B

)]}
dz

.

We do a change of variables replacing z√
n
by z, so that

EμICW
n,s

[

er
∑

i∈[n] esi σi
w2
i

�n

]

=
∫
R
exp

{
− nz2/2 + nE

[
log cosh

(
r
�n
W 2

n (s/2) +
√

sinh(β)
E[Wn ] Wn(s)z + B

)]}
dz

∫
R
exp

{
− nz2/2 + nE

[
log cosh

(√
sinh(β)
E[Wn ] Wn(s)z + B

)]}
dz

.

Assuming that Wn(s)
D−→ W (s) for some limiting distribution, as well as E[Wn(s)2] →

E[W (s)2] (which in fact is a condition on s), an application of the Laplace method yields

EμICW
n,s

[

er
∑

i∈[n] esi σi
w2
i

�n

]

= exp

[

rE

[

tanh

(√
sinh(β)

E[W ] W (s)z∗(s, β, B) + B

)
W ( s

2 )2

E[W ]

]]

× (1 + o(1)),

where z∗(s, β, B) is the solution with the same sign as B of

z = E

[

tanh

(√
sinh(β)

E[W ] W (s)z + B

)√
sinh(β)

E[W ] W (s)

]

.

All in all, the previous computation shows that (4.5) holds with

κ̄(s) = E

[

tanh

(√
sinh(β)

E[W ] W (s)z∗(s, β, B)

)
W (s/2)2

E[W ]

]

.

When s only has a finite number of non-zero coordinates, it holds that Wn(s)
D−→ W and

E[Wn(s)2] → E[W 2], so that κ̄(s) = κ̄(0), as required. �
Armed with (4.3), we recall (4.2) and thus conclude that the moment generating function

of the degrees is given by

gβ,B,n(s) = (1 + o(1))eκ(0)−κ(s) Gn(t(s), β)EZ
[
exp

∑n
i=1 log cosh (an(β)esi wi Z + B)

]

Gn(0, β)EZ
[
exp

∑n
i=1 log cosh (an(β)wi Z + B)

] ,

(4.6)
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with

an(β) =
√
sinh(β)

�n
= O

(
n− 1

2

)
.

4.2 Degree of a Fixed Vertex: Proof of Theorem 1.8

We want to study the distribution of the degree of a fixed vertex. With no loss of generality
we can fix, for instance, vertex i = 1. Thus, we choose s = s1 with s1 = (s, 0, . . . , 0), and
write

exp

[
n∑

i=1

log cosh
(
an(β)esi wi Z + B

)
]

= cosh(an(β)esw1Z + B)

cosh(an(β)w1Z + B)

× exp

[
n∑

i=1

log cosh (an(β)wi Z + B)

]

.

Defining

hn(Z;β, B) := exp

{
n∑

i=1

log cosh (an(β)wi Z + B)

}

= exp
{
nEWn

[
log cosh (an(β)WnZ + B)

]}
, (4.7)

where EWn is the average w.r.t. Wn = wU being U an uniformly chosen vertex in [n], we
can introduce the probability measure on R by

γβ,B,n(·) := EZ [ · hn(Z;β, B)]
EZ [hn(Z;β, B)] ,

and write (4.6) as

gβ,B,n(s1) = (1 + o(1))
Gn(t(s1), β)

Gn(0, β)
Eγβ,B,n

(
cosh (an(β)esw1Z + B)

cosh (an(β)w1Z + B)

)
, (4.8)

since, by Lemma 4.1, κ(t) = κ(0).

Now, under the measure γβ,B,n , Z/
√
n

P−→ z∗(β, B), which can be seen by performing a
Laplace method on the integral

EZ [ · hn(Z;β, B)] =
∫ +∞

−∞
· exp

[
n∑

i=1

log cosh (an(β)wi Z + B)

]

e−z2/2 dz√
2π

.

In fact, that is precisely the interpretation that z∗(β, B) in Theorem 1.2 has. As a result,

Eγβ,B,n

(
cosh (an(β)esw1Z + B)

cosh (an(β)w1Z + B)

)
→

cosh
(
z∗(β, B)esw1

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)w1

√
sinh(β)
E[W ] + B

) .

