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Abstract We prove the Pfaffian Sign Theorem for the dimer model on a triangular lattice
embedded in the torus.More specifically, we prove that the Pfaffian of theKasteleyn periodic-
periodic matrix is negative, while the Pfaffians of the Kasteleyn periodic-antiperiodic,
antiperiodic-periodic, and antiperiodic-antiperiodic matrices are all positive. The proof is
based on the Kasteleyn identities and on small weight expansions. As an application, we
obtain an asymptotic behavior of the dimer model partition function with an exponentially
small error term.

Keywords Dimermodel ·Exact solution ·Triangular lattice · Periodic boundary conditions ·
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1 Introduction

1.1 Dimer Model on a Triangular Lattice

We consider the dimer model on a triangular lattice �m,n = (Vm,n, Em,n) on the torus
Zm × Zn = Z

2/(mZ × nZ) (periodic boundary conditions), where Vm,n and Em,n are the
sets of vertices and edges of �m,n, respectively. It is convenient to consider �m,n as a square
lattice with diagonals. A dimer on �m,n is a set of two neighboring vertices 〈x, y〉 connected
by an edge. A dimer configuration σ on�m,n is a set of dimers σ = {〈xi , yi 〉, i = 1, . . . , mn

2 }
which cover Vm,n without overlapping. An example of a dimer configuration is shown in Fig.
1. An obvious necessary condition for a configuration to exist is that at least one of m, n is
even, and so we assume that m is even, m = 2m0.
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Fig. 1 Example of a dimer
configuration on a triangular
6 × 6 lattice on the torus

To define aweight of a dimer configuration, we split the full set of dimers in a configuration
σ into three classes: horizontal, vertical, and diagonal with respective weights zh, zv, zd > 0.
If we denote the total number of horizontal, vertical and diagonal dimers in σ by Nh(σ ),
Nv(σ ), and Nd(σ ), respectively, then the dimer configuration weight is

w(σ) =
mn
2∏

i=1

w(xi , yi ) = zNh (σ )
h zNv(σ )

v zNd (σ )
d , (1.1)

where w(xi , yi ) denotes the weight of the dimer 〈xi , yi 〉 ∈ σ . We denote by �m,n the set of
all dimer configurations on �m,n . The partition function of the dimer model is given by

Z =
∑

σ∈�m,n

w(σ). (1.2)

Notice that if all the weights are set equal to one, then Z simply counts the number of dimer
configurations, or perfect matchings, on �m,n .

1.2 Main Result

As shown by Kasteleyn [8–10], the partition function Z of the dimer model on the torus can
be expressed in terms of the four Kasteleyn Pfaffians as

Z = 1

2
(−Pf A1 + Pf A2 + Pf A3 + Pf A4) , (1.3)

with periodic-periodic, periodic-antiperiodic, antiperiodic-periodic, and antiperiodic-
antiperiodic boundary conditions in the x-axis and y-axis, respectively. For an extension of
formula (1.3) to graphs on Riemannian surfaces of higher genera see the works of Galluccio
and Loebl [4], Tesler [13], Cimasoni and Reshetikhin [2], and references therein. Formula
(1.3) is very powerful in the asymptotic analysis of the partition function as m, n → ∞,
because the absolute value of the Pfaffian of a square antisymmetric matrix A is determined
by its determinant through the classical identity

(Pf A)2 = det A. (1.4)

The asymptotic behavior of det Ai as m, n → ∞ can be analyzed by a diagonalization of
the matrices Ai (see, e.g., [3,8]), and an obvious problem arises to determine the sign of the
Pfaffians Pf Ai in formula (1.3).

In [8] Kasteleyn considered the dimer model on the square lattice, which corresponds to
the weight zd = 0. He showed that in this case Pf A1 = 0 and he assumed that Pf Ai ≥ 0 for
i = 2, 3, 4. Kenyon, Sun and Wilson [7] established the sign of the Pfaffians Pf Ai for any
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critical dimer model on a lattice on the torus, including the square lattice. The dimer model
on the triangular lattice is not critical and the results of [7] are not applicable in this case.
Different conjectures about the Pfaffian signs for the dimer model on a triangular lattice are
stated, without proof, in the works of McCoy [11], Fendley, Moessner, and Sondhi [3], and
Izmailian and Kenna [6].

Our main result in this paper is the following theorem:

Theorem 1.1 (The Pfaffian Sign Theorem) Let zh, zv, zd > 0. Then

Pf A1 < 0, Pf A2 > 0, Pf A3 > 0, Pf A4 > 0. (1.5)

The proof of this theorem is given below and it is based on the following two important
ingredients:

(1) The Kasteleyn formulae for the Pfaffians Pf Ai in terms of algebraic sums of the partition
functions of the dimer model restricted to different Z2 homology classes.

(2) An asymptotic analysis of Pf Ai as one of the weights tends to zero. It is worth noting
that due to various cancellations in the Pfaffians the leading terms in the small weight
asymptotics of the Pfaffians Pf Ai depend on arithmetic properties of the lattice dimen-
sionsm and n, and it requires a geometric description of configurations giving the leading
contribution to the Pfaffians Pf Ai for different m, n.

As an application of Theorem 1.1, we obtain an asymptotic behavior of the partition
function Z as m, n → ∞ with an exponentially small error term. See formula (8.2) in Sect.
8 below. In the works [7] and [11] it is stated without a proof that in the noncritical case all
the Pfaffians Ai in formula (1.3) are positive. Our Theorem 1.1 disproves this statement, and
this gives a constant 2 instead of 1 in the asymptotic formula for Z .

The set-up for the remainder of the paper is the following. In Sect. 2 we review Pfaffians
of the Kasteleyn matrices and their properties. In Sect. 3 we prove various preliminary results
about the Pfaffians Pf Ai . In Sect. 4 we prove that Pf A3 > 0, Pf A4 > 0. In Sect. 5 we
prove the identities Pf A1 = −Pf A2 and Pf A3 = Pf A4 for odd n. In Sect. 6 we prove that
Pf A2 > 0, and in Sect. 7 that Pf A1 < 0, which is the most difficult part of our study. In
Sect. 8 we obtain the asymptotics of the partition function as m, n → ∞. In Appendix A we
prove a sign formula for the superposition of two dimer configurations. Finally, in Appendix
B we present numerical data for the Pfaffians Pf Ai for different dimensions m and n.

2 Dimer Model and Kasteleyn Matrices

We consider different orientations on the set of the edges Em,n : O1 (periodic-periodic),
O2 (periodic-antiperiodic), O3 (antiperiodic-periodic), and O4 (antiperiodic-antiperiodic),
depicted in Fig. 2 for m = 4, n = 3.

All these orientations areKasteleyn orientations, so that for any face the number of arrows
on the boundary oriented clockwise is odd.

With every orientation Oi we associate a sign function εi (x, y), x, y ∈ Vm,n , defined as
follows: if x and y are connected by an edge then

εi (x, y) =
{
1, if the arrow in the Kasteleyn orientation Oi points from x to y,
−1, if the arrow in the Kasteleyn orientation Oi points from y to x,

(2.1)

and
εi (x, y) = 0, if x and y are not connected by an edge. (2.2)
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Fig. 2 The Kasteleyn orientations for m = 4, n = 3: O1 (periodic-periodic), O2 (periodic-antiperiodic), O3
(antiperiodic-periodic), and O4 (antiperiodic-antiperiodic)

More specifically, the sign functions are given by the following formulae.
Let e1 = (1, 0), e2 = (0, 1), and x = ( j, k) ∈ Zm × Zn . Then the sign function ε1 takes

the values
ε1(x, x + e1) = 1,

ε1(x, x + e2) = (−1) j ,

ε1(x, x + e1 + e2) = (−1) j+1.

(2.3)

The sign function ε2 is obtained from ε1 by the reversal of the vertical and diagonal arrows
in the upper row, so that

ε2(x, x + e1) = 1,

ε2(x, x + e2) = (−1) j+δk,n−1 ,

ε2(x, x + e1 + e2) = (−1) j+1+δk,n−1 .

(2.4)

Similarly, the sign function ε3 is obtained from ε1 by the reversal of the horizontal and
diagonal arrows in the last column, so that

ε3(x, x + e1) = (−1)δ j,m−1 ,

ε3(x, x + e2) = (−1) j ,

ε3(x, x + e1 + e2) = (−1) j+1+δ j,m−1 .

(2.5)

Finally, the sign function ε4 is obtained from ε1 by the reversal of both the vertical and
diagonal arrows in the upper row and the horizontal and diagonal arrows in the last column,
so that

ε4(x, x + e1) = (−1)δ j,m−1 ,

ε4(x, x + e2) = (−1) j+δk,n−1 ,

ε4(x, x + e1 + e2) = (−1) j+1+δ j,m−1+δk,n−1 .

