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Abstract The linear response of a dynamical system refers to changes to properties of
the system when small external perturbations are applied. We consider the little-studied
question of selecting an optimal perturbation so as to (i) maximise the linear response of the
equilibrium distribution of the system, (ii) maximise the linear response of the expectation
of a specified observable, and (iii) maximise the linear response of the rate of convergence of
the system to the equilibrium distribution. We also consider the inhomogeneous, sequential,
or time-dependent situation where the governing dynamics is not stationary and one wishes
to select a sequence of small perturbations so as to maximise the overall linear response at
some terminal time. We develop the theory for finite-state Markov chains, provide explicit
solutions for some illustrative examples, and numerically apply our theory to stochastically
perturbed dynamical systems, where the Markov chain is replaced by a matrix representation
of an approximate annealed transfer operator for the random dynamical system.

Keywords Linear response · Markov chain · Transfer operator · Invariant measure ·
Observable · Decay of correlations · Ulam’s method · Optimization

1 Introduction

The notion of linear response crosses many disciplinary boundaries in mathematics and
physics. At a broad level, one is interested in how various quantities respond to small per-
turbations in the dynamics. Historically, this response is often studied through the changes
in the equilibrium probability distribution of the system. In certain cases, if the governing
dynamics varies according to a parameter, one can formally express the change in the equi-
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librium probability distribution as a derivative of the governing dynamics with respect to this
parameter.

Finite state Markov chains are one of the simplest settings in which to study formal linear
response, and earlywork includes Schweitzer [36] who stated response formulae for invariant
probability distributions under perturbations of the governing n ×n stochastic matrix P . The
perturbations in [36] were either macroscopic or infinitesimal, and in the latter case the
response was expressed as a derivative. Linear response has been heavily studied in the
context of smooth or piecewise smooth dynamical systems. In the case of uniformly (and
some nonuniformly) hyperbolic dynamics, there is a distinguished equilibrium measure, the
Sinai-Bowen-Ruelle (SBR) measure, which is exhibited by a positive Lebesgue measure
set of initial conditions. Ruelle [34] developed response formulae for this SBR measure for
uniformly hyperbolicmaps; thiswas extended to partially hyperbolicmaps byDolgopyat [13]
and to uniformly hyperbolic flows [9,35].Modern approaches to proving linear response, such
as [9,18,19] donot rely on coding techniques as in [34], butworkdirectlywith differentiability
properties of transfer operators acting on anisotropic Banach spaces. For expanding and/or
one-dimensional dynamics, linear response (and the lack thereof) for unimodalmaps [4,5] and
intermittent maps [2,6] has been treated; see also the surveys [3,28]. Linear response results
for stochastic systems usingMarkov (transfer) operator techniques have also been developed
[21] and linear response for inhomogeneous Markov chains have also been considered [8].
There is a great deal of activity concerning the linear (or otherwise) response of the Earth’s
climate system to external perturbations [1,10,33], and there have been recent extensions to
the linear response of multipoint correlations of observables [30].

Much of the theoretical focus on linear response has been on establishing that for various
classes of systems, there is a principle of linear response. Our focus in this work is in a
much less studied direction, namely, determining those perturbations that lead to maximal
response. This problem of optimizing response is of intrinsic mathematical interest, and
also has practical implications: not only is it important to establish the maximal sensitivity
of a system to small perturbations, but it is also of great interest to identify those specific
perturbations that provoke amaximal system response. For example, a common application of
linear response is the response of variousmodels of theEarth’s climate to external (man-made)
forcing. Mitigation strategies ought to specifically avoid those perturbations that lead to large
and unpredictable responses, and it is therefore important to be able to efficiently identify
these maximal response perturbations. This important avenue of research has relatively few
precedents in the literature. One exception is [38] who consider optimal control of Langevin
dynamics; using a linear response approach, they apply a gradient descent algorithm to
minimise a specified linear functional.

The questions we ask are: (i) What is the perturbation that provokes the greatest linear
response in the equilibrium distribution of the dynamics? (ii) What is the perturbation that
maximally increases the value of a specified linear functional? (iii) What is the perturbation
that has the greatest impact on the rate of convergenceof the system to equilibrium?Weanswer
these questions in the setting of finite state Markov chains, including the inhomogeneous
situation. Question (i) turns out to be the most difficult because of its non-convex nature: we
are maximising (not minimising) an �2 norm. We develop an efficient numerical approach,
based on solving an eigenproblem. We are able to solve questions (ii) and (iii) in closed
form, following some preliminary computations (solving a linear system and solving an
eigenproblem, respectively).

In the numerics section, we apply our results to Ulam discretisations of stochastically
perturbed dynamical systems in one dimension. These Ulam discretisations are large sparse
stochastic matrices and thus our previous results readily apply. We limit ourselves to one-
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Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems 1053

dimensional examples (dynamics on a circle or interval) to provide a clearer presentation
of the results, but there is no obstacle to carrying out these computations in two- or three-
dimensional systems. Examples of the types of dynamical systems that can be considered
are:

1. One has deterministic dynamics T : X → X , X = R
d with stochastic perturbations

that are an integral part of the model. There is a background i.i.d. stochastic process
{ξn}∞n=0, with the random variables ξ : � → X creating the perturbed dynamics xn+1 =
T (xn) + ξn , n ≥ 0.

2. One has a collection of deterministic maps {Tωn }∞n=0 which are composed in an i.i.d.
fashion: · · · ◦ Tωk · · · ◦ Tω2 ◦ Tω1 , where ω ∈ � is distributed according to a probability
measure P on �. In the special case where � ⊂ X = R

d and Tωi x = T x + ωi for some
fixed T , this situation coincides with the previous one with ωi = ξi .

In both cases, using the notation in point 2. above, one forms an annealed transfer operator
P f = ∫

�
PTω dP(ω). If � ⊂ X and P has density q with respect to Lebesgue measure we

may write

P f (x) =
∫

�

f (y)q(x − Tω y) d�(y). (1)

Under mild conditions (see Sect. 7) P : L2(X) → L2(X) is compact and has a unique fixed
point h, which can be normalised as

∫
X h(x) dx = 1 to form an invariant density of the

annealed stochastic dynamics. We refer the reader to Sect. 10.5 [26] for further background
on this type of stochastic dynamics. One can ask how to alter the stochastic kernel q , which
governs the stochastically perturbed dynamical system, to achieve maximal linear responses.

The first question we consider is “how should the new stochastic process be changed in
order to produce the greatest linear response to the L2 norm of h?”. Given a small change
in the kernel q we obtain a new invariant measure μ′. Denote δμ = μ′ − μ and δh the
density of δμ with respect to Lebesgue; we wish to select q so as to provoke the greatest
change δh in an L2 sense. One motivation for this question is to determine the maximal
sensitivity for all normalised observables c ∈ L2(X). One has |Eδμ(c)| ≤ ‖c‖L2 · ‖δh‖L2

and thus sup‖c‖L2≤1 |Eδμ(c)| ≤ ‖δh‖L2 . In certain situations, if the density h is important

in an energy sense, then the L2 norm of the response is important from an energy point
of view. In a recent article [17] consider expanding maps of the interval and determine the
perturbation of least (Sobolev-type) norm which produces a given linear response; see [24]
for further work on this problem. Here we study the question of finding the perturbation of
L2-unit size that produces the linear response of greatest L2 norm.

Second, we consider the problem of maximising linear response of a specific observable
c : X → R to a change in the stochastic perturbations. Given a small change in the kernel q
we obtain a new invariant measure μ′, and we compare Eμ(c) with Eμ′(c). How should the
stochastic process be changed in order that the expectation Eμ(c) increases at the greatest
rate? Put another way, which is the most “c-sensitive direction” in the space of stochastic
perturbations?

Third, we ask which perturbation of the kernel q produces the greatest change in the rate
of convergence to the equilibriummeasure of the stochastic process. This rate of convergence
is determined by the magnitude of the second eigenvalue λ2 of the transfer operatorP and we
determine the perturbation that pushes the eigenvalue farthest from the unit circle. Related
perturbative approaches include [15], where the mixing rate of (possibly periodically driven)
fluid flowswas increased by perturbing the advective part of the dynamics and solving a linear
program; [16], where similar kernel perturbation ideas were used to drive a nonequilibrium
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density toward equilibrium by solving a convex quadratic program with linear constraints;
and [20] where a governing flow is perturbed deterministically so as to evolve a specified
initial density into a specified final density over a fixed time duration, with the perturbation
determined as the numerical solution of a convex optimisation problem. In the current setting,
our perturbation acts on the stochastic part of the dynamics and we can find a solution in
closed form after some preliminary computations.

An outline of the paper is as follows. In Sect. 2 we set up the fundamentals of linear
response in finite dimensions. Section 3 tackles the problem of finding the perturbation that
maximises the linear response of the equilibrium measure in an �2 sense. We first treat the
easier case where the transition matrix for the Markov chain is positive, before moving to the
situation of a general irreducible aperiodic Markov chain. In both cases we provide sufficient
conditions for a unique optimum, and present explicit algorithms, including MATLAB code to
carry out the necessary computations. We illustrate these algorithms with a simple analytic
example. Section 4 solves the problem of maximising the linear response of the expectation
with respect to a particular observable, while Sect. 5 demonstrates how to find the perturbation
that maximises the linear response of the rate of convergence to equilibrium. In both of these
sections, we provide sufficient conditions for a unique optimum, present explicit algorithms,
code, and treat an analytic example. Section 6 considers the linear response problems for a
finite sequence of (in general different) stochastic transition matrices. Section 7 applies the
theory of Sect. 3–5 to stochastically perturbed one-dimensional chaotic maps. We develop a
numerical scheme to produce finite-rank approximations of the transfer (Perron-Frobenius)
operators corresponding to the stochastically perturbed maps. These finite-rank approxima-
tions have a stochastic matrix representation, allowing the preceding theory to be applied.

2 Notation and Setting

We follow the notation and initial setup of [29]. Consider a column stochastic transition
matrix M = (Mi j ) ∈ R

n×n of a mixing Markov chain on a finite state space {1, . . . , n}.
More precisely, we assume that M satisfies:

1. 0 ≤ Mi j ≤ 1 for every i, j ∈ {1, . . . , n};
2.
∑n

i=1 Mi j = 1 for every j ∈ {1, . . . , n};
3. there exists N ∈ N such that M N

i j > 0 for every i, j ∈ {1, . . . , n}.
Let hM = (h1, . . . , hn)� ∈ R

n denote the invariant probability vector of M , i.e. the prob-
ability vector such that MhM = hM . We note that the existence and the uniqueness of hM

follow from the above assumptions on M . Moreover, let us consider perturbations of M of
the form M + εm, where ε ∈ R and m ∈ R

n×n . In order to ensure that M + εm is also
a column stochastic matrix, we need to impose some conditions on m and ε. For a fixed
m = (mi j ) ∈ R

n×n , we require that

n∑

i=1

mi j = 0 for every j ∈ {1, . . . , n}. (2)

Furthermore, we assume that ε ∈ [ε−, ε+] and ε− < ε+, where

ε+: = max
ε

{ε ∈ R : Mi j + εmi j ≥ 0 for every i, j ∈ {1, . . . , n}}
and

ε−: = min
ε

{ε ∈ R : Mi j + εmi j ≥ 0 for every i, j ∈ {1, . . . , n}}.
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Let us denote the invariant probability vector of the perturbed transition matrix M + εm by
hM+εm . We remark that by decreasing

[
ε−, ε+

]
we can ensure that the invariant probability

vector hM+εm remains unique. If we write

hM+εm = hM +
∞∑

j=1

ε ju j , (3)

where ε ∈ R is close to 0, then u1 is defined as the linear response of the invariant probability
vector hM to the perturbation εm.

