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Abstract We study in the present article the Kardar–Parisi–Zhang (KPZ) equation

∂t h(t, x) = ν�h(t, x) + λ|∇h(t, x)|2 + √
D η(t, x), (t, x) ∈ R+ × R

d

in d ≥ 3 dimensions in the perturbative regime, i.e. for λ > 0 small enough and a smooth,
bounded, integrable initial condition h0 = h(t = 0, ·). The forcing term η in the right-hand
side is a regularized space-time white noise. The exponential of h—its so-called Cole-Hopf
transform—is known to satisfy a linear PDE with multiplicative noise. We prove a large-
scale diffusive limit for the solution, in particular a time-integrated heat-kernel behavior for
the covariance in a parabolic scaling. The proof is based on a rigorous implementation of K.
Wilson’s renormalization group scheme. A double cluster/momentum-decoupling expansion
allows for perturbative estimates of the bare resolvent of the Cole-Hopf linear PDE in the
small-field region where the noise is not too large, following the broad lines of Iagolnitzer
andMagnen (CommunMath Phys 162(1):85–121, 1994). Standard large deviation estimates
for η make it possible to extend the above estimates to the large-field region. Finally, we
show, by resumming all the by-products of the expansion, that the solution h may be written
in the large-scale limit (after a suitable Galilei transformation) as a small perturbation of
the solution of the underlying linear Edwards–Wilkinson model (λ = 0) with renormalized
coefficients νe f f = ν + O(λ2), Def f = D + O(λ2).
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1 Introduction

The KPZ equation [40] is a stochastic partial differential equation describing the growth by
normal deposition of an interface in (d + 1) space dimensions, see e.g. [6,14]. By definition
the time evolution of the height h(t, x), x ∈ R

d , is given by

∂t h(t, x) = ν�h(t, x) + λ|∇h|2 + √
D η(t, x), x ∈ R

d (1.1)

where η(t, x) is a regularized white noise, and ν, λ, D > 0 are constant. Three terms con-
tribute to Eq. (1.1): a viscous term proportional to the viscosity ν, leading to a smoothening of
the interface; a growth by normal deposition with rate λ, called deposition rate, and playing
the rôle of a coupling constant; and a random rise or lowering of the interface modelling
molecular diffusivity, with coefficient D called noise strength. In a related context, h also
represents the free energy of directed polymers in a random environment [15,20,34]. It makes
sense to consider more general nonlinearities of the form V (∇h) with V , say, positive and
convex, instead of |∇h|2, which is in any case an approximation of 2(

√
1+ |∇h(t, x)|2−1),

assuming that the gradient |∇h| (the slope of the interface) remains throughout small enough
so that the evolution makes physically sense, precluding e.g overhangs.

The interest is here in the large-scale limit of this equation, for t and/or x large. A well-
known naive rescaling argument gives some ideas about the dependence on the dimension of
this limit. Namely, the linearized equation, a stochastic heat (or infinite-dimensionalOrnstein-
Uhlenbeck [50]) equation called Edwards–Wilkinson model [6] in the physics literature,

∂tφ(t, x) = ν�φ(t, x) + √
D η(t, x), (t, x) ∈ R+ × R

d (1.2)

where η requires no regularization – is invariant under the rescaling φ(t, x) �→ φε(t, x) :=
ε− 1

2 ( d
2−1)φ(ε−1t, ε− 1

2 x); we used here the equality in distribution, η(ε−1t, ε− 1
2 x)

(d)=
ε

1
2 (1+ d

2 )η(t, x). Assuming that φ is a solution of the KPZ equation instead yields after rescal-
ing

∂tφ
ε(t, x) = ν�φε(t, x) + ε

1
2 ( d

2−1) λ

2
|∇φε(t, x)|2 + √

D ηε(t, x), (1.3)

where (up to change of regularization) ηε (d)= η. For d > 2, ε
1
2 ( d

2−1) vanishes in the limit
ε → 0; in other terms, the KPZ equation is infra-red super-renormalizable, hence (power-
like) asymptotically free at large scales in≥ 3 dimensions, i.e. expected to behave, in a small
coupling (also called small disorder) regime where λ � 1, like the corresponding linearized
equation up to a redefinition (called renormalization) of the diffusion constant ν and of the
noise strength D.

Let us emphasize the striking difference with the one-dimensional KPZ1 equation. For
this equation, scaling behaviors, see (1.3), are reversed with respect to d ≥ 3, in other
words, KPZ1 is (power-like) asymptotically free at small scales (i.e. in the ultra-violet), or
equivalently (in the PDE analysts’ terminology) sub-critical. A large part of the interest
for this equation comes from the fact that the large-scale strongly coupled theory [3,20] is
understood by comparison with integrable discrete statistical physics models [21,52,55,56]
relating to weakly asymmetric exclusion process [7] or the Tracy–Widom distribution of the
largest eigenvalue of random matrices connected with Bethe Ansatz [56], free fermions and
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determinantal processes [35],…Note that KPZ2 is believed by perturbative QFT arguments
to be strongly coupled at large scales [6,14] and its large-scale limit is not at all understood.

We prove the diffusive limit of d-dimensional KPZ (d ≥ 3) with small coupling in the
present work, thus establishing on firm mathematical ground old predictions of physicists,
see e.g. Cardy [14]. The space dimension d does not really matter as long as d ≥ 3. In
the small-coupling regime, contrary to the 1d-case, we fall into the Edwards–Wilkinson
universality class.

In comparison with the achievements made in the study of strongly coupled large-scale
KPZ1, this problem looks at first sight of lesser importance and difficulty. We believe that
the interest of our result lies in the precision of our asymptotics, and in the potential wide
scope of applicability of our methods.

Namely, the KPZmodel is one particular instance of a large variety of dynamical problems
in statistical physics, modelized as interacting particle systems, or as parabolic SPDEs heuris-
tically derived by some mesoscopic limit, which have been turned into a functional integral
form analogous to the Gibbs measure of equilibrium statistical mechanics, e−

∫ L0−g
∫ Lint ,

using the so-called response field (RF), or Martin-Siggia-Rose (MSR) formalism and studied
by using standard perturbative expansions originated from quantum field theory (QFT); for
reviews see e.g. [14] or [2]. Despite the lack of mathematical rigor, this formalism yields a
correct description of the qualitative behaviour of such dynamical problems in the large scale
limit.

The Feynman perturbative approach, see e.g. [43], consists in expanding exp−g
∫ Lint

into a series in g and making a clever resummation of some truncation of it into so-called
counterterms, represented in terms of a sum of diagrams; as such, it is non-rigorous, since
it yields N -point functions in terms of an asymptotic expansion in the coupling parameter
g which is divergent in all interesting cases (at least for bosonic theories). A few years
ago, however, Gubinelli, Hairer, Weber,…[5,12,13,16–18,29–32,47], drawing sometimes
on a dynamical approach to the construction of equilibrium measures advocated by Nelson
[49], Parisi-Wu [51], and Jona-Lasinio, Mitter and Sénéor [36–38], have started developing
this philosophy in a systematic way to solve sub-critical parabolic SPDEs rigorously, i.e.
beyond perturbation theory. Such SPDEs have only a finite number of counterterms, each
counterterm being the sum of a finite number of terms (that can be interpreted in terms of
Feynman diagrams), which makes the task considerably easier, but still far from trivial.

Constructive approaches developed in the context of statistical physics by mathematical
physicists from the mid-60es, see e.g. [22–26,33,44,45,48,60] and surveys [27,46,53,54,
58], have developed sophisticated, systematic truncation methods making it possible to con-
trol the error terms. The partial resummations are interpreted in the manner of K. Wilson
[61,62] as a scale-by-scale, finite renormalization of the parameters ν,�, λ of the Lagrangian
L0+gLint . In many instances it has proved possible to subtract scale counterterms explicitly
by hand and prove that the remainder is finite, yielding some description of the effective,
large-scale theory, see e.g. works in diverse contexts—random walks in random environ-
ment, KAM theory, etc.—by Bricmont, Gawedzki, Kupiainen and coauthors [9–11], and
recent extensions to the study of sub-critical parabolic PDEs [41,42], as an alternative to the
“global counterterm” strategy mentioned in the last paragraph. However, the implementation
of a full-fledged, multi-scale constructive scheme is for the moment limited to equilibrium
statistical physics models.

The present work is, to the best of our knowledge, the first attempt to use such a scheme in
the context of non-equilibrium statistical mechanics, here for a parabolic SPDE. Instead of
using the MSR formalism, we develop (as all previously mentioned mathematically rigorous
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approaches do) a more straightforward approach, starting directly from the equation and
cutting the propagator etν� into scales. We actually work on the following model.

The model Let d ≥ 3. We consider the following equation on R+ × R
d ,

(∂t − ν(0)�)h(t, x) = λ|∇h(t, x)|2 +
√

D(0) (η(t, x) − v(0)), h
∣∣
t=0 = h0 (1.4)

where η is a white noise regularized in time and in space; h0 is a smooth, bounded, integrable
initial condition, i.e. ||h0||L∞ := supx∈Rd |h0(x)|, ||h0||L1 := ∫

Rd dx |h0(x)| are < ∞;
λ > 0 is small enough; and v(0) is a constant, average interface velocity which we shall fix
later on.

The precise choice of regularization for the white noise is unimportant; one should just
keep in mind that local (in time and space) solvability of (1.1) in a strong sense requires
that, for every compact set �̄ ⊂ R

d [equivalently, for any �̄ ∈ D̄
0 as in Definition 3.1

(iii)], t �→ supx∈�̄ (|η(t, x)| + |∇η(t, x)|) is locally integrable. For simplicity of exposition,
we define η to be a smooth, stationary Gaussian noise with short-range covariance. To be
definite:

We fix a smooth, isotropic (i.e. invariant under space rotations) function ω : R×R
d → R

with support ⊂ B(0, 1
2 ) and L1-norm

∫
dt dx ω(t, x) = 1, and let

〈η(t, x)η(t ′, x ′)〉 := (ω ∗ ω)(t − t ′, x − x ′)

=
∫

dt ′′
∫

dx ′′ ω(t − t ′′, x − x ′′)ω(t ′′ − t ′, x ′′ − x ′). (1.5)

Our main result is the following. Gaussian expectation with respect to η is denoted either
by 〈 · 〉, or 〈 ·〉λ or also 〈 ·〉λ;ν(0),D(0),v(0) if one wants to emphasize the dependence on the
parameters ν(0), D(0), λ, v(0); the result also depends obviously on the initial condition h0.
By convention, 〈·〉0;ν,D refers to the expectation with respect to the measure of the Edwards–
Wilkinson equation (∂t − ν�)φ(t, x) = √

D η(t, x) with zero initial condition, where η is a
standard (unregularized) space-time white noise; for this equation we implicitly set v = 0.
By definition, φ(t, x) = √

D
∫ t
0 ds

(
e(t−s)ν�ηs

)
(x) is a centered Gaussian process.

Theorem 1.1 (Main Theorem) Let d ≥ 3. Fix D(0), ν(0) > 0 and a smooth, bounded, inte-
grable initial condition h0. Let λ ≥ 0 be small enough, λ ≤ λmax = λmax (||h0||L1 , ||h0||L∞).
Then there exist three coefficients Def f = D(0) + O(λ2), νe f f = ν(0) + O(λ2) and
v(0) = v(0)(λ) = O(λ), all independent of the initial condition h0, such that the solution h
of the KPZ equation (1.4) satisfies the following asymptotic properties:

1. for all (t, x) with t > 0,
〈
hε−1t

(
ε−

1
2 x
)〉

λ;ν(0),D(0),v(0)
= Oε→0

(
εd/2); (1.6)

2. for all (t1, x1), . . . , (t2N , x2N ), N ≥ 1 with ti > 0, i = 1, . . . , 2N and (ti , xi ) �=
(t j , x j ), i �= j , letting hi := 〈

hε−1ti

(
ε− 1

2 xi
)〉

λ;v(0),ν(0),D(0) ,

〈
2N∏

i=1

(
hε−1ti

(
ε−

1
2 xi

)− hi

)〉

λ;v(0),ν(0),D(0)

∼ε→0 εN ( d
2−1)

〈
2N∏

i=1

hti (xi )

〉

0;νe f f ,Def f

.

(1.7)
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Since 〈 · 〉0;νe f f ,Def f is a Gaussian measure, 2. may be rephrased as follows. Let

Kef f (t1, x1; t2, x2) := lim
ε→0

ε
−
(

d
2−1

)〈 (
hε−1t1

(
ε−1/2x1

)− h1
)

(
hε−1t2

(
ε−1/2x2

)− h2
) 〉

λ;v(0),ν(0),D(0) (1.8)

(t, t ′ > 0, (t, x) �= (t ′, x ′)). Then

Kef f (t, x; t ′, x ′) = 〈h(t, x)h(t ′, x ′)〉0;νe f f ,Def f (1.9)

and

〈 2N∏

i=1

(
hε−1ti (ε

− 1
2 xi ) − hi

) 〉

λ;v(0),ν(0),D(0)
∼ε→0 εN ( d

2−1)

∑

pairings

N∏

j=1

Kef f (ti2 j−1 , xi2 j−1; ti2 j , xi2 j ) (1.10)

where the sum ranges over all pairings (i1, i2), . . . , (i2N−1, i2N ) of the 2N indices
1, 2, . . . , 2N .

In other words, up to a Galilei transformation ht (x) �→ ht (x)−√
D(0) v(0)t , the N -point

functions of the KPZ equation (∂t − ν(0)�)h = λ|∇h|2 + √
D(0) η behave asymptotically

in the large-scale limit as the N -point functions of the solution of the Edwards–Wilkinson
equation with renormalized coefficients Def f , νe f f ,

(∂t − νe f f �)ht (x) = √
Def f η(t, x) (t ≥ 0), h0 ≡ 0 (1.11)

where η requires no regularization. Generally speaking,main corrections to the above asymp-
totic behaviour (1.6,1.10) are smaller by O(ε(1/2)−) as proved in §5.3D.Effective coefficients
Def f , νe f f have a (diverging) asymptotic expansion in terms of λ; lowest-order corrections
in O(λ2) are computed in (5.28) and (6.37). The O(εd/2)-term in (1.6) is a contribution due
to the initial condition; further contributions of the initial condition to N -point functions

come with an extra multiplicative factor in O(λε
d
2−1), which is the scaling of the vertex.

Corrections to Gaussianity of N -point functions, of order O(λ2ε
d
2−1), are examined in (2) a

few pages below. Furthermore, our multi-scale scheme actually involves an effective prop-
agator differing slightly from the effective Edwards–Wilkinson propagator e(t−s)νe f f �, see
Appendix 2 section; this implies a correction w.r. to the r.h.s. of (1.10) with a small extra
prefactor, which is proved to be a O(ε) but could easily be improved to O(εn)with n arbitrary
large.

Remark A more common choice of regularization for η is to take a discretized “kick force”,
namely, we pave R+ by unit size intervals [n, n + 1), n ≥ 0, and let ξn+ 1

2
:= η

∣∣[n,n+1),

n = 0, 1, . . . be independent, centered Gaussian fields on R
d which are constant in time and

have smooth, space-translation invariant covariance kernel with finite range, for instance.
This does not change the conclusion of Theorem 0.1, except that, the law of η being now
onlyZ-periodic in time, h∞(t) := limn→+∞〈hn+t (0)〉 is now a 1-periodic function instead of
the constant 0. This regularization has several advantages (see Sect. 2); it allows in particular
an explicit representation of v(0) in probabilistic terms. The scheme of proof extends without
any significant modification if the covariance kernel decreases heat-kernel-like in space, e.g.

if ξn+ 1
2

(d)= ec�ξ where ξ is a standard space white noise, and c > 0 is some constant.
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Furthermore, it follows from the proof (see Sect. 6) that the value of v(0) may be obtained
by equating it to the constant ṽ(0) such that 〈w(t, 0)〉ṽ(0) = O(1) independently of t , in
coherence with the value obtained in Carmona and Hu [15] in a discrete setting for a random
directed polymer measure (see Sect. 3.1), where w is the Cole-Hopf transform of h (see
below). Let us note that the equality between v(0) and ṽ(0) points out to the fact that we
are in a weak disorder regime in which the annealed and quenched free energies coincide.
However, our proof is independent of that of Carmona and Hu (see [15], Theorem 1.5), based
on Gaussian concentration inequalities.

The proof follows closely the article by Iagolnitzer and Magnen [33] on weakly self-
avoiding polymers in four dimensions, which is the main reference for the present work.

Namely, up to the change of function h �→ w := e
λ
ν

h (called Cole-Hopf transform) and
of coupling constant, g := λ

ν

√
D, the KPZ equation is equivalent to the linear equa-

tion (∂t − ν�)w = gηw, solved as w(t, x) := ∫
dy Gη((t, x), (0, y))w0(y), where

Gη ≡ (∂t − ν� − gη)−1 is a random resolvent. Formally then, our problem is a parabolic
counterpart to the large-scale analysis of polymers in a weak random potential solved in [33]
by studying the equilibrium resolvent (� + igη)−1, where the “i”-coefficient is the Edwards
model representation of the self-avoiding condition (the model is solved for g � 1 but the
self-avoiding condition is recovered for g = 1). Though the two models are physically unre-
lated, one must analyze similar mathematical objects. As is often the case, the model with a
time evolution (i.e. the parabolic one) turns out to be easier than the equilibrium model (i.e.
the elliptic one), because of the causality constraint.

The general scheme of proof, following, as mentioned above, the philosophy of construc-
tive field theory, is to introduce amulti-scale expansion and define a renormalizationmapping,
ν = ν(0) −→ ν(1) −→ · · · −→ ν(∞) := νe f f , D = D(0) −→ D(1) −→ · · · −→ D(∞) :=
Def f or equivalently g(0) := λ

ν0

√
D(0) → g(1) −→ · · · −→ g(∞) ≡ gef f = λ

νe f f

√
Def f

(later on interpreted as the flow of the coupling constant through the Cole-Hopf transform),
v = v(0) −→ v(1) −→ · · · −→ v(∞) ≡ ve f f := 0 ensuring the convergence of the
expansion at each scale and allowing to control error terms. The average interface velocity
v(0) is fixed by requiring that the asymptotic velocity ve f f vanishes. The original param-
eters ν(0), D(0), v(0), called bare parameters, describe the theory at scale O(1), while the
Edwards–Wilkinson model with scale j parameters ν( j), D( j) and drift velocity v( j) give
a good approximation of the theory at time distances of order ε−1 = 2− j , which becomes
asymptotically exact in the infra-red limit, when j → ∞. This goal is achieved in gen-
eral by using a phase-space expansion, i.e. a horizontal cluster expansion casting into the
form of a series the interactions at a given energy-momentum level between the degrees of
freedom, and a vertical cluster or momentum-decoupling expansion separating the different
energy-momentum levels. Energy, resp. momentum, are the Fourier conjugate variables of
time and space; here a given energy-momentum level j is adequately defined by considering
heat-kernel propagators

Gν((t, x), (t ′, x ′)) = eν(t−t ′)�(x − x ′) = pν(t−t ′)(x − x ′)

with t − t ′ ≈ 2 j . Then the above series (roughly speaking, a truncated power series in
the coupling constants with a bounded integral, Taylor-like remainder) converge if the bare
coupling constant g(0) is small enough.

With our choice of covariance function for η, however, the flow of the parameters ν, v is
actually trivial starting from j = 1, i.e. ν( j) = νe f f , v( j) = ve f f = 0 for j ≥ 1, and the
noise strength D, defined by resumming connected diagrams with four external legs, though
scale-dependent, requires no renormalization at all, because the equation is infra-red super-
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renormalizable, and the total correction (obtained by summing over scales) is finite. This,
and also the causality condition preventing the so-called low-momentum field accumulation
problem [22,26,58], leads to a much simplified framework, from which the phase space
analysis has almost disappeared. Only scale 0, two-point diagrams need to be renormalized,
with a contribution at near zero momentum k

v(0) + (νe f f − ν(0))|k|2 ≡ v(0) − (νe f f − ν(0))�,

leaving a remainder of parabolic order three in the momenta, i.e. O(∇3) or O(∇∂t ). Scale 0
diagrams are connected by “low-momentum” heat-kernel propagators G((t, ·), (t ′, ·)) with
t − t ′ ≈ 2 j , j ≥ 1. A crucial point in the proof is that, thanks to the∇3, remainders integrated
over space-time cost a factor O(1), namely [see (3.19) and (6.21)]

∫ t

t ′′
dt ′

∫
dx ′ G((t, x), (t ′, x ′)) |∇3G((t ′, x ′), (t ′′, x ′′)|

�
(∫

dt ′ (1+ |t ′ − t ′′|)−3/2
)

pν(t−t ′′)(c|x − x ′′|) = O(1) pν(t−t ′)(c|x − x ′′|)
(1.12)

or, simply said, G∇3G � G. What is left of the cluster expansions is adequately resummed
as in [33] into the random resolvent in the form of localized “vertex insertions” (see Sect. 6),
thereby suppressing combinatorial factors which make the series divergent. Then the contri-
bution of all vertex insertions is bounded by some contour integral of a modified resolvent
through the use of Cauchy’s formula.

An extra complication comes however from the inverse Cole-Hopf transform. Applying
cluster expansions—which is done in practice by differentiation with respect to some addi-
tional parameters—to log(w) leads to rational expressions of the form “D1w

′′···“Dnw′′
wn , where

the Di ’s are differential operators, acting on “replicas” of w. Then the scale 0 diagrams
requiring renormalization can be factorized, hence averaged with respect to the measure 〈 · 〉.
Remaining terms are shown to yield a convergent series in the form of a sum over “polymers”
for λ small enough.