(2.6)

In addition, (2.2) holds and εi (y, x) = −εi (x, y).
With every orientation Oi we associate a Kasteleyn matrix Ai . To define the Kasteleyn

matrices, consider any enumeration of the vertices,Vm,n = {x1, . . . , xmn}. Then theKasteleyn
matrices Ai are defined as

Ai = (
ai (x j , xk)

)
1≤ j,k≤mn , i = 1, 2, 3, 4, (2.7)

with

ai (x, y) =
{

εi (x, y)w(x, y), if x and y are connected by an edge,
0, otherwise,

(2.8)

where w(x, y) = zh, zv, zd is the weight of the dimer 〈x, y〉 and εi is the sign function.
Consider now the Pfaffians Pf Ai .
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ThePfaffian, Pf Ai , of themn×mn antisymmetric matrix Ai , i = 1, 2, 3, 4, is a number
given by

Pf Ai =
∑

π

(−1)πai (xp1 , xp2)ai (xp3 , xp4) · · · ai (xpmn−1 , xpmn ), (2.9)

where the sum is taken over all permutations,

π =
(
1 2 3 · · · mn − 1 mn
p1 p2 p3 · · · pmn−1 pmn

)
, (2.10)

which satisfy the following restrictions:

(1) p2�−1 < p2�, 1 ≤ � ≤ mn
2 ,

(2) p2�−1 < p2�+1, 1 ≤ � ≤ mn
2 − 1.

Such permutations are in a one-to-one correspondence with the dimer configurations,

π =
(
1 2 3 · · · mn − 1 mn
p1 p2 p3 · · · pmn−1 pmn

)
↔ σ =

{
〈p2i−1, p2i 〉, i = 1, . . . ,

mn

2

}
, (2.11)

and (2.9) can be rewritten as

Pf Ai =
∑

σ∈�m,n

(−1)π(σ)w(σ )
∏

〈x,y〉∈σ

εi (x, y), i = 1, 2, 3, 4, (2.12)

where �m,n is the set of all dimer configurations on �m,n and (−1)π(σ) is the sign of the
permutation π(σ).

An important property of the Kasteleyn Pfaffians Pf Ai is that they are covariant with
respect to the enumeration of the vertices. Namely, if ρ(x) = {ρ(x1), . . . , ρ(xmn)} is an
enumerationof the vertices ofVm,n obtained from theone x = {x1, . . . , xmn}by apermutation
ρ, then

Pf Ai (ρ(x)) = (−1)ρ Pf Ai (x), i = 1, 2, 3, 4, (2.13)

where (−1)ρ is the sign of the permutation ρ. See Appendix A below.
The sign of a configuration σ , sgn (σ ) = sgn (σ ; Oi ), is the following expression:

sgn (σ ) = (−1)π(σ)
∏

〈x,y〉∈σ

εi (x, y), (2.14)

where εi (x, y) is given by (2.1). Having (2.14), the Pfaffian formula for a Kasteleyn matrix
Ai can be rewritten as

Pf Ai =
∑

σ∈�m,n

sgn (σ )w(σ), sgn (σ ) = sgn (σ ; Oi ). (2.15)

Given two configurations σ and σ ′, we consider the double configuration σ ∪ σ ′, and we
call it the superposition of σ and σ ′. In σ ∪ σ ′, we define a contour to be a cycle consisting
of alternating edges from σ and σ ′. Each contour consists of an even number of edges. The
superposition σ ∪ σ ′ is partitioned into disjoint contours {γk : k = 1, 2, . . . , r}. We will
call a contour consisting of only two edges a trivial contour.

Let us introduce a standard configuration σst as follows. Consider the lexicographic order-
ing of the vertices (i, j) ∈ Zm × Zn . Namely,

(i, j) = xk, k = jm + i + 1, 1 ≤ k ≤ mn. (2.16)
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Then
σst =

{
〈x2l−1, x2l〉, l = 1, . . . ,

mn

2

}
. (2.17)

Observe that
sgn (σst; Oi ) = +1, i = 1, 2, 3, 4, (2.18)

because π(σst) = Id and εi (x2l−1, x2l) = +1.
We will use the following lemma:

Lemma 2.1 (see [7,13]). Let σ, σ ′ be any two configurations and {γk : k = 1, 2, . . . , r}
all contours of σ ∪ σ ′. Then

sgn (σ ; Oi ) · sgn (σ ′; Oi ) =
r∏

k=1

sgn (γk; Oi ), i = 1, 2, 3, 4, (2.19)

with
sgn (γk; Oi ) = (−1)νk (Oi )+1, (2.20)

where νk(Oi ) is the number of edges in γk oriented clockwise with respect to the orientation
Oi .

For the convenience of the reader we give a proof of this lemma in Appendix A.

3 Preliminary Results

As shown by Kasteleyn [8,10] (for recent expositions see the works [7,11,12] and references
therein), the partition function Z can be decomposed as

Z = Z00 + Z10 + Z01 + Z11, (3.1)

the four partition functions Zrs corresponding to dimer configurations of the homology
classes (r, s) ∈ Z2 ⊕ Z2 with respect to the standard configuration σst, and the Pfaffians
Pf Ai are expressed as

Pf A1 = Z00 − Z10 − Z01 − Z11, Pf A2 = Z00 − Z10 + Z01 + Z11,

Pf A3 = Z00 + Z10 − Z01 + Z11, Pf A4 = Z00 + Z10 + Z01 − Z11.
(3.2)

These equations are called theKasteleyn identities. Observe that Eqs. (3.1), (3.2) imply (1.3).
The proof of the Kasteleyn identities (3.2) can be found in the works of Galluccio and

Loebl [4], Tesler [13], and Cimasoni and Reshetikhin [2]. It follows from formula (2.12) that
the Pfaffians Pf Ai are multivariate polynomials with respect to the weights zh, zv, zd . By
diagonalizing the matrices Ai , one can obtain the double product formulas,

det Ai =
m
2 −1∏

j=0

n−1∏

k=0

4

[
z2h sin

2 2π( j + αi )

m
+ z2v sin

2 2π(k + βi )

n

+ z2d cos
2
(
2π( j + αi )

m
+ 2π(k + βi )

n

)]
,

(3.3)

with

α1 = β1 = 0 ; α2 = 0 , β2 = 1

2
; α3 = 1

2
, β3 = 0 ; α4 = β4 = 1

2
; (3.4)
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(see, e.g., [3,6]).
The function

S(x, y) = 4
[
z2h sin

2 2πx + z2v sin
2 2πy + z2d cos

2 (2πx + 2πy)
]

(3.5)

is the spectral function of the dimer model on the triangular lattice. In its terms Eq. (3.3) is
conveniently written as

det Ai =
m
2 −1∏

j=0

n−1∏

k=0

S

(
j + αi

m
,
k + βi

n

)
. (3.6)

The function S(x, y) is periodic in x and y,

S

(
x + 1

2
, y

)
= S

(
x, y + 1

2

)
= S(x, y), (3.7)

and if zh, zv, zd > 0, then
S(x, y) > 0, ∀(x, y) ∈ R

2. (3.8)

Indeed, obviously, S(x, y) ≥ 0. Suppose S(x, y) = 0. Then from (3.5) we obtain that

2x ∈ Z, 2y ∈ Z, 2x + 2y ∈ 1

2
+ Z, (3.9)

which are inconsistent. From (3.6), (3.8) we obtain that

det Ai > 0, if zh, zv, zd > 0, (3.10)

because all the factors in (3.6) are positive.
As a consequence of (3.10), we have that Pf Ai does not change the sign in the region

zh, zv, zd > 0; hence, it is sufficient to establish the sign of Pf Ai at any point of the region
zh, zv, zd > 0. As a first step in this direction, let us prove the following proposition:

Proposition 3.1 We have that

(1) If zh > 0, zv > 0, and zd = 0, then

det A1 = 0, det A3 > 0, det A4 > 0,

det A2

{
= 0, if n ≡ 1 (mod 2),

> 0, if n ≡ 0 (mod 2).

(3.11)

(2) If zh > 0, zv = 0, and zd > 0, then

det A1

{
= 0, if n ≡ 0 (mod 4),

> 0, if n �≡ 0 (mod 4).

det A2

{
= 0, if n ≡ 2 (mod 4),

> 0, if n �≡ 2 (mod 4).

det A3 > 0, det A4 > 0.