Thus,

Eμan
n

[
esD1

] = (1 + o(1))
Gn(t(s1), β)

Gn(0, β)

cosh
(
z∗(β, B)esw1

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)w1

√
sinh(β)
E[W ] + B

) , (4.9)
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and we are left with the problem of studying the limit of Gn(t(s1), β)/Gn(0, β). We have

Gn(t(s1), β)

Gn(0, β)
= e−β11(2s)/2

∏
j>1 C1 j (s)

∏
1<i< j Ci j (0)

∏
i>1 e

−βi i (0)/2

e−β11(0)/2
∏

j>1 C1 j (0)
∏

1<i< j Ci j (0)
∏

i>1 e
−βi i (0)/2

= e−β11(2s)/2

e−β11(0)/2

∏

j>1

(
C1 j (s)

C1 j (0)

)
, (4.10)

where (3.7) has been used. From the definition of Ci j (s)’s, we get

∏

j>1

(
C1 j (s)

C1 j (0)

)
=
∏

j>1

es cosh(β)p1 j + 1 − p1 j
cosh(β)p1 j + 1 − p1 j

·
∏

j>1

cosh(β1 j (0))

cosh(β1 j (s))
. (4.11)

Putting pi j = wiw j/(�n + wiw j ), the first term in the l.h.s. is rewritten as

∏

j>1

es cosh(β)p1 j + 1 − p1 j
cosh(β)p1 j + 1 − p1 j

=
∏

j>1

�n + es cosh(β)w1w j

�n + cosh(β)w1w j
= ecosh(β)w1(es−1)(1 + o(1))

as n → ∞. Next, we consider the second factor in the r.h.s. of (4.11). Arguing as in (3.15)
in the previous section,

∑

1< j

log

(
cosh(βi j (0))

cosh(βi j (s))

)
=
∑

1< j

O(p21 j ) ≤ w2
1

∑

1< j

w2
j

�2n
= o(1), (4.12)

since max j∈[n] w j = o(n). Taking the exponential of the previous relation, we obtain

∏

j>1

cosh(β1 j (0))

cosh(β1 j (s))
= 1 + o(1),

as n → ∞. Finally, since βi j (s) = o(1) as n → ∞ (since pi j → 0 in the same limit), the
second factor in the r.h.s. of (4.10) is 1 + o(1). This proves that

Gn(t(s1), β)

Gn(0, β)
= ecosh(β)w1(es−1)(1 + o(1)).

and from (4.9), we finally obtain

Eμan
n

[
esD1

] = (1 + o(1))ecosh(β)w1(es−1)
cosh

(
z∗(β, B)esw1

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)w1

√
sinh(β)
E[W ] + B

) ,

as required. �
4.3 Degree of a Fixed Number of Vertices: Proof of Theorem 1.10

We can generalize the previous computation by considering the degrees (D1, D2, . . . , Dm),
with m ∈ [n] fixed. The generating function of this random vector can be obtained by
plugging s = sm with sm = (s1, s2, . . . , sm, 0, . . . , 0) into (4.6). By the same arguments of
the previous section, we obtain

gβ,B,n(sm) = (1 + o(1))
Gn(t(sm), β)

Gn(0, β)
Eγβ,B,n

(
m∏

i=1

cosh (an(β)esi wi Z + B)

cosh (an(β)wi Z + B)

)

, (4.13)
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with

Eγβ,B,n

(
m∏

i=1

cosh (an(β)esi wi Z + B)

cosh (an(β)wi Z + B)

)

→
m∏

i=1

cosh
(
z∗(β, B)esi wi

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)wi

√
sinh(β)
E[W ] + B

)

(4.14)
as n → ∞. Now we have to study the limit of Gn(t(sm), β)/Gn(0m, β). From the definition
of Gn(t, β) given in (3.7) and recalling that ti j (s) = si + s j ,

Gn(t(sm), β)

Gn(0, β)
=

∏

1≤i< j≤m

(
Ci j (si + s j )

Ci j (0)

)
·

∏

1 ≤ i ≤ m
j > m

(
Ci j (si )

Ci j (0)

)
·

m∏

i=1

(
e−βi i (2si )/2

e−βi i (0)/2

)

.