The λ and ε-pre-factors contained in Theorem 1.1 may be guessed from the following
guiding principles, put into light by the cluster expansion.
(1) First, the two-point function of the renormalized Edwards–Wilkinson equation,

〈h(ε−1t, ε−1/2x)h(ε−1t ′, ε−
1
2 x ′)〉0;νe f f ,Def f

= Def f

∫ ε−1t ′

0
ds

∫
dy pνe f f (ε

−1t−s)(ε
− 1

2 x − y)pνe f f (ε
−1t ′−s)(y − ε−

1
2 x ′)

= Def f

∫ ε−1t ′

0
ds pνe f f (ε

−1(t+t ′)−2s)(ε
− 1

2 (x − x ′)) (1.13)

(t ≥ t ′ > 0), scales like ε
d
2−1, as can be seen by simply rescaling variables t ′ →

εt ′, (x, x ′) → (ε1/2x, ε1/2x ′) in the integral. There are two regimes: the equilibrium regime
(t − t ′ � |x − x ′|2), in which 〈h(t, x)h(t ′, x ′)〉0;νe f f ,Def f ≈ ∫ t

0 ds p2(t−s)(x − x ′) ≈
|x − x ′|−(d−2) is essentially the equilibrium Green function of the Laplacian; the dynamical

regime (t − t ′ � |x − x ′|2), in which 〈h(t, x)h(t ′, x ′)〉0;νe f f ,Def f ≈ ∫ t ′
0 ds pt+t ′−2s(0) ≈

|t − t ′|−( d
2−1).
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(2) The connected quantities
〈∏2N

i=1 hε−1ti (ε
− 1

2 xi )
〉connected

λ;v(0),ν(0),D(0)
(also called truncated 2N -

point functions) are O

([
λ2ε

d
2−1

]2N−1
)
. Namely, Gaussian pairwise contractions yield the

expected scaling in O(εN ( d
2−1)), i.e. O(ε

d
2−1) per link, as expected from (1); whereas the

connected expectation requires N −1 supplementary links and twice as much vertices (since
these are not present in the linear theory) in the expansion, contributing an extra small

O

([
(λ2ε

d
2−1)

]N−1
)

prefactor. The cluster expansion makes it possible to develop those

links explicitly.
Recent related resultsGu et al. [28] consider the same scaling for the Cole-Hopf transform

e(λ/ν)h of the KPZ field—though starting from an initial condition varying at a macroscopic
scale, while ours varies at a microscopic scale. To lowest order in ε, they prove convergence
to an Ornstein-Uhlenbeck process with effective, renormalized parameters independent of
the initial conditions, see their Theorem 1.1 and §1.2 for comparison to our results. However,
entirely different methods are being used as based on Itô’s formula, homogenization-type
results and amartingale central limit theorem for the fluctuations of the Cole-Hopf transform.
The plan of the article is as follows. We start by recalling the Cole-Hopf transform in Sect. 2,
and make the bridge to previous results on the subject stated in terms of the associated
directed polymer measure. We then introduce in Sect. 3 a multi-scale expansion for the
propagators, together with multi-scale estimates (also called “power-counting”), which are
the building blocks of our approach. Sections 4, 5, and 6 are the heart of the article. The
dressed equation, and the cluster expansion thereof, is presented in Sect. 4. Section 5 is
dedicated to renormalization; the scale 0 counterterms obtained by factorizing two-point
functions through a supplementary Mayer expansion are bounded. Then we show in Sect. 6
how to bound the sum of all terms produced by the expansion, and obtain final bounds for N -
point functions, proving thus our main result, Theorem 0.1. Finally, there are two appendices.
In the first one, we provide detailed combinatorial formulas for the horizontal and Mayer
cluster expansions. The second one is merely dedicated to a technical result. Pictures are
provided, which are there to help the reader visualize the outcome of the various expansions.

Notations

1. (parabolic distance) Let d((t, x), (t ′, x ′)) := √|t − t ′| + |x − x ′|2 (t, t ′ ∈ R+, x, x ′ ∈
R

d). Similarly, for U, U ′ ⊂ R+ × R
d , d((t, x), U ) := inf(t ′,x ′)∈U d((t, x), (t ′, x ′)),

d(U, U ′) := max
(
sup(t,x)∈U d((t, x), U ′), sup(t ′,x ′)∈U ′ d(U, (t ′, x ′))

)
(Hausdorff dis-

tance). Then d̄ is the space projection of the distance d , i.e. d̄(x, x ′) := d((0, x), (0, x ′))
= |x − x ′|, etc.

2. Let f, g : E → R be two functions on some set E . We write | f (z)| � |g(z)| if there
exists some inessential constant C (possibly depending on the parameters D, ν and on
the space dimension d), uniform in λ for λ small enough, such that | f (z)| ≤ C |g(z)|.
Then, by definition, |g(z)| � | f (z)|. If | f (z)| � |g(z)| and |g(z)| � | f (z)|, we write
| f (z)| ≈ |g(z)|.

3. In many situations, one obtains (t, x)-dependent functions f (t, x) such that f decays
Gaussian-like, f (t, x) ≤ e−c|x |2/t for some positive constant c bounded away from 0.
We then write f (t, x) ≤ e−c|x |2/t without further specifying the value of c, which may
change from line to line. For instance, if pνt (x) = eνt�(x) is the heat kernel, then we
may write pνt (x) � t−d/2e−c|x |2/νt � t−d/2e−c′|x |2/t , leaving out the dependence in the
parameter ν as explained in 2. Note however that, if ν′ ≤ ν, pν′t (x) � pνt (x), whereas
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the inequality pνt (x) � pν′t (x) does not hold uniformly in x because the space decay of
pνt (·) is slower than that of pν′t (·).

2 Cole-Hopf Transform

It is well-known that w := e
λ

ν(0) h
is a solution of the linear equation with multiplicative

noise,

(∂t − ν(0)�)w(t, a) = g(0)
(
η(t, a) − v(0)

)
w(t, a) (2.1)

where

g(0) := λ

ν(0)

√
D(0) = O(λ) (2.2)

plays the rôle of a bare coupling constant, from which (representing the solution as a Wiener
integral by Feynman–Kac’s formula)

h(T, a) = ν(0)

λ
logw(T, a), w(T, a) = E

a
[

eg(0)
∫ T
0 dt

(
η(T−t,Bt )−v(0))

e
λ

ν(0) h0(BT )
]

,

(2.3)

where the expectation E
a is relative to the Wiener measure on d-dimensional Brownian

paths (Bt )0≤t≤T issued from a ∈ R
d with ν(0)-normalization, i.e. E

a[(Bi
t − a)2] = 2ν(0)t ,

i = 1, . . . , d . Thusw(T, a)may be interpreted as the partition function of a directed polymer,
see e.g. [15] and references within, but we shall not need this interpretation in the article.

Note that (Bt )t≥0
(d)= (W2ν(0)t )t≥0, where W is now a standard Brownian motion, from

which—forgetting about the regularization and using the variable 2ν(0)t instead of t−
∫ T

0
dt η(T − t, Bt ) ∼ 1

2ν(0)

∫ 2ν(0)T

0
du η

( u

2ν(0)
, Wu

)
(d)= 1√

2ν(0)

∫ 2ν(0)T

0
du η(u, Wu).

Thusw(T, a)may be expanded in a series in the parameter g := g(0)√
2ν(0)

= 1√
2

λ

(ν(0))3/2

√
D(0).

Similarly, ∇w = λ

ν(0) e
λ

ν(0) h∇h, or conversely ∇h = ν(0)

λ
∇w
w

, from which

∇h(T, a) = e
− λ

ν(0) h(T,a)
(

E
a
[

eg(0)
∫ T
0 dt

(
η(T−t,Bt )−v(0))

e
λ

ν(0) h0(BT )∇h0(BT )

]
+
√

D(0) E
a

×
[∫ T

0
dt eg(0)

∫ t
0 ds

(
η(T−s,Bs )−v(0)) · ∇η(T − t, Bt ) · e

λ

ν(0) hT−t (Bt )
])

(2.4)

Without using the general theory developed in [57,59], Eqs. (2.3) and (2.4) show that a.s.
h,∇h exist and are C1 for h0, say, C1 and compactly supported. The Cole-Hopf solution
coincides with the solution defined for more general Hamilton-Jacobi equations in [57,59].

For the rest of the subsection only, we assume that η is a discretized “kick force”, i.e.
η
∣∣[n,n+1) =: ξn+ 1

2
are independent and constant in time, in order to compare with the

existing literature. Since (η|[n−1,n))n≥0 are independent fields, letting v(0) := ṽ(0), where

ṽ(0) := 1

g(0)
log

〈
E
0
[
eg(0)

∫ 1
0 dt η(0,Bt )

]〉
(2.5)
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leads to 〈w(n, a)〉ṽ(0) = 1 for any n ∈ N and a ∈ R
d if w0 = 1, whence more generally

〈w(n, a)〉ṽ(0) = O(1). (2.6)

Expanding the exponential in (2.5) and using

〈∣∣∣
∫ 1

0
dt η(0, Bt )

∣∣∣
p〉 ≤

∫ 1

0
dt 〈|ηp(0, Bt )|〉 � C p�(p/2)〈η2(0, Bt )〉p/2 = O((C ′)p�(p/2)),

(2.7)

one gets: 〈E0
[
eg(0)

∫ 1
0 dt η(0,Bt )

]
〉 = eO(λ2), whence ṽ(0) = O(λ).

Let us state an easy preliminary result, adapted from Carmona and Hu [15].

Lemma 2.1 There exists some positive constant v(0) such that the solution of the KPZ equa-
tion with zero bare velocity,

(∂t − ν(0)�)h(t, x) =
√

D(0)η(t, x) + λ|∇h(t, x)|2 (2.8)

verifies

1

T
〈h(T, x)〉 →T→∞ lim inf

T→∞
1

T
〈h(T, x)〉 =: v(0). (2.9)

Furthermore, 0 ≤ v(0) ≤ ṽ(0).

Proof (see [15], Lemma 3.1) Let, for f general forcing term,

wT (a| f ) := E
0
[
eg(0)

∫ T
0 dt f (t,a+BT−t )

]
(2.10)

and

wT (a, b| f ) := E
0
[
eg(0)

∫ T
0 dt f (t,a+BT−t ) | a + BT = b

]
(2.11)

Conditioning with respect to the terminal condition, a + BT = b, means that we average
with respect to the law of the Brownian bridge from (0, a) to (T, b) (see e.g. [39]). Then, for
T, T ′ ∈ N,

wT+T ′(x |η) =
∫

pT (x, dy)wT (x, y|η(· + T ′))wT ′(y|η)

= wT (x |η(· + T ′))
∫

pT (x, dy)πT,T ′(x, y|η(· + T ′))wT ′(y|η) (2.12)

whereπT,T ′(x, y|η(·+T ′)) := wT (x,y|η(·+T ′))
wT (x |η(·+T ′)) . By construction,

∫
pT (x, dy)πT,T ′(x, y|η(·+

T ′)) = 1. Hence (by concavity of the log)

hT+T ′(x) ≥ h(T, x) +
∫

pT (x, dy)πT,T ′(x, y|η(· + T ′))hT ′(y). (2.13)

Taking the expectation with respect to the noise and using independence of η(· + T ′) from
η
∣∣[0,T ′], together with space translation invariance, one gets the superadditive inequality,

〈hT+T ′(x)〉 = 〈hT+T ′(0)〉 ≥ 〈hT (0)〉 + 〈hT ′(0)〉. (2.14)

On the other hand, by convexity of exp, 〈hT (0)〉 ≥ 0. Fekete’s superadditive lemma allows
us to conclude to the existence of some constant v(0) verifying (2.9). This is the constant
whose existence is asserted inMain Theorem [see (1.6)]. Furthermore, by Jensen’s inequality,
v(0) ≤ ṽ(0), as observed already in [15], Prop. 1.4. ��
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As mentioned in the Introduction, Carmona and Hu [15] actually prove the existence of a
limit random variable h∞(0) :=a.s.-limt→∞h(t, 0) for the solution of the KPZ equation with
velocity ṽ(0), and a Gaussian lower large deviation theorem (Theorem 1.5 in [15]) for h∞(0)
of the form

P[h∞(0) ≤ −A] � e−cA2
, A > 0 (2.15)

from which it is clear in particular that v(0) = ṽ(0).
Because the equation for w is linear, there exists a random kernel Gη = Gη((t, x), (t ′, x ′))
(t > t ′) such that

wt (x |η) =
∫

dx ′ Gη((t, x), (t ′, x ′))wt ′(x ′|η). (2.16)

From the above formulas one sees that

Gη((T, a), (0, b)) ≡ wT (a, b|η). (2.17)

The kernel Gη, called random propagator, is the matter of the next subsection.

3 Multi-scale Expansion and Vertex Representation

We discuss in this section two different points of view on the KPZ equation (1.1):

1. First (see Sect. 2), due to our specific choice of quadratic nonlinearity V (∇h) = |∇h|2,
the Cole-Hopf transform maps (1.1) into a linear equation for a Cole-Hopf field w with
multiplicative noise, which is explicitly solved in terms of an average over Brownian
paths, giving rise to Cole-Hopf solutions. Conjugating with respect to the Cole-Hopf
transform, thesemay be seen to coincidewith theW-solutions introduced elsewhere [59].
This point of view, in combination with martingale theorems and Gaussian concentration
inequalities, is extensively used in the literature [8,15,19,34], where people have been
at least as much interested in the resulting weighted measure on paths, interpreted as a
directed polymer measure. A lot of properties of this measure have been derived in all
dimensions, in the small (λ � 1) or large (λ � 1) disorder regime, with attention focused
on asymptotic theorems, large-deviation properties, scaling exponent, etc. However, not
much can be derived therefrom concerning the asymptotic behavior of N -point functions
of the original KPZ field h for N ≥ 2, because they are not directly accessible from the
directed polymer measure due to necessity of taking the inverse Cole-Hopf transform.

2. Second (see § 3.2)—and this our approach here—, starting either directly from the KPZ
equation or theCole-Hopf transformed linear equation, onemay try to expand the solution
in powers of λ for λ small enough. In the first case, the idea is more or less to apply
iteratively Duhamel expansion. In the second case, one is led to a vertex representation
based on an expansion of the random resolvent.

The second point of view may look very naive to mathematicians at first sight—though
physicists have long known how to build predictions out of perturbative expansions—; such
approaches in PDE theory lead in general only to existence “in the small”, i.e. for a small
enough initial condition. Because here we have a SPDE with a right-hand side, one may
expect to get only short-time existence. However, it turns out that combining it to very basic
finite-time bounds for the solution in a finite box, and to the apparatus of cluster expansions
and renormalization, yields exact asymptotics for N -point functions in the large-scale limit!
Thus this semi-perturbative approach for λ � 1 is much more successful than previous
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approaches 1. and 2., whose results are not required, and actually can be rederived directly
up to some point. The key point is to assess the precise amount of expansion needed to get
the leading large-scale behavior without producing at the same time diverging series.

3.1 Multi-scale Decompositions and Power-Counting

In the following somewhat technical section, we cut propagators into scales, and space-time
into scaled boxes, paving theway for the cluster expansions of Sect. 4. Themore PDE-minded
reader may find it more reassuring to read Sect. 3 first, and then navigate between Sects. 2
and 4.

Definition 3.1 (Phase space)

(i) (boxes) Let

D
j := ∪(k0,k)∈N×Zd [k02 j , (k0 + 1)2 j ) × [k12 j/2, (k1 + 1)2 j/2]

× · · · × [kd2
j/2, (kd + 1)2 j/2]

( j ≥ 0) and D = ∪+∞
j=0D

j . If (t, x) ∈ � with � ∈ D
j , we write �

j
(t,x) := �.

(ii) (momentum-decoupling τ -parameters) If τ 0 : D
0 → [0, 1], we write τ 0t := τ(�0

t ).
(iii) (space projection) If � ∈ � j , � := [k02 j , (k0 + 1)2 j ) × [k12 j , (k1 + 1)2 j/2] × · · · ×

[kd2 j/2, (kd + 1)2 j/2], we let �̄ := [k12 j , (k1 + 1)2 j/2] × · · · × [kd2 j/2, (kd + 1)2 j/2].
Then D̄

j is the union of all such cubes in R
d .

Let ν > 0. We let Gν := (∂t − ν�)−1 be the heat kernel with diffusion coefficient ν,

Gν(t, x; t ′, x ′) := pν(t−t ′)(x − x ′) if t, t ′ ≥ 0 and t − t ′ > 0, 0 else (3.1)

where pν(t−t ′)(x − x ′) = e−|x−x ′ |2/4ν(t−t ′)
(4πν(t−t ′))d/2 is the kernel of the heat operator eν(t−t ′)�. When

ν := ν(0) is the bare viscosity, we write simply Gν(0) =: G.
In the following definition, if f : R+ → R, we let: f j (t) := f (2− j t) ( j ≥ 1).

Definition 3.2 (Multi-scale decompositions) Choose a smooth partition of unity 1 = χ0 ∗
χ0+∑+∞

j=1(χ ∗χ) j ofR+ for some smooth functionsχ : R+ → [0, 1]with compact support

⊂ [ 12 , 2], and χ0 : R+ → [0, 1] with compact support ⊂ [0, 1]. Let A j (t, t ′), B j (t, t ′)
( j ≥ 0, t > t ′ > 0) be the operator-valued, time-convolution kernels defined by

A0
ν(t, t ′) ≡ B0

ν (t, t ′) := χ0(t − t ′)eν(t−t ′)� (3.2)

and, for j ≥ 1,

A j
ν(t, t ′) ≡ B j

ν (t, t ′) := 2− j/2χ j (t − t ′)eν(t−t ′)�. (3.3)

They define operators A j
ν , B j

ν : L2(R+ × R
d) → L2(R+ × R

d) through (A j f )(t) :=∫ t
0 dt ′ A j (t, t ′) f (t ′), (B j f )(t) := ∫ t

0 dt ′ B j (t, t ′) f (t ′).

Remark If (t, x) is connected to (t,′ x ′) by some A j or B j with j ≥ 1, then t−t ′ > 1, hence
〈η(t, x)η(t ′, x ′)〉 = 0. This property (due to an adequate choice of cut-offs) is convenient
since it implies that two-point functions require only a scale 0 renormalization (see §5.1).

Note that (χ ∗ χ) j = (2− j/2χ j ) ∗ (2− j/2χ j ) ( j ≥ 1). Hence, by construction,
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• The A j
ν ’s provide a decomposition of the kernel Gν into a sum of positive kernels: namely,

∑

j≥0

A j
ν B j

ν (t, t ′) = (χ0 ∗ χ0)(t − t ′)eν(t−t ′)� dt

+
∑

j≥1

((2− j/2χ j ) ∗ (2− j/2χ j ))(t − t ′)eν(t−t ′)� dt = Gν(t, t ′).

(3.4)

Furthermore, letting

G j
ν := A j

ν B j
ν , j ≥ 0 (3.5)

we have
∑

j≥0 G j
ν = Gν , and G j

ν is “roughly” 2 j/2A j
ν (we say “roughly”, because

(χ ∗ χ) j and χ j do not have exactly the same time support—a more precise statement
may be e.g. that 2 j/2A j

cν(·, ·) � G j
ν � 2 j/2A j

ν/c(·, ·) for some 0 < c < 1).

Definition 3.3 1. Let Aν(·; ·, ·) be the following kernel on (R+ ×R
d)× (N×R+ ×R

d),

Aν((t, x); j, (t ′, x ′)) := A j
ν((t, x), (t ′, x ′)). (3.6)

2. Let Bν(·, ·; ·) be the following kernel in (N × R+ × R
d) × (R+ × R

d),

Bν( j, (t, x); (t ′, x ′)) := B j
ν ((t, x), (t ′, x ′)). (3.7)

In other words, letting H be an auxiliary separable Hilbert space with orthonormal basis
denoted by e j , j ≥ 0, or equivalently, | j〉 (in quantum mechanical notation), Aν(·, ·) is the
kernel of the operator

Aν : H⊗ L2(R+ × R
d) → L2(R+ × R

d) (3.8)

defined by Aν(e j ⊗ f ) = A j
ν( f ); equivalently, Aν := ∑

j≥0 A j
ν〈 j | has a linear form-valued

kernel on (R+ × R
d) × (R+ × R

d),

Aν(·, ·) ≡
∑

j≥0

A j (·, ·)〈 j |. (3.9)

Dualizing, Bν(·, ·) is the kernel of the operator
Bν : L2(R+ × R

d) → H⊗ L2(R+ × R
d) (3.10)

defined by Bν( f ) = ∑
j≥0 B j

ν ( f )e j ; in other words, Bν := ∑
j≥0 B j

ν | j〉, with associated
vector-valued kernel

Bν(·, ·) ≡
∑

j≥0

B j (·, ·)| j〉. (3.11)

Thus the decomposition of Gν , see (3.4), is equivalent to the identity

Aν Bν =
∑

j, j ′≥0

A j
ν B j ′

ν 〈 j | j ′〉 =
∑

j≥0

A j
ν B j

ν = Gν (3.12)

which lies at the core of the vertex representation in § 3.2.
As in the case of Gν , we write simply Aν(0) =: A, Bν(0) =: B.
The following estimates for the kernel A j (t, x; t ′, x ′) = B j (t, x; t ′, x ′) of A j = B j are
easily shown:
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Lemma 3.4 (multi-scale estimates for A and B) Let j ≥ 1.

(i) (single-scale estimates)

|∂κ ′
t ∇κ A j (t, x; t ′, x ′)| � (2− j/2)2κ

′+|κ |(2− j/2)d+1e−c2− j |x−x ′|21t−t ′≈2 j ; (3.13)
∫

dt ′ dx ′ A j (t, x; t ′, x ′) ≈ 2 j/2; (3.14)

||A j f ||L2 � (2− j/2)d/2|| f ||L2 . (3.15)

(ii) (two-scale estimates) let 1 ≤ j and κ, κ ′ ≥ 0, then

|(∇κ A j ∇κ ′
B j )((t, x), (t ′, x ′))| � (2− j/2)d+|κ |+|κ ′|e−c2− j |x−x ′|21t−t ′≈2 j . (3.16)

From (ii) it results that (∇κ A j ∇κ ′
B j )(·, ·) scales like∇κ+κ ′

G j ′(·, ·)—or, more precisely,
like ∇κ+κ ′

G j
ν(·, ·), with ν ≈ ν(0), or equivalently, like 2 j/2∇κ+κ ′

B j
ν (·, ·). Also, it is clear

that G(·, ·) �
∑

k≥0 2
k/2Ak

ν(·, ·). As immediate corollary, expanding G over scales, it comes
out

(B j G)(·, ·) � 2 j/2G→ j
ν (·, ·). (3.17)

|(∇3G j · G)(·, ·)|, |(∂t∇G j · G)(·, ·)| � 2− j/2G→ j
ν (·, ·) (3.18)

and finally the first of our two key power-counting estimates,

|(∇3G · G)(·, ·)|, |(∂t∇G · G)(·, ·)| � Gν(·, ·), (3.19)

whereas ∂
κ0
t ∇κ G · G, |κ| := 2κ0 + |κ | ≡ 2κ0 + κ1 + · · · + κd diverges in the stationary

limit when |κ| ≤ 2, i.e. (∂κ0
t ∇κ G · G)((t, x), (0, x)) ≈ t1−κ/2 (|κ| < 2), log(t) (|κ| = 2),

therefore
t→+∞−→ +∞. In all these estimates it is intended that ν ≈ ν(0).