By summing the entries of both sides of (3) and comparing ε orders, we must have that
the column sum of the vector u1 is zero. On the other hand, since hM+εm is an invariant
probability vector of M + εm, we have that

(M + εm)

(

hM +
∞∑

j=1

ε ju j

)

= hM +
∞∑

j=1

ε ju j . (4)

By expanding the left-hand side of (4), we obtain that

(M + εm)

(

hM +
∞∑

j=1

ε ju j

)

= hM + ε(Mu1 + mhM ) + O(ε2).

Hence, it follows from (3) and (4) that the linear response u1 satisfies equations

(Id − M)u1 = mhM (5)

and
1�u1 = 0, (6)

where 1� = (1, . . . , 1) ∈ R
n . By Theorem 2 [23] the linear system (5)–(6) has the unique

solution given by
u1 = QmhM , (7)

where

Q =
(
Id − M + hM1�)−1

(8)

is the fundamental matrix of M .
We note that (7) is a standard linear response formula, holding in more general settings,

such as where M is replaced by a transfer operator with a spectral gap (see [3] and [18]). In
the rest of the paper, we will denote hM simply by h.

3 Maximizing the Euclidean Norm of the Linear Response of the
Invariant Measure

Our aim in this section is to find the perturbation m that will maximise the Euclidean norm
of the linear response. We will start by considering the case when M has all positive entries
and later we will deal with the general case when M ∈ R

n×n is the transition matrix of an
arbitrary mixing Markov chain.
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1056 F. Antown et al.

3.1 The Kronecker Product

In this subsection, we will briefly introduce the Kronecker product and some of its basic
properties. These results will be used to convert some of our optimization problems into
simpler, smaller, and more numerically stable forms.

Definition 1 Let A = (a1| . . . |an) = (ai j ) be an m × n matrix and B a p × q matrix. The
mp × nq matrix given by

⎛

⎜
⎝

a11B . . . a1n B
...

...

am1B . . . amn B

⎞

⎟
⎠

is called the Kronecker product of A and B and is denoted by A ⊗ B. Furthermore, the
vectorization of A is given by the vector

Â: =
⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠ ∈ R

mn .

The following result collects some basic properties of the Kronecker product.

Proposition 1 ([27]) Let A, B, C, D be m ×n, p ×q, n ×n and q ×q matrices respectively,
and let α ∈ R. Then, the following identities hold:

(i) (A ⊗ B)(C ⊗ D) = AC ⊗ B D;
(ii) αA = α ⊗ A = A ⊗ α;

(iii) (A ⊗ B)� = A� ⊗ B�, where A� denotes the transpose of A;
(iv) Rank(A ⊗ B) = (Rank(A)) · (Rank(B));
(v) let λ1, . . . , λn be the eigenvalues of C and μ1, . . . , μq be the eigenvalues of D. Then,

the nq eigenvalues of C ⊗ D are given by λiμ j , for i = 1, . . . , n and j = 1, . . . , q.
Moreover, if x1 . . . , xn are linearly independent right eigenvectors of C corresponding
to λ1, . . . , λn and y1 . . . , yq are linearly independent right eigenvectors of D corre-
sponding to μ1, . . . , μq , then xi ⊗ y j are linearly independent right eigenvectors of
C ⊗ D corresponding to λiμ j ;

(vi) for any n × p matrix E, we have ÂE B = (B� ⊗ A)Ê .

3.2 An Alternative Formula for the Linear Response of the Invariant Measure

As a first application of the Kronecker product, we give an alternative formula for the linear
response (7). Using Proposition 1(vi) and noting that Qmh is an n × 1 vector, we can write

Qmh = Q̂mh =
(
h� ⊗ Q

)
m̂ = W m̂, (9)

where W = h� ⊗ Q. The dimension of W is n × n2. We now have two equivalent formulas
for the linear response: (7) in terms of the matrix m and (9) in terms of the vectorization m̂.
In Sects. 3.3 and 3.4 of the paper, the formula (9) will be predominately used.

3.3 Positive Transition Matrix M

Wefirst suppose that the transition matrix is positive, i.e. Mi j > 0 for every i, j ∈ {1, . . . , n}.
In some situations, positivity is a strong assumption; in Sect. 3.4 we handle general (aperiodic
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and irreducible) stochastic M . We will find the perturbation m that maximises the Euclidean
normof the linear response.More precisely, we consider the following optimization problem:

max
m∈Rn×n

‖Qmh‖22 (10)

subject to m�1 = 0 (11)

‖m‖2F − 1 = 0, (12)

where ‖ · ‖2 is the Euclidean norm and ‖ · ‖F is the Frobenius norm defined by ‖A‖2F =∑
i
∑

j |ai j |2, for A = (ai j ).We note that the constraint (11) corresponds to the condition (2),
while (12) is imposed to ensure the existence (finiteness) of the solution. Furthermore, we
observe that a solution to the above optimization problem exists since we are maximising a
continuous function on a compact subset of R

n×n .

3.3.1 Reformulating the Problem (10)–(12) in Vectorized Form

Webegin by reformulating the problem (10)–(12) in order to obtain an equivalent optimization
problem over a space of vectors as opposed to a space of matrices. Using (9), we can write
the objective function in (10) as ‖W m̂‖22. Similarly, we can rewrite the constraint (11) in
terms of m̂. More precisely, we have the following auxiliary result. Let Idn denote an identity
matrix of dimension n.

Lemma 1 The constraint (11) can be written in the form Am̂ = 0, where A is an n × n2

matrix given by
A = Idn ⊗ 1�. (13)

Proof We have that 1�m is a 1 × n vector and thus ̂1�m = m�1. Furthermore, using

Proposition 1(vi) we have that m�1 = ̂1�m = ̂1�mIdn = (Idn ⊗ 1�) m̂ = Am̂. 
�
We also observe that ‖m‖2F = ∑

i
∑

j |mi j |2 = ‖m̂‖22. Consequently, we can rewrite
constraint (12) in terms of the Euclidean norm of the vector m̂. Let A be as in (13). Our
optimization problem (10)–(12) is therefore equivalent to the following:

max
m̂∈Rn2

‖W m̂‖22 (14)

subject to Am̂ = 0 (15)

‖m̂‖22 − 1 = 0. (16)

3.3.2 Reformulating the Problem (14)–(16) to Remove Constraint (15)

Finally, we reformulate the problem (14)–(16) to solve it as an eigenvalue problem. Consider
the subspace V of R

n2 given by

V =
{
x ∈ R

n2 : Ax = 0
}

. (17)

We can write V as V = span{v1, . . . , v�}, where vk ∈ R
n2 , k ∈ {1, . . . , �} form a basis of

V . Note that � = n2 − n. Indeed, it follows from Proposition 1(iv) and (13) that Rank(A) =
Rank(Idn)Rank(1�) = n, and thus by the rank-nullity theorem we have that � = n2 − n.

Taking m̂ ∈ V and writing
E = (v1| . . . |v�), (18)
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1058 F. Antown et al.

we conclude that there exists a unique α ∈ R
� such that m̂ = Eα. Hence, α = E+m̂, where

E+ denotes the left inverse of E given by E+: = (E�E)−1E�. Note that since E has full
rank, we have that E�E is non-singular (see p.43, [7]) and therefore E+ is well-defined.
Using the above identities, we obtain

W m̂ = W Eα = W E E+m̂. (19)

Let
U = W E E+. (20)

Since the only assumption on m̂ was that m̂ ∈ V , the problem (14)–(16) is equivalent to the
following:

max
m̂∈Rn2

‖Um̂‖22 (21)

subject to ‖m̂‖22 − 1 = 0. (22)

The solution m̂∗ to the problem (21)–(22) is the ‖ · ‖2-normalised eigenvector corresponding
to the largest eigenvalue of the � × � matrix U�U (see p.281, [31]).

In the particular case when {v1, . . . , v�} is an orthonormal basis of V , we have that
E�E = Id� and therefore ‖m̂‖22 = α�E�Eα = α�α = ‖α‖22. Using (19), we conclude
that the optimization problem (21)–(22) further simplifies to

max
α∈R�

‖Ũα‖22 (23)

subject to ‖α‖22 − 1 = 0, (24)

where
Ũ = W E . (25)

The solution α∗ to (23)–(24) is the eigenvector corresponding to the largest eigenvalue of
Ũ�Ũ . Finally, we note that the relationship between solutions of (21)–(22) and (23)–(24) is
given by

m̂∗ = Eα∗. (26)

3.3.3 An Optimal Solution and Optimal Objective Value

For positive M , we can now derive an explicit expression for E and thus obtain an explicit
form for the solution of the optimization problem (10)–(12). We will do this by considering
the reformulation (23)–(24) of our original problem (10)–(12). Let V0 denote the null space
of 1�. An orthonormal basis for V0 is the set {x1, . . . , xn−1}, where

xi = x̃i

‖̃xi‖2 , for i ∈ {1, . . . , n − 1} (27)

and

x̃1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
−1
0
...
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x̃2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

−2
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, . . . , x̃n−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
...
...
...

1
−(n − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (28)
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Let B be an n × (n − 1) matrix given by

B = (x1| . . . |xn−1). (29)

Therefore, we can take
E = Idn ⊗ B (30)

in (18). Using Proposition 1(i), (9) and (25), we have Ũ = W E = h� ⊗ Q B. Hence, it
follows from Proposition 1(i) and (iii) that Ũ�Ũ = hh� ⊗ B�Q�Q B. By Proposition 1(v),
the eigenvector corresponding to the largest eigenvalue λ of Ũ�Ũ is given by α∗ = h ⊗ y,
where y is the eigenvector corresponding to the largest eigenvalue (which we denote by κ) of
an (n −1)× (n −1) matrix B�Q�Q B. From Proposition 1(v), λ = κ‖h‖22 is the eigenvalue
corresponding to α∗. Hence, it follows from (26) and (30) that an optimal perturbation is

m̂∗ = Eα∗ = (Idn ⊗ B)(h ⊗ y) = h ⊗ By. (31)

Note that this expression for m̂∗ is an improvement over computing an eigenvector of the
(n2 − n) × (n2 − n) matrix Ũ�Ũ because we only need to find y, which is an eigenvector
of an (n − 1) × (n − 1) matrix.

Taking into account (22), we must have ‖m̂∗‖22 = 1 and thus

1 = m̂∗�m̂∗ = (h�h)(y� B� By) = ‖h‖22 · ‖y‖22,
as B� B = Idn−1 (columns of B form an orthonormal basis of V0). So, y must satisfy

‖y‖22 = 1

‖h‖22
. (32)

Finally, using Proposition 1(ii), (9) and (31), we obtain

W m̂∗ = (h� ⊗ Q)(h ⊗ By) = h�hQ By = ‖h‖22Q By,

and therefore the optimal objective value is

‖W m̂∗‖22 = ‖h‖42y� B�Q�Q By = ‖h‖42y� (κy) = κ‖h‖42 · ‖y‖22 = κ‖h‖22 = λ. (33)

We impose the normalization condition (32) for y throughout the paper when dealing with
positive M . Note that replacing m̂∗ with −m̂∗ in (33) yields the same Euclidean norm of the
response.