(4.15)
We analyze the three factors separately:

� First and third factors of (4.15). By the definition of Ci j (ti j ),

∏

1≤i< j≤m

(
Ci j (si + s j )

Ci j (0)

)
=

∏

1≤i< j≤m

esi es j cosh(β)pi j + 1 − pi j
cosh(β)pi j + 1 − pi j

·
∏

1≤i< j≤m

cosh(βi j (0))

cosh(βi j (si + s j ))
, (4.16)

where, by definition of pi j ,

∏

1≤i< j≤m

esi es j cosh(β)pi j + 1 − pi j
cosh(β)pi j + 1 − pi j

=
∏

1≤i< j≤m

�n + esi es j cosh(β)wiw j

�n + cosh(β)wiw j
.

We show that this factor is 1+ o(1). Indeed, following [24], we expand log(1+ x) to obtain

log
∏

1≤i< j≤m

�n + esi es j cosh(β)wiw j

�n + cosh(β)wiw j
= cosh(β)

�n

∑

1≤i< j≤m

wiw j (e
si es j − 1)

+ cosh(β)

�2n
O(

∑

1≤i< j≤m

w2
i w

2
j )

= O(n−1),

since �n = O(n) and m is fixed. The second term in the r.h.s. of (4.16) and the third factor
of (4.15) converge to 1. Thus, we have shown that that the first and third factors of (4.15) are
1 + o(1).

� Second factor of (4.15). For any fixed 1 ≤ i ≤ m,

∏

j>m

(
Ci j (si )

Ci j (0)

)
=
∏

j>m

�n + esi cosh(β)wiw j

�n + cosh(β)wiw j
·
∏

j>m

cosh(βi j (0))

cosh(βi j (si ))
.

The second factor in the r.h.s. of the previous display can be treated as in (4.12), showing
that it is 1 + o(1), while the first factor is close to the generating function of Di in a GRG
with vertex set {i,m + 1, . . . , n} and weight of vertex i given by cosh(β)wi . We can deal
with this term as we have already done, that is,

log
∏

j>m

�n + esi cosh(β)wiw j

�n + cosh(β)wiw j
= cosh(β)wi (e

si − 1)
1

�n

∑

j>m

w j + cosh(β)

�2n
O

⎛

⎝
∑

j>m

w2
j

⎞

⎠ .
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Since m is fixed 1
�n

∑
j>m w j = 1 + o(1), and 1

�2n
O(
∑

j>m w2
j )≤ maxi∈[n] wi/�n = o(1)

by Condition 1.1. Then,

∏

j>m

�n + esi cosh(β)wiw j

�n + cosh(β)wiw j
= ecosh(β)wi (esi −1)(1 + o(1)),

and the second factor in (4.15) is
∏m

i=1 e
cosh(β)wi (esi −1)(1 + o(1)). Thus we conclude that

Gn(t(sm), β)

Gn(0, β)
=

m∏

i=1

ecosh(β)wi (esi −1)(1 + o(1)).

Going back to (4.13), we finally obtain that

Eμan
n

[
e
∑m

i=1 si Di
]

=
m∏

i=1

ecosh(β)wi (esi −1)
m∏

i=1

cosh
(
z∗(β, B)esi wi

√
sinh(β)
E[W ] + B

)

cosh
(
z∗(β, B)wi

√
sinh(β)
E[W ] + B

) (1 + o(1)),

as required. �
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Appendix: LDP for the total spin using combinatorial arguments

In this appendix, we obtain the large deviation function of the total spin in the rank-1 inho-
mogeneous Curie–Weiss model (and thus in the annealed Ising model) by employing direct
combinatorial arguments. We will restrict to the finite-type setting in which, roughly, there is
a finite set of values for wi ’s. More precisely, we define this setting as follows:

Condition A.1 (Finite-type setting) The vertex weight sequences w = (wi )i∈[n] satisfy the
following conditions:

(a) There exists a K ∈ N and a set of positive numbers A = {a1, a2, . . . , aK }, with a1 <

a2 < . . . < aK , such that wi ∈ A for all i ∈ [n];
(b) Denoting by n̂k(n) the number of weights (wi )i∈[n] such thatwi = ak, then the following

limits exist

lim
n→∞

n̂k(n)

n
= pk , k = 1, . . . , K ,

(obviously p = (p1, . . . , pK ) is a probability vector). We define also p̂k(n) := n̂k (n)
n and

ek(n) := p̂k(n) − pk.