Proof (i) Immediate consequenceof the elementaryheat kernel estimates, |∂κ ′
t ∇κ pν(t−t ′)(x)|

� (t − t ′)−κ ′−|κ/2 p2ν(t−t ′)(x). Note that the time support and scaled exponential space
decay leave an effective space-time integration volume O(2 j (1+d/2)). The L2-norm esti-
mate is also a consequence of: ||A j f ||2

L2 �
∫

t−t ′≈2 j
dt

t−t ′ ||e(t−t ′)ν� ft ′ ||2L2 and the easy

inequality ||e(t−t ′)ν� f ||2
L2 � (t − t ′)−d/2|| f ||2

L2 (standard parabolic estimate).

(ii) Integrating
∫

dt ′′
∫

dx ′′ ∇κ A j ((t, x), (t ′′, x ′′))∇κ ′
B j ((t ′′, x ′′), (t ′, x ′)) by parts with

respect to t ′′, and remarking that t ′′ ranges in a time-interval of size O(2 j ), we obtain
∣∣∣(∇κ A j ∇κ ′

B j )((t, x), (t ′, x ′))
∣∣∣ =

∣∣∣(A j ∇κ+κ ′
B j )((t, x), (t ′, x ′))

∣∣∣

�
(
2 j/2e2

j ν(0)
c � · (2− j/2)1+|κ |+|κ ′|e2 j ′ ν(0)

c �

)
((t, x), (t ′, x ′))

� (2− j/2)|κ |+|κ ′|e2
j ′ ν(0)

c′ �
((t, x), (t ′, x ′)). (3.20)

��
One gets similarly

G j (t, x; t ′, x ′) � 2− jd/2e−c2− j |x−x ′|2 1t−t ′≈2 j (3.21)

At this point we introduce a very useful
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Universal notation Let f = ∑+∞
j=0 f ( j) be a function/random field/multi-scale diagram/...

decomposed into its scale components, then

f → j :=
∑

k≥ j

f (k) = · · · + f ( j+2) + f ( j+1) + f ( j) (3.22)

is the scale j low-momentum part of f , while

f j→ :=
∑

k≤ j

f (k) = f ( j) + f ( j−1) + · · · + f (1) + f (0) (3.23)

is the scale j high-momentum part of f .
In the particular case of the kernels A and B, the following is intended,

A→ j (·, ·) :=
∑

k≥ j

Ak(·, ·)〈k|, A j→(·, ·) :=
∑

k≤ j

Ak(·, ·)〈k| (3.24)

B→ j (·, ·) :=
∑

k≥ j

Bk(·, ·)|k〉, B j→(·, ·) :=
∑

k≤ j

Bk(·, ·)|k〉. (3.25)

3.2 The Vertex Representation

Consider theKPZ equation (1.4). Recall (ν(0), D(0), v(0)) are the bare parameters. Expanding
blindly the exponential in Feynman–Kac’s formula (2.3) would yield a series in the bare
coupling constant g(0) = λ

ν(0)

√
D(0). This is the starting point for our expansion. In the end

(see Sect. 6), we shall see that it is possible to make partial resummations, and obtain thus
expressions bounded by products of short-time kernelsGη((t, x), (t ′, x ′))with t−t ′ = O(1),
which are in turn bounded using (2.3).

Let us start with some general considerations. Let f = f (t, x) be any right-hand side,
and ν > 0. The integral version of the equation

(∂t − ν�)w(t, x) = f (t, x)w(t, x), (3.26)

coinciding—up to the replacement of ν(0) by ν—with (2.1) when f (t, x) := g(0)(η(t, x) −
v(0)), is

w(t, x) = Gν((t, x), (0, ·))w0(·) + Gν((t, x), ·)( f w)(·). (3.27)

Iterating yields

w(t, x) = (Gν + Gν f Gν + Gν f Gν f Gν + · · · ) ((t, x), (0, ·))w0(·). (3.28)

The series converges under suitable hypotheses on f , and the general term in the series
has the form of a chronological sequence, or string of propagators Gν with g’s sandwiched
in-between, namely,

(Gν f · · · f Gν) (t, x; 0, y) =
∫ t

0
dt1

∫
dx1 Gν(t, x; t1, x1) f (t1, x1)

∫ t1

0
dt2

∫
dx2 Gν(t1, x1; t2, x2) f (t2, x2)

∫ t2

0
dt3

∫
dx3 · · · (3.29)

We now turn to a representation in terms of the operators Aν, Bν defined in Definition 3.3
by means of the auxiliary space H indexing the scales.
To an arbitrary function f , we associate the following general vertex

Vν( f )(t, x) := Bν(·, (t, x)) f (t, x)Aν((t, x), ·). (3.30)
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Since Aν Bν = Gν , one sees immediately by expanding (1− X)−1 = 1+ X + X2+· · · that

w = Aν

(
1−

∫
dt dx Vν( f )(t, x)

)−1

Bνw0. (3.31)

Here (1− ∫
dt dx Vν( f )(t, x))−1 plays manifestly the rôle of a resolvent.

Remark Other choices of vertices and scale decompositions are possible; for instance, letting
instead Bν ≡ Aν := √

Gν = ∫ +∞
0 eνt� dt√

2t
, and decomposing Bν, Aν into scales in a similar

way as we did in Definition 3.2, Eq.3.30 defines a scalar vertex. However, the orthogonal
projection structure of (3.9, 3.11) yields significant simplifications, see (5.6) and Appendix
2 section.

Let ν = ν(0). Recall that we write for short in this case G ≡ Gν(0) , A ≡ Aν(0) , B ≡ Bν(0) .
Choosing f = g(0)(η − v(0)), we obtain the

Definition 3.5 (Cole-Hopf vertex)

Vη(t, x) := B(·, (t, x))
(

g(0)(η(t, x) − v(0))
)

A((t, x), ·) (3.32)

Then the solution of (2.1) is

w = A

(
1−

∫
dt dx Vη(t, x)

)−1

Bw0. (3.33)

In other words, letting

Definition 3.6 (Random resolvent/propagator)

Rη :=
(
1−

∫
dt dx Vη(t, x)

)−1

, Gη := ARη B (3.34)

we have

w(t, x) = (ARη B)((t, x), (0, ·))w0(·) = Gη((t, x), (0, ·))w0(·). (3.35)

4 Cluster Expansions

The general principle of multi-scale expansions is that each field has one degree of freedom
per box inD = ∪ j≥0D

j (an ideamade precise by wavelet expansions). In order to understand
the effect of the weak coupling between the degrees of freedom belonging to different boxes,
one interpolates between the totally decoupled theory and the coupled theory by introducing
parameters. These are of two kinds. Horizontal parameters (denoted by the letter s) test the
coupling between two boxes of the same scale. Vertical parameters (denoted by the letter τ )
test the coupling between a given box � ∈ D

j , j ≥ 0 and the boxes below it, i.e. the boxes
�k ∈ D

k , k ≥ j (one per scale) such that �k ⊃ � j . (In the case of the KPZ equation in
its Cole-Hopf formulation, the only essential counterterms for renormalization are produced
at scale 0, so we shall only test the coupling between a box in D

0 and the boxes below it).
For the coupled theory, these parameters are equal to 1; for the totally decoupled theory, on
the other hand, they are equal to 0. Taylor expanding to some order around 0 with respect
to the s- and τ -parameters produces in general a combinatorial sum over products of so-
called multi-scale polymers (unions of boxes). Any polymer is connected by links between
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boxes for which the relevant parameter, s or τ , is > 0; such terms are written in terms of
Taylor integral remainders. In equilibrium statistical field theory, there appear pieces totally
isolated from remaining boxes; they correspond to vacuum diagrams, and—aswell-known—
disappear when one computes connected expectations. In our context, these do not appear
(Z = 1 automatically for dynamical theories, because the noise measure is normalized from
the beginning). On the other hand, renormalization is in general a necessity in either setting,
due to the following reason. Differentiating with respect to a τ -link originated from a box
� j ∈ D

j produces low-momentum fields in some box�k ⊃ � j , k > j . Imagine one applies
≥ 1 differentiations with respect to some of the vertical parameters located in boxes at the
bottom of the polymer, in total Next of them, and then sets all of these vertical parameters to
0. Thus this polymer “floats” at a certain height with respect to its external legs, measured
by the difference jext,min − jint,max = (min of scales k of the Next low-momentum fields) -
(max of scales j of bottom boxes). Then the quantity integrated in volume obtained by
summing over all possible locations of the polymer with respect to its external legs is not a
vacuum diagram; it is to be seen rather as some insertion contributing to the evaluation of
the polymers located below. Computations show that, for Next small enough (in our case,
for Next = 2 only), this contribution diverges in the limit when jext,min − jint,max → ∞.
Thus such insertions contribute to the large-scale limit. The idea ofWilson’s renormalization
scheme is to absorb the diverging part of these insertions into a scale by scale redefinition
of the parameters of the theory.

Here an essential simplification comes through the fact that only scale 0 diagrams need
to be renormalized, but the general philosophy remains the same.

In most theories, N -point functions are of the form 〈P(h)〉, where P(h) is a polyno-
mial in the random field h = h(t, x); however, here h is the logarithm of w. This a feature
specific to this particular model. Let us write down here explicitly the effect of succes-
sive differentiations on an expression of the form P(log h). Incorporating the interpolating
parameters transforms w(t, x) into w(τ 0, s; t, x), where s and τ 0 are scale 0 parameters.
Now, we need to differentiate with respect to s- and τ 0−parameters the N -point function
〈log(w1(τ

0, s)) · · · log(wN (τ 0, s))〉, where we have let wk(·) := w(·; tk , xk). Then (letting
D1, D2, · · · denote the derivative with respect to various s- or τ 0-parameters)

D1 log(wk(·)) = D1wk(·)
wk(·) , D2D1 log(wk(·)) = D2D1wk(·)

wk(·) − D1wk(·)D2wi (·)
(wk(·))2 , · · ·

(4.1)

Dn · · · D1 log(wk(·)) =
n∑

m=1

(−1)m−1(m − 1)!
∑

i1+···+im=n

∑

I1,...,Im

×
[∏

i∈I1 Di
]
wk(·) · · ·

[∏
i∈Im

Dm
]
wk(·)

(wk(·))m
, (4.2)

where the last sum ranges over all partitions of {1, . . . , n} into m disjoint subsets I1, . . . , Im

with |I1| = i1, . . . , |Im | = im . Thus the derivatives apply to a product wi,1 · · ·wi,k of k
“replicas” of wi . The latter expression generalizes easily to some combinatorial expression
of the same type for Dn · · · D1 {logw1(·)) · · · logwN (·))} which is of the general form

∑

(Ik, j )

cI

∏
k≤N

∏
j≤mk

( [∏
i∈Ik, j

Di

]
wk(·)

)

∏
k(wk(·))mk

(4.3)
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with �k � j≤mk Ik, j = {1, . . . , n}, for some coefficients cI depending on the choice of the
sets (Ik, j ), plus terms involving one or several logw which have not been differentiated. The
conclusion of this discussion is that we need only evaluate the Di ’s on so-called replicated
products

∏N ′
k=1 wk(s, τ 0; t, x) taking into account the “replicas”, or equivalently [by (3.35)]

on a product of N ′ := ∑
k≤N mk noisy resolvents Rη. This is what we do in the next

paragraphs.
Let us finally mention our implicit integration convention: whenever a formula contains

more space-time variables in the r.-h.s. than in the l.-h.s., supplementary variables are implic-
itly integrated over.

4.1 The Dressed Equation

We now proceed—as a preparation to the renormalization step—to separate the 0-th scale
from the others. The outcome is a “dressed” vertex V (τ 0). Let τ 0 : D

0 → [0, 1]. First we
need to dress the operators A, B.

Definition 4.1 (Dressed fields)

1. (A-field)
Let

A(τ 0; (t, x), ·) := A0((t, x), ·)〈0| + τ 0(t,x) A→1((t, x), ·) (4.4)

2. (B-field) The dressing procedure is the same, except that it acts on the second set of
variables, namely,

B(τ 0; ·, (t ′, x ′)) := B0(·, (t ′, x ′))|0〉 + τ 0(t ′,x ′) B→1(·, (t ′, x ′)) (4.5)

The idea is the following. Start from a space-time dependent field, say, φ(t, x), and
make it τ -dependent as indicated. Then Taylor’s formula, φ(τ 0t,x ; t, x) = φ(0; t, x) +
τ 0t,x∂τ 0t,x

φ(0; t, x) + · · · reads simply φ(τ 0t,x ; t, x) = φ(0)(t, x) + τ 0t,xφ
→1(t, x). In other

words, by differentiating φ(τ 0t,x ; t, x) with respect to τ 0t,x , one separates the zeroth scale
component φ(0)(t, x) from the low-momentum field φ→1(t, x).

Renormalization involves a priori the introduction of scale counterterms δg( j) := g( j+1)−
g( j) (recall g( j) := λ

νe f f

√
D( j) by definition), δv( j) := v( j+1) − v( j), δν( j) := ν( j+1) − ν( j).

Due to our hypotheses on the covariance kernel 〈η(t, x)η(t ′, x ′)〉, it actually happens (as
proved in Sect. 5) that only two-point scale 0 diagrams absolutely need renormalization; thus
we choose to take δg( j) = 0 for all j ≥ 0, and δν( j), δv( j) ≡ 0 for every j ≥ 1. Since
we want ν( j) → j→∞ νe f f , v( j) → j→∞ 0, this implies simply that g( j) = g(0), ν( j) =
νe f f , v( j) = 0 for all j ≥ 1. Thus dressing the vertex is a very simple matter. First (in order
to avoid having to differentiate characteristic functions of scale 0 boxes coming out of the
horizontal cluster, see § 4.2), we introduce

�→0 := χ̄ (0) ∗ �, (4.6)

where χ̄ (0) : R
d → R is anynormalized smooth “bump” function, such that e.g. supp(χ̄ (0)) ⊂

B(0, 1),
∫

dx χ̄ (0)(x) = 1;�→0 is a regularized version of�. It is useful to assume that χ̄ (0)

is isotropic though (see Appendix 2 section), which improves the precision of the asymptotics
in Theorem 0.1.

Definition 4.2 (Dressed vertex and effective propagators) Let, for τ 0 : D
0 → [0, 1],
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(i)

Vη(τ
0; t, x) := B(τ 0; ·, (t, x))

(
g(0)(η(t, x) − v(0))

)
A(τ 0; (t, x), ·)

+B→1(·, (t, x))
(
(1− (τ 0t,x )

2)(νe f f − ν(0))�→0
)

A→1((t, x), ·)
(4.7)

(ii)

Rη(τ
0) :=

(
1−

∫
dt dx Vη(τ

0; t, x)

)−1

. (4.8)

Let us comment formula (4.7), which is the starting point of all subsequent computations.
The first line of (4.7),

V (0)
η (τ 0; t, x) := B(τ 0; ·, (t, x))

(
g(0)(η(t, x) − v(0))

)
A(τ 0; (t, x), ·) (4.9)

is simply a dressed version of the Cole-Hopf vertex (3.32).
The second line,

δVη(τ
0; t, x) := B→1(·, (t, x))

(
(1− (τ 0t,x )

2)(νe f f − ν(0))�→0
)

A→1((t, x), ·) (4.10)
vanishes when τ 0 ≡ 1, which ensures that one recovers the original Cole-Hopf vertex, i.e.
Vη(τ

0 ≡ 1; ·) = Vη(·). Itmaybedecomposed into twopieces,which are proportional but play
averydifferent rôle.Thefirst one,−(τ 0t,x )

2B→1(·, (t, x))
(
(νe f f − ν(0))�→0

)
A→1((t, x), ·),

is a low-momentum counterterm which resums the corresponding zero-momentum contri-
bution of scale 0 two-point functions (see §5.1). The second one,
+B→1(·, (t, x))

(
(νe f f − ν(0))�→0

)
A→1((t, x), ·), leads to an effective propagator

G̃e f f := A→1 ·
∑

n≥0

(
δVη(τ

0 ≡ 0)
)n · B→1

= A→1
(
1− (νe f f − ν(0))B→1�→0A→1

)−1
B→1 (4.11)

which plays an essential rôle in the large-scale limit discussed in Sect. 6. As proved in
Lemma 8.2, G̃e f f may be replaced in that limit by Gef f := (∂t −νe f f �)−1 with an excellent
approximation. Thus νe f f is, indeed, an effective viscosity. Namely, it is shown in §7 that

G̃e f f ((ε
−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′) = Gef f ((ε

−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) + “O(ε)′′,
(4.12)

meaning the following (see Lemma 8.2). Assume t − t ′ ≈ 1 and ε ≈ 2− j � 1, so that
ε−1(t − t ′) ≈ 2 j . Then the error term “O(ε)′′ is equal to O(ε) times an exponentially
decreasing kernel which is bounded by Gν(0)+O(λ2)((ε

−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) =
εd/2Gν(0)+O(λ2)((t, x), (t ′, x ′)) in a very large space-time region including the “normal

regime” |x−x ′|2
t−t ′ � 1.

4.2 Horizontal Cluster Expansion

The general principle is outlined in Appendix 1 section. We only need a scale 0 cluster
expansion, which we apply using (7.4) to

F ≡ F(A0, B0|η; A→1, B→1) := log(w1(τ
0, s = 1) · · · log(wN (τ 0, s = 1)), (4.13)
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where the A→1’s and B→1’s are only spectators. To be specific, w(τ 0, s) in the above
expression is defined as follows:

w(τ 0, s; t, x) = (ARη(τ
0)(s)B)((t, x), (0, ·))w0(·); (4.14)

Rη(τ
0)(s)(t, x; t ′, x ′) := δ(t − t ′)δ(x − x ′) +

∞∑

n=1

∫
dx1...dxn

n∏

i=1

[ (
s�0

ti−1,xi−1
,�0

ti ,xi
B0((ti−1, xi−1), (ti , xi )) |0〉 + τ 0ti ,xi

B→1((ti−1, xi−1), (ti , xi ))
)

· (g(0)(η(ti , xi ) − v(0)))

·
(

s�0
ti ,xi

,�0
ti+1,xi+1

A0((ti , xi ), (ti+1, xi+1)) 〈0| + τ 0ti ,xi
A→1((ti , xi ), (ti+1, xi+1))

)

+ B→1(ti−1, xi−1), (ti , xi ))
(
(1− (τ 0ti ,xi

)2)(νe f f − ν(0))�→0
)

A→1((ti , xi ), (ti+1, xi+1))
]

(4.15)

where (by convention) (t0, x0) ≡ (t, x), (tn+1, xn+1) ≡ (t ′, x ′). This way, F appears as a
functional of A0, B0, to which the BKAR cluster expansion formula (7.4) applies.

The outcome is an expression of F in terms of a sum over scale 0 forests F
0,

〈F(A0, B0|η)〉 =
∑

F0∈F0

⎛

⎝
∏

�∈L(F0)

∫ 1

0
dw�

⎞

⎠

⎛

⎝

⎛

⎝
∏

�∈L(F0)

d

ds�

⎞

⎠ 〈F(A0(s(w)), B0(s(w)))|η〉s(w)

⎞

⎠ ,

(4.16)

see Appendix 1 section for detailed notations.
Let � = (�,�′), �,�′ ∈ D

0 be a pair of linked boxes. We use the short-
ened notation Vη(τ

0)(s(w)) := Vη(τ
0)(A0(s(w)), B0(s(w))) and Rη(τ

0)(s(w)) :=
1

1−∫ dt dx Vη(τ 0;t,x)(A0(s(w)),B0(s(w)))
. A direct computation yields

∂

∂s�

Rη(τ
0)(s(w)) = Rη(τ

0)(s(w))

(
d

ds�

∫
dt dx V (τ 0; t, x)(s(w))

)
Rη(τ

0)(s(w))

(4.17)

Then

∂

∂s�

∫
dt dx Vη(τ

0; t, x)(s(w)) =
∫

dt dx B(τ 0, s(w))(·, (t, x)) ·

·
(

g(0)(η(t, x) − v(0))
)( d

ds�

A(τ (0), s(w))((t, x), ·)
)

+
∫

dt ′ dx ′
(

d

ds�

B(τ (0), s(w))(·, (t ′, x ′))
)

·

·
(

g(0)(η(t ′, x ′) − v(0))
) (

A(τ (0), s(w))((t ′, x ′), ·)
)

(4.18)

Finally, if (t, x) ∈ �, (t ′, x ′) ∈ �′, �,�′ ∈ D
0,

∂

∂s�

A(τ 0, s(w)((t, x), (t ′, x ′)) = ∂

∂s�

A0(s(w))((t, x), (t ′, x ′))〈0|
= A0((t, x), (t ′, x ′))〈0| · 1�={�,�′} (4.19)

and similarly for B. Hence (t, x), resp. (t ′, x ′) in (4.18) is integrated over �, resp. �′.
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On the other hand [see (7.6)], d
ds�

also acts on the covariance kernel of η, according to the
rules:

d

ds�

〈( · )
〉

s(w)
≡
∫

��

dz�

∫

�′
�

dz′� 〈η(z�)η(z′�)〉s=1 ·
〈 δ

δη(z�)

δ

δη(z′�)
( · )

〉

s(w)
(4.20)

δ

δη(z�)
Rη(τ

0)(s(w)) = Rη(τ
0)(s(w))

(
δ

δη(z�)

∫
dz V (τ 0)(s(w))(z)

)
Rη(τ

0)(s(w))

(4.21)
δ

δη(z�)

∫
dz V (τ 0)(s(w))(z) = B(τ 0, s(w))(·, z�)g

(0) A(τ 0, s(w))(z�, ·),
(4.22)

with now averages defined with respect to the s-dependent Gaussian measure 〈 · 〉s(w).