The issue of dependency of optimal solutions m̂∗ and optimal objective values λ on the
selected set of orthonormal columns for B will be treated in full generality in Proposition 4.
There we show the optimal objective value is independent of the orthonormal basis vectors
forming the columns of B (or alternatively the columns of E), and provide a sufficient
condition for an optimal m∗ to be independent of this choice (up to sign).

3.4 General Transition Matrix M for Mixing Markov Chains

In the general setting, when M is a transition matrix of an arbitrary mixing Markov chain,
we consider the following optimization problem:

max
m∈Rn×n

‖Qmh‖22 (34)

subject to m�1 = 0 (35)

‖m‖2F − 1 = 0 (36)

mi j = 0 if Mi j = 0 or 1. (37)
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The (complicating) constraint (37) models the natural situation of probabilistic fluctuations
occurring only where nonzero probabilities already exist. We note that the solution to the
optimization problem (34)–(37) exists since we are again maximising a continuous function
on a compact subset of R

n×n .

3.4.1 Reformulating the Problem (34)–(37) in Vectorized Form

As in the positive M case, we want to find a matrix A so that the constraints (35) and (37) can
be written in terms of m̂ in the linear form (15). LetM: = {i : M̂i ∈ {0, 1}}= {γ1, . . . , γ j } ⊂
{1, 2, . . . , n2}, where M̂ denotes the vectorization of M . Proceeding as in the proof of
Lemma 1, it is easy to verify that constraints (35) and (37) can be written in the form (15),
where A is a k × n2 matrix (k ≥ n) given by

A =

⎛

⎜
⎜
⎜
⎝

Idn ⊗ 1�
e�
γ1
...

e�
γ j

⎞

⎟
⎟
⎟
⎠

, (38)

where the ei s in (38) are the i-th standard basis vectors in R
n2 . As in the positive M case,

the term Idn ⊗ 1� in (38) corresponds to the constraint (35), while all other entries of A are
related to constraints (37). We conclude that we can reformulate the optimization problem
(34)–(37) in the form (14)–(16) with A given by (38).

3.4.2 Explicit Construction of an Orthonormal Basis of the Null Space of the Matrix A
in (38)

Proceeding as in the positive M case, wewant to simplify the optimization problem (14)–(16)
by constructing a matrix E as in (18), whose columns form an orthonormal basis for the null
space of A. We first note that E is an n2 × � matrix, where � is the nullity of A. Let us begin
by computing � explicitly.

Lemma 2 The nullity of the matrix A in (38) is n2 − (n + n1), where n is the dimension of
the square matrix M and n1 is the number of zero entries in M.

Proof Let Y = {v = (v1, . . . , vn) ∈ R
n : vi = 1 for some 1 ≤ i ≤ n}. Assume first that M

doesn’t contain any columns that belong to Y and considerM j , the j-th column of M . Note
that the j-th row of A is given by

(0, . . . , 0
︸ ︷︷ ︸

n( j−1)

, 1, . . . , 1
︸ ︷︷ ︸

n

, 0, . . . , 0
︸ ︷︷ ︸

n(n− j)

). (39)

On the other hand, for every zero inM j , we have the following row in A

(0, . . . , 0
︸ ︷︷ ︸

n( j−1)

, 0, . . . , 0, 1, 0, . . . , 0
︸ ︷︷ ︸

n

, 0, . . . , 0
︸ ︷︷ ︸

n(n− j)

), (40)

where 1 is in a position corresponding to the position of the zero entry inM j . SinceM j /∈ Y ,
we have that the number of rows of the form (40) in A is atmost n−2. Therefore, we obviously
have that the set spanned by row (39) and rows (40) is linearly independent. Moreover, since
all other rows of A have only zeros on places where vectors in (39) and (40) have nonzero
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entries and since j was arbitrary, we conclude that rows of A are linearly independent and
that Rank(A) = n + n1. This immediately implies that the nullity of A is n2 − (n + n1).

The general case when M can have columns that belong to Y can be treated similarly.
Indeed, it is sufficient to note that each M j ∈ Y will generate n + 1 rows in A (given again
by (39) and (40)) but only form a subspace of dimension n = 1 + (n − 1) and n − 1 is
precisely the number of zero entries inM j . 
�
For A given by (38) written in the form

A = (A1| . . . |An), where Ai ∈ R
k×n, (41)

let V be defined as in (17). We aim to construct a matrix E as in (18) whose columns form an
orthonormal basis for V . We first need to introduce some additional notation. For a matrix
J ∈ R

p1×p2 and a set L = {l1, . . . , ls} ⊂ {1, . . . , p1}, we define J [L] to be the matrix
consisting of the rows l1, . . . , ls of J . We note that J [L] is an s × p2 matrix.

Note that Ai in (41) can be written as

Ai =

⎛

⎜
⎜
⎜
⎜
⎝

0i1×n

1�
n

0i2×n

Idn[Ri ]
0i3×n

⎞

⎟
⎟
⎟
⎟
⎠

, (42)

where Ri : = { j : M ji ∈ {0, 1}} and for some ic ∈ {0, 1, . . . , n2}, c ∈ {1, 2, 3} such that
∑3

c=1 ic = k −|Ri |−1; recall A has k rows (see (38)). It follows from (42) that the null space

of Ai is the same as the null space of the matrix Ãi : =
(

1�
n

Idn[Ri ]
)

. Let ri ∈ {0, . . . , n − 1}
denote the number of zeros in the i-th column of M . It follows from the arguments in the
proof of Lemma 2 that

Rank( Ãi ) = ri + 1. (43)

In particular, when ri = n − 1, the nullity of Ãi is zero.
The first step in constructing an explicit E is provided by the following result, where

diag(B1, . . . , Bn) denotes the block matrix with diagonal blocks B1, . . . , Bn .

Proposition 2 Define the matrix E = diag(B1, . . . , Bn), where Bi is the matrix whose
columns form an orthonormal basis of the null space of Ai (if this null space is trivial, we
omit the block Bi ). The columns of E form an orthonormal basis for the null space of A.

Proof We begin by showing that V = null(A) ⊂ col(E) (the column space of E). For
w ∈ V , we write w = (w�

1 , . . . ,w�
n )�, where wi ∈ R

n for 1 ≤ i ≤ n. From (41) we have
that Aw =∑n

i=1 Aiwi . Using (42), we have

Aiwi =

⎛

⎜
⎜
⎜
⎜
⎝

0i1×n

1�
n wi

0i2×n

wi [Ri ]
0i3×n

⎞

⎟
⎟
⎟
⎟
⎠

, and thus Aw =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1�
n w1
...

1�
n wn

w1[R1]
...

wn[Rn]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As Aw = 0, we conclude that Aiwi = 0 for each i ∈ {1, . . . , n}. Thus each wi can be
written as a linear combination of columns of Bi and therefore w can be written as a linear
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combination of columns of E ; thus V ⊂ col(E). The orthonormality of the columns of E
follows from the orthonormality of the columns of Bi . As Bi has full column rank, the number
of columns of E equals the sum of the rank of the Bi s. The number of columns of E can
be computed as

∑n
i=1Rank(Bi ) =

∑n
i=1Nullity(Ai ) =

∑n
i=1 n−Rank(Ai ) = n2 − (n + n1)=

Nullity(A), where the second last equality follows from (43) and the fact that n1 =∑n
i=1 ri ,

and the last equality follows from Lemma 2. Thus, the columns of E form a basis for the null
space of A. 
�

The final step is to construct the matrices Bi , 1 ≤ i ≤ n, explicitly.

Proposition 3 Assume that ri < n−1 and let B̃i = (x1| . . . |x(n−1)−ri ) ∈ R
(n−ri )×((n−1)−ri ),

where xi form the orthonormal basis of the null space of 1�
n−ri

having the form (27). Fur-

thermore, let Bi ∈ R
n×((n−1)−ri ) be a matrix defined by the conditions:

Bi [Ri ] = 0ri ×((n−1)−ri ) and Bi [{1, . . . , n} \ Ri ] = B̃i . (44)

The columns of Bi form an orthonormal basis for the null space of Ai .

Proof As the null spaces of matrices Ai and Ãi coincide, it is sufficient to show that columns
of Bi form an orthonormal basis for the null space of Ãi . We first note that the orthonormality
of x1, . . . , xn−1−ri in R

n−ri directly implies that the columns of Bi form an orthonormal set
inR

n , since the j-th column of Bi is built from x j by adding zeroes on appropriate places that
are independent of j . Furthermore, since x1, . . . , xn−1−ri are in the null space of 1�

n−ri
, we

have that the columns of Bi belong to the null space of 1�
n . Moreover, it follows from the first

equality in (44) that columns of Bi are also orthogonal to all other rows of Ãi . Consequently,
we conclude all columns of Bi lie in the null space of Ãi . Finally, by (43) we have that the
nullity of Ãi is n − ri − 1 which is the same as the number of columns of Bi and therefore
columns of Bi span the null space of Ãi . 
�

Using Propositions 2 and 3, and exploiting block structure we can arrive at a computa-
tionally convenient form of Ũ = W E : First, noting that h� ⊗ Q = (1 ⊗ Q)(h� ⊗ Idn) =
Q(h� ⊗ Idn), using Proposition 1(i) and (ii), respectively, we have

Ũ = W E = (h� ⊗ Q)E = Q(h� ⊗ Idn)diag(B1, . . . , Bn) = Q(h1B1| . . . |hn Bn), (45)

using (9) for the second equality and Proposition 2 for the third equality.

3.4.3 Solution to the Problem (34)–(37)

Now that we have constructed an appropriate E (Proposition 2 gives the form of E and
Proposition 3 provides the specific components of E), we can reformulate our problem (14)–
(16) (with the matrix A in (38)), to obtain the optimization problem (23)–(24) with Ũ as in
(45). A vectorized solution to (34)-(37) is given by m̂∗ as in (26), where α∗ again denotes
the eigenvector corresponding to the largest eigenvalue, λ, of the matrix Ũ�Ũ . As for the
positive M case, we have that both m∗ and −m∗ yield the same Euclidean norm of the
response (34). Finally, the optimal value may be calculated as ‖Qm∗h‖22 = ‖W m̂∗‖22 =
‖W Eα∗‖22 = ‖Ũα∗‖22 = λα∗�α∗ = λ, where the first three equalities follow by (9), (26)
and (25), respectively.
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3.4.4 A Sufficient Condition for a Unique Optimal Solution and Independence of the
Choice of Basis of the Null Space of A

The following result provides an easily checkable sufficient condition (simplicity of the
leading eigenvalue of Ũ�Ũ ) for the uniqueness of the solutionm∗ (up to sign) to the problems
(10)–(12) and (34)–(37). Under this condition, the specific choice of basis for the null space
of the constraint matrix A is unimportant, and the m∗ computed in Algorithms 1 and 2 in
Sect. 3.5 is independent of this basis choice. Recall that W = h� ⊗ Q and A is the matrix
of equality constraints (i.e. Am̂∗ = 0).