(3.12)
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(3) If zh = 0, zv > 0, and zd > 0, then

det A1

{
= 0, if m ≡ 0 (mod 4),

> 0, if m ≡ 2 (mod 4).

det A2

{
= 0, if m ≡ 0 (mod 4) and n ≡ 1 (mod 2),

> 0, otherwise.

det A3

{
= 0, if m ≡ 2 (mod 4),

> 0, if m ≡ 0 (mod 4).

det A4

{
= 0, if m ≡ 2 (mod 4) and n ≡ 1 (mod 2),

> 0, otherwise.

(3.13)

Proof (1) Assume that zh > 0, zv > 0, and zd = 0. By (3.3), det Ai = 0 if and only if for
some 0 ≤ j ≤ m

2 − 1 and 0 ≤ k ≤ n − 1,

2( j + αi )

m
∈ Z and

2(k + βi )

n
∈ Z. (3.14)

In particular, this gives that det A1 = 0, due to the factor j = k = 0. On the other hand,
det A3 > 0, because 2 j+1

m /∈ Z (since m is even). The same argument works for det A4 > 0.
Consider det A2. If n ≡ 1 (mod 2), then det A2 = 0, due to the factor j = 0, k = n−1

2 .
On the other hand, if n ≡ 0 (mod 2), then 2k+1

n /∈ Z and det A2 �= 0.
(2) Assume that zh > 0, zv = 0, and zd > 0. To have det Ai = 0, we need that

2( j + αi )

m
∈ Z and

2(k + βi )

n
∈ 1

2
+ Z. (3.15)

We have that det A1 = 0, provided n ≡ 0 (mod 4), due to the factor j = 0, k = n
4 . On the

other hand, if n �≡ 0 (mod 4), then 2k
n /∈ 1

2 + Z, hence det A1 > 0.
Consider det A2. If n ≡ 2 (mod 4), then det A2 = 0, due to the factor j = 0, k = n−2

4 .

On the other hand, if n �≡ 2 (mod 4), then 2k+1
n /∈ 1

2 + Z, and therefore det A2 > 0. Also,

det A3 > 0, because 2 j+1
m /∈ Z. The same argument is applied to det A4.

(3) Assume that zh = 0, zv > 0, and zd > 0. We need that

2( j + αi )

m
∈ 1

2
+ Z and

2(k + βi )

n
∈ Z. (3.16)

This equation is similar to (3.15), but since we assume that m is even and n can be odd, the
analysis is slightly different. If m ≡ 0 (mod 4), then det A1 = 0, due to the factor j = m

4 ,

k = 0. On the other hand, if m ≡ 2 (mod 4), then 2 j
m /∈ 1

2 + Z, hence det A1 > 0.
If m ≡ 0 (mod 4) and n ≡ 1 (mod 2), then det A2 = 0, due to the factor j = m

4 ,
k = n−1

2 . On the other hand, if n ≡ 0 (mod 2), then 2k+1
n /∈ Z, hence det A2 > 0. If m �≡ 0

(mod 4), then 2 j
m /∈ 1

2 + Z, hence det A2 > 0.
If m ≡ 2 (mod 4), then det A3 = 0, due to the factor j = m−2

4 , k = 0. On the other

hand, if m ≡ 0 (mod 4), then 2 j+1
m /∈ 1

2 + Z, hence det A3 > 0.
If m ≡ 2 (mod 4) and n ≡ 1 (mod 2), then det A4 = 0, due to the factor j = m−2

4 ,
k = n−1

2 . On the other hand, if n ≡ 0 (mod 2), then 2k+1
n /∈ Z, hence det A4 > 0. If m ≡ 0

(mod 4), then 2 j+1
m /∈ 1

2 + Z, hence det A4 > 0. ��
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4 Positivity of Pf A3 and Pf A4

Let us turn to the proof of Theorem 1.1. We first prove that Pf A3 > 0 and Pf A4 > 0.

Lemma 4.1 Let zh, zv, zd > 0. Then

Pf A3 > 0, Pf A4 > 0. (4.1)

Proof If zh > 0, zv > 0, and zd = 0, then by Proposition 3.1 (1), det A1 = 0, hence from
(3.2) we deduce that

Z00 − Z01 = Z10 + Z11. (4.2)

On the other hand, if zh > 0, zv > 0, and zd = 0, then det A3 > 0. This implies that
Pf A3 �= 0, hence from (3.2), (3.11), and nonnegativity of Zrs we obtain that

Pf A3 = 2Z10 + 2Z11 > 0, if zh > 0, zv > 0, zd = 0. (4.3)

By continuity, Pf A3 > 0 for the chosen zh > 0, zv > 0, and small zd > 0. This proves that
Pf A3 > 0 in the whole region zh, zv, zd > 0. The same argument works for Pf A4 > 0. ��

We will finish the proof of Theorem 1.1 in the subsequent two sections by showing that
Pf A2 > 0 and Pf A1 < 0, respectively.

5 Identities Pf A1 = −Pf A2, Pf A3 = Pf A4 for Odd n

Lemma 5.1 Let n ≡ 1 (mod 2). Then Z00 = Z10 and Z01 = Z11.

Proof Recall that Zrs is the partition function corresponding to dimer configurations in
homology class (r, s) ∈ Z2 ⊕ Z2 with respect to the standard configuration σst . The homol-
ogy class of a given configuration σ can be calculated as follows: let v j be the number of
intersections of the vertical line x = j + 1

2 with the dimers in σ ∪ σst . Then

v j ≡ r (mod 2) ∀ j ∈ Zm . (5.1)

Obviously,
v j = v j (σ ) + v j (σst ) , (5.2)

where v j (σ ) denotes the number of intersections of the vertical line x = j + 1
2 with the

dimers in σ . Let Tσ be a shift of the configuration σ to the right by 1. Then

v j+1(Tσ) = v j (σ ). (5.3)

For the standard configuration the number of intersections is

v j (σst) =
{
n, if j ≡ 0 (mod 2) ,

0, if j ≡ 1 (mod 2) ,
(5.4)

hence the number of intersections of the vertical line x = j + 1 + 1
2 with the dimers in

Tσ ∪ σst is equal to

v j+1(Tσ) + v j+1(σst ) = v j (σ ) + v j (σst) + (−1) j+1n . (5.5)

This implies the relation between the homology class numbers r(Tσ) and r(σ ) as

r(Tσ) = r(σ ) + n (mod 2). (5.6)
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In particular, if n is odd then

r(Tσ) = r(σ ) + 1 (mod 2). (5.7)

Similarly, let hk be the number of intersections of the horizontal line y = k + 1
2 with the

dimers in σ ∪ σst . Then
hk ≡ s (mod 2) ∀ k ∈ Zn (5.8)

and
hk = hk(σ ) + hk(σst ) , (5.9)

where hk(σ ) denotes the number of intersections of the line y = k + 1
2 with the dimers in σ .

Obviously, hk(σst ) = 0, hence
hk = hk(σ ) . (5.10)

Also,
hk(Tσ) = hk(σ ) , (5.11)

hence
s(Tσ) = s(σ ) . (5.12)

Combining this with (5.7), we obtain that if n is odd, then

T : �0,0
m,n → �1,0

m,n , T : �0,1
m,n → �1,1

m,n , (5.13)

where �
r,s
m,n is the set of dimer configurations in the homology class (r, s). Since the shift T

is invertible, the mappings (5.13) are bijections.
Since w(Tσ) = w(σ) we obtain that Z00 = Z10 and Z01 = Z11. ��
Note that from Lemma 5.1 and the Kasteleyn identities (3.2), we immediately have the

following theorem:

Theorem 5.2 Let n ≡ 1 (mod 2). Then for all zh, zv, zd ≥ 0,

Pf A1 = −Pf A2, Pf A3 = Pf A4. (5.14)

Numeric data for Pfaffians Pf Ai in Appendix B illustrate the identities Pf A1 = −Pf A2

and Pf A3 = Pf A4 on the 4 × 3 lattice, while they disprove such identities on the 4 × 4
lattice. For some interesting identities between dimer model partition functions on different
surfaces see the paper of Cimasoni and Pham [1].