Hereafter, for the sake of notation we drop n from the notation of n̂k(n), p̂k(n), ek(n).
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Large Deviations for the Annealed Ising Model on… 1073

In this finite-type setting, the previous Condition A.1 is equivalent to Condition 1.1 in
which Wn is the uniformly chosen weight with

E[Wn] =
K∑

k=1

ak p̂k , E[W 2
n ] =

K∑

k=1

a2k p̂k ,

and W is the limit weight assuming values ak with probability pk , so that

E[W ] =
K∑

k=1

ak pk , E[W 2] =
K∑

k=1

a2k pk . (A.1)

Assuming Condition A.1, we consider the Hamiltonian (1.22) and defining

mn = 1

n

∑

i∈[n]
σi , m(w)

n = 1

n

∑

i∈[n]
wiσi , (A.2)

we rewrite
H ICW
n (σ ) = β̃

n

2E[W ] (m
(w)

n )2 + nB mn . (A.3)

In the theorem below, we write �x� for the integer part of x > 0.

Theorem A.2 (LDPs for the total spin in the finite-type ICW model) In the inhomogeneous
Curie–Weiss model defined by (1.22), and assuming the finite-type setting in Condition A.1,
the total spin Sn satisfies that for m ∈ (−1, 1), with A = [ 1

2 (1 + m) a1,
1
2 (1 + m) aK

]
,

lim
n→∞

1

n
logPμICW

n
(Sn = �m n�)

= − inf
x∈A

[

− β̃

2
E[W ] − 2β̃

E[W ] x
2 + 2β̃x − B m + Im(x) + ψ ICW(β̃, B)

]

, (A.4)

where ψ ICW(β̃, B) is the pressure of the model and where

Im(x) = E

[
eλ1W+λ2

1 + eλ1W+λ2
log

(
eλ1W+λ2

1 + eλ1W+λ2

)
+ 1

1 + eλ1W+λ2
log

(
1

1 + eλ1W+λ2

)]
,

(A.5)

with λ1 = λ1(x,m), λ2 = λ2(x,m) defined implicitly by
⎧
⎪⎪⎨

⎪⎪⎩

E

[
eλ1W+λ2

1 + eλ1W+λ2

]
= 1 + m

2 ,

E

[
W eλ1W+λ2

1 + eλ1W+λ2

]
= x .

(A.6)

Remark A.3 The expression for the large deviation rate function of the total spin in the
Theorem A.2 coincides with the one that is obtained from Theorem 1.6 by application of
the contraction principle and the relation between the annealed Ising model and the inho-
mogeneous Curie–Weiss model. Indeed, recalling that the annealed measure μan

n at inverse
temperature β is close to the Boltzmann–Gibbs measure μICW

n of the inhomogeneous Curie–
Weiss model at inverse temperature β̃ = sinh(β) (in the sense of Eq. (2.7)) and by using
ψ ICW(β̃, B) = −α(β) + ψan(β, B), one finds that the large deviation function of the total
spin in the inhomogeneous Curie–Weiss model obtained from (2.4) reads

I (m) = inf
x2

[

I (m, x2) − β̃

2E[W ] x
2
2 − Bm − log(2) + ψ ICW(β̃, B)

]

. (A.7)
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To see that (A.7) is equal to the r.h.s of (A.4) one employs the substitution x2 = 2x −E(W ).
In doing so clearly the energetic contribution are equal, since

− β̃

2E[W ] x
2
2 = − β̃

2
E[W ] − 2β̃

E[W ] x
2 + 2β̃x .

It remains to prove that

I (m, x2) − log(2) = Im(x).

This can be shown by changing the spin variables σi to the variables yi = 1
2 (σi + 1) and

introducing
Ŝn =

∑

i∈[n]
yi , Ŝ(w)

n =
∑

i∈[n]
wi yi .