Proposition 4 Consider two distinct orthonormal bases for the null space of A and construct
matrices E1 �= E2 from these bases as in (18).

1. The matrices Ũ�
i Ũi (for Ũi = W Ei ), i = 1, 2 are similar.

2. If the largest eigenvalue λ1 of Ũ�
1 Ũ1 is simple, let α∗

i denote the eigenvector of Ũ�
i Ũi

corresponding to λ1, normalised so that ‖α∗
i ‖2 = 1, i = 1, 2. One has m̂∗

1 equals m̂∗
2,

up to sign, when computed with (26).

Proof As the columns of E1 and the columns of E2 span the same space, there exists some
matrix R ∈ R

�×� such that E2 = E1R. Noting that E�
i Ei = Id�, i = 1, 2, we have

that Id� = E�
2 E2 = R�E�

1 E1R = R� R; using the fact that R is square, we also have
that R� = R−1 and hence R is orthogonal. As Ũ�

1 Ũ1 = E�
1 W �W E1 and Ũ�

2 Ũ2 =
R−1E�

1 W �W E1R, the matrices Ũ�
1 Ũ1 and Ũ�

2 Ũ2 are similar. Using α∗
1 = ±Rα∗

2 we
obtain m̂∗

1 = E1α
∗
1 = ±E1Rα∗

2 = ±E2α
∗
2 = ±m̂∗

2. 
�
3.5 Computations

In this section, we will discuss computational aspects of the content presented so far. We
provide separate algorithms for positive M and general stochastic (mixing) M : Algorithms
1 and 2 respectively.

3.5.1 Algorithms for Solving (10)–(12) and (34)–(37)

We first present the algorithm for finding the solution m∗ of the problem (10)–(12).
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Algorithm 1

1. Compute h as the invariant probability
vector of the stochastic matrix M .

2. Construct the matrix B from sec-
tion 3.3.3. We use the specific basis
defined in (27) and (28).

3. Compute Q B = (Idn − M +h1�)−1B.
4. Compute the singular vector y corre-

sponding to the largest singular value
of Q B (this is the eigenvector cor-
responding to the (assumed simple)
largest eigenvalue of B�Q�Q B dis-
cussed in section 3.3.3). Normalise y so
that ‖y‖22 = 1

‖h‖2 (from (32)).

5. Form the matrix m∗ = Byh� (from
(31)).

Matlab Code

function [m,h] = opt_lin_resp(M)
n=length(M);
%Step 1
[V,D] = eigs(M,1);
h = V;
h = h/sum(h);

%Step 2
B = triu(ones(n))-diag([1:n-1],-1);
B(:,n) = [];
B = sparse(normc(B));

%Step 3
QB = inv(eye(n)-M+h*ones(1,n))*B;

%Step 4
[U2,D2,V2] = svds(QB,1);
y = 1/(norm(h)*norm(V2))*V2;
%Step 5
m = B*y*h’;
end

Next, we state the algorithm for solving (34)–(37).
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Algorithm 2

1. Compute h as the invariant probability
vector of the stochastic matrix M .

2. Construct the matrix B from sec-
tion 3.3.3. We use the specific basis
defined in (27) and (28).

3. Define thematrix Ũ ∈ R
n×�, where � =

n2 − (n + n1) (with n1 equal the num-
ber of zeroes in M) is the nullity of the
matrix A in Lemma 2. For Q = (Idn −
M+h1�)−1 and using (45)we compute
Ũ = Q(h1B1| . . . |hn Bn), where Bi is
given in Proposition 3. (Note that the
indices j1 and j2 in this step in the code at
the right provide the column index range
used to determine where hi Bi belongs
in (h1B1| . . . |hn Bn)).

4. Compute the singular vector α∗ corre-
sponding to the largest singular value of
Ũ (the eigenvector corresponding to the
(assumed simple) largest eigenvalue of
Ũ�Ũ ).The commandsvdsecon1 can
replace svds for large matrices U .

5. Calculate m∗ = [m̂∗
1| . . . |m̂∗

1] where
⎛

⎜
⎝

m̂∗
1
...

m̂∗
n

⎞

⎟
⎠ = m̂∗ = Eα∗ =

⎛

⎜
⎝

B1α
∗
1

...

Bnα∗
n

⎞

⎟
⎠ ,

α∗ =
⎛

⎜
⎝

α∗
1
...

α∗
n

⎞

⎟
⎠ and Bi is given in Propo-

sition 3. In the second and third equality
above, we used (26) and Proposition 2
respectively. (Note that in this step, the
indices j1 and j2 in the code at the right
track the length of the vectors α∗

i for
i = 1, . . . , n)

Matlab Code

function [m,h] = opt_lin_resp(M)
n=length(M);
%Step 1
[V,D] = eigs(M,1);
h = V;
h = h/sum(h);
%Step 2
B = triu(ones(n))-diag([1:n-1],-1);
B(:,n) = [];
B = sparse(normc(B));

%Step 3
n1 = length(find(M==0));
ell = nˆ2-(n+n1);
U = zeros(n,ell);
j1 = 1;
j2 = 0;
for i=1:n

R = find(M(:,i)==0);
r = length(R);
if r˜= n-1

B_i = zeros(n,n-r-1);
R2 = setdiff([1:n],R);
r2 = length(R2);
B_i(R2,:) = B(1:r2,1:(r2-1));
j2 = j2+n-r-1;
U(:,j1:j2) = h(i)*B_i;
j1 = j2+1;

end
end
M_inf = h*ones(1,n);
Q = inv(eye(n)-M+M_inf);
U = Q*U;
%Step 4
[U2,D2,V2] = svds(U,1);

%Step 5
m = sparse(n,n);
j1=1;
j2=0;
for i=1:n

R = find(M(:,i)==0);
r = length(R);
j2=n-r-1+j2;
if r˜= n-1

B_i = zeros(n,n-r-1);
R2 = setdiff([1:n],R);
r2 = length(R2);
B_i(R2,:)=B(1:r2,1:(r2-1));
m(:,i) = B_i*V2(j1:j2);

else
m(:,i) = sparse(n,1);

end
j1=j2+1;

end
end

1 Available at http://au.mathworks.com/matlabcentral/fileexchange/47132-fast-svd-and-pca?focused=
3826525&tab=function
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3.6 Analytic Example

We now explicitly construct the solution for the problem (34)-(37) when M ∈ R
2×2. Since

M is column stochastic and the columns of m sum to zero, we can write

M =
(

M11 M12

M21 M22

)

=
(
1 − M21 M12

M21 1 − M12

)

and

m =
(

m11 m12

m21 m22

)

=
(

m11 −m22

−m11 m22

)

.

We first note that without any loss of generality, we can assume that M is positive. Indeed,
if M11 = 0 then by (36) and (37), we have that m11 = 0 and m22 = ± 1√

2
. Similarly, if

M22 = 0 then m22 = 0 and m11 = ± 1√
2
. Furthermore, we note that M11 �= 1 and M22 �= 1

since otherwise M would not be a transition matrix of an ergodic Markov chain. One may
calculate that

m∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
2(M2

12+M2
21)

(
M12 M21

−M12 −M21

)

, if M12 ≥ M21;
1√

2(M2
12+M2

21)

(−M12 −M21

M12 M21

)

, if M21 > M12,

(46)

u1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
M2

12+M2
21

(M12+M21)2

(
1√
2

− 1√
2

)

, if M12 ≥ M21;
√

M2
12+M2

21

(M12+M21)2

(− 1√
2

1√
2

)

, if M21 > M12,

(47)

and

‖u1‖22 = M2
12 + M2

21

(M12 + M21)4
.

We see from (47) that the greatest �2 response of the invariant probability vector h =
(M12, M21)/(M12 + M21) is achieved by increasing whichever of M12 or M21 is great-
est. Furthermore, as expected h is most sensitive when M is near diagonal. The minimum
value of ‖u1‖22 occurs when M12 = M21 = 1 (value of 1/8) and increases with decreasing
values of M12 and M21. There is a singularity at M12 = M21 = 0 when the second eigenvalue
merges with the eigenvalue 1; see Fig. 1.

4 Maximising the Linear Response of the Expectation of an Observable

In this section, we consider maximizing the linear response of the expected value of a cost
vector c with respect to the invariant probability vector h. The computations developed in
this section will be used in Sect. 7 to solve a discrete version of the problem of maximizing
the linear response of an observable with respect to the invariant measure of a stochastically
perturbed dynamical system.

We recall that the linear response to the invariant probability vector h of an irreducible,
aperiodic transition matrix M , under a perturbation matrix m, is denoted by u1. We wish to
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Fig. 1 Contour plot of loge(‖u1‖22 = loge((M2
12 + M2

21)/(M12 + M21)
4)) from Sect. 3.6

select a perturbation matrix m so that we maximise cT u1. For c ∈ R
n , using (7), we consider

the following problem:

max
m∈Rn×n

c�Qmh (48)

subject to m�1 = 0 (49)

‖m‖2F − 1 = 0 (50)

mi j = 0 if (i, j) ∈ N , (51)

where N = {(i, j) ∈ {1, . . . , n}2 : Mi j = 0 or 1}. Note that as mi j takes the value 0 for all
(i, j) ∈ N , we just need to determine mi j for (i, j) /∈ N .

We employ Lagrangemultipliers (see e.g. Sects. 12.3–12.5 [32]). Consider the Lagrangian
function

L(m, �, ν) = w�mh − ��m�1 − ν(‖m‖2F − 1), (52)

where w� = c�Q ∈ R
n and � ∈ R

n, ν ∈ R are the Lagrange multipliers. Differentiating
(52) with respect to mi j , we obtain

∂L

∂mi j
(m, �, ν) = wi h j − � j − 2νmi j .

Using thefirst-order optimality (KKT) conditions from themethodofLagrangemultipliers
(e.g. Theorem 12.1 [32]) we require

wi h j − � j − 2νmi j = 0 for (i, j) /∈ N , (53)
∑

i :(i, j)/∈N

mi j = 0 for j ∈ {1, . . . , n}, (54)
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‖m‖F = 1, and a regularity condition (LICQ).2 Equation (53) yields � j = −2νmi j + wi h j

for (i, j) /∈ N . Using (54), we calculate
∑

i :(i, j)/∈N

� j = |N c
j |� j = h j

∑

i :(i, j)/∈N

wi ,

where N c
j = {i : (i, j) /∈ N }. Thus, substituting � j = (h j/|N c

j |)
∑

l:(l, j)/∈N wl we obtain

m∗
i j = −� j + wi h j

2ν
= h j

2ν

⎛

⎝wi − 1

|N c
j |

∑

l:(l, j)/∈N

wl

⎞

⎠ . (55)

We now scale ν to ensure ‖m∗‖F = 1. The matrix m∗ satisfies the first-order equality
constraints (49)–(51) and ∂L

∂mi j
(m∗, �, ν) = 0 for (i, j) /∈ N . Finally, we determine the sign

of ν by checking the standard sufficient second order conditions for m∗
i j to be a maximiser

(namely (57) below); see e.g. Theorem 12.6 [32]. We compute

∂2L

∂mi j∂mkl
(m∗, �, ν) = −2νδ(i, j),(k,l); (56)

thus, the Hessian matrix of the Lagrangian function is H(m∗, �, ν) = −2ν Idn2−|N |. If ν > 0
one has

s� H(m∗, �, ν)s < 0, (57)

for any s ∈ R
n2−|N | \ {0} (indeed for any s ∈ R

n2 \ {0}).
4.1 Algorithm for Solving Problem (48)–(51)

We can solve problem (48)–(51) using the following algorithm.