Clearly, d
ds�

(or δ
δη(z) , z = z� or z′�) can also act directly on one of the A(τ 0, s(w))(·, ·),

B(τ 0, s(w))(·, ·) or η’s produced by previous differentiations.
Summarizing, turning to the specific case (4.13), the result of the expansion (4.16) may
be rewritten, using the notations of (4.3), and separating the action of the s-derivatives on
the covariance kernel of η from the action on the propagators A0, B0, and splitting the s-
derivatives according to the index (k, j) of the string on which they act—or possibly the pair
of indices (k, j), (k′, j ′) for η-pairings between two different strings—

∑

F0∈F0

⎛

⎝
∏

�∈L(F0)

∫ 1

0
dw�

⎞

⎠
∑

(LG )k, j ,(Lη)k, j ,(Lη)(k, j),(k′, j ′)

cI
( ∏

�∈Lη

∫

��

dz�

∫

�′
�

dz′�〈η(z�)η(z′�)〉s=1

)

〈∏
k≤N

∏
j≤mk

([
(DG)k, j (Dη)k, j (Dη)(k, j),·(Dη)·,(k, j)

]
wk(τ

0, s; ·)
)

∏
k≤N (wk(τ 0, s; ·))mk

〉

s(w)

, (4.23)

where: cI is as in (4.3);
L(F0) = LG � Lη;
LG = �(k, j)(LG)k, j (propagator links);
Lη = �k, j (Lη)k, j �(k, j),(k′, j ′) (Lη)(k, j),(k′, j ′) (noise links);
(Lη)(k, j),· := �(k′, j ′)�=(k, j)(Lη)(k, j),(k′, j ′), (Lη)·,(k, j) := �(k′, j ′)�=(k, j)(Lη)(k′, j ′),(k, j) (noise
links between two strings);
(DG)k, j := ∏

�∈(LG )k, j
∂

∂s�
(derivatives acting on propagators A0 or B0);

(Dη)k, j := ∏
�∈(Lη)k, j

δ2

δη(z�)δη(z′�)
(double derivatives acting on two noise fields located on

the same string);
(Dη)(k, j),· := ∏

�∈(Lη)(k, j),·
δ

δη(z�)δη(z′�)
, (Dη)·,(k, j) := ∏

�′∈(Lη)·,(k, j)
δ

δη(z�)δη(z′�)
(resp. on two

different strings, including that of index (k, j));

mk =Card
{

j |(LG)k, j ∪ (Lη)k, j ∪ (Lη)(k, j),· ∪ (Lη)·,(k, j) �= ∅
}

with wk(τ
0; s) defined as in (4.14,4.15).

In other words:

(i) [see (4.17,4.18,4.19)], each s-derivative along a link acting on a random resolvent (i)
singles out a localized A0- or B0-propagator between the two boxes connected by the
link, and produces (ii) a supplementary B−, resp. A− propagator ending, resp. starting
in one of the two boxes; (iii) a “renormalized” noise field

η̃(t, x) := g(0)(η(t, x) − v(0)) (4.24)
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sandwiched between the localized scale 0 propagator, and another propagator with
unspecified scale; (iv) and supplementary resolvents Rη(τ

0)(s(w)), whose scale 0 com-

ponents R(0)
η will later on be produced explicitly by the vertical expansion. Because all

these scale 0 operators are causal, they may be seen as beads stringed on an (open)
string propagating causally, with dangling η̃-ends on each bead. See Fig. 1 below.
Sequences

∫
�

dt dx B•(·, (t, x))η̃(t, x)A•((t, x), ·) integrated in a box � ∈ D
0, are

called vertices by reference to Definition 4.2.
(ii) an s-derivative acting directly on some A or B turns into an A0 or B0 linking two

specified boxes;
(iii) the cluster in η [see in particular (4.20,4.21,4.22)] produces from 0 to 2 vertices (depend-

ing on whether the δ
δη(z�)

, δ
δη(z′�)

act on a resolvent or directly on some dangling η̃), and

a local link between two vertices, by which we mean that one gets some pairing of
(old or new) vertices

∫
�

dz B•(·, z)A•(z, ·), ∫
�′ dz′ B(·, z′)A(z′, ·), multiplied with the

finite-range kernel 〈η(z)η(z′)〉s=1, which forces d(�,�′) = O(1).

A general term in (4.23) is in the form of a product of N ′ strings with beads or inserted
vertices and dangling η̃-ends, schematically, letting z j

i := (t j
i , x j

i ) (1 ≤ i ≤ N ′, j ≥ 1) be

intermediate coordinates implicitly integrated over with ti > t1i > t2i > · · · > t3ni
i ≡ 0,

⎛

⎝
n1−1∏

j=1

η̃
(

z3 j
1

)
⎞

⎠ A•((t1, x1), z11

)

⎛

⎝Rη

(
z11, z21

) n1−1∏

j=1

B•(z3 j−1
1 , z3 j

1

)
A•(z3 j

1 , z3 j+1
1

)
Rη

(
z3 j+1
1 , z3 j+2

1

)
⎞

⎠ B•(z3n1−1
1 , z3n1

1

)
w0

(
z3n1
1

)

.

.

.⎛

⎝
nN ′ −1∏

j=1

η̃
(

z3 j
N ′
)
⎞

⎠ A•((tN ′ , xN ′ ), z1N ′
)

⎛

⎝Rη

(
z1N ′ , z2N ′

) nN ′ −1∏

j=1

B•(z3 j−1
N ′ , z3 j

N ′
)

A•(z3 j
N ′ , z3 j+1

N ′
)

Rη

(
z3 j+1

N ′ , z3 j+2
N ′

)
⎞

⎠ B•(z
3nN ′ −1
N ′ , z

3nN ′
N ′

)
w0

(
z
3nN ′
N ′

)

(4.25)

averaged w.r. to the measure 〈 · 〉s(w), where some of the B’s and A’s are localized, 0-
th scale propagators, others being “grey” for the moment (i.e. of unspecified scale), and
η̃(·) = g(0)(η(·) − v(0)), see Eq. (4.24). As seen from the previous formulas in this very
subsection, such terms should be summed over forests, integrated w.r. to interpolation coeffi-
cientsw. Intermediate coordinates z j

i are integrated over 0-scale boxes��,�
′
�. Also missing

are coefficients cI (z) now depending on z := (z�, z′�)�∈L(F0) through the pairing factors
〈η(z�)η(z′�)〉 due to the cluster expansion in η. A more explicit expression shall be given at
the very end of Sect. 4, after we have completed the vertical cluster expansion.

4.3 Vertical Cluster or Momentum-Decoupling Expansion

After performing the scale 0 horizontal cluster expansion, one must still perform on the
contribution associated to a given forest F

0 another expansion called vertical cluster or
momentum-decoupling expansion. This consists simply in applying the operator
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Vert0 =
∏

�∈D0

⎛

⎝
2∑

μ�=0

∂μ�
τ�

∣∣
τ�=0 +

∫ 1

0
dτ�

(1− τ�)2

2! ∂3τ�

⎞

⎠ . (4.26)

Fix a box �0 ∈ D
0. A derivative ∂τ 0 , acting on a dressed field A(τ ; ·), simply beheads

A0—the highest-momentum component of A—, and yields A→1. On the other hand, if
(t, x) ∈ �0,

∂τ
�0 Rη(τ ) = Rη(τ )

(
∂τ

�0 Vη(τ )
)

Rη(τ ) (4.27)

∂τ
�0 Vη(τ ; t, x) = B→1(·, (t, x))

(
g(0)(η(t, x) − v(0))

)
A(τ ; (t, x), ·)

+B(τ ; ·, (t, x))
(

g(0)(η(t, x) − v(0))
)

A→1((t, x), ·)
+B→1(·, (t, x))

(
−2τ 0t,x (ν

(0) − νe f f )�
→0

)
A→1((t, x), ·)

(4.28)

Therefore, the vertical cluster expansion acts by inserting vertices, just as the horizontal
cluster expansion does.On theother hand, these vertices comprise at least one low-momentum
field. 0-scale boxes in which these low-momentum fields are integrated (here �0) constitute
the external boxes or (looking more precisely at the nature—A or B - and the scale of
the low-momentum fields) the external structure of the associated polymers. Such low-
momentum fields are called external legs of the polymer. The order of differentiation in τ�

is denoted byμ�; for the Taylor remainder in (4.26) one hasμ� = 3. Since each τ -derivative
contributes an external leg, the number of external legs of a polymer is equal to the number
of τ -derivatives that have been applied to it. Thus μ� can be interpreted as a multiplicity,
by which we mean that a polymer containing � has μ� external legs starting from the box
�.

Now that we have completed the cluster expansion, a fundamental observation to be
made is the following. Let � := �0

t,x ,�
′ := �0

t ′,x ′ . If �,�′ belong to different components

of F
0, then Rη(τ )(s(w))((t, x), (t ′, x ′)) = 0. In the contrary case, letting T

0 be the tree
containing � and �′, Rη(τ )(s(w))((t, x), (t ′, x ′)) depends only on the values of η in the
image |T0| := {� ∈ D

0 | � ∈ T
0} of the polymer.

Weillustrate the double horizontal/vertical cluster expansionbyFig. 1,where the following
pictural conventions are used. Wavy lines are pairings 〈η(t, x)η(t ′, x ′)〉 produced by the
cluster expansion in η; the attached d/ds is a reminder of the action of the cluster operator
d/ds which produced the pairing. Wavy half-lines with added symbol η̃ stand for dangling η̃-
ends; when evaluating averaged N -point functions, they are contracted inside their connected
component (polymer). Scale 0 thick lines are space-time convolutions A0R(0)(τ 0 = 0)B0;
an attached d/ds signals the fact that either A0 or B0 has been produced by the propagator
cluster. Scale j thick lines ( j ≥ 1) are either A j or B j or G j = A j B j .
The final outcome of this section is the following compact expression, where V (F0) is the
set of vertices connected by a forest F

0, and n�, � ∈ V (F0) is the coordination number of
a given vertex of the forest:

〈
log(w1(τ

0, s = 1; t1, x1)) · · · log(wN (τ 0, s = 1; tN , xN ))
〉
=

∑

F0∈F0

⎛

⎝
∏

�∈L(F0)

∫ 1

0
dw�

⎞

⎠
∑

LG ,Lη,Lvert ,μ

cI
( ∏

�∈Lη

∫

��

dz�

∫

�′
�

dz′�〈η(z�)η(z′�)〉s=1

)
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Fig. 1 Cluster expansions

〈∏
k≤N

∏
j≤mk

([
(DG)k, j (Dη)k, j (Dη)(k, j),·(Dη)·,(k, j)(Dτ )k, j

]
wk(τ

0, s; ·)
)

∏
k≤N (wk(τ 0, s; ·))mk

〉

s(w)

,

(4.29)

where; μ := (μ�)�∈D0 ; (Dτ )k, j = ∏
�∈Lk, j

Dτ�(μ�), and

Dτ�(μ�) = ∂μ�
τ�

∣∣∣
τ�=0

(μ� = 0, 1, 2),
∫ 1

0
dτ�

(1− τ�)2

2! ∂3τ�
(μ� = 3),

(4.30)

with η̃ = g(0)(η − v(0)), featuring a product of strings indexed by k, j , where, for each box
� ∈ F

0:

(i) the horizontal cluster expansion has produced 0 ≤ n′
� ≤ n� vertices integrated over

z′n(�) ∈ �, n = 0, . . . , n′
�;

(ii) the vertical cluster expansion has produced 0 ≤ n′′
� ≤ μ� ≤ 3 vertices integrated over

z′′n(�) ∈ �, n = 0, . . . , n′′′
�;

and {z′n(�), z′′n(�)}�,n = {zi
k, j }.

5 Renormalization

We now proceed to the renormalization stage. As explained in the introduction to Sect. 4,
renormalization consists in general in computing, and compensating by equal counterterms,
the “diverging part” of the sum of diagrams with a given external structure. In a multi-scale
setting, one considers instead the so-called “local part” of the sum of all polymerswith internal
legs of scale ≤ j and given external structure, made up of a product of external legs of scale
> j ; such local parts are compensated by counterterms of scale j .
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The Scaling Limit of the KPZ Equation in Space Dimension… 567

Given the simplicity of this stage in the present model, we spare the reader a full-length
explanation of these ideas (that can be found e.g. in [45] or [58]), and describe instead what
we do in simple terms.

Themain step is the estimation of the two-point function. The idea is roughly the following.
Low-momentumpropagatorsG→1((ti , xi ), (t f , x f ))=∑

j≥1 A j 〈 j | B j | j〉 ((ti , xi ), (t f , x f )),
j ≥ 1 occupying on a string the time-section between initial time ti and final time t f , may
be cut anywhere into two parts by a scale 0 vertex insertion, according to the rule

G→1((ti , xi ), (t f , x f )) �
∑

j,k≥1

A j ((ti , xi ), ·)〈 j |
[

B j | j〉
(

g(0)ηA0〈0| B0|0〉 g(0)η + · · ·
)

Ak〈k|
]
(·, ·) ·

· Bk(·, (t f , x f )) |k〉 = G→1((t, x), ·) Kη(·, ·) G→1(·, (t ′, x ′)) (5.1)

The random kernel between parentheses,

Kη((t, x), (t ′, x ′)) :=
(

g(0)ηA0〈0| 1

1− B0|0〉 g(0)ηA0〈0| B0|0〉 g(0)η
)
((t, x), (t ′, x ′))

=
(

g(0)ηA0〈0| B0|0〉 g(0)η + · · ·
)
((t, x), (t ′, x ′)) (5.2)

containing only A0- and B0-components, is (as can be shown) O(1) in average, and decreases
exponentially fast when d((t, x), (t ′, x ′)) is large, while

G j ((t ′, x ′), ·) � G j ((t, x), ·) (5.3)

if d((t, x), (t ′, x ′)) = O(1) and j � 1. Thus it makes sense to assume that
its main contribution to the string is the averaged zero-momentum quantity v(t) :=∫

dt ′ dx ′ 〈Kη((t, x), (t ′, x ′))〉 (later on identified as g(0)v(0), up to some small correction).
Assuming for simplicity that v(t) ≡ v is a constant, we must consider the sum of the geomet-
ric series G→1+G→1vG→1+G→1vG→1vG→1 · · · . Since now (G ∗G)((t, x), (t ′, x ′)) =∫ t

t ′ dt ′′
∫

dx ′′ pt−t ′′(x − x ′′)pt ′′−t ′(x ′′ − x ′) = (t − t ′)G((t, x), (t ′, x ′)), one sees that the
large-scale (i.e. t − t ′ → +∞) correction to G→1 is infinite. On the other hand, the geometric
series may be resummed exactly, G + GvG + GvGvG + · · · = (∂t − ν(0)� − v)−1. This
explains whywe incorporated v(0) into the equation. Considering instead a second-order Tay-
lor expansion in x − x ′ in (5.3) yields [see similarly (5.12)] a contribution δν, compensated
by δV [see (4.7, 4.10)], creating a geometric series� G+Gδν�G+Gδν�Gδν�G+· · · =
(∂t − ν(0)� − δν�)−1; thus νe f f := ν(0) + δν may be interpreted as an effective viscosity.
Now, further corrections, of the type G→1 � G→1∂κ G→1 with |κ| ≥ 3, see our first key
power-counting estimate (3.19), finite in the large-scale limit, need not be considered.

In a general renormalizable theory, only a finite number of N -point functions yield infinite
contributions in the large-scale limit. It turns out here, however, that only N = 2 point
functions yield an infinite contribution, because of our second key power-counting estimate
(6.29). We content ourselves with briefly discussing diagrammatics for N = 4 in §5.2.

5.1 Two-Point Function

Consider a piece S of a string A((tini t , xinit ), ·)(1− Vη)
−1(·, ·)B(·, (0, y))e

λ

ν(0) h0(y)
running

from initial position (tini t , xinit ) to final position (0, y), connected by the horizontal cluster
alone (i.e. obtained by letting τ 0 ≡ 0). By construction, it has two external legs, one at each
temporal end. Then (letting η̃(t, x) := g(0)(η(t, x)−v(0))—seeDefinition 4.2—, and Lη(F

0)
be the set of cluster links coming from the perturbation of the measure on η—compare with
Eq. (4.23), while now k = j = 1 since there is only one string, and I1,1 = Lη(F

0)—)
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S :=
( ∏

�∈L(F0)

∫
dw�

) ∑

LG ,Lη

( ∏

�∈Lη

∫

��

dz�

∫

�′
�

dz′� 〈η(z�)η(z′�)〉s=1

)
·

DG Dη

{
B→1(·, (t, x))

1

1− ∫
dt ′′ dx ′′ V (0)

η (τ0 = 0)(s(w))(t“, x ′′)
((t, x), (t ′, x ′))A→1((t ′, x ′), ·)

}

= B→1(·, (t, x)) · η̃(t, x) · A→1((t, x), ·)
+
∑

n≥0

∫
dt1 dx1 · · ·

∫
dtn dxn

( ∏

�∈L(F0)

∫
dw�

) ∑

LG ,Lη

( ∏

�∈Lη

∫

��

dz�

∫

�′
�

dz′� 〈η(z�)η(z′�)〉
)

DG Dη

{
B→1(·, (t, x)) ·

[
η̃(t, x)A0(s(w))((t, x), ·)〈0| · R(0)

η (τ0 = 0)(s(w))(·, ·) ·
(
B0(s(w))(·, (t1, x1))|0〉 η̃(t1, x1))A0(s(w))((t1, x1), ·)〈0|

) · R(0)
η (τ0 = 0)(·, ·)

· · · (B0(s(w))(·, (ti , xi ))|0〉 η̃(ti , xi ))A0(s(w))((ti , xi ), ·)〈0|
) · R(0)

η (τ0 = 0)(·, ·)
· · · (B0(s(w))(·, (tn , xn))|0〉 η̃(tn , xn))A0(s(w))((tn , xn), ·)〈0|) · R(0)

η (τ0 = 0)(·, ·)
B0(s(w))(·, (t ′, x ′))|0〉 η̃(t ′, x ′)

]
· A→1((t ′, x ′), ·)

}
(5.4)

where n is the number of internal vertices, and R(0)
η (τ 0 = 0) are “scale 0 resolvents”,

R(0)
η (τ 0 = 0)(s(w))((t, x), (t ′, x ′))=

(
1−

∫
dt dx V (0)

η (τ 0 = 0)(s(w))(t, x)
)−1

. (5.5)

The operators DG , Dη are as in (4.29), with only one string involved, say, DG ≡
(DG)1,1, Dη ≡ (Dη)1,1. Each ∂/∂s� appearing in DG suppresses one of the s-factors in
front of the propagators; each δ

δη(z�)δη(z′�)
appearing in Dη takes out the corresponding pair of

η̃’s. How this is done is specified by the choice of (F0, LG , Lη). Thus the action of DG , Dη

is extremely simple and produces no extra combinatorial factors.
It is convenient to describe the lonely term in the first line of (5.4), obtained simply by

differentiating twice with respect to d
dτ 0

�0
in a box �0 = �0

t,x untouched by the horizon-

tal cluster, as an “n = −1” contribution; note that it contains implicitly a Dirac function
δ((t, x), (t ′, x ′)).

Assume that the η’s inside the brackets
[

·
]

contract pairwise, or equivalently, that no

η-field on S pairs to an η-field on another string. By the first property below Definition 3.2,
namely, since 〈η(ti , xi )η(ti ′ , xi ′)〉 = 0 if (ti , xi ) is connected to (ti ′ , xi ′) by some low-
momentumpropagator A→1 or B→1, only scale 0 diagrams contribute; which explainswhy

we need not consider generalizations of (5.4) with brackets
[
·
]
including lower-momentum

A’s and B’s. Note that, since R(0)
η (τ 0 = 0) = Id+ B0(s(w))(·, ·)|0〉 η̃(·, ·)A0〈0|+· · · , other

choices of external legs are not allowed, for instance,

[
·
]

· B→1 =
[
· · · A0〈0|

](
B1|1〉 + B2|2〉 + · · ·

)
≡ 0 (5.6)

because the basis (| j〉) j≥0 is orthonormal.
Let �0((t, x), (t ′, x ′)) be the average with respect to the measure in η of the sum of all

contributions like the one in [ · ] in (5.4); the kernel �0((t, x), (t ′, x ′)) must be seen as a
deterministic insertion on the string between (t, x) and (t ′, x ′). For reasons explained in C.
below, we symmetrize the kernel �0 by letting �0((t ′, x ′), (t, x)) := �0((t, x), (t ′, x ′)) if
t ′ < t . We split the discussion into a number of steps.
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The Scaling Limit of the KPZ Equation in Space Dimension… 569

Fig. 2 Displacement of external legs

A A first step consists in displacing the final external leg A→1((t ′, x ′), ·) to the location
(t, x) of the initial external leg B→1(·, (t, x)) (or conversely, see below). Namely,

B→1(.(t, x))�0((t, x), (t ′, x ′))A→1((t ′, x ′), .)
= B→1(.(t, x))A→1((t, x), .)�0((t, x), (t ′, x ′))
+B→1(.(t, x))�0((t, x), (t ′, x ′))

[
A→1((t ′, x ′), .) − A→1((t, x), .)

]
. (5.7)

Then we Taylor expand A→1((t ′, x ′), .) − A→1((t, x), .) to parabolic order three:

A→1((t ′, x ′), .) − A→1((t, x), .)

=
(
(t ′ − t)∂t + (x ′ − x) · ∇x + 1

2

∑

i, j

(x ′ − x)i (x ′ − x) j∂xi ∂x j

)
A→1((t, x), .)

+
∫ 1

0
du

(1− u)2

2

d3

du3

{
A→1(((1− u2)t + u2t ′, (1− u)x + ux ′), .)

}
(5.8)

See Fig. 2 for an illustration.
The integral remainder term in (5.8) is a sum of derivatives of parabolic order ≥ 3 (more

precisely, ranging in {3, . . . , 6}),
∣∣∣∣

d3

du3 A→1(·, ·)
∣∣∣∣ � |x − x ′|3|∇3A→1(·, ·)| + (t − t ′)|x − x ′| |∂t∇A→1(·, ·)|

+(t − t ′)2|∂2t A→1(·, ·)| + (t − t ′)3 |∂3t A→1(·, ·)| + (t − t ′)2|x − x ′| |∂2t ∇A→1(·, ·)|
+(t − t ′)|x − x ′|2|∂t∇2A→1(·, ·)| (5.9)

The main terms in (5.9) are those on the first line; splitting A→1 into its constituent
scales

∑
j ′≥1 A j ′ 〈 j ′|, we known from Sect. 1 that ∇3A j ′ , ∂t∇A j ′ ∼ 2−3 j ′/2A j ′ , whereas

|x − x ′|n |t − t ′|m�0((t, x), (t ′, x ′)) = O(�0((t, x), (t ′, x ′))) for all n, m ≥ 0 (due to the
exponential decrease in d((t, x), (t ′, x ′)), see below), all together a gain of O(2−3 j ′/2).

The other terms are dealt with below, namely the first term in the r.-h.s. of (5.7) and
the first line in the r.-h.s. of (5.8)—more precisely, only the second-order, traced term
1
6 |x ′ − x |2�x A→1((t, x), ·), the other ones vanishing by symmetry—; they contribute to
the renormalization of the two-point function.