6 Positivity of Pf A2

We begin with the following case:

Lemma 6.1 Let zh, zv, zd > 0. Then if either n ≡ 0 (mod 2) or m ≡ 2 (mod 4), then

Pf A2 > 0. (6.1)

Proof First assume that n ≡ 0 (mod 2) and consider the case zh > 0, zv > 0, and zd = 0.
Since n is even, then by Proposition 3.1 (1), det A2 > 0 and det A1 = 0, hence

Z00 − Z10 = Z01 + Z11 �⇒ Pf A2 = 2Z01 + 2Z11 < 0. (6.2)
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By continuity, Pf A2 > 0 for the chosen zh , zv , and small zd . This proves Pf A2 > 0 in the
whole region zh, zv, zd > 0. Now assume thatm ≡ 2 (mod 4) and consider the case zh = 0,
zv > 0, and zd > 0. By Proposition 3.1 (3), in this case det A2 > 0, det A3 = 0, hence

Z01 − Z10 = Z00 + Z11 �⇒ Pf A2 = 2Z00 + 2Z11 > 0. (6.3)

By continuity, Pf A2 > 0 for the chosen zv > 0, zd > 0, and small zh > 0. This proves that
Pf A2 > 0 in the whole region zh, zv, zd > 0. ��

The positivity of Pf A2 in the case m ≡ 0 (mod 4), n ≡ 1 (mod 2) is more difficult. To
deal with this case, we consider the asymptotic behavior of Pf A2 for zh = 1, zv = 0, as
zd → 0, and prove the following lemma:

Lemma 6.2 Let m ≡ 0 (mod 4), n ≡ 1 (mod 2), and zh = 1, zv = 0. Then as zd → 0,

Pf A2 = 2
(m
2

)n
znd(1 + O(zd)). (6.4)

Remark This will imply that Pf A2 > 0 for zh = 1, zv = 0 and sufficiently small zd , and
hence Pf A2 > 0 for all zh, zv, zd > 0.

Proof We have that
Pf A2 =

∑

σ∈�m,n

sgn (σ )w(σ). (6.5)

By our assumption, zv = 0, hence there are no vertical dimers. Consider first the limiting
case, zd = 0. In this case there are only horizontal dimers. Let σ be any configuration
of horizontal dimers and Tkσ a configuration obtained from σ by the shift x → x + e1,
e1 = (1, 0), on the horizontal line y = k. Then the superposition σ ∪ Tkσ consists of
trivial contours and one horizontal contour around the torus, which has a negative sign as
there are m ≡ 0 (mod 2) arrows in the direction of movement from left to right. Hence,
sgn (Tkσ) = − sgn (σ ), w(Tkσ) = w(σ). From here it follows that

sgn (σ )w(σ) + sgn (Tkσ)w(Tkσ) = 0,

and therefore, σ and Tk(σ ) cancel each other in Pf A2. This implies that

Pf A2
∣∣
zd=0 = 0. (6.6)

Now let zd > 0, so that there are both horizontal and diagonal dimers. We will consider
zd → 0, and we will call configurations consisting of only horizontal dimers the ground
state configurations, because they have the biggest weight w(σ). As we saw, the ground
state configurations cancel each other in Pf A2. We will call not ground state configurations
excited state configurations.

Consider the set of configurations �(k) in which the line y = k is occupied completely
by horizontal dimers. Let σ ∈ �(k) and Tkσ obtained from σ by the shift x → x + e1 on
the line y = k. Then again sgn (Tkσ) = − sgn (σ ) and hence

∑

σ∈�(k)

sgn (σ )w(σ) = 0.

By adding over k ∈ Zn , we obtain that
∑

σ∈⋃
k∈Zn �(k)

sgn (σ )w(σ) = 0, (6.7)
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hence to get excited states without cancellations, we have to consider the set of configurations
such that on each line y = k there is at least one vertex covered by a diagonal dimer. In fact,
since m is even, there are at least two vertices covered by diagonal dimers, hence the total
number of diagonal dimers Ndiag(σ ) is at least n. We denote

�0 = {σ ∈ �m,n | Ndiag(σ, k) = 2, k ∈ Zn}, (6.8)

where Ndiag(σ, k) is the number of vertices on the line y = k in σ covered by diagonal
dimers.

Denote by Ndiag(σ, k, k + 1) the number of diagonal dimers connecting horizontal line
y = k to horizontal line y = k + 1. Then

Ndiag(σ, k) = Ndiag(σ, k − 1, k) + Ndiag(σ, k, k + 1),

hence

Ndiag(σ, k, k + 1) = 0, 1 or 2, ∀σ ∈ �0.

Suppose that for some σ ∈ �0 and some k ∈ Zn ,

Ndiag(σ, k, k + 1) = 0,

then

Ndiag(σ, k + 1, k + 2) = 2, Ndiag(σ, k + 2, k + 3) = 0, Ndiag(σ, k + 3, k + 4) = 2, . . . ,

hence the whole lattice is stratified into horizontal strips of width 2 with 2 diagonal dimers in
each strip. Butn is odd, hence such stratification is not possible. Similarly, Ndiag(σ, k, k+1) =
2 is not possible as well. This implies that if σ ∈ �0, then

Ndiag(σ, k, k + 1) = 1, ∀k ∈ Zn .

Thismeans that for every k there is a unique diagonal dimer connecting horizontal lines y = k
and y = k+1. Let ( jk, k) be the vertex covered by this diagonal dimer on the horizontal line
y = k. Then, since all vertices between ( jk + 1, k + 1) and ( jk+1, k + 1) must be covered
by horizontal dimers we have that

jk+1 − ( jk + 1) ≡ 1 (mod 2), ∀k ∈ Zn, (6.9)

or, equivalently,
jk+1 − jk ≡ 0 (mod 2), ∀k ∈ Zn . (6.10)

This implies that
jk − j� ≡ 0 (mod 2), ∀k, � ∈ Zn . (6.11)

Hence,

�0 =
1⊔

i=0

�i
0 (6.12)

and σ ∈ �i
0, i = 0, 1, if

j� ≡ i (mod 2) ∀{( j�, k�), ( j� + 1, k� + 1)}. (6.13)

The proof of Lemma 6.2 is based on the following lemma:

Lemma 6.3 For any σ ∈ �0,
sgn (σ ) = +1. (6.14)
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Let us finish the proof of Lemma 6.2, assuming Lemma 6.3. Since w(σ) = znd (recall that
zh = 1) for any σ ∈ �0, we obtain that

∑

σ∈�0

sgn (σ )w(σ) = |�0|znd . (6.15)

At y = 0 we havem choices for j0 and then, because of condition (6.10), we have m
2 choices

for j1, j2, . . . , jn−1. Therefore,

|�0| = m
(m
2

)n−1
, (6.16)

hence ∑

σ∈�0

sgn (σ )w(σ) = m
(m
2

)n−1
znd . (6.17)

The higher excited states have at least (n + 1) diagonal dimers and therefore their weight is
at most zn+1

d , hence Lemma 6.2 follows. ��
It remains to proveLemma6.3.Wedefine a stack configuration,σstack, to be a configuration

in which all diagonal dimers form a stack between the vertical lines x = 0 and x = 1. The
remaining vertices are occupied by horizontal dimers. See Fig. 4a.

Proof of Lemma 6.3 The proof consists of two steps. At Step 1 we show that if σ ∈ �0
0 (see

Eqs. (6.12), (6.13)), then
sgn (σ ) = sgn (σstack), (6.18)

and if σ ∈ �1
0 , then

sgn (σ ) = sgn (σstack + e1). (6.19)

At Step 2 we show that

sgn (σstack) = sgn (σstack + e1) = +1, (6.20)

hence sgn (σ ) = +1, ∀σ ∈ �0.
Step 1Observe that any configuration σ ∈ �0 is determined by the position of its diagonal

dimers. Let us call an elementary move the change of σ to σ ′, where a diagonal dimer
{( j, k), ( j + 1, k + 1)} is shifted to {( j + 2, k), ( j + 3, k + 1)}. Assume that in σ the
intermediate vertices ( j + 1, k) and ( j + 2, k + 1) are not covered by diagonal dimers. Then
the superposition σ ∪ σ ′ consists of trivial contours and one nontrivial contour of the length
6, which is positive as shown in Fig. 3a (note that there are always three arrows opposite to
any direction of movement along that contour), hence sgn (σ ) = sgn (σ ′). If exactly one of
the vertices ( j + 1, k), ( j + 2, k + 1) is covered by a diagonal dimer, then the superposition
σ ∪ σ ′ consists of trivial contours and one nontrivial contour of the length m + 2, m + 1 ≡ 1
(mod 2) of whose arrows are oriented from left to right, as shown in Fig. 3b, hence again
sgn (σ ) = sgn (σ ′). Finally, if both vertices ( j + 1, k), ( j + 2, k + 1) are covered by
diagonal dimers, then sgn (σ ) = sgn (σ ′), because we can consider a clockwise sequence of
elementary moves from σ to σ ′, without intermediate vertices covered by diagonal dimers.
See Fig. 3c. Thus, for any elementary move σ → σ ′ we have that

sgn (σ ′) = sgn (σ ). (6.21)

If σ ∈ �0
0 , then by elementary moves we can first move the diagonal dimer at the

horizontal line y = 0 to the position {(0, 0), (1, 1)}, and then inductively at horizontal line
y = k, k = 1, 2, . . . , n − 1, to the position {(0, k), (1, k + 1)}, forming a stack of diagonal
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Fig. 3 Examples of different types of the superpositions σ ∪ σ ′ on a 4 × 5 lattice

Fig. 4 The stack configuration and its superposition with the standard configuration on a 4 × 5 lattice

dimers above the dimer at the horizontal line x = 0. In other words, we have moved σ to
σstack. If σ ∈ �1

0 , then using the above argument we move it to σstack +e1. Hence, formulae
(6.18) and (6.19) hold.