Algorithm 3

1. Compute the invariant probability vec-
tor h of the stochastic matrix M .

2. Solve
(
Idn − M + h1�)� w = c for w.

3. Calculate m∗
i j according to (55), where

ν = ‖m∗‖F .

Matlab Code

function m = opt_lin_resp_obs(M,c)
n=length(M);

%Step 1
[V,D] = eigs(M,1);
h = V;
h = h/sum(h);

%Step 2
Z = eye(n)-M+h*ones(1,n);
w = Z’\c;

%Step 3
m = zeros(n);
for j=1:n

N_j = find(M(:,j)>10ˆ-7);
if(length(N_j) > 1)

m(N_j,j) = h(j)*(w(N_j)
- mean(w(N_j)));

end
end
m = m./(norm(m,’fro’));
end

2 The regularity condition is that the gradients of all (equality) constraints are linearly independent at the local
optimum. A proof of this fact is in Appendix 1.
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Remark 1 When M is large, but sparse, to avoid creating the full matrix h1� in Step 2 above,
one can replace Step 2 with: Solve the following (sparse) linear system for w

(
Idn − M�

h�
)

w =
(
c − (h�c)1

h�c

)

. (58)

4.2 Analytic Example

Suppose that M ∈ R
2×2 and we would like to solve (48)–(51) for c ∈ R

2, c �= a1, where
a ∈ R. As in the example in Sect. 3.6, we only need to consider the case when M is positive.
Let w = Q�c; one may calculate that

m∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
2(M2

12+M2
21)

(
M12 M21

−M12 −M21

)

, if w1 > w2;
1√

2(M2
12+M2

21)

(−M12 −M21

M12 M21

)

, if w2 > w1,

(59)

and

c�u1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
M2

12+M2
21√

2(M12+M21)2
(c1 − c2), if w1 > w2;

√
M2

12+M2
21√

2(M12+M21)2
(c2 − c1), if w2 > w1.

(60)

5 Maximising the Linear Response of the Rate of Convergence to
Equilibrium

In this section, we consider maximizing the linear response of the rate of convergence of
the Markov chain to its equilibrium measure. We achieve this by maximizing the linearised
change in themagnitude of the (assumed simple) second eigenvalueλ2 of the stochasticmatrix
M . The computations in this section will be applied in Sect. 7 to solve a discrete version of the
problem ofmaximizing the linear response of the rate of convergence to equilibrium for some
stochastically perturbed dynamical system. A related perturbative approach [15] increases
the mixing rate of (possibly periodically driven) fluid flows by perturbing the advective part
of the dynamics and solving a linear program to increase the spectral gap of the generator
(infinitesimal operator) of the flow. In [16] kernel perturbations related to those used in Sect. 7
were optimised to drive a nonequilibrium density toward equilibrium by solving a convex
quadratic program with linear constraints.

Because M is irreducible and aperiodic, λ1 = 1 is the only eigenvalue on the unit circle.
Let λ2 ∈ C be the eigenvalue of M strictly inside the unit circle with largest magnitude, and
assume that λ2 is simple. Denote by l2 ∈ C

n and r2 ∈ C
n the left and right eigenvectors of

M corresponding to λ2. We assume that we have the normalisations r∗
2r2 = 1 and l∗2r2 = 1.

Considering the small perturbation of M to M + εm, by standard arguments (e.g. Theorem
6.3.12 [22]), one has

dλ2(ε)

dε

∣
∣
∣
∣
ε=0

= l∗2mr2, (61)

where λ2(ε) is the second largest eigenvalue of M + εm. We wish to achieve a maximal
decrease in the magnitude of λ2, or equivalently a maximal decrease in the real part of the
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1070 F. Antown et al.

logarithm of λ2. Denote by �(·) and �(·) the real and imaginary parts, respectively. Now
d(�(log λ2(ε)))/dε = �(d log(λ2(ε))/dε) = �((dλ2(ε)/dε)/λ2(ε)), which, using (61)
becomes

�((dλ2(ε)/dε)/λ2)|ε=0

=
(�(l2)�m�(r2) + �(l2)�m�(r2)

)�(λ2) + (�(l2)�m�(r2) − �(l2)�m�(r2)
)�(λ2)

|λ2|2 .

(62)

Similarly to Sect. 4 we now have the optimisation problem:

min
m∈Rn×n

(
�(l2)�m�(r2) + �(l2)�m�(r2)

)
�(λ2)

+
(
�(l2)�m�(r2) − �(l2)�m�(r2)

)
�(λ2) (63)

subject to m�1 = 0 (64)

‖m‖2F − 1 = 0 (65)

mi j = 0 if (i, j) ∈ N , (66)

where N = {(i, j) ∈ {1, . . . , n}2 : Mi j = 0 or 1}. Note that as mi j takes the value 0 for all
(i, j) ∈ N , we just need to solve (63)–(65) for (i, j) /∈ N .

Applying Lagrange multipliers, we proceed as in Sect. 4, with the only change being to
replace the expression (53) with

Si j − � j − 2νmi j = 0 for (i, j) /∈ N , (67)

where

Si j : = (�(l2)i�(r2) j + �(l2)i�(r2) j
)�(λ2) + (�(l2)i�(r2) j − �(l2)i�(r2) j

)�(λ2).

(68)
Following the steps in Sect. 4 we obtain

m∗
i j = −� j + Si j

2ν
=

(

Si j − 1
|N c

j |
∑

l:(l, j)/∈N Sl j

)

2ν
, (69)

where (i, j) /∈ N and N c
j = {i : (i, j) /∈ N }. Note that because we are minimising (as

opposed to maximising in Sect. 4) we select ν < 0, scaled so that ‖m∗‖F = 1.

5.1 Algorithm

The following algorithm can be used to compute the optimal perturbation m∗ to maximise
the linear response of the rate of convergence to equilibrium.

123



Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems 1071

Algorithm 4

1. Compute h as the invariant probability
vector of the stochastic matrix M .
Compute r2 and l2, the right and left
eigenvectors corresponding to the sec-
ond largest eigenvalue of M , normalised
as r∗

2r2 = 1 and l∗2r2 = 1.

2. Construct the matrix S from (68).

3. Calculate m∗
i j according to (69), where

ν = −‖m∗‖F .

Matlab Code

function m = opt_lin_resp_eval2(M)

%Step 1
[V,D] = eigs(M,2);
if abs(D(2,2))>abs(D(1,1))

V(:,[1,2]) = V(:,[2,1]);
D(:,[1,2]) = D(:,[2,1]);

end
h = V(:,1);
h = h/sum(h);
r = V(:,2); [V1,D1] = eigs(M’,2);
if abs(D1(2,2))>abs(D1(1,1))

V1(:,[1,2]) = V1(:,[2,1]);
D1(:,[1,2]) = D1(:,[2,1]);

end
l = V1(:,2);
l = (1/(conj(l)’*r))*V1(:,2);

%Step 2
d = D(2,2);
S=real(d)*(real(l)*real(r)’...
+imag(l)*imag(r)’)...
+imag(d)*(real(l)*imag(r)’...
-imag(l)*real(r)’);

%Step 3
n=length(M);
m = zeros(n);
for i=1:n

K = find(M(:,i)>10ˆ-7);
if(length(K) > 1)

m(K,i) = (S(K,i)
- mean(S(K,i)));

end
end
m = -m./(norm(m,’fro’));
end

5.2 Analytic Example

Suppose that M ∈ R
2×2 and we would like to solve (63)–(66). As in Sect. 3.6 for M ∈ R

2×2,
we only need to consider the case when M is positive. One may calculate that

m∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
1 −1

−1 1

)

, if M11 + M22 < 1;

1
2

(−1 1
1 −1

)

, if M11 + M22 > 1,

(70)

and

d(�(log λ2(ε)))

dε

∣
∣
∣
∣
ε=0

= 1

λ2
l∗2m∗r2 =

⎧
⎨

⎩

1
M11+M22−1 = 1

λ2
, if M11 + M22 < 1;

−1
M11+M22−1 = −1

λ2
, if M11 + M22 > 1.

(71)
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The optimal choice of m∗ depends only on whether M is diagonally dominant or not: if
M is diagonally dominant, perturb away from diagonal dominance, and if M is not diago-
nally dominant, perturb toward diagonal dominance. The linear response of λ2 has a fixed
magnitude of 1.

6 Optimizing Linear Response for a General Sequence of Matrices

In this section we extend the ideas of Sects. 3 and 4 to derive the linear response of the
Euclidean norm of a probability vector h and the expectation of an observable c, when acted
on by a finite sequence of matrices. Wewill then introduce and solve an optimization problem
that finds the sequence of perturbation matrices that achieve these maximal values.

6.1 Linear Response for the Probability Vector h

Let M (0), M (1), . . . , M (τ−1) be a fixed finite sequence of column stochastic matrices. Fur-
thermore, letm(t), t ∈ {0, . . . , τ −1} be a sequence of perturbationmatrices. Take an arbitrary
probability vector h(0) and set

h(t+1) = M (t)h(t), for t ∈ {0, . . . , τ − 1}.

We now want to derive the formula for the linear response of h(τ ). We require that

(M (t) + εm(t))

(

h(t) +
∞∑

i=1

εiu(t)
i

)

= h(t+1) +
∞∑

i=1

εiu(t+1)
i , (72)

where ε ∈ R. We refer to u(t)
1 as the linear response at time t . By expanding the left-hand

side of (72), we have

(
M (t) + εm(t)

)(

h(t) +
∞∑

i=1

εiu(t)
i

)

= h(t+1) + ε
(

M (t)u(t)
1 + m(t)h(t)

)
+ O(ε2). (73)

Denoting for simplicity u(t)
1 by u(t), it follows from (72) and (73) that

u(t+1) = M (t)u(t) + m(t)h(t). (74)

Set u(0) = 0. Iterating (74), we obtain that

u(τ ) =
τ−1∑

t=1

M (τ−1) . . . M (t)m(t−1)h(t−1) + m(τ−1)h(τ−1). (75)
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6.1.1 The Optimization Problem

It follows from Proposition 1(vi) that

u(τ ) = û(τ ) =
τ−1∑

t=1

(
h(t−1)� ⊗

(
M (τ−1) · · · M (t)

))
m̂(t−1) + (h(τ−1)� ⊗ Idn)m̂(τ−1)

=
τ−1∑

t=1

W (t−1)m̂(t−1) + W (τ−1)m̂(τ−1)

= W

⎛

⎜
⎝

m̂(0)

...

m̂(τ−1)

⎞

⎟
⎠ = W m̂,

where

W (t) = h(t)� ⊗
(

M (τ−1) · · · M (t+1)
)

for 0 ≤ t ≤ τ − 2, W (τ−1) = h(τ−1)� ⊗ Idn

and W = (W (0)|W (1)| . . . |W (τ−1)
)
. Note that the W (t)s are n ×n2 matrices, W is an n ×τn2

matrix and m̂ is a τn2-vector.
We consider the following optimization problem, which maximises the response of the

Euclidean norm of the response u(τ ):

max
m̂∈Rτn2

‖W m̂‖22 (76)

subject to A(t)m̂(t) = 0 for t = 0, . . . , τ − 1 (77)
τ−1∑

t=0

‖m̂(t)‖22 − 1 = 0, (78)

where A(t) is the constraint matrix (38) associated to the matrix M (t) and conditions (35)
and (37).