In order to get the smaller of two factors, we displace instead the initial external leg
B·(·, (t, x)) to the location of the final external leg A·((t ′, x ′), ·) if the scale j of the B-leg is
strictly lower than the scale j ′ of the A-leg, i.e. if j > j ′, yielding a small factor O(2−3 j/2).
Summarizing: were it not for (i) the boundary conditions at initial time tini t and final time
0, and (ii) the non-overlapping condition between the scale 0 boxes chosen by the horizontal
cluster expansion, the contribution would be (taking into account the symmetrization of the
kernel�0, and considering—as an intermediate step only—the natural extension of themodel
to negative times)
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1

2

∑

1≤ j≤ j ′

({ ∫ +∞

−∞
dt ′ dx ′ �0((t, x), (t ′, x ′))

}
B j (·, (t, x))A j ′((t, x), ·)

+
{ 1

2d

∫ +∞

−∞
dt ′ dx ′ |x − x ′|2�0((t, x), (t ′, x ′))

}
B j (·, (t, x))�A j ′((t, x), ·)

)
,

(5.10)

plus the same expression up to the exchange of A, B and (t, x), (t ′, x ′) summed over j >

j ′ ≥ 1. Choosing v(0) such that
∫

dt ′ dx ′ �0((t, x), (t ′, x ′)) = 0, and letting

δν := 1

4d

∫ +∞

−∞
dt ′ dx ′ |x − x ′|2 �0((t, x), (t ′, x ′)), (5.11)

this is equivalent to the addition to the vertex Vη of
∫

dt dx 1
2

d2

dτ 0t,x
B→1(·, (t, x))((τ 0t,x )

2δν�)

A→1((t, x), ·), compensating the term proportional to (τ 0t,x )
2 in δVη, see (4.7).

Let us consider objections (i) and (ii) separately. First, because of the boundary con-
ditions, the integral 1

2

∫ +∞
−∞ dt ′ dx ′ (· · · ) = ∫ t

−∞ dt ′ (· · · ) in (4.9) must be replaced

by
∫ t
0 dt ′ (· · · ). Similarly, if j > j ′, the integral 1

2

∫ +∞
−∞ dt dx (· · · ) = ∫ +∞

t ′ dt (· · · )
must be replaced by

∫ tini t
t ′ (· · · ). Differences ( ∫ t

−∞ − ∫ t
0

)
dt ′ (· · · ) = ∫ 0

−∞ dt ′ (· · · ), resp.
( ∫ +∞

t ′ − ∫ tini t
t ′

)
dt (· · · ) = ∫ +∞

tini t
dt (· · · ), are shown in D. to be exponentially small in the

distance to the boundary, t−0, resp. tini t −t ′. Thus onemay equivalently define δν by an inte-
gral over positive times, which is more natural given that we are considering an initial-value
problem,

δν := 1

2d
lim

t→+∞

∫ t

0
dt ′ dx ′ |x − x ′|2 �0((t, x), (t ′, x ′)). (5.12)

Next, due to the non-overlapping condition, the factorization of �0 fails. The solution to this
well-known problem is through a Mayer expansion.

B (Mayer expansion) Namely, we shall now apply the restricted cluster expansion, see
Proposition 7.2, to the result of our expansion. Cluster expansions have produced a scale 0
forest F0 of boxes, whose tree components, together with their external structure made up of
low-momentum A’s and B’s, are called polymers, and denoted by P1, . . . , PN . The objects
are now scale 0 polymers P in O = {P1, . . . , PN } ; a link � ∈ L(O) is a pair of polymers
{Pn, Pn′ }, n �= n′. Objects of type 2 are polymers with > 2 external legs, whose non-overlap
conditions we shall not remove at this stage, because these polymers are already convergent,
hence do not need to be renormalized. Then objects of type 1 are polymers with two external
legs; note that—due to the displacement of externel legs operated in A.—the two external
legs are located in the same scale 0 box.

Implicit in the outcome of the cluster expansions is the non-overlapping condition,

NonOverlap(P1, . . . , PN ) :=
∏

(Pn ,Pn′ )
1Pn ,Pn′ non−overlapping

=
∏

(Pn ,Pn′ )

∏

�∈�(Pn),�′∈�(Pn′ )

(
1+ (

1� �=�′ − 1
))

(5.13)

stating that a box � belonging to the image of Pn and a box �′ belonging to the image of Pn′
are necessarily distinct. As in the proof of BKAR formula (see Proposition 7.1), we choose
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some polymer, say P1, with 2 external legs, and weaken the non-overlap condition between
P1 and all the other polymers by introducing a parameter S1,

NonOverlap(P1, . . . , PN )(S1) =
∏

{Pn ,Pn′ }n,n′ �=1

∏

�∈�(Pn),�′∈�(Pn′ )
1� �=�′ ·

∏

(�,�′)∈�(P1)×�(Pn′ )\�ext (P1)×�ext (Pn′ )

(
1+ S1

(
1� �=�′ − 1

))
, (5.14)

where �ext (P) ⊂ �(P) is the subset of boxes � with external legs - i.e. that have been
differentiation with respect to τ� -, and Taylor expand in S1 to order 1; each factor

1� �=�′ − 1 = −1�=�′ (5.15)

produced by differentiation is a Mayer link between P1 and some Pn′ , n′ �= 1, or more
precisely, some box � ∈ �(P1) and some box �′ ∈ �(Pn′), implying an explicit overlap
between P1 and Pn′ , and adding a link to the forest F

0. Iterating the procedure and applying
Proposition 7.2 to the weakened non-overlap condition

NonOverlap(P1, . . . , PN )(S) :=
∏

{Pn ,Pn′ }

∏

�∈�ext (Pn),�′∈�ext (Pn′ )
1� �=�′ ·

∏

(�,�′)∈�(Pn)×�(Pn′ )\�ext (Pn)×�ext (Pn′ )

(
1+ SPn ,Pn′

(
1� �=�′ − 1

))
, (5.16)

The outcome is a sum

∑

G0∈Fres (O)

( ∏

�∈L(G0)

∫ 1

0
dW�

)
NonOverlap(S(W)),

NonOverlap(S(W)) :=
[( ∏

�∈L(G0)

∂

∂S�

)
NonOverlap(P1, . . . , PN )

]
(S(W))

(5.17)

Links � = �Pn ,Pn′ ∈ L(G0) are obtained as links between polymers, however the cor-

responding differentiation ∂
∂S�

is immediately rewritten as a sum over pairs over boxes
(�,�′) ∈ �(Pn) × �(Pn′). Thus we see Mayer links as links between boxes. As such
they add up to the set of links L(F0) produced by the horizontal cluster expansion, producing
a forest F̄

0 with same vertices as F
0 but larger set of links L(F̄0) ≡ L(F0) � LMayer, where

LMayer (in bijection with L(G0) is the set of Mayer links. Since a forest is characterized by
its set of links, we rewrite in practice (5.17) as

∑

LMayer

( ∏

�∈LMayer

∫ 1

0
dW�

)
Mayer(S(W)),

Mayer(S(W)) :=
[( ∏

�∈LMayer

∂

∂S�

)
NonOverlap(P1, . . . , PN )

]
(S(W)). (5.18)

The number of external legs of a set of polymers connected by Mayer links is the sum of
the number of external legs of each of the polymers. In particular, any Mayer connected
component containing at least two polymers has≥ 4 external legs; it has become convergent.

Let us now give some necessary precisions. Since the Mayer expansion is really applied
to the non-overlap function NonOverlap and not to the outcome of the expansion, one must
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still extend the outcome of the expansion to the case when the Pn , n = 1, . . . , N have some
overlap. The natural way to do this is to assume that the random variables (η

∣∣
Pn

)n=1,...,N

remain independent even when they overlap. This may be understood in the following way.
Choose a different color for each polymer Pn = P1, . . . , PN , and paint with that color all
intervals � ∈ Pn ∩ D

0. If � ∈ �ext (Pn), then its external links to the A→1, B→1 below
it are left in black. The previous discussion implies that intervals with different colors may
superpose; on the other hand, external inclusion links may not, so that low-momentum fields
B→1((·), (t, x)), A→1((t, x), ·), (t, x) ∈ �0 with�0 ∈ �ext (Pn), do not superpose andmay
be left in black.

Hence one must see η as living on a two-dimensional set, D
0 × {colors}, so that copies

of η with different colors are independent of each other. This defines a new, extended and
restricted to the zeroth scale resolvent R̃(0)

η (τ 0 = 0) associated to an extended field η :
R+ × R

d × {colors} → R, and Mayer-extended polymers. By abuse of notation, we shall
skip the tilde in the sequel, and always implicitly extend the fields and the measures of scale
0 by taking into account colors.

C (counterterms) We now define �((t, x), (t ′, x ′)) to be the Mayerization of the sum of all
contributions like the one in [ · ] in (5.4), in which the two external legs have been displaced
into the same box as in A., so that there is no non-overlapping restriction on the support but
for the box containing (t, x). Note that Mayer links between polymers with two external legs
produce Mayer polymers with ≥ 4 external legs, which are therefore convergent (see §4.2).
Then (provided that the limit does exist)

g(0)v(0) := lim
T→+∞

∫ T

0
dt ′

∫
dx ′ �((T, x), (t ′, x ′))

= lim
T→+∞

∫ T

t ′
dt

∫
dx �((t, x), (t ′, x ′)). (5.19)

The result does not depend on x . Furthermore, as shown below, letting

g(0)v(0)(T ) :=
∫ T

0
dt ′

∫
dx ′ �((T, x), (t ′, x ′))

=
∫ T+t ′

t ′
dt

∫
dx �((t, x), (t ′, x ′)), (5.20)

with T = t , resp. tini t − t ′, the boundary correction δv(0)(T ) to v(0) decreases exponentially
with T , namely,

δv(0)(T ) := v(0) − v(0)(T ) = O((Cg(0))cT ) →T→+∞ 0 (5.21)

for some constants C, c > 0.
Consider once again the first term in the r.-h.s. of (5.7) and the first line in the r.-h.s. of

(5.8), but this time after the Mayer expansion; summing, we get if j ′ ≥ j (with a factor 1
2

due to the symmetrization of �0)

1

2

∫
dt ′ dx ′ B j (·, (t, x))�((t, x), (t ′, x ′))

(
1 + (t ′ − t)∂t + (x ′ − x) · ∇x + 1

2

∑

i, j

(x ′ − x)i (x ′ − x) j∂xi ∂x j

)
A j ′((t, x), ·)

(5.22)
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The first term in (5.22) vanishes for an adequate choice of v(0), as shown below. Then
the second (thanks to the symmetrization) and third terms vanish by parity, and the fourth
one vanishes for i �= j by isotropy. The remaining term in (5.22) may be absorbed into a
redefinition of ν. Namely, we define for any i = 1, . . . , d ,

νe f f − ν(0) := 1

4

∫
dt ′ dx ′(x ′

i − xi )
2�((t, x), (t ′, x ′)). (5.23)

Thus

1

2

∫
dt ′ dx ′ B j (·, (t, x))�((t, x), (t ′, x ′))A j ′((t ′, x ′), ·) = v(0) B j (·, (t, x))A j ′((t, x), ·)

+(νe f f − ν(0))B j (·, (t, x))�→0
x A j ′((t, x), ·) + remainders (5.24)

Remainders include the previously discussed integral remainder term in (5.8), and the
cut-off difference

(νe f f − ν(0))B j ′→(·, (t, x))(�x − �→0
x )A j ′((t, x), ·), (5.25)

which is bounded in absolute value by O(|νe f f − ν(0)| B j ′→(·, (t, x))) times
∫

dx ′ χ̄0(x ′)|∇2A j ′((t, x), ·) − ∇2A j ′((t, x + x ′), ·)| ∼ 2−3 j/2A j ′((t, x), ·), (5.26)

of the same order as the integral remainder term.
The leading-order contribution in the coupling constant of νe f f −ν(0) is obtained (as seen

from (5.23), letting (t ′, x ′) = (0, 0) and integrating in (t, x) instead) by contracting the η’s
in the expression

1

2
(g(0))2

∫ ∞

0
dt

∫
dx x21 η(t, x)(A0B0)((t, x), (0, 0))η(t ′, x ′). (5.27)

This is the n = 2 term in (5.4) with R(0)
η (·, ·) substituted by its leading order term δ(· −, ·).

By (1.5), one gets

νe f f − ν(0) = 1

2

λ2D(0)

(ν(0))2

∫ ∞

0
dt

∫
dx x21 (ω ∗ ω)(t, x)(A0B0)(t, x). (5.28)

The simplest contributions to v(0) are obtained by taking n = −1, 0 in (5.4) and replacing

R(0)
η (τ 0 = 0)(s(w)) = 1

1− ∫
dt dx V (0)(τ 0 = 0)(s(w))(t, x)

(5.29)

by its lowest-order term 1. Demanding that the “n = −1′′-term compensates exactly the sum
for n ≥ 0, we get an implicit equation for v(0),

g(0)v(0) = (g(0))2
∫

dt ′ dx ′ G0((t, x), (t ′, x ′))〈(η(t, x) − v(0))(η(t ′, x ′) − v(0))〉
+O((g(0) + g(0)v(0))2g(0)v(0)) + O((g(0) + g(0)v(0))4) (5.30)

The implicit function theorem yields a unique solution

v(0) = g(0)
∫

dt ′ dx ′ G0((t, x), (t ′, x ′)) 〈η(t, x)η(t ′, x ′)〉 + O((g(0))3), (5.31)
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provided one can show that the series in n converges, and that subleading terms are indeed
bounded as suggested in (5.30) and (5.31). This is our next task.

D (bounds) We now proceed to bound v(0) and νe f f − ν(0).
Let us first bound scale 0 resolvents. They are of the form (5.29), where

V (0)
η (τ 0 = 0)(s(w))(t, x) := B0(s(w))(·, (t, x))η̃(t, x)A0(s(w))((t, x), ·) (5.32)

where η̃(t, x) := g(0)(η(t, x) − v(0)). Now, as explained in § 4.2, only the η̃’s belong-
ing to the image |T| of the connected component T (i.e. polymer) of F

0 containing (t, x)

contribute. Denote then η̃|T|(t, x) := 1(t,x)∈|T|η̃(t, x) the restriction of η̃ to |T|. Expanding
each R(0)

η (τ 0 = 0)(s(w))((ti , xi ), (ti+1, xi+1)) yields δ((ti , xi ), (ti+1, xi+1)) +
(

R(0)
η (τ 0 =

0)(s(w))((ti , xi ), (ti+1, xi+1)) − δ((ti , xi ), (ti+1, xi+1))
)
, with [expanding (5.29)]

∣∣∣R(0)
η (τ 0 = 0)(s(w))((ti , xi ), (ti+1, xi+1)) − δ((ti , xi ), (ti+1, xi+1))

∣∣∣

=
∣∣∣B0(s(w))((ti , xi ), ·)|0〉 η̃(·)A0(s(w))(·, (ti+1, xi+1))〈0|
+B0(s(w))((ti , xi ), ·)|0〉 η̃(·)A0(s(w))(·, ·)〈0| B0(s(w))(·, ·)|0〉
η̃(·)A0(s(w))(·, (ti+1, xi+1))〈0| + · · ·

∣∣∣

≤ B0((ti , xi ), ·)|0〉 |η̃|T|(·)| A0(·, (ti+1, xi+1))〈0|
+B0((ti , xi ), (t

′
i , x ′

i ))|0〉 |η̃|T|(t ′i , x ′
i )| · G |η|T||((t ′i , x ′

i ), (t
′
i+1, x ′

i+1)) ·
· |η̃|T|(t ′i+1, x ′

i+1)| A0((t ′i+1, x ′
i+1), (ti+1, xi+1))〈0|.

(5.33)

Remark that (as follows from causality and from the fact that boxes of S are connected
through A0’s and B0’s) t ′i − t ′i+1 ≤ ti − ti+1 ≤ 2.
Thus (letting |η�| := sup(t,x)∈� |η(t, x)| for � ∈ D

0)

〈
G |η|T||((t ′i , x ′

i ), (t
′
i+1, x ′

i+1)
〉 ≤ G2→((t ′i , x ′

i ), (t
′
i+1, x ′

i+1))max
〈 ∏

�∈T
eθ�g(0)|η�|〉

≤ G2→((t ′i , x ′
i ), (t

′
i+1, x ′

i+1))max ec(g(0))2
∑

� θ2� ≤ G2→((t ′i , x ′
i ), (t

′
i+1, x ′

i+1))e
c′(g(0))2

(5.34)

if the maximum ranges over all possible choices of occupation times θ� := |{0 ≤ s ≤
t ′i − t ′i+1 | Bs ∈ �}| for the Brownian bridge from (0, x ′

i ) to (t ′i − t ′i+1, x ′
i+1), since

∑
� θ2� �

∑
� θ� = t ′i − t ′i+1 � 1. The bound for 〈∏�∈T eθ�g(0)|η�|〉 is obtained by rewriting the

product
∏

�∈T(· · · ) as a finite product, ∏ε

(∏
�∈Tε

(· · · )), where ε ∈ {0, 1}d+1 and Tε :=
{� = [k0, k0 + 1) × [k1, k1 + 1] × · · · × [kd , kd + 1] | ki − εi ≡ 0 mod 2, i = 0, . . . , d},
each of these a product of independent variables, and uses Hölder’s inequality,

∣∣〈∏
ε Xε

〉∣∣ ≤
∏

ε

(〈
(Xε)

2d+1 〉)2−(d+1)
.

However, because the G |η|T||((t ′i , x ′
i ), (t

′
i+1, x ′

i+1)), i ≥ 1 are not independent in general,
one should make the following easy adaptation of the argument around (5.34). Split the total
time interval [t ′, t] in (5.4) into a union I1 ∪ I2 ∪ · · · , I1 := [ti1 , ti0 ], I2 := [ti2 , ti1 ], . . .,
i0 < i1 < i2 < . . ., in such a way that tik−1 − tik−1 < 1 < tik−1 − tik , and bound as in (5.34)

the products 〈Y 2
k 〉 :=

〈(∏ik−2
i=ik−1

G |η|T||((t ′i , x ′
i ), (t

′
i+1, x ′

i+1))
)2〉

. Since tik−1 − tik+1 > 2, the
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random variables (Y2k+ε)k , ε = 0, 1 are independent, hence one concludes as above using
|〈∏k Yk〉| ≤ (

∏
k〈Y 2

2k〉)1/2(
∏

k〈Y 2
2k+1〉)1/2.

Let us now bound in average the product of the η-dependent terms along S, namely, the
product of the dangling η̃’s with the R(0)

η ’s. Compared to (5.34), one must now face the case
when O(n(�)) dangling η̃’s are produced inside a box�, where n(�) is the (a priori arbitrary
large) coordination number of � in T. Keeping aside for further use the small factor O(g(0))

per vertex, this leads to replacing 〈eθ�g(0)|η�|〉 in (5.34) by 〈(|η�| + O(1))n(�)eθ�g(0)|η�|〉 =
ec′(g(0))2θ2� · O(Cn(�)�(n(�)/2)), with C = O(1). These factors, traditionally called local
factorials, are easily shown to pose no real threat to the convergence of the sum over all
polymers. Namely, if � ∼T �1, . . . , �n(�)−1, d(�,�1) ≤ . . . ≤ d(�,�n(�)−1), then (i)
d(�,�n) � n1/d ; (ii) for each n = 1, . . . , n(�) − 1, the string S contains a propagator,
either A0((t, x), (tn, xn)) or B0((t, x), (tn, xn)), with (t, x) ∈ �, (tn, xn) ∈ �n . Rewriting
A0((t, x), (tn, xn)) as e− c

2 |x−xn |2 · Ã0((t, x), (tn, xn)), where c is as in Lemma 3.4, one
sees that Ã0(·, ·) has the same scaling properties as A0(·, ·), and has furthermore retained the
same Gaussian type space-decay, only with different constants. Putting (i) and (ii) together,
one sees easily that

Cn(�)�(n(�)/2) ·
∏

n

e−
c
2 |x−xn |2 � Cn(�)�(n(�)/2)e−c′n(�)1+2/d = O(1). (5.35)

Thus (at the price of replacing the A0’s and B0’s along the string by propagators Ã0’s, B̃0’s
with equivalent bounds), one has got rid of local factorials.
Finally, |v(0)|, |νe f f − ν(0)| and more generally

Ip,q :=
∫

dt ′
∫

dx ′ |x − x ′|p|t − t ′|q�((t, x), (t ′, x ′)), (5.36)

p + q ≤ 3, see (5.9), are simply bounded by a sum over the number n of vertices,

Ip,q ≤
∑

n≥1

(Cg(0))n+1
∫

dt1 dx1 A0((t, x), (t1, x1))

∫
dt ′1 dx ′

1 G2→((t1, x1), (t
′
1, x ′

1))

∫
dt2 dx2 B0((t ′1, x ′

1), (t2, x2))

· · ·
∫

dtn dxn A0((tn−1, xn−1), (tn, xn))

∫
dt ′n dx ′

n G2→((tn, xn), (t ′n, x ′
n))

∫
dt ′ dx ′ F3((t, x), (t1, x1), (t

′
1, x ′

1), . . . , (t
′
n, x ′

n), (t ′, x ′)) B0((t ′n, x ′
n), (t ′, x ′)).

(5.37)

where G2→(·, ·) := δ(·, ·) + G2→(·, ·), C = O(1) and (by Hölder’s inequality)

F3(·) = O(n2)
[
(1+ t − t1)

3 + (1+ t1 − t ′1)3 + · · · + (1+ tn − t ′n)3 + (1+ t ′n − t ′)3

+(1+ |x−x1|)3+(1+ |x1 − x ′
1|)3 + · · · + (1+ |xn − x ′

n |)3 + (1+ |x ′
n − x ′|)3

]
.

(5.38)

Integrating space-time variables in chronological order, and using

(1+ t − t ′ + |x − x ′|)3A0((t, x), (t ′, x ′)), (1+ t − t ′ + |x − x ′|)3G2→((t, x), (t ′, x ′))
� (t − t ′)−d/2e−c|x−x ′|2/(t−t ′) · 1t−t ′=O(1), (5.39)
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one gets

g(0)|v(0)|, |νe f f − ν(0)| ≤
∑

n≥1

n3(C ′g(0))n+1 = O((g(0))2) (5.40)

for another constant C ′ = O(1).
Finally, it is clear from (5.37) that v(0) − v(0)(T ) involves only terms in the sum for which
n � T ; thus it is of order O((C ′g(0))cT ) for some constant c > 0.

