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Abstract Consider nearest-neighbor oriented percolation in d + 1 space–time dimensions.
Let ρ, η, ν be the critical exponents for the survival probability up to time t , the expected
number of vertices at time t connected from the space–time origin, and the gyration radius of
those vertices, respectively. We prove that the hyperscaling inequality dν ≥ η + 2ρ, which
holds for all d ≥ 1 and is a strict inequality above the upper-critical dimension 4, becomes
an equality for d = 1, i.e., ν = η+2ρ, provided existence of at least two among ρ, η, ν. The
key to the proof is the recent result on the critical box-crossing property by Duminil-Copin
et al. [6].

Keywords Oriented percolation · Critical behavior · Critical exponent · Hyperscaling ·
Box-crossing property

1 Introduction and the Main Results

Oriented percolation is a time-orientedmodel of percolation. It is also considered as a discrete-
time model for the spread of an infectious disease, known as the contact process or the SIS
model. Since it became known to exhibit a phase transition and critical behavior, there have
been intensive researches in both theory and applications in various fields. Recently, a possible
association to the laminar-turbulent flow transition was reported in [20].

Consider the following nearest-neighbor bond oriented percolation on the space–time
lattice Ld ≡ {(x, t) ∈ Z

d ×Z+ : ‖x‖1+ t is even}. A pair of vertices [(x, s), (y, t)〉 is called
a bond if ‖x − y‖1 = 1 and t = s + 1. Each bond [(x, t), (y, t + 1)〉 is either occupied with
probability p ∈ [0, 1] or vacant with probability 1− p, independently of the other bonds. Let
Pp be the associated probabilitymeasure.We say that (x, s) ∈ L

d is connected to (y, t) ∈ L
d ,

denoted by (x, s) −→ (y, t), if either (x, s) = (y, t) or there is a sequence of occupied bonds

B Akira Sakai
sakai@math.sci.hokudai.ac.jp
http://www.math.sci.hokudai.ac.jp/∼sakai/

1 Department of Mathematics, Hokkaido University, Sapporo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-018-2020-2&domain=pdf
http://orcid.org/0000-0003-0943-7842


Hyperscaling for Oriented Percolation in 1 + 1 Space–Time... 463

{[(v j , j), (v j+1, j + 1)〉}t−1
j=s from vs = x to vt = y. We simply write (x, s) −→ t for the

event
⋃

y{(x, s) −→ (y, t)}, and s −→ (y, t) for the event
⋃

x {(x, s) −→ (y, t)}.
Themajor quantities we are interested in are the following. The first quantity is the survival

probability up to time t , defined as

θt = Pp
(
(o, 0) −→ t

)
, (1.1)

where, and in the rest of the paper, the p-dependence is suppressed for lighter notation.
Since {θt }t∈N is a decreasing sequence of increasing and continuous functions in p, the limit
θ∞ ≡ limt↑∞ θt is nondecreasing and right-continuous in p. Let

pc = inf{p ∈ [0, 1] : θ∞ > 0}. (1.2)

It is proven in [8] that θ∞ is also left-continuous in p. In particular, θ∞ = 0 at p = pc, which
has not been proven yet for unoriented percolation in full generality.

The second and third quantities are the expected number of vertices at time t connected
from the origin (o, 0) and the gyration radius of those vertices, defined as

χt =
∑

x

τ(x, t), ξt =
(

1

χt

∑

x

|x |2τ(x, t)

)1/2

, (1.3)

where τ(x, t) is the two-point function:

τ(x, t) = Pp
(
(o, 0) −→ (x, t)

)
. (1.4)

It is first proven in [1,12], and recently reproved in a much simpler way in [5], that the critical
point is unique in the sense that

pc = sup

{

p ∈ [0, 1] :
∞∑

t=0

χt < ∞
}

. (1.5)

The sum
∑

t χt is often called the susceptibility.
Now we briefly summarize the basic properties of those quantities readily obtained from

the definition. First we note that, by the Markov property and translation invariance,

θs+t ≥ θsθt , χs+t ≤ χsχt . (1.6)

With the help of the trivial inequality θt ≤ χt ≤ (2t + 1)dθt , we can conclude that there is a
common relaxation time ζ ∈ [0,∞] such that

ζ = lim
t↑∞

−t

log θt
= sup

t∈N
−t

log θt
= lim

t↑∞
−t

logχt
= inf

t∈N
−t

logχt
. (1.7)