Observe that
Sn = 2Ŝn − n, S(w)

n = 2Ŝ(w)

n − n E[Wn],
so that we can write

EPn [exp(t1Sn + t2S
(w)

n )] = exp(−n(t1 + t2E[Wn]))EPn [exp(2t1 Ŝn + 2t2 Ŝ
(w)

n )].
Since

EPn [exp(2t1 Ŝn + 2t2 Ŝ
(w)

n )] = EPn [�i∈[n] exp(2t1 + 2wi t2)yi ] = 1

2n
�i∈[n](1 + e2(t1+wi t2)),

we obtain that the moment generating function of (Sn, S
(w)
n ) w.r.t. the product measure (2.2)

can be expressed as

cn(t) = − log 2 − (t1 + t2E[Wn]) + E[log(1 + e2(t1+Wnt2))].
Thus, arguing as in the proof of Theorem 1.6, we obtain that the limit of cn(t) exists and
equals

c(t) = − log 2 − (t1 + t2E[W ]) + E[log(1 + e2(t1+Wt2))].
By applying the Gärtner–Ellis theorem we get the expression for the rate function

I (x1, x2) = sup
(t1,t2)

(
t1x1 + t2x2 + log 2 + (t1 + t2E[W ]) − E[log(1 + e2(t1+Wt2))]

)
.

The stationarity conditions read as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E

[
e2(t1+Wt2)

1 + e2(t1+Wt2)

]
= 1 + x1

2 ,

E

[
W e2(t1+Wt2)

1 + e2(t1+Wt2)

]
= E[W ] + x2

2 .

(A.8)

Since x1 represents the magnetization m and x2 represents the weighted magnetization m(w),
and using again the substitution x = (x2+E(W ))/2 we obtain that (A.8) is identical to (A.6)
provided that λ1 is identified with 2t2 and λ2 with 2t1.

Proof of Theorem A.2 Given a configuration σ , we denote by n+ and n− the number of its
positive resp. negative spins. We can group the spins in σ according to eithermn or n+, since
these quantities are related by n+ = n(1 + mn)/2. We can also identify each configuration
of spins σ with the set I+ ⊂ [n] of vertices in which σi = 1, obviously the cardinality of this
set is |I+| = n+.
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Given any I+ ⊂ [n], we define

qk = 1

n
#{i ∈ I+ | wi = ak}, k ∈ [K ] (A.9)

to be the frequency of type ak in I+. Then

|I+| = n+ = n
K∑

k=1

qk, (A.10)

and

r (w)

n := 1

n

∑

i∈I+
wi =

K∑

k=1

akqk ≡ a · q. (A.11)

Moreover, given n, we define the set

Qn :=
{(

�1

n
, . . . ,

�K

n

)
| �k ∈ N, �k ≤ n̂k(n), k = 1, . . . , K

}

of the possible frequency vectors q = (q1, q2, . . . , qK ).
Exponential estimate for the conditional probability of q = (q1, q2, . . . , qK ). We

start by counting the number of sets I+ with �n(1 + m)/2� elements and a given q =
(q1, q2, . . . , qK ) ∈ Qn that satisfies the condition n

∑K
k=1 qk = �n( 1+m

2 )� = |I+| = n+.
For any k = 1, . . . , K , in [n] there are n p̂k sites corresponding to ak , and we choose nqk out
of them to form I+. On the other hand, there are

( n
n+
) ≡ ( n

�n(1+m)/2�
)
possible ways to form

a set I+ with n+ elements. Thus, the conditional distribution of q = (q1, q2, . . . , qK ) given
m is multi-hypergeometric, i.e.,

Pn(q1, q2, . . . , qK | m) =

K∏

k=1

(
n p̂k
nqk

)

(
n

�n( 1+m
2 )�

) 1l{q∈Dn ,
∑K

k=1 qk= 1
n

⌊
n
(
1+m
2

)⌋
}. (A.12)

The asymptotic behavior of this probability as n → ∞, can be obtained by using the Stirling’s
approximation n! = e−nnn

√
2πn(1 + o(1)) to estimate of the binomial coefficient as

(
nb

na

)
= en[b log b−a log a−(b−a) log(b−a)] ·

√
b(1 + o(1))√

a
√
b − a

√
2πn

,

where 0 < a < b. Then, generalizing the previous formula to a set of variables ak < bk, k =
1, . . . , K , we obtain