5.2 Four-Point Function

Next, we discuss briefly connected four-point functions, which contribute corrections to
the noise strength D. The correct way to get an understanding à la Wilson of the induced
flow for the parameter D is a priori to sum inductively for each fixed scale j over all
diagrams of lowest scale ≤ j with four external A- or B-propagators of scale > j . In
practice this would lead to introduce further scale counterterms of the form V ( j)(t, x) =
B→ j (·, (t, x))g( j)η j (t, x)A→ j ((t, x), ·), where (η j ) j≥0 are independent copies of η, with
scale τ -prefactors, yielding the whole machinery of multi-scale cluster expansions. Fortu-
nately, since the insertion of such diagrams inside the expansion yields power-like vanishing
contributions in the large-scale limit, such counterterms need not be introduced by hand to
make the expansion convergent. We shall actually compute directly in § 6.4 an effective value
Def f ≡ D(∞) for D by considering the large-scale limit of the connected two-point function
〈h(·)h(·)〉. We shall be content here with a few indications about how four-point functions
are produced by the expansion. This subsection may be skipped since it is not used in the
proof of our Main Theorem.

In order to obtain a four-point function, one needs two strings. Let us denote by the
index α vertices produced on the first string, and by the index β those produced on the
second string. A component connected by the cluster is made up of a piece of string
Sα and a piece of string Sβ , both of the type (5.4). One thus obtains a diagram with 4

external vertices, B→( j+1)(·, (tα, xα)) ·
[
·
]

A→( j+1)((t ′α, x ′
α, ·) · B→( j+1)(·, (tβ, xβ)) ·

[
·
]

A→( j+1)((t ′β, x ′
β, ·). To get a connected contribution, we assume that η(tα, xα) con-

tracts with η(tβ, xβ), and similarly, η(t ′α, x ′
α) contracts with η(t ′β, x ′

β). Then this means that
we obtain a very simple “ladder diagram”, whose leading term is

B→( j+1)(·, (tα, xα)) ·
·
[
η(tα, xα)A j→((tα, xα), ·)B j→(·, (t ′α, x ′

α))η(t ′α, x ′
α)
]
· A→( j+1)((t ′α, x ′

α), ·) ·
· B→( j+1)(·, (tβ, xβ)) ·
· [η(tβ, xβ)A j→((tβ, xβ), ·)B j→(·, (t ′β, x ′

β))η(t ′β, x ′
β)
]
· A→( j+1)((t ′β, x ′

β), ·)
(5.41)

with d((tα, xα), (tβ, xβ)), d((t ′α, x ′
α), (t ′β, x ′

β)) = O(1). Renormalization corrections are due
precisely to these (and more complicated) ladder diagrams, with (tα, xα), (tβ, xβ), resp.
(t ′α, x ′

α), (t ′β, x ′
β) belonging to �, resp. �′, where �, �′ are two distinct scale 0 boxes where

the η’s contract two-by-two. If j = 0 then short-distance “crossed” η-contractions are also
possible.
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6 Final Bounds

We are now, at long last, ready to prove our Main Theorem. Roughly speaking, N -point
functions 〈h(t1, x1) · · · h(tN , xN )〉 have been rewritten in terms of a series, that is, an (infinite)
sum over polymers. Obviously, the first task is to ensure that this series is convergent. This
turns out to be the main point in the section; once this is understood, the scaling behavior of
N -point functions will be essentially obtained by looking at the terms of lower order in g(0)

in the series.

6.1 Small Noise/Large Noise Boxes

Definition 6.1 Let � ∈ D
0. Then � is said to be a size k large field box (k ≥ 0) if

2kλ−1/2 < sup� |η| ≤ 2k+1λ−1/2.
Denote by D

0
L F,k the set of size k large field boxes, by D

0
L F := �k≥0D

0
L F,k the set of all

large field boxes, and by D
0
SF := D

0 \D
0
L F its complementary. The region D

0
L F is called the

large field region, and the region D
0
SF the small field region.

By standard Gaussian deviations, if � ∈ D
0, then

P[� ∈ D
0
LF,k] ≤ e−c22k/λ, k ≥ 0. (6.1)

The bound (6.1) also holds trivially if � ∈ D
0
SF by letting formally k = −∞. This trick

allows to handle small noise and large noise boxes on equal footing.

6.2 Vertex Insertions and Contour Integrals

Let us recapitulate the previous steps. We start from an N -point function,

〈h(t1, x1) · · · h(tN , xN )〉 =
(

ν(0)

λ

)N

FN , (6.2)

where

FN := 〈log(w(t1, x1)) · · · log(w(tN , xN ))〉
=

〈
log

(∫
dy1 A((t1, x1), ·)(1− Vη)

−1(·, ·)B(·, (0, y1)) e
λ

ν(0) h0(y1)
)
· · ·

log

(∫
dyN A((tN , xN ), ·)(1− Vη)

−1(·, ·)B(·, (0, y1)) e
λ

ν(0) h0(yN )
)〉

(6.3)

and Vη := ∫
dt dx Vη(τ = 1)(t, x) = ∫

dt dx B(·, (t, x))
(
g(0)(η(t, x) − v(0))

)
A((t, x), ·).

Then we:

1. apply to FN the horizontal and vertical cluster expansions; this results in a sum over
forests F

0 ∈ F0 of a rational function [see (4.2)] in strings;
2. displace external legs;
3. contract the dangling η’s;
4. apply Mayer’s expansion to scale 0 two-point diagrams;
5. factorize the scale 0 two-point diagram contributions. By construction these are exactly

compensated by the counterterms.
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Consider now the various vertex insertions (in form of a kernel),

Ṽα(s(w); zα) := cα(s(w))

{
Vα(zα) if zα = z�, � ∈ Lη

η̃(zα)Vα(zα) otherwise
(6.4)

where

cα(s(w)) := s̃�′
α,�α

s̃�α,�′′
α
, s̃�,�′ =

{
1 if {�,�′} ∈ LG

s�,�′ otherwise
(6.5)

and

Vα(zα)(z′α, z′′α) := g(0)∂κ ′
α B j ′α (z′α, zα)∂κ ′′

α A j ′′α (zα, z′′α) (6.6)

on the strings, with zα = (tα, xα), z′α = (t ′α, x ′
α) ∈ �′

α, z′′α = (t ′′α , x ′′
α) ∈ �′′

α , ∂κ ′
α :=

∂
κ ′
α,0

t ′ ∂
κ ′

α

x ′ , and similarly for ∂κ ′′
α ; α being some dummy index. Let |κ ′

α| := 2κ ′
α,0 + |κ ′

α| be
the parabolic order of derivation; in particular, |κ ′

α| = 3 if and only if ∂κ ′
α = ∂t ′∇x ′ or ∇κ ′

α

x ′ ,
|κ ′

α| = 3; and similarly for κ ′′
α . By assumption zα ranges over some box �0

α of scale 0, and
�′

α ∈ D
j ′α ,�′′

α ∈ D
j ′′α . There are four cases:

(i) (no τ -derivative, 0-th scale vertices) j ′α, j ′′α = 0, and κ ′
α = κ ′′

α = 0;
(ii) (one τ -derivative, beginning of 0-th scale cluster) j ′α > 0, j ′′α = 0, κ ′′

α = 0, |κ ′
α| = 0 or

≥ 3;
(iii) (one τ -derivative, end of 0-th scale cluster) j ′α = 0, κ ′

α = 0, and j ′′α > 0, |κ ′′
α | = 0 or

≥ 3.
(iv) (second τ -derivative) j ′α > 0, j ′′α > 0, and κ ′

α = κ ′′
α = 0.

To these, one must add insertions of a particular type, proportional to δv(0) [see (5.21)],

(v) (boundary terms) Vα(zα)(z′α, z′′α) := δv(0)(tα)B j ′α (z′α, zα)A j ′′α (zα, z′′α) ( j ′′α ≥ j ′α), resp.
δv(0)(tini t − tα)B j ′α (z′α, zα)A j ′′α (zα, z′′α) ( j ′′α ≥ j ′α) ( j ′′α < j ′α), where tini t := ti if Vα(zα)

is inserted on the i-th string, i = 1, . . . , N .

Vertices of type (iv) are responsible for the production of the v(0) (see “n = −1” term in
§5.1) and δν [see second line of (4.7)] counterterms; the v(0)-counterterm is chosen in such
a way as to cancel the two-point function (see §5.1), while δν-counterterms are resummed
into the effective propagator G̃e f f (see §6.3 A.). The contribution of scale 0 vertices (i) is
bounded in § 6.3 A.

Vertex insertions of type (ii), (iii) have been differentiated by the scale 0 renormalization.
More precisely, letting κ ′

α be the order of differentiation of a low-momentum B j ′α -propagator

entering a given 0-th scale cluster (ii), and κ ′′
α′ that of a low-momentum A j ′′

α′ -propagator
exiting the same 0-th scale cluster, one sets as in § 5.1: (|κ ′

α| ≥ 3, κ ′′
α′ = 0) if j ′α ≥ j ′′

α′ ,
(κ ′

α = 0, |κ ′′
α′ | ≥ 3) if j ′α < j ′′

α′ . From the point of view of power-counting (see below), we
have thus produced an essential small factor

O(2−
3
2 max( j ′α, j ′′

α′ )), (6.7)

that is, O(2− 3
2 j ) per half of the low-momentum fields A j or B j , having the same effect as

∇3, or (considering a chronological sequence A j (·, ·)〈 j | B j (·, ·)| j〉 = G j (·, ·)), O(∇3) in
average per low-momentum G-field.

Finally, boundary vertices of type (v) enjoy an exponentially small factor. Namely, assum-
ing e.g. that j ′′α ≥ j ′α , the boundary correction δv(0)(tα) to v(0) is O((Cg(0))ctα , which
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The Scaling Limit of the KPZ Equation in Space Dimension… 579

is � t−3/2
α � 2− 3

2 j ′′α . Hence such vertices may and will be considered—from the power-
counting point of view—as O(1) times a vertex of type (ii) or (iii).

Recalling that these vertices are produced anywhere along the strings by the cluster expan-
sion, their contributions may be resummed as follows. We first need some notations. Let:

• I (F0) = {Iα}α be the set of vertex insertions;
• �α ∈ D

0 be the scale-0 box where zα [see (6.6)] is located;
• L(F0) be the set of horizontal cluster links, and Lη ⊂ L(F0) those coming specifically

from the cluster on η (compare with §5.1);
• Lvert be the set of links coming from the vertical cluster expansion;
• L Mayer be the set of Mayer links.

Then

FN =
∑

F0∈F0

∑

LG ,Lη,Lvert ,L Mayer ,μ

( ∏

�∈L(F0)

∫ 1

0
dw�

)( ∏

�∈L Mayer (F
0)

∫ 1

0
d S�

)
Mayer(S)

( ∏

�∈Lη(F0)

〈η(z�)η(z′�)〉
)

·
〈( ∏

α∈I (F0)

d

dγα

|γα=0

)

N∏

j=1

log

(∫
dy j Ã(s(w))((t j , x j ), ·) 1

1− Vη(τ ) −∑
α∈I (F0) γα Ṽα

(·, ·)B̃(s(w))(·, (0, y j )) e
λ

ν(0) h0(y j )
) 〉

s(w)
(6.8)

where C̃(s(w)) := C̃0(s(w))+C→1, C̃0(s(w))(z, z′) :=
{

C0(z, z′) if (�0
z ,�

0
z′) ∈ LG

s�0
z ,�

0
z′

C0(z, z′) otherwise

(C = A, B); Ṽα := ∫
�α

dzα Ṽα(s(w); zα), and Vη(τ ) := ∫
dt dx Vη(τ )(s(w))(t, x) is the

space-time integration of the dressed vertex (4.7). Note that the s-dependence in this expres-
sion is trivial when it comes to bounds, since |C̃(s(w)(·, ·)| ≤ |C(·, ·)|, C = A, B, and
similarly |cα(s(w)| ≤ 1 [see (6.4)].

By causality, the vertex insertions may be re-expanded along the string number i =
1, . . . , N into a finite sum Si as follows: letting γ := (γα)α ,

Si (γ ) := Ã(s(w))(ti , xi ), ·)(1− Vη(τ ) −
∑

α

γαVα)−1(·, ·)
∫

dyi B̃(s(w))(·, (0, yi )) e
λ

ν(0) h0(yi )

=
∑

α1,α2,...

Ã(s(w))((ti , xi ), ·) ·

·
(∫

�′
α1

dz′1
∫

�α1

dzα1

∫

�′′
α1

dz′′1

)

Rη(τ )(·, z′1)
{
γα1 Ṽα1 (s(w)); zα1 )(z

′
1, z′′1)

}
·

·
(∫

�′
α2

dz′2
∫

�α2

dzα2

∫

�′′
α2

dz′′2

)

Rη(τ )(z′′1, z′2)
{
γα2 Ṽα2 (s(w))(zα2 )(z

′
2, z′′2)

}
· · · ,

(6.9)

with main term (disregarding propagator renormalization, see §6.3 A.)

A((ti , xi ), ·)
∫

dyi B(·, (0, yi ))e
λ

ν(0) h0(yi ) =
∫

dyi G((ti , xi ), (0, yi ))e
λ

ν(0) h0(yi )

= 1+ eν(0)ti �(e
λ

ν(0) h0 − 1)(xi ) ≤ 1+ λ

ν(0)
e

λ

ν(0) ||h0||∞ · (eν(0)ti �|h0|)(xi )
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= 1+ O(λe
λ

ν(0) ||h0||∞) min(||h0||L∞ , t−d/2
i ||h0||L1). (6.10)

Since the result is analytic in the parameters γ in a neighborhood of 0, we may replace
d

dγα

∣∣
γα=0F(γα) by the Cauchy contour integral

1

2iπ

∮

∂ B(0,rα)

dγα

γ 2
α

F(γα),

with (defining kα to be the size of the large-field zone of �α if �α is large-field, i.e. �α ∈
D
0
L F,kα

, kα ≥ 0, and kα = −∞ if �α ∈ D
0
SF )

rα ≡ rα(kα) := r ′
α(kα)r ′′

α, (6.11)

where

(r ′
α(kα))−1 := C(2kα+1)n(�α)eλ1/22kα+1

(r ′′
α)−1 := Cg(0)

∫

�′
α

dz′α
∫

�α

dzα

∫

�′′
α

dz′′α |Vα(zα)(z′α, z′′α)| (6.12)

for some large enough uniform constant C . Then

|γα| = rα,
1

2π

∮

∂ B(0,rα)

d|γα|
|γα|2 = r−1

α . (6.13)

As we shall see, the rα ≡ |γα| have been chosen small enough (depending on the order of
magnitude of the (|η�α |)α) so that each Si (γ ) is equal to 1+ o(1), yielding

FN (F0, k|η) :=
∏

α

1�α∈D0
L F,kα

·
[
∏

α

(
1

2iπ

∮

∂ B(0,rα)

dγα

γ 2
α

)] {
N∏

i=1

log(Si (γ ))

}

= O(1)
∏

α

r−1
α (kα), (6.14)

a deterministic estimate (but depending on k := (kα)α). This is step B. in §6.3.
Thenext step (see §6.3, stepC.) is to show that the averaged infinite sum 〈∑k FN (F0, k|η)〉

is �
∏

α(r ′′
α)−1; or rather, to be precise, �

∏
α(r̃ ′′

α)−1, where (as in § 5.1) r̃ ′′
α is r ′′

α up to the
replacement of A j , B j with equivalent kernels Ã j , B̃ j .

The final step is to show that the infinite sum
∑

F0
∏

α(r̃ ′′
α)−1 converges; see step D. in

§ 6.3.
Obviously, in the course of the proof one must extract the lowest order terms, which will give
the leading behavior of the KPZ truncated functions.

6.3 KPZ 1-Point Function

Let us first consider the case of the 1-point function 〈h(t, x)〉 = ν(0)

λ
〈logw(t, x)〉, where there

is only one string. One must prove that 〈h(t, x)〉 t→∞→ 0. We decompose the proof into four
points (see discussion at the end of §6.2); the first point A. is a preparatory step. Except that
A. must be supplemented with a new power-counting argument (see A’.), the same scheme
of proof of convergence is used for KPZ truncated functions of higher order, see §5.4, 5.5,
where details are skipped, so that one can concentrate on the asymptotic large-scale scaling
functions.
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A. (Contribution of the random resolvents) On each string, one finds a number of random
resolvents R(0)

η (τ 0 = 0)(s(w))((ti , xi ), (ti+1, xi+1)). As in §4.1 C., such resolvents may
be expanded to order two, see (5.33),

R(0)
η (τ 0 = 0)((ti , xi ), (ti+1, xi+1)) = δ((ti , xi ), (ti+1, xi+1))

+B0(s(w))((ti , xi ), ·)η̃(·)A0(s(w))(·, (ti+1, xi+1))

+B0(s(w))((ti , xi ), (t
′
i , x ′

i ))η̃(t ′i , x ′
i ) · Gη(s(w))((t ′i , x ′

i ), (t
′
i+1, x ′

i+1)) ·
· η̃(t ′i+1, x ′

i+1)((A0(s(w))((t ′i+1, x ′
i+1), (ti+1, xi+1)) (6.15)

with t ′i − t ′i+1 ≤ 2. Then A0(s(w)(·, ·) ≤ A0(·, ·), B0(s(w)(·, ·) ≤ B0(·, ·) and
Gη(s(w))((t ′i , x ′

i ), (t
′
i+1, x ′

i+1)) ≤ G |η|T||((t ′i , x ′
i ), (t

′
i+1, x ′

i+1))

≤ G2→((t ′i , x ′
i ), (t

′
i+1, x ′

i+1))max
∏

�∈T
eθ�g(0)|η�|. (6.16)

Furthermore, the expansion (6.15) has produced new η fields, O(n(�)) per box � ∈ T.
Thus, to each large-fieldbox�α ∈ T corresponds a factor r ′

α(kα)|η�α |O(n(�α))eθ�α g(0)|η�α |

= o(1). Concluding: a scale 0 resolvent R(0)
η (τ 0 = 0)(·, ·) may be replaced by

δ(·, ·) + O(g(0))G2→(·, ·).
On the other hand, one also finds low-momentum resolvents

δRη := (1− δνB→1�→0A→1)−1 (6.17)

[see second line of (4.7)]. Sandwiched between a ∂κ ′′
α A j ′′α 〈 j ′′α |-propagator on the left side,

and a ∂
κ ′
α′ B j ′

α′ | j ′
α′ 〉-propagator on the right side, they produce, as proved in Lemma 8.2, a

propagator ∂κ ′′
α+κ ′

α′ G̃ j, j ′
e f f (z

′′
α, z′

α′)having a priori three scales— j, j ′ and �log2(t ′′α−t ′
α′) —

which may be resummed into an effective propagator ∂
κ ′′
α+κ ′

α′ G̃e f f (z′′α, z′
α′). Thus in the

sequel these are evaluated as a constant O(1), times a contraction

∂κ ′′
α Ã j̃ ′′α 〈 j̃ ′′α | ∂

κ ′
α′ B̃ j̃ ′

α′ | j̃ ′
α′ 〉 (z′′α, z′

α′), where Ã = Aν(0)+O(λ2), B̃ = Bν(0)+O(λ2), and

j̃ ′′α = j̃ ′
α′ = log2(t

′′
α − t ′

α′) + O(1).
B. (Deterministic bound for the sum (6.14)) The (deterministic) product of the Vα’s is

compensated by the product
∏

α r ′′
α , leaving only a small coefficient C−1 per vertex.

Thus the sum S1(γ ) (6.9) converges to a constant 1+ O(C−2). For C small enough this
is in the complex disk B(1, 1/2), so 1�α∈D0

L F,kα
· log(S1(γ ) is well-defined, and

1�α∈D0
L F,kα

· logS1(γ ) � 1�α∈D0
L F,kα

· (S1(γ ) − 1) . (6.18)

We must now sum the scaling coefficient
∏

α r−1
α over all vertex locations, i.e. over all

forests F. Since the (r ′′
α)−1’s give (up to a constant O(1) per vertex) the correct order of

magnitude of the vertex insertions, we may assume that we want to sum over all large-
field indices k (see C.), then over all forests F (see D.) the string S1−1, see (6.9) , where
one has set: γα = O(1) and Rη(τ )(·, ·) = δ(·, ·) + G2→(·, ·).

C. (Convergence of the average in η) Themain issue here is to show, using standardGaussian
large deviations, that our estimates are integrable inη. Proceeding as in §5.1C., we rewrite
A j ((t, x), (t ′, x ′)) as e− c

2 |x−x ′|2/2 j · Ã j ((t, x), (t ′, x ′)), where Ã j has the same scaling
properties as A j , and has furthermore retained the same Gaussian type space-decay, only
with different constants; and similarly for B j , B̃ j . Up to a multiplicative constant O(1),
this is equivalent to replacing ν(0) by ν̃(0) ≈ ν(0). In the process, we have gained a
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small factor
∏

α 2
−cn(�α)1+2/d

, see (5.35). Then we split in two the large-deviation factor

L F(F, k) = ∏
α P[�α ∈ D

0
L F,k] �

(∏
α e− c

2 2
2k/λ

)2
. Then

[
L F(F, k)

]1/2 ·
[∏

α

(r ′
α(kα))−12−cn(�α)1+2/d

]
= O(1). (6.19)

This is easily shown using the space-decay, resp. large-deviation factor when kα ≤
n(�α), resp. ≥ n(�α). The remaining factor [LF(F, k)]1/2 makes the sum over large-
field indices converge to a factor O(1) per vertex,

∑
kα∈{−∞}∪N e− c

2 2
2kα /λ = 1 + o(1).

Thus [see (6.14)]
∣∣∣
∑

F

∑
k

〈
F1(F, k|η)

〉∣∣∣ �
∑�

F

∏
α(r̃ ′′

α)−1 ≡ (∑
F

∏
α(r̃ ′′

α)−1
) − 1,

where:
∑∗

F
f (F) := ∑

F�=∅ f (F), and (r̃ ′′
α)−1 is given by the same formula as (6.12), but

with Vα(zα) [see (6.6)] replaced by Ṽα(zα) := g(0)∂κ ′
α B̃ j ′α (·, zα)∂κ ′′

α Ã j ′′α (zα, ·).
D. (Convergence of the sum over forests) Following the same technique as in § 5.1, we

integrate space-time variables in chronological order, yielding for n vertices
∫

dz̄α1 · · · dz̄αn

∑

j ′α1 ,..., j ′αn ≥0

∑

j ′′α1 ,..., j ′′αn ≥0

∫
dz′′ A((t1, x1), z′′) ·

·
∫

dzα1∂
κ ′
α1 B̃ j ′α1 (z′′, zα1 )| j ′α1 〉g(0)G2→(zα1 , z̄α1 )

∫
dz′′α1∂

κ ′′
α1 Ã j ′′α1 (z̄α1 , z′′α1 )〈 j ′′α1 | ·

·
∫

dzα2 ∂
κ ′
α2 B̃ j ′α2 (z′′α1 , zα2 )| j ′α2 〉g(0)G2→(zα2 , z̄α2 )

∫
dz′′α2 ∂

κ ′′
α2 Ã j ′′α2 (zα2 , z′′α2 )〈 j ′′α2 | · · ·

·
∫

dzαn ∂κ ′
αn B̃ j ′αn (z′′αn−1

, zαn )| j ′αn
〉g(0)G2→(zαn , z̄αn )

∫
dz′′αn

∂κ ′′
αn Ã j ′′αn (zαn , z′′αn

)〈 j ′′αn
| ·

·
∫

dy1 B(z′′αn
, (0, y1)) e

λ

ν(0) h0(y1) (6.20)

where G2→(·, ·) := δ(·, ·) + G2→(·, ·) as in (5.37).