Using the second and forth equalities, we can say that ζ is bounded away from zero and
infinity when p < pc, implying exponential decay of θt and χt in t in the subcritical regime.
This is not the case at the critical point.Moreover,χt is nondecreasing in t at p = pc, because,
otherwise, there must be a t0 ∈ N such that χt0 < 1, which together with submultiplicativity
implies exponential decay of χt and convergence of the susceptibility

∑
t χt at p = pc, such

as

∞∑

t=0

χt =
∞∑

n=0

t0−1∑

k=0

χnt0+k ≤
∞∑

n=0

χn
t0

t0−1∑

k=0

χk < ∞, (1.8)

which is a contradiction to the result in [2]:
∑

t χt = ∞ at p = pc.
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Table 1 Predicted values of the critical exponents in various dimensions (e.g., [15])

d = 1 d = 2 d = 3 d = 4 − ε d ≥ 4

ρ 0.159464 0.451 0.73 1 − 1
4 ε − 0.01283ε2 1

η 0.313686 0.230 0.12 1
12 ε + 0.03751ε2 0

ν 0.632613 0.568 0.526 1
2 + 1

48 ε + 0.008171ε2 1
2

γ 2.277730 1.60 1.25 1 + 1
6 ε + 0.06683ε2 1

μ 1.733847 1.295 1.105 1 + 1
12 ε + 0.02238ε2 1

Let ρ, η, ν be the critical exponents for the above quantities at p = pc: as t ↑ ∞,

θt ≈ t−ρ, χt ≈ tη, ξt ≈ tν, (1.9)

where f ≈ gmeans that (log f )/ log g goes to 1 in the prescribed limit, allowing corrections
of slowly varying functions. In higher dimensions d  4 (d > 4 is enough for sufficiently
spread-out models), the lace expansion converges and the above critical exponents take on
their mean-field values ρ = 1, η = 0 and ν = 1/2: the values for branching random walk
[3,4,9,10,13,14,18]. In lower dimensions, on the other hand, only numerical values and
predictions due to non-rigorous renormalization-group methods are available (see Table 1).

In this paper, we prove the following theorem.

Theorem 1.1 (i) For any d ≥ 1, p ∈ [0, 1] and t ∈ N, we have

χt ≤ 4

3
(4ξt + 1)d θ2t/2, (1.10)

which implies the hyperscaling inequality (assuming existence of ρ, η, ν)

dν ≥ η + 2ρ. (1.11)

(ii) Let d = 1 and p = pc. Then, there is a K > 0 such that, for any t ∈ N,

χt ≥ K ξtθ
2
t , (1.12)

which implies the hyperscaling equality (assuming existence of at least two among
ρ, η, ν)

ν = η + 2ρ. (1.13)

Remarks 1. The inequality (1.10) was first derived in [19]. Since its proof is easy and
short, we will show it again for convenience. It was used in [19] to prove two other
hyperscaling inequalities that also involve critical exponents defined in the off-critical
regime. For example, if the susceptibility

∑
t χt and the relaxation time ζ diverge as

p ↑ pc as (pc − p)−γ and (pc − p)−μ respectively, then, for any d ≥ 1, we have

(dν − 2ρ + 1)μ ≥ γ. (1.14)

If we replace those critical exponents in (1.11) and (1.14) by their mean-field values, then
we obtain d ≥ 4, which is a complement to the aforementioned lace-expansion results.
Therefore, the upper-critical dimension dc for oriented percolation is 4.
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2. In general, hyperscaling inequalities are believed to be equalities below and at the model-
dependent upper-critical dimension. The values in Table 1 seem to support this belief.
The identity (1.13) proves that it is indeed the case for at least d = 1. For unoriented
percolation, for which dc = 6, similar results are proven in 2 dimensions by Kesten [11]
using the Russo–Seymour–Welsh theorem on the critical box-crossing property [16,17,
21]. Since the known critical exponents for 2-dimensional unoriented percolation are
rational numbers (e.g., β = 5/36 and γ = 43/18), it is natural to believe that there
must be some balance (i.e., hyperscaling equalities) among those critical exponents. On
the other hand, since the values in Table 1 do not seem to be rational numbers, the
hyperscaling equality (1.13) is even more surprising.