Step 2 As shown in Fig. 4b, the superposition σstack ∪ σst consists of trivial contours and
exactly one nontrivial contour which is a zigzag path between the vertical lines x = 0 and
x = 1. The latter one is positive, since there are 2n − 1 ≡ 1 (mod 2) arrows in the direction
of movement from top to bottom and hence sgn (σstack) = +1.

Similarly, the superposition (σstack + e1) ∪ (σst + e1) consists of trivial contours and a
zigzag contour with n + 1 ≡ 0 (mod 2) arrow in the direction of movement from top to
bottom, and so sgn ((σstack+e1)∪(σst+e1)) = −1. In addition, the sign of the superposition
σst∪(σst+e1) is (−1) aswell. Indeed, the superpositionσst∪(σst+e1) consists of n horizontal
contours of the length m. Since m is even, the sign of each contour is (−1), and since n is
odd, the sign of the superposition σst ∪ (σst + e1) is (−1) as well. Now, since the sign of
the superpositions (σstack + e1) ∪ (σst + e1) and σst ∪ (σst + e1) is (−1), we obtain that
sgn ((σstack + e1) ∪ σst) = +1, hence sgn (σstack + e1) = +1.

Lemma 6.3 is proven. ��
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7 Negativity of Pf A1

If n ≡ 1 (mod 2), then we have by Theorem 5.2 that Pf A1 = −Pf A2. Since Pf A2 > 0,
we obtain that Pf A1 < 0. Let us turn to the case when n is even.We begin with the following
case:

Lemma 7.1 Let zh, zv, zd > 0. Then if either n ≡ 2 (mod 4) or m ≡ 2 (mod 4), then
Pf A1 < 0.

Proof First assume n ≡ 2 (mod 4) and consider the case zh > 0, zv = 0, and zd > 0. By
Proposition 3.1 (2), in this case det A1 > 0, det A2 = 0, hence

Z00 − Z10 = −Z01 − Z11 �⇒ Pf A1 = −2Z01 − 2Z11 < 0. (7.1)

By continuity, Pf A1 < 0 for the chosen zh > 0, zd > 0, and small zv > 0. This proves that
Pf A1 < 0 in the whole region zh, zv, zd > 0.

Now assume m ≡ 2 (mod 4) and consider the case zh = 0, zv > 0, and zd > 0. By
Proposition 3.1 (3), in this case det A1 > 0, det A3 = 0, hence

Z00 − Z01 = −Z10 − Z11 �⇒ Pf A1 = −2Z10 − 2Z11 < 0. (7.2)

By continuity, Pf A1 < 0 for the chosen zv > 0, zd > 0, and small zh > 0. This proves that
Pf A1 < 0 in the whole region zh, zv, zd > 0. ��

The final case m ≡ 0 (mod 4), n ≡ 0 (mod 4) is the most difficult yet. We consider the
asymptotic behavior of Pf A1 for zh = 1, 0 < zv ≤ z2d , zd → 0, and we prove the following
theorem upon establishing four lemmas:

Theorem 7.2 Let m ≡ 0 (mod 4), n ≡ 0 (mod 4), zh = 1, and 0 < zv ≤ z2d . Then as
zd → 0,

Pf A1 = −n2
(m
2

)n
z2vz

n−2
d (1 + O (zd)) .

Remark This will imply that Pf A1 < 0 for zh = 1, 0 < zv ≤ z2d , and sufficiently small zd ,
and hence Pf A1 < 0 for all zh, zv, zd > 0.

First note that for the same reasons as in the beginning discussion of the proof of Lemma
6.2, configurations with only horizontal dimers on some line y = k cancel each other in
the Pfaffian, so we next look at �0 defined as in (6.8). However, since n ≡ 0 (mod 4),
configurations in �0 now cancel each other completely. Indeed, we can decompose �0 as

�0 = �1
0 � �2

0 , (7.3)

where �1
0 and �2

0 can be further decomposed as

�1
0 =

1⊔

i=0

�
1,i
0 , �

1,i
0 = {σ ∈ �0 | Ndiag(σ ; k, k + 1) = 1, jk ≡ i (mod 2), k ∈ Zn},

�2
0 =

1⊔

i=0

�
2,i
0 , �

2,i
0 = {

σ ∈ �0 | Ndiag(σ ; 2k + i, 2k + i + 1) = 2, k ∈ Z n
2

}
.

(7.4)
Here Ndiag(σ ; k, k + 1) is the number of diagonal dimers in σ connecting horizontal line
y = k to horizontal line y = k + 1, and the set of diagonal dimers for every configuration

123



The Pfaffian Sign Theorem for the Dimer Model on a Triangular Lattice 415

σ ∈ �1
0 is {( jk, k), ( jk + 1, k + 1)}, k ∈ Zn . As before, Eq. (6.10) holds since all other

vertices must be covered by horizontal dimers.
On the other hand, configurations in �

2,i
0 have the following structure: for every k ∈ Z n

2
and for i = 0 or i = 1 there is one diagonal dimerwhich connects a vertex x1 = ( j1, 2k+i) to
y1 = ( j1+1, 2k+i+1) and another diagonal dimerwhich connects a vertex x2 = ( j2, 2k+i)
to y2 = ( j2 + 1, 2k + i + 1). Note that j2 − j1 ≡ 1 (mod 2), since all other vertices are
covered by horizontal dimers. We have the following lemma:

Lemma 7.3 |�1
0 | = |�2

0 | = 2
(m
2

)n
and for every σ ∈ �0,

sgn (σ ) =
{

−1, if σ ∈ �1
0 ,

+1, if σ ∈ �2
0 .

Hence,
∑

σ∈�0

sgn (σ )w(σ) = 0.

Proof The counting argument for |�1
0 | = 2

(m
2

)n is the same as in the end of the proof of
Lemma 6.2. Similar to the proof of Step 1 in Lemma 6.3, we have that

sgn (σ ) = sgn (σstack) ∀σ ∈ �
1,0
0 , (7.5)

sgn (σ ) = sgn (σstack + e1) ∀σ ∈ �
1,1
0 . (7.6)

Next we prove that
sgn (σstack) = sgn (σstack + e1) = −1. (7.7)

Indeed, the superposition σstack ∪ σst consists of trivial contours and one nontrivial contour
which is a zigzag path between the vertical lines x = 0 and x = 1, similar to Fig. 4b except that
the diagonal dimer {(0, n− 1), (1, 0)} has the opposite orientation, hence sgn (σstack) = −1.

Furthermore, the signs of the superpositions (σstack +e1)∪ (σst +e1) and σst ∪ (σst +e1)
are (−1) and (+1), respectively. Indeed, the superposition (σstack+e1)∪(σst+e1) consists of
trivial contours and a zigzag contourwithn ≡ 0 (mod 2) arrows in the direction ofmovement
from top to bottom, and so sgn ((σstack+e1)∪(σst+e1)) = −1. In addition, the superposition
σst ∪ (σst + e1) consists of n horizontal contours of the length m. Since m is even, the sign
of each contour is (−1), and because n is even, the sign of the superposition σst ∪ (σst + e1)
is (+1). Since the sign of the superposition (σstack + e1) ∪ (σst + e1) is (−1), and the sign
of the superposition σst ∪ (σst + e1) is (+1), we have that sgn ((σstack + e1) ∪ σst) = −1.
Hence, sgn (σstack + e1) = −1.

To show that |�2
0 | = 2

(m
2

)n , we count as follows: choose either i = 0 or i = 1. Now for
each k ∈ Z n

2
, there are m choices for the first diagonal dimer and m

2 choices for the second,
but the diagonal dimers are equivalent, so we divide this resulting number by 2.

Fix i = 0 and let σ ∈ �
2,0
0 be arbitrary. Consider, again, the elementary move described

in Step 1 of the proof of Lemma 6.3, that is, the change of σ to σ ′ where a diagonal dimer
{( j, 2k), ( j + 1, 2k + 1)} is shifted to {( j + 2, 2k), ( j + 3, 2k + 1)} for some k ∈ Z n

2
.