K∏

k=1

(
nbk
nak

)
= Cn(ak, bk)(1 + o(1)), (A.13)

where

Cn(a, b) := c1 (2πn)−K/2 exp

(

n
K∑

k=1

[bk log bk − ak log ak − (bk − ak) log(bk − ak)]
)

,

(A.14)

with c1 = ∏K
k=1

√
bk

ak (bk−ak )
and the function is defined on the set

{(a1, . . . , aK , b1, . . . , bK ) ∈ R
2K | 0 < ak < bk, k = 1, . . . , K }.
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We now compute the asymptotics of the numerator in (A.12). Recalling that p̂k = pk + ek
and Taylor expanding the sum in (A.14) and c1 as a function of bk’s, we obtain

K∏

k=1

(
n(pk + ek)

nqk

)
=Cn(q, p) [1 +

K∑

k=1

c(1)
k ek +

K∑

k=1

O(e2k )]

× exp

(

n
K∑

k=1

c(2)
k ek(1 + O(ek))

)

(1 + o(1)), (A.15)

for some constants c(1)
k and c(2)

k . The second factor in the r.h.s. comes from the substitution
pk → pk + ek in the factor c1 of (A.14), and the third form the sum in the same equation.
From Condition A.1 we have that these terms are both (1 + o(1)). Then, we conclude that
the numerator in (A.12) is

K∏

k=1

(
n p̂k
nqk

)
= Cn(q, p)(1 + o(1)). (A.16)

We can deal with the denominator in (A.12) in a similar fashion, obtaining:
(

n

�n( 1+m
2

)�
)

= c2 sn(2πn)−
1
2

exp

(
n

[
−1 + m

2
log
(1 + m

2

)
− 1 − m

2
log
(1 − m

2

)])
(1 + o(1)), (A.17)

with c2 = 2√
1−m2 and sn = sn(m) = exp[(n 1+m

2 − �n 1+m
2 �) log( 1−m2

4 )]. By plugging this
estimate and (A.13) in (A.12), we finally obtain that

Pn(q1, q2, . . . , qK | m) = c1
c2

sn (2πn)
1−K
2 eng(q,m)(1 + o(1)), (A.18)

with

g(q,m) =
{
h(q,m), if qk ≤ pk,

∑
k qk = 1

n �n( 1+m
2

)�,
−∞, otherwise,

(A.19)

and

h(q,m) = 1 + m

2
log
(1 + m

2

)
+ 1 − m

2
log
(1 − m

2

)

+
K∑

k=1

[pk log pk − qk log qk − (pk − qk) log(pk − qk)]. (A.20)

Exponential estimate for the conditional probability of r (w)
n . Let use introduce

An(m) =
{

q1a1 + · · · + qK aK | q ∈ Qn,
∑

k

qk = 1

n

⌊
n

(
1 + m

2

)⌋}

,

which are the sets of values of r (w)
n = 1

n

∑
i∈I+ wi corresponding to subsets I+ ⊂ [n] with

�n(1 + m)/2� elements. We have that

1

2
(1 + m) a1 − ρn(m)

n
≤ inf An(m), supAn(m) ≤ 1

2
(1 + m) aK − ρn(m)

n
, (A.21)
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with ρn(m) = n(1+m)/2−�n(1+m)/2�. Obviously ρn(m)
n = O(n−1), since 0 ≤ ρn(m) <

1. Moreover, by (A.21) and the fact that inf An(m) ≥ a1
∑

k qk and supAn(m) ≤ aK
∑

k qk ,

inf An(m) → 1

2
(1 + m) a1, supAn(m) → 1

2
(1 + m) aK (A.22)

as n → ∞. The previous remark implies that r (w)
n is close to some x ∈ [ 1

2 (1 + m) a1,
1
2

(1 + m) aK
]
for large n. Therefore, we claim that

lim
n→∞

1

n
logPπn

⎛

⎝
∑

i∈I+
wi = n x

∣
∣
∣
∣ |I+| = �n(1 + m)/2�

⎞

⎠

=
{
Sm(x), x ∈ [ 12 (1 + m) a1,

1
2 (1 + m) aK

]
,

−∞, otherwise,
(A.23)

where Sm(x) has to be computed. To this end, we observe now that the probability in (A.23)
can be written as