Since, for t � 1, G2→eν̃(0)t�(·, ·) �
∫ O(1)
0 dt ′ eν̃(0)(t ′+ct)�(· ·) � ec′ν̃(0)t�(·, ·), the con-

tribution of the integration in the z̄’smay be absorbed into the coupling constant g(0) and a
redefinition of ν̃(0). Thuswemay assume that z̄αi ≡ zαi . Furthermore, since (| j〉) j≥0 is an

orthonormal basis, j ′′αi
= j ′αi+1

, and ∂
κ ′′
αi Ã j ′′αi (zαi , ·)〈 j ′′αi

| · ∂κ ′
αi+1 B̃ j ′αi+1 (·, zαi+1)| j ′αi+1

〉 =
∂

κ ′′
αi
+κ ′

αi+1 G̃ j ′′αi (zαi , zαi+1).

We let zαi ≡ (ti+1, xi+1); rewrite the derivatives ∂
κ ′′
αi
+κ ′

αi+1 as ∂κi+1 , with |κi+1| =
0, 3 or 6, which produces an equivalent factor O((1 + ti+1 − ti+2)

−|κi+1|/2); bound∑
j≥0 G̃ j ((t, x), (t ′, x ′)) by O(1)p ν(0)

c (t−t ′)(x − x ′); and use for a sequence of two low-

momentum G̃-propagators our first power-counting estimate (compare with (3.19)),
∫ ti

ti+2

dti+1 (1+ ti − ti+1)
−|κi |/2(p ν(0)

c (ti−ti+1)
∗ p ν(0)

c (ti+1−ti+2)
)(xi − xi+2)

≤ O(1) p ν(0)
c (ti−ti+2)

(xi − xi+2), (6.21)

an estimate similar to but more precise than (3.19), valid for |κi | > 2. If |κi | = 3, resp.

6, then we apply (6.21) with |κi | replaced by 2+, keeping (1 + ti − ti+1)
−( 12 )− , resp.

(1+ ti − ti+1)
−2− in store. If κi = 0 then κi+1 �= 0 and ti+2− ti+1 � ti+1− ti ; we obtain

similarly a factor O(1) and keep in store (1+ti+1−ti+2)
−( 12 )− , resp. (1+ti+1−ti+2)

−2− .
Extra factors (1+ ti − ti+1)

−3/2 are used to iterate, so that there remains in store exactly
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∏
i (1 + ti − ti+1)

−( 12 )− , where the product ranges over low-momentum propagators.
Each scale 0 propagator G̃0((ti , ·), (ti+1, ·)) (ti − ti+1 ≤ 1), on the other hand, has
κi = 0, but benefits from a small factor O(g(0)) which can be rewritten in the form

(1+ ti − ti+1)
−( 12 )− O(g(0)).

The conclusion is the following. Rescale the coordinates, (t1, x1) � (ε−1t1, ε−1/2x1).
The main term in (6.21) is

∫
dy1 G̃e f f ((ε

−1t1, ε
−1/2x1), (0, y1))e

λ

ν(0) h0
(y1)

= 1+ eνe f f ε
−1t1�(e

λ

ν(0) h0 − 1)(ε−1/2x1)

+O(ε)e(ν(0)+O(λ2))ε−1t1�(e
λ

ν(0) h0 − 1)(ε−1/2x1)

= 1+ O(λe
λ

ν(0) ||h0||∞) εd/2||h0||L1 (6.22)

(n = 0), while terms with n ≥ 1 are bounded by O(λεd/2) times a prefactor

n∏

i=1

[
O(λ)(1+ ti − ti+1)

−( 12 )−] ≤ O(λ)t
−( 12 )−
1 . (6.23)

yielding after rescaling an error term O(λε( 12 )−). Hence we simply get

〈h(ε−1t1, ε
−1/2x1)〉 ≡ ν(0)

λ
〈log(w(ε−1t1, ε

−1/2x1)〉 = O(e
λ

ν(0) ||h0||∞) εd/2||h0||L1 .

(6.24)

6.4 KPZ Truncated 2-Point Function

We are now interested in the large scale behavior of the connected 2-point function (i.e.
covariance function),

〈h(t1, x1)h(t2, x2)〉c =
(

ν(0)

λ

)2

〈log(w(t1, x1)) log(w(t2, x2))〉c

=:
(

ν(0)

λ

)2

F2,c((t1, x1), (t2, x2)). (6.25)

A simple way to generate the connected two-point function is to consider two independent
replicas η1, η2 of η; then

〈h(t1, x1)h(t2, x2)〉c = 1

2

〈(
h(t1, x1|η1) − h(t1, x1|η2)

)(
h(t2, x2|η1) − h(t2, x2|η2)

)〉
,

(6.26)

where 〈 · 〉 now refers to the expectation with respect to the pair (η1, η2). We make a cluster
expansion as above in the propagators and in the covariance kernels of η1 and η2, and get
an expression similar to (6.8). By symmetry (1 ↔ 2), there is at least one four-leg vertex,
which means that there is (at least) one pairing 〈ηp(zβ1)ηp(zβ2)〉 (p = 1, 2), zβi = (tβi , xβi )

(i = 1, 2), coming from a Vβ1(zβ1) insertion on the 1st string, and a Vβ2(zβ2) insertion on the
2nd string; the pairing vanishes unless zβ1 , zβ2 are in the same box� ∈ D

0 or in neighboring
boxes.
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Choose among the existing such Vβi (zβi ), i = 1, 2 the earliest one anti-chronologically,
i.e. the one with the largest tβi . Because of the finite-range nature of the kernel 〈η(·)η(·)〉,
there exists a pairing 〈ηi (zβ1)ηi (zβ ′

2
)〉 with d(�β2 ,�β ′

2
) = O(1), and similarly a pairing

ηi (zβ ′
1
)ηi (zβ2)〉 with d(�β1 ,�β ′

1
) = O(1); it may of course happen that β1 = β ′

1, β2 = β ′
2.

Call F0
�1,�2

the set of forests such that zβi , i = 1, 2 belong to fixed boxes �β1 := �1,

�β2 := �2; F0
�1,�2

is empty unless d(�1,�2) = O(1). Applying explicitly the operator
d

dγβ1

d
dγβ2

to the r.-h.s. of (6.8), one gets

F2,c((t1, x1), (t2, x2)) =
∑

�1,�2∈D0

∑

F∈F0
�1,�2

∏

α

1

2iπ

∮

∂ B(0,rα)

dγα

γ 2
α

〈
S1(γ )−1S2(γ )−1 · d

dγβ1

(S1(γ ))
d

dγβ2

(S2(γ ))

〉
(6.27)

Compared to the previous subsection, we must now add a supplementary estimate in the
preparatory phase.

A’. (Power-counting factors for η-pairings between strings) As mentioned in §3.2 and
illustrated in §5.2, η-pairings produce outer contractions linking different strings. Contrary to
inner contractions inside 0-th scale clusters which contribute to the two-point function, outer
contractions produce 4-point functions, which have not been renormalized. We must now
show that the power-counting effect of an outer contraction is comparable to that described
in (6.7). For that, consider parallel chronological sequences on two strings,

∫

�0
1

dz′1
∫

�0
2

dz′2 〈η(z′1)η(z′2)〉s(w)

(
· · · A j1(·, ·)〈 j1| B j1(·, z′1)| j1〉 A j ′1(z′1, ·)〈 j ′1| · · ·

)

(
· · · A j2(·, ·)〈 j2| B j2(·, z′2)| j2〉 A j ′2(z′2, ·)〈 j ′2| · · ·

)
(6.28)

in which vertex integration points z′1, z′2 are located in neighboring boxes so that the average〈η(z′1)η(z′2)〉s(w) does not vanish. Ladder diagrams considered in §5.2, see (5.41), , are of this
type. Following the chronological integration procedure ofD.,we replace (supposedly already
integrated) outgoing legs A j ′1 , A j ′2 by 1 and integrate over z′1, z′2. Since d(�0

1,�
0
2) = O(1),

we may just as well assume (up to a volume prefactor O(1)) that �0
1 = �0

2. We are free to
choose the ordering of the strings and may therefore suppose that j1 ≤ j2. Thanks to the
exponential decay of B j1 , B j2 , the space-time integration

∫
dz′1

∫
dz′2 costs a volume factor

O(2 j1(1+ d
2 )). On the other hand, were z′1, z′2 not constrained to be located in the same scale 0

box, we would get instead a volume factor O
(∏2

i=1(2
ji (1+ d

2 ))
)
. The overall gain is therefore

bounded up to a constant by

2− j2(1+ d
2 ) ≤

2∏

i=1

2−5 ji /4 (6.29)

if d ≥ 3, which is our second key power-counting estimate. This shows that we have produced

a small factor O(2− 5
4 j ) per low-momentum field G j , or equivalently O((1 + t − t ′)−5/4)

per low-momentum field G((t, x), (t ′, x ′)), t − t ′ � 1.

Remark In the case d = 3, this upper bound is optimal (for j2 = j1 + O(1)), and not quite

as good as the O(2− 3
2 j ) factor due to renormalization, compare with (6.7). However, one
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The Scaling Limit of the KPZ Equation in Space Dimension… 585

easily shows that the resulting small factor is actually comparable or smaller than (6.7) if
d ≥ 4. In any case, in order to be able to integrate (see D.) we simply need a small factor
O(2−(1+2κ) j ) per low-momentum field G j , with κ > 0. In the KPZ2 case (d = 2), one
finds κ = 0; this border case is no more super-renormalizable in the infra-red: four-point
functions are superficially divergent in the QFT terminology, which leads to a floating (i.e.
scale-dependent) coupling constant g.

So much for A’. Resuming now our previous discussion, and proceeding as in §5.2, one can
prove in exactly the same way that F2,c = O(1). The only difference is that (compare with
the discussion below (6.21)), using our second power-counting estimate leaves in store in the

worst case only (1+ ti − ti+1)
−( 14 )− per low-momentum G.

There remains to see how one gets the prefactor O(ε
d
2−1) and the scaling function Kef f . For

that, we remark, proceeding as in D., that [see (6.17)] d
dγβ1

Si (γ ), i = 1, 2 is equal to

{
G̃e f f ((ti , xi ), (t

′
i , x ′

i )) + O((ti − t ′i )−( 12 )−) Gν(0)/c((ti , xi ), (t
′
i , x ′

i ))
}

·
R(0)

η (τ 0 = 0)γβ1Vβi (·)(·, ·) · · · (6.30)

where t ′i ∈ �i ≡ [t+�i
− 1, t+�i

) × �̄i . Then the main term of Si (γ )−1 is
∫

dyi G̃e f f ((ti , xi ), (0, yi ))e
λ

ν(0) h0
(yi ) = 1+ O(λe

λ

ν(0) ||h0||∞)t−d/2
1 ||h0||L1 . (6.31)

Error terms take into account: vertex insertions along any of the two strings, costing either the
already accounted for O((ti − t ′i )−1/2) or O((t ′i )−1/2) for the two numerators, and O(t−1/2

i )

for the two denominators; η-pairings between strings (see A’.), by construction at times

≤ t+�1
+ O(1) = t+�2

+ O(1), costing O(((t+�1
)−( 14 )−)2) = O((t+�1

)−( 12 )−); corrections in

O(t−d/2
i ) or O((t ′i )−d/2) due to the initial condition.
Concluding: replacing the sum over boxes �i = �βi , �β ′

i
, and the integral over zβi , zβ ′

i
,

i = 1, 2, by O(1) times a single integral over a single space-time variable (t, x) located at
distance O(1) of all of these, and rescaling the coordinates, we get asymptotically in the limit
ε → 0 if t1 ≥ t2

F2,c((ε
−1t1, ε

−1/2x1), (ε
−1t2, ε

−1/2x2)) ≡ (g(0))2

D(0)
〈h(ε−1t1, ε

−1/2x1)h(ε−1t2, ε
−1/2x2)〉c

(6.32)

∼ε→0 F(λ) (g(0))2 · ε−1−d/2
∫ t2

0
dt

∫
dx · εd/2 pνe f f (t1−t)(x1 − x) · εd/2 pνe f f (t2−t)(x2 − x)

∼ε→0 F(λ)
(g(0))2

D(0)
ε

d
2 −1 〈h(t1, x1)h(t2, x2)〉0;νe f f ,D(0) (6.33)

up to error terms smaller by a factor O(ε( 12 )−), for some function F(λ) = 1 + O(λ2)

independent of the coordinates (t1, x1), (t2, x2). Letting

Def f := F(λ)D(0), (6.34)

and comparing (6.32) with (6.33), one sees that

〈h(ε−1t1, ε
−1/2x1)h(ε−1t2, ε

−1/2x2)〉c ∼ε→0 ε
d
2−1〈h(t1, x1)h(t2, x2)〉λ=0;νe f f ,Def f ,

(6.35)

where the coefficient Def f = D(0)(1+ O(λ2)) is interpreted as the effective noise strength.
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The leading term for Def f − D(0) may be computed as follows. Following the expan-
sion in the number of vertices made in §4.1, see in particular (5.28), the main term in
〈h(ε−1t1, ε−1/2x1)h(ε−1t2, ε−1/2x2)〉c is obtained from (6.30) by simply contracting a ver-
tex Vβ1 ≡ B((t1, x1), (t ′1, x ′

1))g
(0)(η(t ′1, x ′

1) − v(0))A((t ′1, x ′
1), ·) on the first string with a

vertex Vβ2 on the second string. Next comes the leading-order correction, obtained by double-
contracting n = 2 vertex contributions on each string, yielding as in (5.27)

〈[
(g(0))2η(t ′1, x ′

1)A((t ′1, x ′
1), ·)B(·, (t ′′1 , x ′′

1 ))η(t ′′1 , x ′′
1 )
]

·
[
(g(0))2η(t ′2, x ′

2)A((t ′2, x ′
2), ·)B(·, (t ′′2 , x ′′

2 ))η(t ′′2 , x ′′
2 )
]〉

(6.36)

Displacing the four outer B− and A− propagators B(·, (t ′1, x ′
1)), A((t ′′1 , x ′′

1 ), ·), B(·, (t ′2, x ′
2)),

A((t ′′2 , x ′′
2 ), ·) to the same point (t ′1, x ′

1), integrating over (t
′′
1 , x ′′

1 ), (t ′2, x ′
2), (t

′′
2 , x ′′

2 ) and taking
the limit t ′1 → +∞ yields an effective contribution

C4 := (g(0))4 lim
t ′1→+∞

∫ t ′1

0
dt ′′1

∫
dx ′′

1

∫ +∞

0
dt ′2

∫
dx ′

2

∫ t ′2

0
dt ′′2

∫
dx ′′

2

(ω ∗ ω)(t ′1 − t ′2, x ′
1 − x ′

2) G(t ′1 − t ′′1 , x ′
1 − x ′′

1 )

G(t ′2 − t ′′2 , x ′
2 − x ′′

2 ) (ω ∗ ω)(t ′′1 − t ′′2 , x ′′
1 − x ′′

2 ) (6.37)

Neglected terms involving e.g. A((t ′1, x ′
1), ·) − A((t ′′1 , x ′′

1 ), ·) involve a low-momentum gra-
dient, whence an extra O(ε1/2) which vanishes in the scaling limit. Then C4 is added
to the main term which (after displacing outer B- and A-propagators) becomes C2 :=
(g(0))2

∫ +∞
0 dt ′2

∫
dx ′

2 (ω ∗ ω)(t ′1 − t ′2, x ′
1 − x ′

2). Thus
Def f

D(0) − 1 is given to leading order

by the quotient C4/C2 = O((g(0))2) = O(λ2).

6.5 Higher-Order KPZ Truncated Functions

We must still prove that higher-order truncated functions

〈h(t1, x1) · · · h(tN , xN )〉c =:
(

ν(0)

λ

)N

FN ,c((t1, x1), . . . , (tN , xN )), (6.38)

(N > 2) are negligible in the large scale limit because the KPZ field is asymptotically
Gaussian, with correlations given by Kef f = F2,c. To be specificwe prove this for N = 4, but
the reader may easily adapt the following arguments to arbitrary N . Let F4,c((ti , xi )i≤4) :=
〈log(w(t1, x1)) · · · log(w(t4, x4))〉c. The “replica trick” of §6.4 extends, with now 4 replicas
of η,

F4,c := 1

4

〈 4∏

�=1

3∑

k=0

eikπ/2 logw(t�, x�|ηk+1)
〉
, (6.39)

a classical formula immediately generalized to arbitrary N as

FN ,c := 1

N

〈 N∏

�=1

N−1∑

k=0

e2ikπ/N logw(t�, x�|ηk+1)
〉
, (6.40)

originally proved by P. Cartier.1 Then the connected function F4,c is obtained by selecting in
(6.8) those contributions for which there is a permutation σ of the index set {1, . . . , 4}, and for
1 J. Lascoux, private communication.
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each i = 1, 2, 3, paired vertex insertionsVβi ,Vβ ′
i
on strings numberσ(i), σ (i+1). Proceeding

as in §5.4, we obtain a O(1) denominator of order 3 × 2 = 6, multiplied by an expression

bounded by (after coordinate rescaling) (ε
d
2−1)3 instead of the expected overall scaling

∑

pairings σ

Kef f ((ε
−1tσ(1), ε

−1/2xσ(1)), (ε
−1tσ(2), ε

−1/2xσ(2))) ·

· Kef f ((ε
−1tσ(3), ε

−1/2xσ(3)), (ε
−1tσ(4), ε

−1/2xσ(4))) = O((ε
d
2−1)2) (6.41)

for a four-point function.

6.6 A Remark on Lower Large-Deviations for h

Similar computations can be made for 〈w−N (t, x)〉, where N = 1, 2, . . ., N = O(1).

Compared with the previous subsections, we now get a product
∏N

i=1

(
Si (γ )

)−1
instead of

∏N
i=1 log(Si (γ ). It is easy to see that we get in the end

〈w−N (t, x)〉 = O(1). (6.42)

Using Markov’s inequality e.g. for N = 1 implies then for A > 0

P[h(t, x) < −A] = P[w−1(t, x) > e
λ

ν(0) A] = O(1) e
− λ

ν(0) A
, (6.43)

an exponential lower large-deviation estimate for h(t, x).
This is however disappointing with respect to the expected lower Gaussian large-deviation

P[h(t, x) < −A] � e−cA2
, (6.44)

proved using Gaussian concentration inequalities in Carmona and Hu [15], Theorem 1.5 in
a deterministic setting. It is plausible that their results extend to our setting by generalizing
to regularized white noise classical large deviation results for Lipschitz functions of vector-
valued Gaussian random variables, see e.g. [4], §7.3.
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Appendix 1: Cluster Expansions

Horizontal Cluster Expansion

The cluster expansion between boxes of scale 0 is performed according to the classical
Bridges-Kennedy-Abdesselam-Rivasseau (BKAR) procedure (see [1,58], or [45], §2.1 and
2.2), which we now briefly describe, following [45]. We apply it to the A0 and B0 kernels,
and also to the covariance kernel Cη(·, ·) := 〈η(·)η(·)〉 of the noise. The effect of the cluster
expansion on the A’s and B’s is to “cut” all propagators between scale 0 boxes belonging to
different polymers. The effect of the cluster expansion on the η’s is to make independent the
η-fields produced in scale 0 boxes belonging to different polymers. As a result of those two
operations, different polymers have been made totally independent, which makes it possible
to extract averaged quantities such as counterterms. Since the covariance kernel of η has finite
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range (with our cut-off conventions 〈η(t, x)η(t ′, x ′)〉 = 0 except if (t, x), (t ′, x ′) belong to
the same unit box in �0 or to neighboring boxes), the cluster expansion on the η’s is hardly
noticeable—in particular when it comes to bounds—, yet necessary.

Let O ⊂ D
0, and |O| := ∪�∈O� ⊂ R+ × R

d its support. We say that two boxes
�,�′ ∈ O, � �= �′, are linked if (i) either � = [k, k + 1) × �̄, �′ = [k, k + 1) × �̄′,
�̄, �̄′ ∈ D̄

0, or (ii)� = [k, k+1)×�̄,�′ = [k−1, k)×�̄′ or conversely� = [k−1, k)×�̄,
�′ = [k, k + 1) × �̄′. By construction, there exists (t, x) ∈ �, (t ′, x ′) ∈ �′, such that
A0((t, x), (t ′, x ′))〉 �= 0 or A0((t ′, x ′), (t, x)) �= 0 if and only if� = �′ or�,�′ are linked.
Similarly, if 〈η(t, x)η(t ′, x ′)〉 �= 0, then � = �′ or �,�′ are linked (and, furthermore,
d(�,�′) = O(1)). Denote by L(O) the set of linked pairs {�,�′}. Then, for every link
weakening ofO, i.e. for every function s : L(O) → [0, 1], extended trivially on the diagonal
by letting s�,� ≡ 1 (� ∈ O), we define

B0(s)((t, x), (t ′, x ′)) = s�0
t,x ,�0

t ′,x ′
B0((t, x), (t ′, x ′)), (7.1)

A0(s)((t, x), (t ′, x ′)) = s�0
t,x ,�0

t ′,x ′
A0((t, x), (t ′, x ′)) (7.2)

〈η(t, x)η(t ′, x ′)〉s := s�0
t,x ,�0

t ′,x ′
〈η(t, x)η(t ′, x ′)〉 (7.3)

if (�t,x ,�t ′,x ′) ∈ L(O), 0 else. Thus the effect of the function s is to weaken off-diagonal
elements of the propagator/covariance kernel.