Assume that in σ the intermediate vertices ( j + 1, 2k) and ( j + 2, 2k + 1) are not occupied
by a diagonal dimer. Then the superposition σ ∪ σ ′ consists of trivial contours and one
nontrivial contour of the length 6 comparable to that in Fig. 3a, which is positive, hence
sgn (σ ) = sgn (σ ′). If the intermediate vertices are occupied by a diagonal dimer, simply
apply the clockwise sequence of elementary moves m

2 − 1 times as before. Hence, for every

σ, σ ′ ∈ �
2,0
0 , sgn (σ ) = sgn (σ ′). Now fix a configuration σ0,0 ∈ �

2,0
0 with diagonal dimer

pairs {(0, 2k), (1, 2k + 1), (1, 2k), (2, 2k + 1)}k∈Z n
2
and all other dimers horizontal. Then
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Fig. 5 σ0,0 ∪ σst

σ0,0 ∪ σst consists of trivial contours and n
2 ≡ 0 (mod 2) identical nontrivial contours of

lengthm+2 as shown in Fig. 5, hence sgn (σ ) = sgn (σst). This shows that for any σ ∈ �
2,0
0 ,

sgn (σ ) = +1. The proof in the case of i = 1 is entirely analogous. Since �1
0 and �2

0 have
the same cardinality but have configurations with opposite signs, they cancel each other and
the claim follows. ��

Let us consider then the set of configurations

�1 = {σ ∈ �m,n | Nd,v(σ, k) = 2, k ∈ Zn; Ndiag(σ ) = n − 1, Nvert(σ ) = 1},
where Nd,v(σ, k) is the total number of vertices covered by diagonal and vertical dimers in
σ on the line y = k, and Nvert(σ ) is the number of vertical dimers in σ . However, by the
following lemma this set is empty:

Lemma 7.4 �1 = ∅.

Proof Assume without loss of generality that the vertical dimer is {(0, n− 1), (0, 0)} and let
{( jk, k), ( jk + 1, k + 1)}k∈Zn−1 denote the set of diagonal dimers. Since we require all other
vertices to be covered by horizontal dimers, we have that

(1) jk + 1 − jk+1 ≡ 1 (mod 2), ∀k ∈ Zn−2 ⇒ jk+1 − jk ≡ 0 (mod 2),∀k
∈ Zn−2,

(2) j0 − 0 ≡ 1 (mod 2) ⇒ j0 ≡ 1 (mod 2),
(3) jn−2 + 1 − 0 ≡ 1 (mod 2) ⇒ jn−2 ≡ 0 (mod 2),

where (1) is the requirement that diagonal vertices within a given horizontal line be odd
spacing apart, (2) is the requirement that (0, 0), the top vertex of the vertical dimer, be odd
spacing from ( j0, 0), the bottom vertex of the diagonal dimer {( j0, 0), ( j0 +1, 1)}, and (3) is
the requirement that (0, n − 1), the bottom vertex of the vertical dimer, be odd spacing apart
from ( jn−2+1, n−1), the top vertex of the diagonal dimer {( jn−2, n−2), ( jn−2+1, n−1)}.
From (1) it follows that

jn−2 − jn−3 + jn−3 − jn−4 + jn−4 − . . . + j3 − j2 + j2 − j1 + j1 − j0 ≡ 0 (mod 2).

Hence, jn−2 ≡ j0 (mod 2). Combining this and (2) gives us that jn−2 ≡ 1 (mod 2), which
contradicts (3). ��

Since �1 is empty, let us consider

�2 = {σ ∈ �m,n | Nd,v(σ, k) = 2, k ∈ Zn; Ndiag(σ ) = n − 2, Nvert(σ ) = 2}.
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Fig. 6 Examples of configurations from �2

Analogous to the decomposition of �0 above, let us write

�2 = �1
2 � �2

2 , (7.8)

where

�1
2 = {σ ∈ �2 | Nd,v(σ ; k, k + 1) = 1, k ∈ Zn},

�2
2 =

1⊔

i=0

�
2,i
2 , �

2,i
2 = {σ ∈ �2 | Nd,v(σ ; 2k + i, 2k + i + 1) = 2, k ∈ Z n

2
}, (7.9)

i.e. �1
2 and �2

2 consist respectively of configurations whose vertical and diagonal dimers
connect all horizontal lines to one another and of configurations whose vertical and diagonal
dimers are pairwise placed on horizontal lines y = 2k + i and y = 2k + 1 + i , k ∈ Z n

2
for

i = 0 or 1. We again require that every pair of vertices of diagonal and/or vertical dimers in a
given horizontal line be an odd spacing apart since the remaining dimers must be horizontal.
See Fig. 6a–c for examples of configurations σ ∈ �1

2 , σ ∈ �
2,0
2 , and σ ∈ �

2,1
2 , respectively.

We have the following lemma:

Lemma 7.5 |�1
2 | = n(n − 1)

(m
2

)n
, and sgn (σ ) = −1 for every σ ∈ �1

2 .

Proof There are
(n
2

)
choices of horizontal lines for the vertical dimers, m choices to place

the first vertical dimer within its horizontal line and m
2 choices to place each of the second

vertical dimer and all n − 2 diagonal dimers, hence |�1
2 | = n(n − 1)

(m
2

)n .
Let us prove that sgn (σ ) = −1 for every σ ∈ �1

2 . We have seen in the proof of Lemma
6.3 that the sign of a configuration is invariant with respect to elementary moves, horizontal
shifts of diagonal dimers by two units to the right. The same reasoning applies to vertical
dimers as well.

In σ ∈ �1
2 define an elementary swap that interchanges a diagonal dimer {( j, k), ( j +

1, k + 1)} with a vertical dimer {( j + 1, k − 1), ( j + 1, k)} below it as follows: increase
the j-coordinate of every vertex of every dimer along the horizontal line y = k, k ∈ Zn, to
produce a new configuration σ ′ in which the vertical dimer is now above the diagonal dimer.
The superposition σ ∪ σ ′ consists of trivial contours and one nontrivial contour of length
m + 2, m − 1 ≡ 1 (mod 2) of whose arrows are in the direction of movement from left to
right if j ≡ 1 (mod 2) and m + 1 ≡ 1 (mod 2) of whose arrows are in the direction of
movement from left to right if j ≡ 0 (mod 2), the former case exemplified in Fig. 7 with
j = 1, k = 2, m = 4. Hence, for every σ, σ ′ ∈ �1

2 , sgn (σ ) = sgn (σ ′). In other words, for
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Fig. 7 Example of a type of
superposition on a 4 × 4 lattice

Fig. 8 The stack configuration σstack ∈ �1
2 and its superposition with the standard configuration σst

any elementary move (horizontal shifts to the right by two or swaps) σ → σ ′ we have that
formula (6.21) holds.

We now show that any configuration σ ∈ �1
2 can be moved to a configuration σstack in

which vertical dimers are placed at positions {(0, 0), (0, 1)} and {(1, 1), (1, 2)}, respectively,
whereas diagonal dimers form a stack above these two vertical dimers and between lines
x = 0 and x = 1. The remaining vertices are occupied by horizontal dimers. See Fig. 8a.

Fix σ ∈ �1
2 and assume that vertical dimers are at positions {( j1, k1), ( j1, k1 + 1)} and

{( j2, k2), ( j2, k2 + 1)}, respectively. Note that
j2 − j1 ≡ 1 (mod 2). (7.10)

For the sake of contradiction, let us assume that j2 − j1 ≡ 0 (mod 2). If these two vertical
dimers are not on the samehorizontal line y = k, apply sequence of swaps onone of themuntil
k1 = k2.Note that in order to swap a diagonal dimer with a vertical dimer, {( j, k), ( j, k+1)},
one vertex of a diagonal dimer has to be on the vertical line x = j and the other vertex on a
horizontal line y = k+1. If this were not the case, horizontally shift diagonal dimer until this
property is satisfied. Therefore, let us assume that after swaps vertical dimers are positioned
at {( j1, k), ( j1, k + 1)} and {( j2, k), ( j2, k + 1)}, respectively. Now, j2 − j1 ≡ 0 (mod 2)
implies that along horizontal line y = k there is an odd number of vertices between ( j1, k)
and ( j2, k), but since all other vertices on y = k have to be covered by horizontal dimers
we have a contradiction. Therefore, Eq. (7.10) holds. Further, note that this means that two
vertical dimers cannot be placed along the same vertical line x = j.