6.1.2 Solution to the Optimization Problem

Wewant to reformulate the optimization problem with the constraints (77) removed. We first
note that (77) can be replaced by Am̂ = 0, where

A = diag(A(0), . . . , A(τ−1)). (79)

Let E (t) be an n2 × �(t) matrix whose columns form an orthonormal basis of the null
space of A(t) for t = 0, . . . , τ − 1, where �(t) denotes the nullity of A(t). Then, E =
diag(E (0), . . . , E (τ−1)) is a matrix whose columns form an orthonormal basis of the null
space of the matrix A in (79). Thus, if m̂ is an element of the null space of A then, m̂ = Eα

for a unique α ∈ R

∑τ−1
t=0 �(t)

. Finally, as
∑τ−1

t=0 ‖m̂(t)‖22 = ‖m̂‖22 = ‖Eα‖22 = ‖α‖22, we can
reformulate the optimization problem (76)–(78) as:

max
α∈R

∑τ−1
t=0 �(t)

‖Uα‖22 (80)

‖α‖22 − 1 = 0, (81)
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where
U = W E = (W (0)E (0)| . . . |W (τ−1)E (τ−1)). (82)

Arguing as in Sect. 3.4.3, we conclude that m̂∗ = Eα∗ maximises the Euclidean norm

of the linear response u(τ ), where α∗ ∈ R

∑τ−1
t=0 �(t)

is the eigenvector corresponding to
the largest eigenvalue of U�U (with U as in (82)). Finally, if we denote h(t+1)(ε) =(
M (t) + εm(t),∗)h(t), we choose the sign of m(t),∗ so that ‖h(t)‖2 < ‖h(t)(ε)‖2 for small

ε > 0 and for each t ∈ {1, . . . , τ }; this is possible as h(t) is independent of m(t).

6.2 Linear Response for the Expectation of an Observable

In this section, we consider maximising the linear response of the expected value of an
observable c with respect to the probability vector h(τ ), when acted on by a finite sequence
of matrices. More explicitly, we consider the following problem: For c ∈ R

n

max
m(0),m(1),...,m(τ−1)∈Rn×n

c�u(τ ) (83)

subject to m(t)�1 = 0 for t ∈ {0, . . . , τ − 1} (84)
τ−1∑

t=0

‖m(t)‖2F − 1 = 0 (85)

m(t)
i j = 0 if (i, j) ∈ N (t) for t ∈ {0, . . . , τ − 1}, (86)

where N (t) = {(i, j) ∈ {1, . . . , n}2 : M (t)
i j = 0 or 1}.

Multiplying (75) on the left by c� we obtain c�u(τ ) = ∑τ−1
t=0 w(t)�m(t)h(t), where

w(t)� = c�M (τ−1) . . . M (t+1) for t ∈ {0, . . . , τ − 2} and w(τ−1)� = c�. Note that as the
values of m(t)

i j = 0 for (i, j) ∈ N (t), we just need to solve (83)–(85) for (i, j) /∈ N (t).
As in Sect. 4, we solve this problem using the method of Lagrange multipliers. We begin

by considering the following Lagrangian function:

L(m(0), . . . , m(τ−1), �(0), . . . , �(τ−1), ν)

=
τ−1∑

t=0

w(t)�m(t)h(t) −
τ−1∑

t=0

�(t)�m(t)�1 − ν

(
τ−1∑

t=0

‖m(t)‖2F − 1

)

, (87)

where �(t) ∈ R
n and ν ∈ R are the Lagrange multipliers. Differentiating (87) with respect

to m(t)
i j , we obtain

∂L

∂m(t)
i j

(m(0), . . . , m(τ−1), �(0), . . . , �(τ−1), ν) = w
(t)
i h(t)

j − �
(t)
j − 2νm(t)

i j ,

where w
(t)
i , h(t)

j , �
(t)
j ∈ R are the elements of the n-vectors w(t),h(t) and �(t) respectively.

Using the first order optimality (KKT) conditions, we require

w
(t)
i h(t)

j − �
(t)
j − 2νm(t)

i j = 0 for (i, j) /∈ N (t),
∑

i :(i, j)/∈N (t)

m(t)
i j = 0 for j ∈ {1, . . . , n}, t ∈ {0, . . . , τ − 1}, (88)
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(85), and a regularity condition, analogous to that treated in Appendix 1, which follows
similarly. We note that �(t)

j = w
(t)
i h(t)

j − 2νm(t)
i j . Using (88), we calculate

∑

i :(i, j)/∈N (t)

�
(t)
j : =

∣
∣
∣N (t),c

j

∣
∣
∣ �(t)

j = h(t)
j

∑

i :(i, j)/∈N (t)

w
(t)
i ,

where N (t),c
j = {i : (i, j) /∈ N (t)}. Thus, we obtain

m(t),∗
i j = h(t)

j

2ν

⎛

⎝w
(t)
i − 1

∣
∣
∣N (t),c

j

∣
∣
∣

∑

i :(i, j)/∈N (t)

w
(t)
i

⎞

⎠ ,

where (i, j) /∈ N (t). We scale ν to ensure
∑τ−1

t=0 ‖m(t),∗‖2F = 1; all first-order optimality
conditions are now satisfied. As in section 4, we determine the sign of ν by checking the
standard sufficient secondorder conditions form(t),∗, for t ∈ {0, . . . , τ−1}, to be amaximiser.
We note that the matrices m(t),∗ satisfy (84)–(86) and

∂L

∂m(t)
i j

(m(0),∗, . . . , m(τ−1),∗, �(0), . . . , �(τ−1), ν) = 0 for (i, j) /∈ N (t).

We compute

∂2L

∂m(t)
i j ∂m(t ′)

kl

(m(0),∗, . . . , m(τ−1),∗, �(0), . . . , �(τ−1), ν) = −2νδ(i, j,t),(k,l,t ′).

If ν > 0 then H(m(0),∗, . . . , m(τ−1),∗, �(0), . . . , �(τ−1), ν), the Hessian of the Lagrangian
function, satisfies s� H(m(0),∗, . . . , m(τ−1),∗, �(0), . . . , �(τ−1), ν)s < 0 for any s ∈ R

τn2 \
{0}. Thus, the sufficient second order conditions for a maximiser are satisfied.

7 Numerical Examples of Optimal Linear Response for Stochastically
Perturbed Dynamical Systems

We apply the techniques we have developed in Sects. 3–5 to randomly perturbed dynamical
systemsof the type introduced inSect. 1. The annealedPerron-Frobenius (or transfer) operator
defined by (1) is the linear (Markov) operator that pushes forward densities under the annealed
(averaged) action of our random dynamical system. We will consider a connected, compact
phase space X ⊂ R

d and replace q(x − T (y)) in (1) with a stochastic3 kernel k(x, y) to
handle perturbations near the boundary of X . The kernel k defines the integral operator
P f (x) = ∫X k(x, y) f (y) dy. We will assume that k ∈ L2(X × X), which guarantees that P
is a compact operator on L2(X); see e.g. Proposition II.1.6 [11]. A sufficient condition for P
possessing a unique fixed point in L1 is that there exists a j such that

∫
X inf y k( j)(x, y) dx >

0, where k( j) is the kernel associated with P j ; see Corollary 5.7.1 [26]. This is a stochastic
“covering” condition, which is satisfied by our examples, which are generated by transitive
deterministic T with bounded additive uniform noise. In summary, we have a unique annealed
invariant measure for our stochastically perturbed system and by compactness our transfer
operator P has a spectral gap on L2(X) (i.e. the only element of σ(P) on the unit circle is
{1}, which is a simple eigenvalue).

3 k(x, y) ≥ 0,
∫

X k(x, y) dx = 1 ∀y ∈ X .
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7.1 Ulam Projection

In order to carry out numerical computations, we project the operator P onto a finite-
dimensional space spanned by indicator functions on a finemesh of X . Let Bn = {I1, . . . , In}
denote a partition of X into connected sets, and set Bn = span{1I1 , . . . , 1In }. Define a pro-
jection πn : L1(X) → Bn by πn( f ) = ∑n

i=1

(
1

�(Ii )

∫
Ii

f dx
)
1Ii , where � is Lebesgue

measure; πn simply replaces f |Ii with its expected value. We now consider the finite-rank
operator πnP : L1 → Bn ; this general approach is known as Ulam’s method [37]. When
Ulam’s method is applied to compact P as above, one achieves convergence of πnP to P in
operator norm (and therefore L2 convergence of the leading eigenvector of πnP to that of P
via standard operator perturbation theory); see [12]. We calculate

πnP f =
n∑

i=1

(
1

�(Ii )

∫

Ii

P f dx

)

1Ii

=
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

1

�(Ii )

∫

X

∫

Ii

k(x, y) dx

︸ ︷︷ ︸
:=ψi (y)

f (y) dy

⎞

⎟
⎟
⎟
⎟
⎠
1Ii (89)

Putting f =∑n
j=1 f j1I j ∈ Bn , where f j ∈ R, j = 1, . . . , n, we have

πnP f =
n∑

i=1

n∑

j=1

f j

∫
I j

ψi (y) dy

�(Ii )︸ ︷︷ ︸
:=Mi j

1Ii , (90)

where M is the matrix representation of πnP : Bn → Bn .
In our examples below, X = [0, 1] or X = S1, and k(x, y): = 1Bε (T y)(x)/�(X ∩ Bε(T y)),

where Bε(T y) denotes an ε-ball centred at the point T y. This definition of k ensures that we
do not stochastically perturb points outside our domain X . Our random dynamical systems
therefore comprise deterministic dynamics followed by the addition of uniformly distributed
noise in an ε-ball (with adjustments made near the boundary of X ). This choice of k leads to

ψi (y) =
∫

Ii
1Bε (T y)(x) dx

�(X ∩ Bε(T y))
= �(Ii ∩ Bε(T y))

�(X ∩ Bε(T y))
. (91)

Combining (90) and (91) we obtain Mi j =
(∫

I j
�(Ii ∩ Bε(T y))/�(X ∩ Bε(T y)) dy

)
/�(Ii ).

From now on we assume that Ii = [(i − 1)/n, i/n), i = 1, . . . , n, so that Bn is an partition
of X into equal length subintervals. We now have that

∑n
i=1 Mi j = 1 for each j = 1, . . . , n,

and so M is a column stochastic matrix. We use the matrix M to numerically approximate
the operator P in the experiments below.

7.1.1 Consistent Scaling of the Perturbation m

In Sects. 7.2–7.4 we will think of the entries of the perturbation matrix m as resulting from
the matrix representation of the Ulam projection of a perturbation δP of P . To make this
precise, we first write f ∈ Bn as f =∑n

j=1 f̄ j1I j , and introduce a projected version of δk:
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πn(δk) = ∑i, j δ̄ki j1Ii ×I j , where the matrix δ̄ki j = (1/(�(Ii )�(I j )))
∫

Ii ×I j
δk(x, y) dydx .