Pπn

⎛

⎝
∑

i∈I+
wi = n x

∣∣∣∣ |I+| = �n(1 + m)/2�
⎞

⎠ =
∑

q ∈ Qn

a · q = x

Pn(q1, q2, . . . , qK | m),

where the sum is extended to those k-tuples q ∈ Qn for which the event
∑

i∈I+ wi = n x is
realized. In the previous sum the term that corresponds to the larger value of the exponent
g(q,m) in (A.18) controls the behavior in the limit, the remaining terms being sub-leading.
The quantity depending on m in the definition of h(q,m), see (A.20), is negative and the
sum on k is positive, while h(q,m) is negative in the range defined in the first line of (A.19).
Thus, defining

h̃(q1, q2, . . . , qK ) =
K∑

k=1

[pk log pk − qk log qk − (pk − qk) log(pk − qk)],

we have to find

Sn = sup
a · q = x,∑

k qk = 1
n �n(m + 1)/2�

h̃(q1, q2, . . . , qK ).

In the previous equation, the notationSn emphasizes the fact that due to the constraints, the
sup depends on n. As a consequence, the optimization point q∗ = (q∗

1 , . . . , q∗
k ) will depend

on n. In order to find q∗ we introduce the multipliers λ1 and λ2 conjugate to x and m, and
write the Lagrangian function as

L(q1, q2, . . . , qK ; λ1, λ2) = h̃(q1, q2, . . . , qK )+λ1

(
K∑

k=1

akqk − x

)

+λ2

(
∑

k

qk − m̃n

)

,

where we set

m̃n := 1

n
�n(m + 1)/2� = 1 + m

2
− ρn(m)

n
= 1 + m

2
+ O(n−1).
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By imposing that ∂L/∂qk = 0, k = 1, . . . , K , we obtain that the stationarity point q∗(n) =
(q∗

1 (n), . . . , q∗
k (n)) of the function h̃ satisfies

q∗
k (n) = pkeλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
, k ∈ [K ],

with λ1(n) = λ1(x, m̃n), λ2(n) = λ2(x, m̃n). By introducing the notation

uk(n) = q∗
k (n)

pk
= eλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
,

we write

Sn = h̃(q∗
1 (n), q∗

2 (n), . . . , q∗
K (n))

= −
K∑

k=1

pk[uk(n) log uk(n) + (1 − uk(n)) log(1 − uk(n))]

= E

[
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)
log

(
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)

)

+ 1

1 + eλ1(n)W+λ2(n)

× log

(
1

1 + eλ1(n)W+λ2(n)

)]
. (A.24)

The relation between the multipliers λ1, λ2 and the parameters x , m̃n can be made explicit
by recalling that, since the probability vector (p1, . . . , pK ) is the distribution of W , and by
(A.11),

x =
K∑

k=1

ak pk
eλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
= E

[

W
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)

]

, (A.25)

and, from (A.10),

m̃n = 1 + m

2
+ O(n−1) =

K∑

k=1

pk
eλ1(n)ak+λ2(n)

1 + eλ1(n)ak+λ2(n)
= E

[
eλ1(n)W+λ2(n)

1 + eλ1(n)W+λ2(n)

]

, (A.26)

where (A.11) and (A.10) have been used. By taking the limit of (A.25) and (A.26) as n → ∞,
we see that λ1(n) and λ2(n) converge to λ1 and λ2 that solve

x =
K∑

k=1

ak pk
eλ1ak+λ2

1 + eλ1ak+λ2
= E

[
W

eλ1W+λ2

1 + eλ1W+λ2

]
,

and
1 + m

2
=

K∑

k=1

pk
eλ1ak+λ2

1 + eλ1ak+λ2
= E

[
eλ1W+λ2

1 + eλ1W+λ2

]
,

that is (A.6). From this fact it follows that in the same limit n → ∞,

q∗
k (n) → q∗

k = pkeλ1ak+λ2

1 + eλ1ak+λ2
and uk(n) → uk = eλ1ak+λ2

1 + eλ1ak+λ2

and, thus,
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Sn → S := E

[
eλ1W+λ2

1 + eλ1W+λ2
log

(
eλ1W+λ2

1 + eλ1W+λ2

)