In other words, we may assume that j1 ≡ 0 (mod 2) and j2 ≡ 1 (mod 2). If for a
vertical dimer {( j1, k1), ( j1, k1+1)}, k1 �= 0, then use swaps and horizontal shifts of diagonal
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Fig. 9 Examples of types of superpositions on a 4 × 4 lattice

dimerswhere necessary until this dimer is at line y = 0. In a similar fashion, apply swapswith
necessary shifts of diagonal dimers until vertical dimer {( j2, k2), ( j2, k2+1)} is at line y = 1.
Now, shift these two vertical dimers horizontally until they are positioned at {(0, 0), (0, 1)}
and {(1, 1), (1, 2)}, respectively. If it so happens that after the above elementary moves they
are positioned at {(0, 1), (0, 2)} and {(1, 0), (1, 1)}, respectively, apply swaps until they are
in the desired position. Similarly to the proof of Lemma 6.3, by horizontal shifts by two to the
right, we can first move the diagonal dimer at horizontal line y = 2 to position {(0, 2), (1, 3)}
and then inductively each diagonal dimer on each of the lines y = k, k = 3, 4, . . . , n − 1,
to position {(0, k), (1, k + 1)}, forming a stack of diagonal dimers above the vertical dimers.
Hence, we have obtained a configuration σstack.

In the superposition σstack ∪ σst, there are trivial contours and one nontrivial contour of
length 2n, 2n − 2 ≡ 0 (mod 2) of whose arrows are in the direction of movement from top
to bottom as shown in Fig. 7b. Hence, sgn (σstack) = −1 and the claim follows. ��

Lemma 7.6 |�2
2 | = n

(m
2

)n
, and sgn (σ ) = −1 for every σ ∈ �2

2 .

Proof There are n choices of horizontal lines within which to place the lower vertices of
the two vertical dimers, and within this horizontal line there are m choices to place the first
vertical dimer and m

2 choices to place the second, but the dimers are equivalent so we divide

this number by 2. Subsequently, there are likewise
(m
2

)2 choices in placing each of the n
2 − 1

diagonal dimer pairs, hence |�2
2 | = n

(m
2

)n .
For any given configuration σ ∈ �2

2 , by applying a sequence of elementary moves, i.e.
horizontal shifts of diagonal and vertical dimers by two units to the right, we can position
all vertical and diagonal dimers between the vertical lines x = 0 and x = 1 to obtain a
configuration σstack. See Fig. 9a. Since the elementary moves do not change the sign of
configuration, we obtain that sgn (σ ) = sgn (σstack).

The superposition σstack ∪ σst contains trivial contours, one nontrivial positive square-
shaped contour, and n

2 − 1 ≡ 1 (mod 2) negative contours as shown in Fig. 9b. Hence,
sgn (σstack) = −1. ��

Proof of Theorem 7.2 We have that

Pf A1 =
∑

σ∈�m,n

sgn (σ )w(σ). (7.11)
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We assume here that zh = 1, zv ≤ z2d , and zd is small. For the same reasons as those given
in Lemma 6.2, we have that

∑

σ∈∪k∈Zn�(k)

sgn (σ )w(σ) = 0, (7.12)

hence to get lowest excited states without cancellations we next consider �0. However, by
Lemma 7.3 ∑

σ∈�0

sgn (σ )w(σ) = 0, (7.13)

so we next turn to �1, but this is empty by Lemma 7.4. Therefore, we finally consider �2,
which, by Lemmas 7.5 and 7.6 yields

Pf A1 =
∑

σ∈�m,n

sgn (σ )w(σ) =
∑

σ∈�2

sgn (σ )w(σ) +
∑

σ∈�m,n\�̂
sgn (σ )w(σ)

= −n2
(m
2

)n
z2vz

n−2
d +

∑

σ∈�m,n\�̂
sgn (σ )w(σ),

(7.14)

where �̂ = ∪2
i=0�i ∪ ∪k∈Zn�(k). However, any configuration in �m,n \ �̂ will either have

a greater total number of vertical and diagonal dimers or it will have a weight

z�v
z�d

z2vz
n−2
d ≤ z�d z

2
vz

n−2
d , 2 ≤ � ≤ n − 2, (7.15)

from which the claim follows. ��

8 Poisson Summation Formula and Asymptotics of The Partition Function

As an application of the Pfaffian Sign Theorem, we prove the following theorem:

Theorem 8.1 Suppose that m, n → ∞ in such a way that

C1 ≤ m

n
≤ C2 (8.1)

for some positive constants C2 > C1. Then for some c > 0,

Z = 2e
1
2mnF

(
1 + O

(
e−c(m+n)

))
, (8.2)

where

F = ln 2 +
1∫

0

1∫

0

f (x, y) dx dy, (8.3)

and

f (x, y) = 1

2
ln

[
z2h sin

2(2πx) + z2v sin
2(2πy) + z2d cos

2(2πx + 2πy)
]
. (8.4)

Proof By the double product formula,

1

mn
ln det Ai = ln 2 + 1

mn

m−1∑

j=0

n−1∑

k=0

f (x j , yk), x j = j + αi

m
, yk = k + βi

n
, (8.5)
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with

f (x, y) = 1

2
ln

[
z2h sin

2(2πx) + z2v sin
2(2πy) + z2d cos

2(2πx + 2πy)
]
. (8.6)

Note that in (8.5) we were able to change the upper limit in the first sum from m
2 − 1 to

m − 1 due to the symmetries of sin2 x and cos2 x functions. The sum in (8.5) is a Riemann
sum and we evaluate its asymptotics by the Poisson summation formula. To that end, since
f (x + 1

2 , y) = f (x, y) and f (x, y + 1
2 ) = f (x, y), we expand f (x, y) into Fourier series

f (x, y) =
∑

(p,q)∈Z2

a(p, q)e2π i(px+qy), (8.7)

where

a(p, q) =
1∫

0

1∫

0

f (x, y)e−2π i(px+qy) dx dy. (8.8)

Then
1

mn

m−1∑

j=0

n−1∑

k=0

f (x j , yk) =
∑

(p,q)∈Z2

a(p, q)

mn

m−1∑

j=0

n−1∑

k=0

e2π i(px j+qyk ). (8.9)

Note that

1

m

m−1∑

j=0

e2π i px j = e2π i p
αi
m
1

m

m−1∑

j=0

e2π i p
j
m = e2π i p

αi
m ×

{
0, p �≡ 0 (mod m)

1, p ≡ 0 (mod m)
, (8.10)

and similarly,

1

n

n−1∑

k=0

e2π iqyk = e2π iq
βi
n
1

n

n−1∑

k=0

e2π iq
k
n = e2π iq

βi
n ×

{
0, q �≡ 0 (mod n)

1, q ≡ 0 (mod n)
. (8.11)

By substitutingEqs. (8.10) and (8.11) into Eq. (8.9)we obtain the Poisson summation formula

1

mn

m−1∑

j=0

n−1∑

k=0

f (x j , yk) =
∑

(s,t)∈Z2

a(ms, nt)e2π i(sαi+tβi )

= a(0, 0) +
∑′

(s,t)∈Z2

a(ms, nt)e2π i(sαi+tβi ).

(8.12)

We want to estimate Eq. (8.8). To that end assume that p > 0 and q ≥ 0 and because
f (x, y) is real analytic in x , we can integrate over the contour in Fig. 10 for some ε > 0. By
the Cauchy integral formula and the periodicity of f (x, y), it follows that

a(p, q) =
1∫

0

1∫

0

f (x, y)e−2π i(px+qy) dx dy

= e−2πεp

1∫

0

1∫

0

f (x − iε, y)e−2π i(px+qy) dx dy

= O (
e−2πεp) .

(8.13)
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Fig. 10 Contour of integration

If p < 0, then use the contour above reflected across the real axis to get

a(p, q) = O
(
e−2πε|p|) . (8.14)

We can likewise assume p ≥ 0 and |q| > 0 and perform the same reasoning with respect to
y to obtain

a(p, q) = O
(
e−2πε(|p|+|q|)) . (8.15)

From this equation and Eq. (8.12), we conclude that

1

mn

m−1∑

j=0

n−1∑

k=0

f (x j , yk) = a(0, 0) + r(m, n), (8.16)

where
|r(m, n)| ≤ C

∑′

(s,t)∈Z2

e−2πε(m|s|+n|t |) ≤ C0e
−2πε(m+n), C0 > 0. (8.17)

Returning to Eq. (8.5) we have that

1

mn
ln det Ai = ln 2 +

1∫

0

1∫

0

f (x, y) dx dy + O
(
e−2πε(m+n)

)
. (8.18)

From (8.18) it follows that for each i = 1, 2, 3, 4, we can write

det Ai = emnF
(
1 + O

(
e−c(m+n)

))
. (8.19)

Finally, from Eqs. (1.3) and (1.5) the claim follows. ��

9 Conclusion

In this paper we establish the signs of the Pfaffians Pf Ai in the dimer model on the triangular
lattice on the torus. We prove that Pf A1 < 0, while Pf Ai > 0 for i = 2, 3, 4. Our proof
is based on the Kasteleyn’s expressions for Pf Ai in terms of restricted partition sums Zrs

and on low weight expansions. As an application, we obtain an asymptotic expansion of the
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partition function in the limit as m, n → ∞. It would be interesting to extend the Pfaffian
Sign Theorem to other lattices on the torus.