We now explicitly compute the Ulam projection of δP:

πnδP( f )(z) = (1/�(Ii ))

n∑

i=1

[∫

Ii

δP( f )(x) dx

]

1Ii (z)

= (1/�(Ii ))

n∑

i=1

[∫

Ii

∫

X
δk(x, y) f (y) dydx

]

1Ii (z)

= (1/�(Ii ))

n∑

i, j=1

f̄ j

[∫

Ii ×I j

δk(x, y) dydx

]

1Ii (z)

=
n∑

i, j=1

�(I j )δ̄ki j
︸ ︷︷ ︸

:=mi j

f̄ j1Ii (z)

Thus, we have the relationship mi j = �(I j )δ̄ki j between the matrix representation of the
projected version of the operator δP (namely m) and the elements of the projected version
of the kernel (namely δ̄k).

We wish to fix the Hilbert-Schmidt norm of πnδP to 1.

1 = ‖πnδP‖2H S = ‖πnδk‖2L2(X×X)
=
∥
∥
∥
∥
∥
∥

n∑

i, j=1

δ̄ki j1Ii ×I j

∥
∥
∥
∥
∥
∥

2

L2(X×X)

=
n∑

i, j=1

�(Ii )�(I j )δ̄k
2
.

(92)
Since ‖m‖2F = ∑n

i, j=1 �(I j )
2δ̄k

2
i j , if we assume that �(Ii ) = 1/n, 1 ≤ i ≤ n, we obtain

‖m‖F = (1/n)2‖δ̄k‖2F and by (92) we know ‖δ̄k‖2F = n2. We thus conclude that enforcing
‖m‖F = 1 will ensure ‖πnδP‖H S = 1, as required.

7.1.2 Consistent Scaling for h and c

In Sects. 7.2–7.4 we will use vector representations of the invariant density h and an L2

function c. We write h =∑n
i=1 hi1Ii , where h ∈ R

n . We normalise so that
∫

X h(x) dx = 1,
which means that

∑n
i=1 hi = n. Similarly, we write c = ∑n

i=1 ci1Ii , where c ∈ R
n . We

normalise so that
∫

X c(x)2 dx = 1, which means that
∑n

i=1 c
2
i = n or ‖c‖2 = √

n.

7.2 A Stochastically Perturbed Lanford Map

The first example we consider is the stochastically perturbed Lanford map [25]. We will
use the numerical solution of the problems (34)–(37) and (48)–(51) for this map to solve
the problem of maximising the L2 norm of the linear response of the invariant measure and
maximising the linear response of the expectation of an observable.

7.2.1 Maximising the Linear Response of the L2 Norm of the Invariant Measure

Let T : S1 → S1 be the stochastically perturbed Lanford map defined by

T (x) = 2x + 1

2
x(1 − x) + ξ mod 1, (93)
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Fig. 2 Solution to the problemofmaximising the L2 normof the linear response of the stochastically perturbed
Lanford map. a Colourmap of the stochastically perturbed Lanford map. The colourbar indicates the values of
the elements of the matrix. b The invariant density h. c The optimal perturbation m∗. The colourbar indicates
the values of the elements of the matrix. Note that the aqua colour outside the support of the two branches
corresponds to a zero perturbation. d The optimal linear response u∗

1 of the invariant density

where ξ ∼ U(0, 1
10 ) (uniformly distributed on an interval about 0 of radius 1/10). Let M ∈

R
n×n be Ulam’s discretization of the transfer operator of the map T with n subintervals.

The matrix M will be mixing (aperiodic and irreducible) by arguments similar to those in
Proposition 2.3 [14]. Using Algorithm 2, we solve the problem (34)–(37) for the matrix
M for n = 2000 to obtain the optimal perturbation m∗. The top two singular values of
the matrix Ũ , computed using MATLAB, are 35.08 and 33.32 (each with multiplicity one),
which we consider to be strong numerical evidence that the leading singular value of Ũ
has multiplicity one. By Proposition 4 we conclude that our computed m∗ is the unique
optimal perturbation for the discretized system (up to sign). The sign of the matrix m∗ is
chosen so that ‖hM‖2 < ‖hM+εm∗‖2 for ε > 0. Figure 2a shows the Lanford map and
Fig. 2b presents the approximation of the invariant density h of the Lanford map. Figure 2c
presents the optimal perturbation matrix m∗ which generates the maximal response. Figure
2d presents the approximation of the associated linear response u∗

1 = ∑n
i=1 u

∗
11Ii , for the

perturbation m∗; for this example, we compute ‖u∗
1‖2L2 ≈ 0.6154. Figure 2c shows that the
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Table 1 Numerical results for maximising the linear response of the L2 norm of the invariant probability
measure of the stochastic Lanford Map

n ‖u∗
1‖2L2 ε ‖hM+εm∗

− (hM + εu∗
1)‖2L2

‖hM−εm∗‖2
L2 ‖hM‖2

L2 ‖hM+εm∗‖2
L2

1500 0.6180 1/100 1.35×10−9 1.0071312 1.0078250 1.0086465

1/1000 1.35×10−13 1.0077499 1.0078250 1.0079014

1750 0.6165 1/100 1.35×10−9 1.0071326 1.0078250 1.0086449

1/1000 1.34×10−13 1.0077501 1.0078250 1.0079012

2000 0.6154 1/100 1.35×10−9 1.0071332 1.0078250 1.0086441

1/1000 1.34×10−13 1.0077501 1.0078250 1.0079012

Column 1: number of partition elements; Column 2: optimal objective value; Column 3: values of ε; Column
4: calculation of linearization error; Columns 5-7: demonstration that the L2 norm of the invariant density
increases and decreases appropriately under the small perturbation εm∗

selected perturbation preferentially placesmass in a neighbourhood of x = 0.4 and x = 0.95,
consistent with local peaks in the response in Fig. 2d.

Having computed the optimal linear response for a specific n, we verify in Table 1 that for
various partition cardinalities, the L2 norm of the approximation of the linear response u∗

1
converges.Wealso verify that‖hM+εm∗−(hM+εu∗

1)‖2L2 is small for small ε > 0.The 10,000-
fold improvement in the accuracy is consistent with the error terms of the linearization being
of order ε4 when considering the square of the L2 norm (because hM+εm = hM +εu1+O(ε2),
when we decrease ε from 1/100 to 1/1000, the square of the error term of the linearization
is changed by ((1/10)2)2 = 1/10000). The table also illustrates the change in the norm of
the invariant density when perturbed; we see that the norm of the invariant density increases
when we perturb M by εm∗ and decreases when we perturb by −εm∗, consistent with the
choice of sign of m∗ noted above.

7.2.2 Maximising the Linear Response of the Expectation of an Observable

In this section we find the perturbation that generates the greatest linear response of the
expectation

〈c, h〉L2 =
∫

[0,1]
c(x)h(x)dx,

where c(x) = √
2 sin(πx) and the underlying dynamics are given by the map (93). We

consider problem (48)–(51)with the vector c = (c1, . . . , cn) ∈ R
n ,where ci = √

2n sin(πxi )

and xi = i−1
n + 1

2n , i = 1, . . . , n. Let M ∈ R
n×n be the discretization matrix derived from

Ulam’smethod.WeuseAlgorithm3 to solve problem (48)–(51). Figure 3 presents the optimal
perturbationm∗ and the associated linear response u∗

1 for this problem. Note that the response
in Fig. 3b has positive values where c(x) is large and negative values where c(x) is small,
consistent with our objective to increase the expectation of c. In this example (n = 2000),
we obtain 〈c, u∗

1〉L2 ≈ 0.2514.
Table 2 provides numerical results for various partition cardinalities n. We see that (i) the

value of 〈c, u∗
1〉L2 appears to converge when we increase n, (ii) the 100 fold improvement in

accuracy is consistent with the error terms of the linearization being of order ε2 as hM+εm =
hM + εu1 + O(ε2), and (iii) the expectation increases if we perturb in the direction εm∗ and
decreases if we perturb in the direction −εm∗.
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Fig. 3 Solution to the problem of maximising the expectation of the response of observable c(x) for the
stochastically perturbed Lanford map. a The optimal perturbation m∗. The colourbar indicates the values of
the elements of the matrix. b The optimal linear response u∗

1 of the invariant density

Table 2 Numerical results for maximising the linear response of the expectation of c(x) = √
2 sin(πx) for

the stochastic Lanford map

n 〈c, u∗
1〉L2 ε 〈c, hM+εm∗ 〉L2 −

〈c, hM + εu∗
1〉L2

〈c, hM−εm∗ 〉L2 〈c, hM 〉L2 〈c, hM+εm∗ 〉L2

1500 0.2520 1/100 −9.70×10−6 0.8943375 0.8968671 0.8993772

1/1000 −9.73×10−8 0.8966150 0.8968671 0.8971190

1750 0.2517 1/100 −9.68×10−6 0.8943408 0.8968671 0.8993739

1/1000 −9.71×10−8 0.8966153 0.8968671 0.8971186

2000 0.2514 1/100 −9.67×10−6 0.8943433 0.8968670 0.8993713

1/1000 −9.69×10−8 0.8966155 0.8968670 0.8971183

5000 0.2503 1/100 −9.61×10−6 0.8943544 0.8968669 0.8993602

1/1000 −9.63×10−8 0.8966166 0.8968669 0.8971171

7000 0.2501 1/100 −9.60×10−6 0.8943565 0.8968669 0.8993581

1/1000 −9.62×10−8 0.8966168 0.8968669 0.8971169

Column 1: number of partition elements; Column 2: optimal objective value; Column 3: values of ε; Column
4: calculation of linearization error; Columns 5–7: demonstration that the expected value of the function c
increases and decreases appropriately under the small perturbation εm∗

7.3 A Stochastically Perturbed Logistic Map

In this section, we consider the problems of maximising the L2 norm of the linear response of
the invariant measure andmaximising the linear response of the expectation of an observable.
The underlying deterministic dynamics is given by the logistic map, and this map is again
stochastically perturbed, yielding a linear response (see e.g. the survey [3] for a discussion
of the failure of linear response for the deterministic logistic map).
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7.3.1 Maximising the Linear Response of the L2 Norm of the Invariant Measure

Let Tξ : [0, 1] → [0, 1] be the logistic map with noise defined by

Tξ (x) = 4x(1 − x) + ξx , (94)

where ξx ∼ U(B 1
10

(0) ∩ [−x, 1 − x]) and U(I ) denotes the uniform distribution on the

interval I . Let M ∈ R
n×n be Ulam’s discretization of the transfer operator of the map Tξ

with n partitions. We use Algorithm 2 to solve the optimisation problem (34)–(37) with the
matrix M for n = 2000 to obtain the optimal perturbation m∗. The top two singular values
of Ũ , for this example, were computed in MATLAB to be 36.92 and 29.36 (each with unit
multiplicity); thus, by Proposition 4, m∗ is the unique optimal perturbation (up to sign).
The sign of the matrix m∗ is chosen so that ‖hM‖2 < ‖hM+εm∗‖2 for ε > 0. Figure 4
shows the results for the stochastically perturbed logistic map; for this example we compute
‖u∗

1‖2L2 ≈ 0.6815. In the right branch of Fig. 4c, we see sharp increases in mass mapped to
neighbourhoods of x = 0.15 and x = 0.4, as well as a sharp decrease in mass mapped to a