+ 1

1 + eλ1W+λ2
log

(
1

1 + eλ1W+λ2

)]

(A.27)

Then, from (A.18), (A.20), and the previous display, we obtain the limit in (A.23) with

Sm(x) = 1 + m

2
log

(
1 + m

2

)
+ 1 − m

2
log

(
1 − m

2

)

+ E

[
eλ1W+λ2

1 + eλ1W+λ2
log

(
eλ1W+λ2

1 + eλ1W+λ2

)
+ 1

1 + eλ1W+λ2
log

(
1

1 + eλ1W+λ2

)]
. (A.28)

Moment generating function of the Hamiltonian H ICW
n (σ ). Our next step to compute the

cumulant generating function of the Hamiltonian (A.3) that we rewrite as a function of

r (w)

n = 1

n

∑

i∈I+
wi ,

for which we have proven (A.23). In this way we obtain

H ICW
n (r (w)

n ,mn) = n

[
2β̃

E[W ] (r
(w)

n )2 − 2β̃
E[Wn]
E[W ] r

(w)

n + β̃

2

E[Wn]2
E[W ] + Bmn

]

.

Now, writing E[Wn] = E[W ] + εn and defining

hICW
n (r (w)

n ,mn) := 2β̃

E[W ] (r
(w)

n )2 − 2β̃r (w)

n + β̃

2
E[W ] + Bmn,

we have

H ICW
n (r (w)

n ,mn) = n hICW
n (r (w)

n ,mn) + n εn

[

− 2β̃

E[W ]r
(w)

n + β̃ + β̃

2E[W ]εn
]

.

Since Condition A.1 implies that εn = o(1) the last addend in the previous display is o(n).
Now we can finally write the cumulant generating function and apply Varadhan’s lemma to
compute

lim
n→∞

1

n
logEπn

[
eH

ICW
n (r (w)

n ,mn) | mn = m
]

= lim
n→∞

1

n
logEπn

[
en [hICWn (r (w)

n ,mn)+o(1)] | mn = m
]

= β̃

2
E[W ] + B m + sup

x∈A

[
2β̃

E[W ] x
2 − 2β̃x − Sm(x)

]

, (A.29)

where the large deviation property (A.23) has been used and A = [ 1
2 (1 + m) a1,

1
2 (1 + m)

aK
]
. We can now move to the final step.

Asymptotic behavior of PμICW
n

(mn = m). Let us observe that, since the conditional
average on the left hand side to the previous display is computed with respect to the uniform
measure πn(σ ) = 2−n on the spins σ ,

Eπn

[
eH

ICW
n (σ )|mn = m

]
=
∑

σ 1l{mn(σ )=m}eH
ICW
n (σ )πn(σ )

Pπn (mn = m)

= 2−n Z ICW
n

Pπn (mn = m)
PμICW

n
(mn = m),
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with Z ICW
n = ∑

σ eH
ICW
n (σ ), the partition function of the ICW model. Thus,

1

n
logPμICW

n
(mn = m) = 1

n
logEπn

[
eH

ICW
n (σ )|mn = m

]
+ 1

n
logPπn (mn = m)

− 1

n
log Z ICW

n + log 2.

Since Pπn (mn = m) = 2−n
( n
n( 1+m

2 )

)
, by (A.17),

lim
n→∞

1

n
logPπn (mn = m) = − log 2 − 1 + m

2
log
(1 + m

2

)
− 1 − m

2
log
(1 − m

2

)
,

and

lim
n→∞

1

n
log Z ICW

n = ψ ICW(β̃, B),

is the pressure of the Inhomogeneous Curie–Weiss model [13]. Thus, by (A.29),

lim
n→∞

1

n
logPμICW

n
(mn = m) = β̃

2
E[W ] + B m + sup

x∈A

[
2β̃

E[W ] x
2 − 2β̃x − Sm(x)

]

− ψ ICW(β̃, B)

− 1 + m

2
log
(1 + m

2

)
− 1 − m

2
log
(1 − m

2

)
,

from which, recalling (A.28), we obtain (A.4) and (A.5). �
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