3. The main reason why the right-hand side of (1.10) is bigger than its left-hand side is due
to the inequality

τ(x, t) = Pp
(
(o, 0) −→ (x, t)

)

≤ Pp
(
(o, 0) −→ t/2, t/2 −→ (x, t)

) = θ2t/2, (1.15)

where, and in the rest of the paper, we do not care much about possibilities of, e.g., t/2
not being an integer, since it is easy (but cumbersome) to make the argument rigorous if
we introduce floor functions, etc. The last equality in (1.15) is due to reversibility: if we
change the direction of each bond and redefine the connectivity in the time-decreasing
direction, then we have the identity Pp(t/2 −→ (x, t)) = θt/2.

4. The following theorem on the critical box-crossing property is the key to show the
opposite inequality to (1.15):

Theorem 1.2 [6, Theorem 1.3] Let

Vp(w, t) = Pp

(
[0, w] × [0, t] is crossed vertically

)
, (1.16)

Hp(w, t) = Pp

(
[0, w] × [0, t] is crossed from left to right

)
. (1.17)

There exist a constant ε ∈ (0, 1) and an increasing sequence of integers {wt }t∈N such that,
for all t ∈ N,

ε ≤ Vpc(wt , 3t) ≤ Vpc(3wt , t) ≤ 1 − ε, (1.18)

ε ≤ Hpc(3wt , t) ≤ Hpc(wt , 3t) ≤ 1 − ε. (1.19)

We will also use (1.18)–(1.19) to control an upper bound on τ(x, t) for x > jwt that
decays exponentially in j ∈ N (see Lemma 2.1 below). This is a key element to show that
wt is bounded below by an ε-dependent positive multiple of ξt .

5. Applying (1.10) and (1.12) to [19, (5.1)] and its reverse, respectively, we can readily
show that the hyperscaling inequality (1.14) also becomes an equality for d = 1, i.e.,

(ν − 2ρ + 1)μ = γ. (1.20)

6. It is easy to show that the hyperscaling inequality (1.11) holds for other finite-range
models of oriented percolation and the contact process. It should not be so difficult to
prove Theorem 1.2 for the nearest-neighbor models of oriented site percolation and the
contact process, hence the hyperscaling equality (1.13) for d = 1. However, it is not so
obvious to prove a similar statement to Theorem 1.2 for longer-range models. This may
be worth further investigation.
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2 Proof of Theorem 1.1

Proof of Theorem 1.1(i) It suffices to prove the inequality (1.10), as the hyperscaling inequal-
ity (1.11) immediately follows by using (1.10) at p = pc (and assuming existence of the
three critical exponents). First we note that

χt = 1

ξ2t

∑

x

|x |2τ(x, t) ≥ 4
∑

x :|x |≥2ξt

τ(x, t), (2.1)

hence

3

4
χt ≤

∑

x :|x |≤2ξt

τ(x, t). (2.2)

By (1.15), the right-hand side is further bounded by (4ξt + 1)dθ2t/2. This completes the proof
of (1.10). ��

To prove Theorem 1.1(ii), we first assume the following key lemma:

Lemma 2.1 Let d = 1 and p = pc. Let ε ∈ (0, 1) and wt be the same as in Theorem 1.2.

(i) For any t ∈ N and any x ∈ [− 1
2wt ,

1
2wt ],

τ(x, t) ≥ ε6θ2t . (2.3)

(ii) For any j, t, x ∈ N with j ≥ 2 and jwt < x ≤ ( j + 1)wt ,

τ(x, t) ≤ ε−4θ2t (1 − ε) j−2. (2.4)

Proof of Theorem 1.1(ii) assuming Lemma 2.1 Again, it suffices to prove the inequality
(1.12), as the equality (1.13) is a result of the hyperscaling inequality (1.11) for d = 1
and the opposite inequality ν ≤ η + 2ρ that immediately follows from (1.12).

To prove (1.12), we first note that, by (2.3),

χt ≥ 2

1
2wt∑

x=1

τ(x, t) ≥ ε6wtθ
2
t . (2.5)

To complete the proof, it suffices to show that wt is bounded below by a positive multiple of
ξt . However, by definition,

ξ2t = 2
∞∑

x=1

x2
τ(x, t)

χt
= 2

( 2wt∑

x=1

x2
τ(x, t)

χt
+

∞∑

j=2

( j+1)wt∑

x= jwt+1

x2
τ(x, t)

χt

)

≤ 2w2
t

(

4 +
∞∑

j=2

( j + 1)2
( j+1)wt∑

x= jwt+1

τ(x, t)

χt

)

. (2.6)