Fig. 4 Solution to the problemofmaximising the L2 normof the linear response of the stochastically perturbed
logistic map. a Colourmap of the stochastically perturbed logistic map. The colourbar indicates the values of
the elements of the matrix. b The invariant density h. c The optimal perturbation m∗. The colourbar indicates
the values of the elements of the matrix. d The optimal linear response u∗

1 of the invariant density
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Table 3 Numerical results for maximising the linear response of the L2 norm of the invariant probability
measure of the stochastic logistic map

n ‖u∗
1‖2L2 ε ‖hM+εm∗

− (hM + εu∗
1)‖2L2

‖hM−εm∗‖2
L2 ‖hM‖2

L2 ‖hM+εm∗‖2
L2

1500 0.6849 1/100 7.85×10−10 1.2156309 1.2171123 1.2187207

1/1000 7.87×10−14 1.2169585 1.2171123 1.2172675

1750 0.6829 1/100 7.83×10−10 1.2156352 1.2171131 1.2187177

1/1000 7.85×10−14 1.2169596 1.2171131 1.2172679

2000 0.6815 1/100 7.81×10−10 1.2156377 1.2171137 1.2187160

1/1000 7.83×10−14 1.2169604 1.2171137 1.2172682

Column 1: number of partition elements; Column 2: optimal objective value; Column 3: Values of ε; Column
4: calculation of linearization error; Columns 5-7: demonstration that the L2 norm of the invariant density
increases and decreases appropriately under the small perturbation εm∗

Fig. 5 Solution to the problem of maximising the expectation of the response of observable c(x) for the
stochastically perturbed logistic map. a The optimal perturbation m∗. The colourbar indicates the values of
the elements of the matrix. b The optimal linear response u∗

1 of the invariant density

neighbourhood of x = 0.25; these observations coincide with the local peaks and troughs of
the response vector shown in Fig. 4d. Table 3 displays the corresponding numerical results.

7.3.2 Maximising the Linear Response of the Expectation of an Observable

Using (48)–(51), we calculate the perturbation achieving a maximal linear response of
〈c, h〉L2 for c(x) = √

2 sin(πx) for the stochastic dynamics (94). We again compute with the
vector c = (c1, . . . , cn) ∈ R

n , where ci = √
2n sin(πxi ) and xi = i−1

n + 1
2n , i = 1, . . . , n.

We compute the discretization matrix M ∈ R
n×n derived from Ulam’s method and make use

of Algorithm 3.
The m∗ provoking the greatest linear response in the expectation 〈c, h〉L2 is shown in

Fig. 5a. The linear response corresponding to m∗ is shown in Fig. 5b; for this example,
〈c, u∗

1〉L2 ≈ 0.1187. The response takes its minimal values at x = 0, x = 1, where the values
of the observable c is also least, and the response is broadly positive near the centre of the
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Table 4 Numerical results for maximising the linear response of the expectation of c(x) = √
2 sin(πx) for

the stochastic logistic map

n 〈c, u∗
1〉L2 ε 〈c, hM+εm∗ 〉L2 −

〈c, hM + εu∗
1〉L2

〈c, hM−εm∗ 〉L2 〈c, hM 〉L2 〈c, hM+εm∗ 〉L2

1500 0.1190 1/100 −1.89×10−6 0.8000874 0.8012797 0.8024682

1/1000 −1.89×10−8 0.8011607 0.8012797 0.8013987

1750 0.1189 1/100 −1.89×10−6 0.8000892 0.8012797 0.8024665

1/1000 −1.88×10−8 0.8011609 0.8012797 0.8013986

2000 0.1187 1/100 −1.88×10−6 0.8000907 0.8012798 0.8024651

1/1000 −1.88×10−8 0.8011610 0.8012798 0.8013985

5000 0.1182 1/100 −1.87×10−6 0.8000964 0.8012799 0.8024597

1/1000 −1.87×10−8 0.8011617 0.8012799 0.8013981

7000 0.1181 1/100 −1.87×10−6 0.8000975 0.8012799 0.8024586

1/1000 −1.87×10−8 0.8011619 0.8012799 0.8013980

Column 1: number of partition elements; Column 2: optimal objective value; Column 3: values of ε; Column
4: calculation of linearization error; Columns 5–7: demonstration that the expected value of the function c
increases and decreases appropriately under the small perturbation εm∗

interval [0, 1], where the observable takes on large values; both of these observations are
consistent with maximising the linear response of the observable c.

Numerical results for this example are provided in Table 4.

7.4 Double Lanford Map

In this last section, we consider the problem of maximising the linear response of the rate
of convergence to the equilibrium. The underlying deterministic dynamics is given by a
stochastically perturbed double Lanford map. More explicitly, we consider the map T :
S1 → S1 defined by

T (x) =
{(

TLan(2x) mod 1
2

)+ ξ mod 1 if 0 ≤ x ≤ 1
2(

TLan
(
2
(
x − 1

2

))
mod 1

2

)+ 1
2 + ξ mod 1 if 1

2 < x ≤ 1,
(95)

where TLan(x) = 2x + 1
2 x(1 − x) and ξ ∼ U(0, 1

10 ) (uniformly distributed on an interval
about 0 of radius 1/10). We have chosen this doubled version of the Lanford map in order to
study a relatively slowly (but still exponentially) mixing4 system. The subintervals [0, 1/2]
and [1/2, 1] are “almost-invariant” because there is only a relatively small probability that
points in each of these subintervals are mapped into the complementary subinterval; see
Fig. 6a.

Let M ∈ R
n×n be Ulam’s discretization of the transfer operator of the map T with n

partitions. Using Algorithm 4, we solve problem (63)–(66) for the matrix M for n = 2000.
Figure 6 shows the doubleLanfordmap and the approximationof the invariant densityh of this
map. Figure 6c shows the optimal perturbation matrix m∗ that maximises the linear response
of the rate of convergence to the equilibrium and Fig. 6d shows the corresponding linear
responseu∗

1 of the invariant densityh.Wenote that the signof thematrixm∗ is chosen such that

4 Exponential mixing is guaranteed by expansivity and transitivity of TLan , which together with the additive
noise, yield the stochastic covering condition of Sect. 7.
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Fig. 6 Solution to the problem of maximising the linear response of the rate of convergence to the equilibrium
of the stochastically perturbed double Lanford map. a Colourmap of the stochastically perturbed double
Lanford map. The colourbar indicates the values of the elements of the matrix. b The invariant density h. c
The optimal perturbation m∗. The colourbar indicates the values of the elements of the matrix. d The optimal
linear response u∗

1 of the invariant density

the ν in (69) is negative. The optimal objective is given byρ = d(�(log λ2(ε)))
dε

|ε=0 ≈ −0.2843.
Figure 6c shows that most of the large positive values in the perturbation occur in the upper
left and lower right blocks of the graph of the double Lanford map, precisely to overcome
the almost-invariance of the subintervals [0, 1/2] and [1/2, 1]. In order to compensate for
these increases, there are commensurate negative values in the lower left and upper right.
The net effect is that more mass leaves each of the almost-invariant sets at each iteration of
the stochastic dynamics, leading to an increase in mixing rate.

Table 5 illustrates the numerical results. The value of ρ, namely the estimated derivative of
the real part of log(λ2), minimised over all valid perturbations, is shown in the second column.
As n increases, ρ appears to converge to a fixed value. Let r and l denote the discretised
left and right eigenfunctions of πnP corresponding to the second largest eigenvalue, πnδP
denote the discretised perturbation operator represented by m∗, and η2 = 〈l, πnδP(r)〉L2 ,
the analogue of (61) in this discretised continuous setting. In the fourth column, we see that
the absolute value of the linearization of the perturbed eigenvalue, |λ2 + εη2|, is close to the
absolute value of the optimally perturbed eigenvalue, |λ2(ε)∗|. Finally, to verify the parity of
m∗ is correct, in Table 5 we observe that the absolute value of the second eigenvalue increases
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Table 5 Numerical results for the double Lanford Map

n ρ ε |λ2(ε)∗| − |λ2 + εη2| |λ2(−ε)∗| |λ2| |λ2(ε)∗|

1500 −0.2852 1/100 −4.21×10−5 0.8495581 0.8471549 0.8447253

1/1000 −4.49×10−7 0.8473964 0.8471549 0.8469131

1750 −0.2846 1/100 −4.17×10−5 0.8495531 0.8471553 0.8447313

1/1000 −4.67×10−7 0.8473963 0.8471553 0.8469141

2000 −0.2843 1/100 −4.26×10−5 0.8495508 0.8471556 0.8447343

1/1000 −5.57×10−7 0.8473963 0.8471556 0.8469147

5000 −0.2823 1/100 −3.96×10−5 0.8495354 0.8471564 0.8447515

1/1000 −4.15×10−7 0.8473953 0.8471564 0.8469171

7000 −0.2820 1/100 −3.92×10−5 0.8495326 0.8471565 0.8447546

1/1000 −4.07×10−7 0.8473953 0.8471565 0.8469175

Column 1: number of partition elements; Column 2: optimal objective value; Column 3: values of ε; Column 4:
calculation of linearization error; Columns 5–7: demonstration that the absolute value of the second eigenvalue
increases and decreases appropriately under the small perturbation εm∗

when we perturb in the direction −εm∗ and decreases as we perturb in the direction εm∗, as
required for the perturbation to increase the mixing rate.
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Appendix A: Proof of the LICQ Condition from Sect. 4

Let J = { j : ∃i with (i, j) /∈ N }. For j ∈ J , let f j (m) = ∑n
i=1 mi j . For (i, j) ∈ N , let

gi j (m) denote the left hand side of the equality in (51). Finally, let f (m) denote the left

hand side of the equality in (50). For j ∈ J we have
∂ f j
∂mkl

(m) = δ jl . For (i, j) ∈ N we have
∂gi j
∂mkl

(m) = δikδ jl , and lastly
∂ f

∂mkl
(m) = 2mkl . The condition LICQ (Definition 12.4 [32]) is

satisfied if

∑

j∈J

a j
∂ f j

∂mkl
(m) +

∑

(i, j)∈N

ai j
∂gi j

∂mkl
(m) + a

∂ f

∂mkl
(m) = 0 for 1 ≤ k, l ≤ n. (96)

implies a j = 0 for j ∈ J , ai j = 0 for (i, j) ∈ N , and a = 0.

1. Let l ∈ J . Let k ∈ {1, . . . , n} satisfy (k, l) /∈ N . For such (k, l), equation (96)
becomes al + 2amkl = 0. As m satisfies (49), one has that

∑
k:(k,l)/∈N (al + 2amkl) =

∑
k:(k,l)/∈N al +∑n

k=1 2amkl = ∑k:(k,l)/∈N al = 0, since mkl = 0 for (k, l) ∈ N . Thus
al = 0 for all l ∈ J .

2. By (50), there exists k, l ∈ {1, . . . , n} such that mkl �= 0. Thus (k, l) /∈ N and so l ∈ J .
For such (k, l), using part 1. we know 2amkl = 0 and thus a = 0.
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3. Using part 2. for (k, l) ∈ N , (96) becomes either akl = 0 if l /∈ J , or al + akl = 0 if
l ∈ J . For the latter case, using part 1. we have al = 0 and so akl = 0. Thus akl = 0 for
all (k, l) ∈ N .
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