We need some terminology before we get to the point. In the following discussion, O is
fixed. A scale 0 forest F

0 is a finite number of boxes � ∈ O, seen as vertices, connected
by links, without loops. A (non-oriented) link � connects �� to �′

�. Space-time variables
ranging in ��, resp. �′

� are generally denoted as (t�, x�), resp. (t ′�, x ′
�), or for short z�, resp.

z′�. Non-isolated components of F
0, i.e. connected components of F

0 containing ≥ 2 boxes
are called trees, or (specifically in this statistical physics context) polymers. The (finite) set of
vertices of polymers is denoted by V (F0). The set of all 0-th scale cluster forests is denoted
by F0(O), or simply F0 if O = D

0. If there exists a link between � and �′, then we write
� ∼F0 �′, or simply (if no ambiguity may arise) � ∼ �′.

Now the following formula—called BKAR formula—holds: let F = F(A0, B0|η) be
some random function of the A0 ’s and B0 ’s, then

Proposition 7.1 (BKAR formula) (see [45], Proposition 2.6)

〈F(A0, B0|η)〉 =
∑

F0∈F0

⎛

⎝
∏

�∈L(F0)

∫ 1

0
dw�

⎞

⎠

⎛

⎝

⎛

⎝
∏

�∈L(F0)

d

ds�

⎞

⎠ 〈F(A0(s(w)), B0(s(w)))|η〉s(w)

⎞

⎠

(7.4)

s�,�′(w), � �= �′ being the infimum of the w� for � running over the unique path from � to
�′ in F

0 if � ∼F0 �′, and s�,�′(w) = 0 else.

The above formula is obtained by iterating the following step-by-step procedure. Choose
some box �1 ∈ D

0, and Taylor-expand simultaneously with respect to the parameters (s�)�
where � ranges in the set L1(D

0) of all pairs {��,�
′
�} such that�1 = �� or�′

�. One obtains:

F(s
∣∣
L(D0)\L1(D0)

; s∣∣L1(D0)
= 1) = F(s

∣∣
L(D0)\L1(D0)

; s∣∣L1(D0)
= 0)

+
∑

�1∈L1(O)

∫ 1

0
dw1 ∂s�1

F(s
∣∣
L(D0)\L1(D0)

; s∣∣L1(D0)
= w1).

(7.5)
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The following elementary relation is shown in [58],

d

ds�

〈F(η)〉s(w) =
∫

��

dz�

∫

�′
�

dz′� 〈η(z�)η(z′�)〉s=1 ·
〈

δ

δη(z�)

δ

δη(z′�)
F(η)

〉

s(w)

.

(7.6)

In other words, an s-derivative acting on an averaged quantity 〈F(η)〉s(w) has the effect of
producing an explicit pairing 〈η(z�)η(z′�)〉s=1, with the original covariance kernel, between
two arbitrary points belonging resp. to one box and to the other box.

As explained before, each choice of forest F
0 yields an explicit connection through A0,

B0- or η-pairings of all boxes within a given connected component (tree), and disconnects
boxes �,�′ lying in different connected components since B0(s(w))((t, x), (t ′, x ′)) =
A0(s(w))((t, x), (t ′, x ′)) = 〈η(t, x)η(t ′, x ′)〉s(w) = 0 for (t, x) ∈ �, (t ′, x ′) ∈ �′.

Mayer Expansion

For the Mayer expansion (see § 5.1), we choose another set of objectsO and a different way
of implementing the s-dependence, and apply a slightly different formula. Namely, we let
O ≡ O(F0, {μ�}�) be the set of scale 0 polymers, i.e. of non-isolated connected components
of F

0 with their external structure, depending on the differentiation orders {μ�}�, produced
by the vertical cluster expansion. Among these polymers, there are polymers with exactly
two external legs, making up a subset O1 ≡ O1(F

0, {μ�}�) ⊂ O. The complementary set
O2 ≡ O2(F

0, {μ�}�) := O \ O1 is made up of polymers with > 2 external legs, which
require no renormalization. The following variant of BKAR’s formula, found originally in
[1], is stated in the present form in [45]. We now denote by {P�, P

′
�} a pair of polymers

connected by a link � ∈ L(O).

Proposition 7.2 (Restricted 2-type cluster or BKAR2 formula) Assume O = O1 # O2.
Choose as initial object an object o1 ∈ O1 of type 1, and stop the Brydges-Kennedy-
Abdesselam-Rivasseau expansion as soon as a link to an object of type 2 has appeared.
Then choose a new object of type 1, and so on. This leads to a restricted expansion, for which
only the link variables z�, with � /∈ O2 × O2, have been weakened. The following closed
formula holds. Let S : L(O) → [0, 1] be a link weakening of O, and F = F((S�)�∈L(O)) a
smooth function. Let Fres(O) be the set of forests G

0 on O, each component of which is (i)
either a tree of objects of type 1, called unrooted tree; (ii)or a rooted tree such that only the
root is of type 2. Then

F(1, . . . , 1) =
∑

G0∈Fres (O)

⎛

⎝
∏

�∈L(G0)

∫ 1

0
dW�

⎞

⎠

⎛

⎝

⎛

⎝
∏

�∈L(G0)

∂

∂S�

⎞

⎠ F(S�(W))

⎞

⎠ , (7.7)

where S�(W) is either 0 or the minimum of the w-variables running along the unique path
in Ḡ

0 from P� to P
′
�, and Ḡ

0 is the forest obtained from G
0 by merging all roots of G

0 into a
single vertex.

The way functions of the type 〈F(A0(s(w)), B0(s(w))|η)〉s(w) are made S-dependent
is explained in 5.1. Differentiating w.r. to an S-parameter SP1,P2 produces a factor[∏

�1∈P1,�2∈P2,(�1,�2)/∈�ext (P1)×�ext (P2)
1�1 �=�2

]
− 1, which upon expansion yields a sum

over all overlap possibilities between boxes of P1 and boxes of P2 except those containing
the external legs. Each contribution comes with a sign (−1)n , where n is the number of over-

123



590 J. Magnen, J. Unterberger

Fig. 3 Mayer subtraction rule for one overlapping box

lapping boxes (see Fig. 3 for a representation of this rule). See also Fig. 4 below illustrating
a more elaborate case with n = 2.

The above procedure leads, as discussed in a much more involved, multi-scale context
e.g. in [45], Proposition 2.12, to some mild combinatorial factors, which we discuss briefly.
Recall that (byCayley’s theorem) the number of trees overP1, . . . , Pn with fixed coordination
numbers (n(Pi ))i=1,...,n equals n!∏

i (n(Pi )−1)! . Choose a tree T component of G
0. Start from

the leaves of T and go down the branches inductively. Let P1, . . . , Pn(P′)−1 be the leaves
attached onto one and the same vertex P

′. Choose n(P′) − 1 (possibly non distinct) boxes
�1, . . . ,�n(P′)−1 ∈ D

0 of P
′ (there are |P′|n(P′)−1 possibilities), and assume that �i ∈ Pi .

For each choice of polymer P
′, this gives a supplementary factor O((C |P′|)n(P′)−1), to be

multiplied by 1
(n(P′)−1)! coming from Cayley’s theorem. Summing over n(P′) = 2, 3, . . .

yields eC |P′| − 1 ≤ eC |P′|. Summing over all boxes takes care automatically of the sum over
all permutations of the polymers, which takes down the n! factor. Since bounds produced
in Sect. 6 are in O((g(0))m), where m = ∑

P∈O |P| is the number of boxes obtained by the
cluster expansion, the latter large factor is compensated by a simple redefinition of coupling
constant g(0) � eC g(0) = O(g(0)) in the bounds.

Appendix 2: The Effective Propagator

The effective propagator G̃e f f obtained in §6.4 by resumming ν-counterterms along a string,
see (8.9) below, is shown in this section to be very well approximated at large scale by the
Green kernel (∂t − νe f f �)−1.
We first need a technical lemma.

Lemma 8.1 There exists some constant C > 0 such that, for every κ = (κ1, . . . , κd) and
t > t ′, x, x ′:

∣∣∣∇κ Gν(0) ((t, x), (t ′, x ′))
∣∣∣ ≤ C |κ|+1

(
λ
√

ν(0)(t − t ′)
)−|κ |

�(|κ |/2))
Gν(0)−O(λ2)((t, x), (t ′, x ′)). (8.1)

Proof The spatial Fourier transform of ∇κ G ≡ ∇κ Gν(0) is

∇̂κ G(t − t ′, ξ) = (iξ)κ K̂t−t ′(ξ), K̂t−t ′(ξ) := e−(t−t ′)ν(0)(ξ ,ξ). (8.2)

Let ξ0 := x−x ′
2ν(0)(t−t ′) . Then

∇κ G(t − t ′, x − x ′) = (2π)−d
∫

Rd
dξ (iξ)κ K̂t−t ′(ξ)ei(x−x ′,ξ)

= (2π)−d
∫

Rd+iξ0

dξ (iξ)κ K̂t−t ′(ξ)ei(x−x ′,ξ)
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= (2π)−d e−|x−x ′|2/4ν(0)(t−t ′)
∫

Rd
dξ (iξ − ξ0)

κ e−ν(0)(t−t ′)|ξ |2

= (ν(0)(t − t ′))−|κ |/2Gν(0) ((t, x), (t ′, x ′))
∫

Rd
dζ (iζ − ζ 0)

κ e−|ζ |2 (8.3)

where now ζ := √
ν(0)(t − t ′) ξ , ζ 0 := x−x ′

2
√

ν(0)(t−t ′)
are non-dimensional parameters.

Rewrite Gν(0) ((t, x), (t ′, x ′)) as Gν(0)+O(λ2)((t, x), (t ′, x ′)) · O(1) e−O(λ2)|ζ 0|2 . Then, for
all κ ′ ≤ κ ,

|ζ 0||κ
′|e−λ2|ζ 0|2 � |ζ 0|κ ′

λ|κ |′ |ζ 0||κ ′|/�(
|κ ′|
2 + 1)

= λ−|κ ′|�(
|κ ′|
2

+ 1)

and
∫
Rd dζ ζ κ−κ ′

e−|ζ |2 = O(C |κ|)�(|κ − κ ′|/2). One concludes by using the binomial
formula. ��

Let us now come to the point. Recall �→0 = χ̄ (0) ∗ � [see (4.6)] is an ultra-violet regular-
ization of �.

Lemma 8.2 Let δν := νe f f − ν(0),

Gef f := (∂t − νe f f �)−1, (8.4)

G̃e f f := A→1 (1− δνB→1�→0A→1)−1
B→1 = (1− δν G→1�→0)−1G→1.

(8.5)

Then:

1. There exists ν̃(0) = ν(0) + O(λ2) and a constant C > 0 such that

G̃e f f ((t, x), (t ′, x ′)) ≤ CG ν̃(0) ((t, x), (t ′, x ′)). (8.6)

Furthermore, if 1 ≤ j ≤ j ′ ≤ j ′′,

(
∇κ ′

A j 〈 j | (1− δνB→1�→0A→1)−1 ∇κ ′′
B j ′ | j ′〉

)
((t, x), (t ′, x ′))

� 2−
j ′
2 (|κ ′|+|κ ′′|)2−( j ′− j)G ν̃(0)/c((t, x), (t ′, x ′)), t − t ′ ≈ 2 j ′ (8.7)

(
∇κ ′

A j 〈 j | (1− δνB→1�→0A→1)−1 ∇κ ′′
B j ′ | j ′〉

)
((t, x), (t ′, x ′))

� 2−
j ′
2 (|κ ′|+|κ ′′|)2−( j ′′− j)2−( j ′′− j ′)G ν̃(0)/c((t, x), (t ′, x ′)), t − t ′ ≈ 2 j ′′

(8.8)

with c = 1 if κ ′ = κ ′′ = 0, and c = 1
2 else.

2. For every κ ′ < 1
2 , the following holds: if t − t ′ ≈ 1,

123



The Scaling Limit of the KPZ Equation in Space Dimension… 593

(G̃e f f − Gef f )((ε
−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) ∼ε→0 O(ε2κ

′
)

G ν̃(0) ((ε
−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) (8.9)

uniformly for

|x − x ′|2 = o(ε−1/2(t − t ′)) (8.10)

[see (8.14) below] with ν̃(0) = ν(0) + O(λ2).

Thus G̃e f f is equal to Gef f with an excellent approximation at large scale which holds well

beyond the normal regime |x |2
t � 1 (one can compare with [23] where extended heat-kernel

asymptotics are shown for a lattice regularization instead). Equation (8.7,8.8) show that the

bounds on G̃e f f = ∑
j, j ′≥1 A j 〈 j | · (1− δνB→1�→0A→1

)−1 · B j ′ | j ′〉, expressed as a
product of a resolvent by two propagators A, B as in (3.33), decrease exponentially with the
difference of the “scales” of these three operators, thus yielding bounds that can be resummed
adequately.

Proof We concentrate on 2., with 1. proved on the way. Introduce G1,e f f := (∂t − ν(0)� −
δν�→0)−1 = A(1− δνB�→0A)−1B, and write for short χ0 instead of χ̄ (0).

(i) First, G1,e f f ((ε
−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) = (1 + O(ε))Gef f ((ε

−1t, ε−1/2x),

(ε−1t ′, ε−1/2x ′)) if (8.10) holds. Namely, the spatial Fourier transform of Gef f −G1,e f f

is

Ĝe f f (ε
−1(t − t ′), ξ) − Ĝ1,e f f (ε

−1(t − t ′), ξ) = K̂ε−1(t−t ′)(ξ), (8.11)

with K̂t−t ′(ξ) = e−(t−t ′)νe f f (ξ ,ξ) ·
(
1− e−(t−t ′)δν (χ̂0(ξ)−1) (ξ ,ξ)

)
. (8.12)

Since χ0 is compactly supported, its Fourier transform χ̂0 extends to an entire func-
tion satisfying: |χ̂0(ξ)| � eC |Im (ξ)|. If χ0(·) is chosen to be isotropic (which we
assume), then ∇(χ̂0)(0) = 0. Since

∫
χ0 = 1 and χ0 is smooth, |χ̂0(ξ) − 1| =

Oξ→0(|ξ |2) = Oξ→0((t − t ′)|ξ |2) and |χ̂0(ξ)| |ξ |2 = O|Re (ξ)|→∞(eC |Im (ξ)|) =
O((t − t ′)eC

√
t−t ′ |Im (ξ)|). Let

ξ0 := x

2νe f f (t − t ′)
, ρ0 := 1

√
2νe f f (t − t ′)

(

1+ |x |
√
2νe f f (t − t ′)

)

. (8.13)

Note that, provided

|x |2 = O(ε−
1
2+2( 12−κ)(t − t ′)) with

1

4
< κ <

1

2
(8.14)

– which is compatible with our hypothesis (8.10) if one lets κ → ( 12 )
−—, and |ξ | � εκρ0

– whence |ξ | � 1—the error term in the exponential, t−t ′
ε

δν |1 − χ̂0(ξ)| (ξ , ξ) =
O(λ2)ε4κ−1ρ4

0 is a O(1). Hence
∫

B(0,εκρ0)

dξ K̂ε−1(t−t ′)(ξ)ei(x−x ′,ξ)

=
∫

B(0,εκρ0)+iε1/2ξ0

dξ K̂ε−1(t−t ′)(ξ)ei(x−x ′,ξ) + ∂ I (x − x ′)
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= O(
t − t ′

ε
δν) e−|x−x ′|2/4νe f f (t−t ′)

∫

B(0,εκρ0)

dξ |ξ |4 e−ε−1νe f f (t−t ′)(ξ ,ξ)+∂ I (x−x ′)

∼ε→0 O(λ2ε2κ
′
) Gef f ((ε

−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) + ∂ I (x − x ′) (8.15)

where 2κ ′ = −1− d
2 + κ(d + 4) →κ→ 1

2
1 and

∂ I (x − x ′) :=
∫

∂ B(0,εκρ0)×[0,iε1/2ξ0]
dξ K̂ε−1(t−t ′)(ξ)ei(x−x ′,ξ) (8.16)

and

|∂ I (x − x ′)|,
∣∣∣
∫

|ξ |�εκρ0

dξ Kε−1(t−t ′)(ξ)ei(x−x ′,ξ)
∣∣∣

= O
(
εd/2

∫

|ζ |�ε
−( 12 −κ)

(1+ |x |
2νe f f (t−t ′) )

dζ e−νe f f |ζ |2
)

(8.17)

are negligible with respect to Gef f ((ε
−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)).On the other hand,

A(1− δνB�→0A)−1B0|0〉 = A0 〈0| B0|0〉 + δν AB�→0A0 〈0| B0|0〉 + · · ·
= G0 + δν G1,e f f �→0G0. (8.18)

(ii) Next,
(
1− δνB→1�→0A→1

)−1 � 1 at large scale. Namely, expanding
(
1 − δν

B→1�→0A→1
)−1

into a series, we get a geometric series in δν �→0A→1B→1.

Write A→1B→1 ≡ G→1 as
∫ +∞
0 χ̃→1(t)eν(0)t�dt , where (in the notations of Defi-

nition 3.3) χ̃→1 := ∑+∞
j=1(χ ∗ χ) j is “one minus a bump function”, i.e. χ̃→1

∣∣[0,c] =
0, χ̃→1

∣∣[c−1,+∞)
= 1 for some c > 0. Then, since �→0 commutes with the G→1’s,

(�→0G→1)2((t, x), (t ′, x ′))

=
∫ (t+t ′)/2

t ′
dt ′′

∫
dx ′′ (�→0)2G→1((t, x), (t ′′, x ′′))G→1((t ′′, x ′′), (t ′, x ′))

+
∫ t

(t+t ′)/2
dt ′′

∫
dx ′′ G→1((t, x), (t ′′, x ′′))(�→0)2G→1((t ′′, x ′′), (t ′, x ′))

= O(1) (t − t ′)(�→0)2G→1((t, x), (t ′, x ′)). (8.19)

We call this the commutation trick. Recall |δν| = O(λ2). Iterating yields by using
Lemma 8.1

∑

n≥1

(δν)n
∣∣∣(�→0G→1)n((t, x), (t ′, x ′))

∣∣∣ �
∑

n≥1

(δν)n (t − t ′)n−1

(n − 1)!
∣∣∣(�→0)n G→1((t, x), (t ′, x ′))

∣∣∣

�
∑

n≥1

(t − t ′)n−1

(n − 1)! 2−n�(n)(t − t ′)−n G̃→1((t, x), (t ′, x ′))

= O(1) (t − t ′)−1G̃→1((t, x), (t ′, x ′)) (8.20)
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where G̃→1 = G→1
ν(0)+O(λ2)

, and

[ (
1− δνB→1�→0A→1)−1 − 1

]
((t, x), (t ′, x ′))

= δνB→1
(∑

n≥0

(δν)n(�→0G→1)n
)
�→0A→1((t, x), (t ′, x ′))

= O(δν) (t − t ′)−1 G̃→1((t, x), (t ′, x ′) (8.21)

where G̃→1 has again been possibly rescaled. Using for a third time the commutation
trick, one finally gets
∣∣∣
(

A
[ (

1−δνB→1�→0A→1)−1 − 1
]

B
)
((t, x), (t ′, x ′))

∣∣∣=O(1) G→1((t, x), (t ′, x ′)).
(8.22)

On the other hand, the orthonormality of the basis (| j〉) j≥0 implies immediately
(

A0〈0|
[ (

1− δνB→1�→0A→1)−1 − 1
]

B
)
((t, x), (t ′, x ′)) = G0((t, x), (t ′, x ′)).

(8.23)

Point 1. is a particularization of (8.22). If t − t ′ ≈ 2 j ′ and j �= j ′, then

A j 〈 j | (1− δνB→1�→0A→1)−1
B j ′ | j ′〉((t, ·), (t ′, ·))

= δνG j�→0G j ′((t, ·), (t ′, ·) + · · · (8.24)

has an extra 2−( j ′− j)-prefactor due to a reduced volume of integration in time. If t − t ′ ≈
2 j ′′ � 2 j ′ , then the leading term in the series vanishes, so that

A j 〈 j | (1− δνB→1�→0A→1)−1
B j ′ | j ′〉((t, ·), (t ′, ·))

=
(
(δν)2G j�→0G→1�→0G j ′ + . . .

)
((t, ·), (t ′, ·)), (8.25)

where the middle propagator G→1 has scale j ′′ +O(1), leading for the same reason to an
extra 2−( j ′′− j)2−( j ′′− j ′)-prefactor. Gradients ∇κ ′

,∇κ ′′
are easily turned into prefactors

by using elementary heat kernel estimates as in Lemma 3.4 (i).
(iii) Let us now bound

D := A
[
(1− δνB�→0A)−1 − (1− δνB→1�→0A→1)−1

]
B

= A
[
(1− δνB�→0A)−1 · δν

(
B�→0A − B→1�→0A→1)

(1− δνB→1�→0A→1)−1
]

B

= A
[
(1− δνB�→0A)−1 · δν

(
B0|0〉�→0A + B→1�→0A0〈0| )

(1− δνB→1�→0A→1)−1
]

B.

(8.26)

Thus

D = δν
(

G0 + δν G1,e f f �→0G0
)
�→0

(
A(1− δν B→1�→0A→1)−1B

)

+δν G̃1,e f f �
→0G0 (8.27)
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where the kernel

G̃1,e f f (·, ·) = A(1− δν B�→0A)−1B→1(·, ·) = AB→1(·, ·)
+δν AB�→0AB→1(·, ·) + . . .

= G→1(·, ·) + δν G1,e f f �
→0AB→1(·, ·) (8.28)

is bounded (using again and again the commutation trick) by O(1) Gν(0)+O(λ2)(·, ·).
Hence

|D((t, x), (t ′, x ′))| � (t − t ′)−1Gν(0)+O(λ2)((t, x), (t ′, x ′)). (8.29)

(iv) Finally,

G1,e f f − G̃e f f − D

= A
(
1− δνB→1�→0A→1)−1

B − A→1 (1− δνB→1�→0A→1)−1
B→1

= A0〈0| (1− δνB→1�→0A→1)−1
B + A→1 (1− δνB→1�→0A→1)−1

B0|0〉
= G0 (8.30)

and G0((ε−1t, ε−1/2x), (ε−1t ′, ε−1/2x ′)) = 0 for ε small enough.

��
Remark Using a suitably chosen cut-off χ0 with vanishing first momenta (obtained e.g. by
subtracting the beginning of the Taylor expansion of its Fourier transform near zero), i.e.
such that

∫
dx xi1 · · · xi p χ

0(x) = 0 for 1 ≤ i1, . . . , i p ≤ d and p = 2, 3, . . . , n − 1 one gets

∇ p(χ̂0)(0) = 0, 2 ≤ p ≤ n − 1, which makes it possible to reduce the prefactor O(λ2ε1
−
)

in (8.15) to O(λ2) times an arbitrary large power of ε.
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