Then, by using (2.4)–(2.5), we obtain

ξ2t
(2.5)≤ 2w2

t

(

4 + 1

ε6θ2t

∞∑

j=2

( j + 1)2 max
jwt<x≤( j+1)wt

τ(x, t)

)

(2.4)≤ 2w2
t

(

4 + ε−10
∞∑

j=2

( j + 1)2(1 − ε) j−2
)

. (2.7)
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As a result,

χt ≥ ε6√
2

(

4 + ε−10
∞∑

j=2

( j + 1)2(1 − ε) j−2
)−1/2

︸ ︷︷ ︸
=K

ξtθ
2
t . (2.8)

This completes the proof of (1.12). ��
The rest of the paper is devoted to showing Lemma 2.1.

Proof of Lemma 2.1(i). First we note that, for 1 ≤ x ≤ 1
2wt , the event (o, 0) −→ (x, t)

occurs if the following four increasing events occur:

• (o, 0) −→ t in [−wt , wt ] × [0, t],
• 0 −→ (x, t) in [x − wt , x + wt ] × [0, t],
• [− 3

2wt ,
3
2wt ] × [0, t] is crossed from left to right,

• [− 3
2wt ,

3
2wt ] × [0, t] is crossed from right to left.

The last two events take care of the possibility that the forward cluster from the origin (o, 0)
and the backward cluster from (x, t) do not collide. Using the FKG inequality (see, e.g., [7]),
translation invariance and the reversibility explained below (1.15), we obtain

τ(x, t) ≥ Pp

(
(o, 0) −→ t in [−wt , wt ] × [0, t]

)2
Hp(3wt , t)

2. (2.9)

We further note that the event (o, 0) −→ t in [−wt , wt ]× [0, t] occurs if the following three
increasing events occur:

• (o, 0) −→ t ,
• [0, wt ] × [0, t] is crossed vertically,
• [−wt , 0] × [0, t] is crossed vertically.

Again, by the FKG inequality, translation invariance and the monotonicity Vp(wt , t) ≥
Vp(wt , 3t), we obtain

Pp

(
(o, 0) −→ t in [−wt , wt ] × [0, t]

)
≥ θt Vp(wt , 3t)

2, (2.10)

hence

τ(x, t) ≥ θ2t Vp(wt , 3t)
4Hp(3wt , t)

2. (2.11)

The inequality (2.3) follows from the above inequality at p = pc and (1.18)–(1.19). ��
Proof of Lemma 2.1(ii). Recall that j ≥ 2 and jwt < x ≤ ( j + 1)wt . If (o, 0) −→ (x, t),
then the following three independent events occur:

• (o, 0) is connected to the boundary ∂Bo of the box Bo ≡ [−wt , wt ] × [0, t],
• [wt , ( j − 1)wt ] × [0, t] is crossed from left to right,
• (x, t) is connected from the boundary ∂Bx of the box Bx = [( j−1)wt , ( j+2)wt ]×[0, t].

By this observation and using Hp(( j − 2)wt , t) ≤ Hp(wt , t) j−2 ≤ Hp(wt , 3t) j−2, we
obtain

τ(x, t) ≤ Pp

(
(o, 0) −→ ∂Bo

)
Hp(wt , 3t)

j−2
Pp

(
∂Bx −→ (x, t)

)
. (2.12)
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However, by reversibility and monotonicity, we have

Pp

(
∂Bx −→ (x, t)

)
≤ Pp

(
(o, 0) −→ ∂Bo

)
. (2.13)

Therefore,

τ(x, t) ≤ Pp

(
(o, 0) −→ ∂Bo

)2
Hp(wt , t)

j−2. (2.14)

To bound the probability on the right-hand side by θt , we borrow the idea in the proof of
[6, (4.7)]. First, we note that (o, 0) −→ t if the following three increasing events occur:

• (o, 0) −→ ∂Bo,
• [0, wt ] × [0, t] is crossed vertically,
• [−wt , 0] × [0, t] is crossed vertically.

By the FKG inequality, translation invariance and the monotonicity Vp(wt , t) ≥ Vp(wt , 3t),
we obtain

θt ≥ Pp

(
(o, 0) −→ ∂Bo

)
Vp(wt , 3t)

2. (2.15)

To summarize the above computations at p = pc, we arrived at

τ(x, t) ≤
(

θt

Vpc(wt , 3t)2

)2

Hpc(wt , 3t)
j−2 ≤ ε−4θ2t (1 − ε) j−2, (2.16)

as required. ��
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