As shown by Galluccio and Loebl [4], Tesler [13], and Cimasoni and Reshetikhin [2], the
dimer models on an orientable Riemann surface of genus g is expressed as a linear algebraic
combination of 22g Pfaffians. It is extended to non-orientable surfaces in the work of Tesler
[13]. The Pfaffian Sign Theorem in this general setting is another interesting open problem.

Acknowledgements The authors thank BarryMcCoy and Dan Ramras for useful discussions, and the referee
for a simplified proof of Theorem 5.2.

Appendix A: Proof of Lemma 2.1

We have that

σ ∪ σ ′ =
r⊔

i=1

γi . (A.1)

Since each vertex in γi is occupied by a dimer either from σ or σ ′, and the dimers in σ ∪ σ ′
alternate, we conclude that each γi is of even length.

By (2.15),
Pf A =

∑

σ∈�m,n

sgn (σ )w(σ). (A.2)

If we enumerate the vertices on �m,n , i.e. permute the set of vertices Vm,n, then by the
well-known fact (see e.g. [5]) that for an arbitrary matrix P of order mn × mn,

Pf (PAPT ) = det(P)Pf (A), (A.3)

we get
Pf ρ(A) = (−1)ρ Pf (A), (A.4)

whereρ is some permutation on Vm,n .Hereρ(A) denotes amatrix Awhose rows and columns
have been permuted by ρ. In other words,

Pf A =
∑

σ∈�m,n

sgn (σ )w(σ) =
∑

σ∈�m,n

(−1)ρ[sgn (σ )]ρw(σ), (A.5)

where [sgn (σ )]ρ indicates the sign of σ with respect to some new enumeration ρ of vertices.
From (A.5), we have that

sgn (σ ) = (−1)ρ[sgn (σ )]ρ. (A.6)

If we take any two configurations σ and σ ′, then (A.6) implies that

sgn (σ ) · sgn (σ ′) = [sgn (σ )]ρ · [sgn (σ ′)]ρ, (A.7)

i.e. the sign of σ ∪ σ ′ is invariant under any renumeration of vertices.
Let

ρ =
(

1 2 · · · n1 n1 + 1 · · · n1 + n2 · · · n1 + . . . + nr−1 + nr
v1,1 v1,2 · · · v1,n1 v2,1 · · · v2,n2 · · · vr,nr

)
, (A.8)

where v j,k ∈ {1, 2, . . . ,mn} denotes the k-th vertex of the j-th contour. Note that ρ is a
renumeration of vertices so that along each γi they are rearranged in a cyclical order, starting
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from one contour and continuing to the next one. Now, the underlying permutations π(σ)

and π(σ ′) with respect to ρ are then:

[π(σ)]ρ = Id, (A.9)

[π(σ ′)]ρ =
r∏

i=1

C(γi ), (A.10)

where

C(γi ) =
(

vi,1 · · · vi,ni
vi,2 · · · vi,1

)
. (A.11)

From this equation, Eq. (A.7), and the fact that each γi corresponds to a cycle of even length,
Lemma 2.1 follows.

Appendix B: Numerical Data for the Pfaffians Ai

In this Appendix we present numerical data for the Pfaffians Ai on the m × n lattices on the
torus for different valuesm and n. It is interesting to compare these data with the asymptotics
of the Pfaffians Ai , obtained in Sects. 6 and 7 above, and also with the identities Pf A1 =
−Pf A2, Pf A3 = Pf A4 for odd n, proven in Sect. 5.

The Pfaffians Ai for m = 4, n = 3.

Pf A1 = −4zhzd(3z
2
v + z2d)(4z

2
h + 3z2v + 3z2d),

Pf A2 = 4zhzd(3z
2
v + z2d)(4z

2
h + 3z2v + 3z2d),

Pf A3 = 2(z2h + z2d)[(2z2h + 3z2v)(2z
2
h + 3z2v + 4z2d) + z4d ],

Pf A4 = 2(z2h + z2d)[(2z2h + 3z2v)(2z
2
h + 3z2v + 4z2d) + z4d ].

The Pfaffians Ai for m = 4, n = 4.

Pf A1 = −256z2hz
2
vz

2
d(z

2
h + z2v + z2d),

Pf A2 = 16(z2v + z2d)
2(2z2h + z2v + z2d)

2,

Pf A3 = 16(z2v + z2d)
2(z2h + 2z2v + z2d)

2,

Pf A3 = 16(z2v + z2d)
2(z2h + z2v + 2z2d)

2.

The Pfaffians Ai for m = 4, n = 6.

Pf A1 = −16z2hz
2
d(4z

2
h + 3z2v + 3z2d)

2(3z2v + z2d)
2,

Pf A2 = 16z2v(4z
2
h + z2v + z2d)

2(z2h + z2v + z2d)(z
2
v + 3z2d)

2,

Pf A3 = 4(z2d + z2h)
2(z4d + 4z2d(2z

2
h + 3z2v) + (2z2h + 3z2v)

2)2,

Pf A4 = 4(z2d + z2h + 2z2v)
2(z4d + 8z2d z

2
h + 4z4h + 4z2d z

2
v + 4z2hz

2
v + z4v)

2.
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The Pfaffians Ai for m = 4, n = 8.

Pf A1 = −4096z2d z
2
hz

2
v(z

2
d + z2v)

2(z2d + z2h + z2v)(z
2
d + 2z2h + z2v)

2,

Pf A2 = 16(z4d + 6z2d z
2
v + z4v)

2(z4d + 8z4h + 8z2hz
2
v + z4v + 2z2d(4z

2
h + z2v))

2,

Pf A3 = 256(z2d + z2h)
2(z2h + z2v)

2(2z2d + z2h + z2v)
2(z2d + z2h + 2z2v)

2,

Pf A4 = 16(z4d + 2z4h + 4z2hz
2
v + z4v + 2z2d(2z

2
h + z2v))

2(z4d + 2z4h + 4z2hz
2
v

+ z4v + z2d(4z
2
h + 6z2v))

2.

The Pfaffians Ai for m = 6, n = 6.

Pf A1 = −4z2d(z
2
d + 3z2h)

2(z2d + 3z2v)
2(z2d + 3(z2h + z2v))

2(4z2d + 3(z2h + z2v))
2,

Pf A2 = 4z2v(3z
2
d + z2v)

2(3z2h + z2v)
2(3(z2d + z2h) + z2v)

2(3(z2d + z2h) + 4z2v)
2,

Pf A3 = 4z2h(3z
2
d + z2h)

2(z2h + 3z2v)
2(3z2d + z2h + 3z2v)

2(3z2d + 4z2h + 3z2v)
2,

Pf A4 = 4(z2d + z2h + z2v)
3(4z2d + z2h + z2v)

2(z2d + 4z2h + z2v)
2(z2d + z2h + 4z2v)

2.

The Pfaffians Ai for m = 8, n = 8.

Pf A1 = −1048576z2hz
2
vz

2
d(z

2
d + z2h)

2(z2d + z2v)
2(z2h + z2v)

2(z2d + z2h + z2v)(2z
2
d + z2h + z2v)

2

× (z2d + 2z2h + z2v)
2(z2d + z2h + 2z2v)

2,

Pf A2 = 256(z4d + 6z2d z
2
v + z4v)

2(z4d + 4z2d z
2
h + 2z4h + 2z2d z

2
v + 4z2hz

2
v + z4v)

2

× (z4d + 4z2d z
2
h + 2z4h + 6z2d z

2
v + 4z2hz

2
v + z4v)

2

× (z4d + 8z2d z
2
h + 8z4h + 2z2d z

2
v + 8z2hz

2
v + z4v)

2,

Pf A3 = 256(z4d + 6z2d z
2
h + z4h)

2(z4d + 2z2d z
2
h + z4h + 4z2d z

2
v + 4z2hz

2
v + 2z4v)

2

× (z4d + 6z2d z
2
h + z4h + 4z2d z

2
v + 4z2hz

2
v + 2z4v)

2(z4d + 2z2d z
2
h + z4h

+ 8z2d z
2
v + 8z2hz

2
v + 8z4v)

2,

Pf A4 = 256(2z4d + 4z2d z
2
h + z4h + 4z2d z

2
v + 2z2hz

2
v + z4v)

2

× (8z4d + 8z2d z
2
h + z4h + 8z2d z

2
v + 2z2hz

2
v + z4v)

2

× (z4h + 6z2hz
2
v + z4v)

2(2z4d + 4z2d z
2
h + z4h + 4z2d z

2
v + 6z2hz

2
v + z4v)

2.
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