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Abstract We study the average Green’s function of stochastic, uniformly elliptic operators
of divergence form on ZdZd . When the randomness is independent and has small variance,
we prove regularity of the Fourier transform of the self-energy. The proof relies on the
Schur complement formula and the analysis of singular integral operators combined with a
Steinhaus system.
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1 Introduction and Statement

Let {σx (ω); x ∈ Z
d} be i.i.d., E[σx ] = 0 and assume moreover,

‖σx‖∞ ≤ C. (1.1)

Consider the finite difference random operator

Lω = −� + δ∇∗σ∇ (1.2)

∇ f (x) = ( f (x + e1) − f (x), f (x + e2) − f (x), ... f (x + ed) − f (x)). Here ei are the unit
lattice vectors and f is defined on Z

d .
Consider the stochastic equation

Lωuω = f. (1.3)

Let 〈 · 〉 denote the expectation. Formally we have

E[uω] ≡ 〈uω〉 = 〈L−1
ω 〉 f and A〈uω〉 = f (1.4)
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with

A = 〈L−1
ω 〉−1. (1.5)

SinceA is translation invariant it can be expressed as amultiplication operator Â(ξ) in Fourier
space. We prove the following result about the regularity of Â(ξ).

Theorem With the above notation, given ε > 0, there is δ0 > 0 such that for |δ| < δ0, A
has the form

A = ∇∗(1 + K1)∇ (1.6)

with K1 given by a convolution operator such that K̂1(ξ) has d − ε derivatives or

K1(x − y) = O(δ[1 + |x − y|]−(2d−ε)) (1.7)

for x, y ∈ Z
d .

Remark (1) In the general case when σx defines an ergodic process, homogenization was
developed by Kozlov [3] and Papanicolaou and Varadhan [5]. However, the regularity of
K1 is was not addressed in these papers. See [2] for a review of results in homogenization.

(2) This paper is closely related to an unpublished note of Sigal [6], where the exact same
problem is considered. In [6] an asymptotic expansion for K1 is given and (1.7) verified
up to the leading order by applying the Feshbach-Schur formula. What we basically
manage to do here is to control the full series. The argument is rather simple, but contains
perhaps some novel ideas that may be of independent interest in the study of the averaged
dynamics of stochastic PDE’s.

(3) In Bach, Fröhlich, Sigal, [1] a multi-scale version of Feshbach-Schur were used the study
an atom coupled to an electromagnetic field.

(4) In the context of homogenization, the same formalism was developed by J. Conlon, A.
Naddaf in [4]. This paper proved some regularity of K1 under certain mixing conditions.

(5) It is an open questionwhether the same strong regularity holds assuming that only |δ| < 1.
(6) The author is grateful to T. Spencer for bringing the problem to his attention and a few

preliminary discussions. Thanks also to the referee and W. Schlag for clarifying the
exposition. He has also benefited from some comments of A. Gloria.

2 The Expansion

Webriefly recall the derivation of themulti-linear expansion for K1 established in [6]. Denote
b = δσ, P = E, P⊥ = 1 − E. Using the Feshbach-Shur map to the block decomposition

(
(P, P) (P, P⊥)

(P⊥, P) (P⊥, P⊥)

)

we obtain

PL−1P = (
PLP − PLP⊥(P⊥LP⊥ − io)−1P⊥LP

)−1

Since PLP = −�P, PLP⊥ = P∇∗b∇P⊥, P⊥LP = P⊥∇∗b∇P , we obtain

(−�P − ∇∗Pb∇(P⊥LP⊥)−1∇∗b∇P)−1. (2.1)
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Next, P⊥LP⊥ = (−�)
(
1 + (−�)−1∇∗P⊥b∇)

P⊥ and we expand

(P⊥LP⊥)−1 =
[
1 − (−�)−1∇∗P⊥b

(∑
n≥0

(−1)n(K P⊥b)n
)
∇P⊥]

(−�)−1 (2.2)

where we denoted K the convolution singular operator

K = ∇(−�)−1∇∗. (2.3)

Substitution of (2.2) in (2.1) gives

〈∇∗b∇(P⊥LP⊥)−1∇∗b∇〉 =
∑
n≥1

(−1)n+1∇∗〈b(K P⊥b)n〉∇. (2.4)

Hence

〈L−1
ω 〉 = ( − � + (2.4)

)−1

and

A = −� + (2.4) = ∇∗(1 + K1)∇
with

K1 =
∑
n≥1

(−1)n〈b(K P⊥b)n〉. (2.5)

Remains to analyze the individual terms in (2.5). In doing so, without loss of generality, we
treat K as a scalar singular integral operator.

3 A Deterministic Inequality

Our first ingredient in controlling the multi-linear terms in the series (2.5) is the following
(deterministic) bound on composing singular integral and multiplication operators.

Lemma 1 Let K be a (convolution) singular integral operator acting onZd andσ1, . . . , σs ∈
�∞(Zd). Define the operator

T = Kσ1Kσ2 · · · Kσs . (3.1)

Then T satisfies the pointwise bound

|T (x0, xs)| < |x0 − xs |−d+ε(Cε−1)s
s∏
1

‖σ j‖∞ (3.2)

for all ε > 0.

Proof Firstly, recalling the well-known bound

‖K‖p→p <
c

p − 1
for 1 < p ≤ 2 (3.3)

and normalizing ‖σ j‖∞ = 1, we get

‖T ‖p→p + ‖T ∗‖p→p <
( c

p − 1

)s
. (3.4)
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In particular

max
x

( ∑
y

|T (x, y)|p
) 1

p + max
y

( ∑
x

|T (x, y)|p
) 1

p
<

( c

p − 1

)s
. (3.5)

Next, write

Ts(x0, xs) =
∑

x1,...,xs−1

K (x0 − x1)σ1(x1)K (x1 − x2)σ2(x2) · · · K (xs−1 − xs)σs(xs). (3.6)

We use a dyadic decomposition according to max0≤ j<s |x j − x j+1|. Specify R � 1 and
0 ≤ i < s satisfying

|xi − xi+1| ∼ R (3.7)

max
j

|x j − x j+1| � R. (3.8)

In particular |x0 − xs | � sR. The corresponding contribution to (3.6) may be bounded by
∑

xi ,xi+1|xi−xi+1|∼R

|T (∗)
i (x0, xi )| |K (xi − xi+1)| |T (∗)

s−1−i (xi+1, xs)| (3.9)

with T (∗)
i obtained from formula (3.6) with additional restriction (3.8). The bound (3.5) also

holds for T (∗)
i . Since |K (z)| < |z|−d (where we denote | | = | | + 1), it follows from (3.5),

(3.7), (3.8) and Hölder’s inequality that

(3.9) ≤
( c

p − 1

)s( ∑
xi ,xi+1,|x0−xi |<sR,|x0−xi+1|<sR

1
)1/p′

R−d
(
p′ = p

p − 1

)

<
( c

p − 1

)s
(sR)2d(p−1)R−d < (Cε−1)s R−d+ε (3.10)

by taking p such that 2d(p − 1) = ε. Then
∑
0≤i<s

∑
R∈2N, R�|x0−xs |/s

(3.10) < sd+1(Cε−1)s |x0 − xs |−d+ε

proving (3.2). ��

4 Use of the Randomness

Returning to (2.5), the randomness and the projectors will allow us to further improve the
pointwise bounds on 〈b(K P⊥b)n〉.

Write

b(K P⊥b)n(x0, xn) =
∑

x1,...,xn−1∈Zd

bx0K (x0, x1)P
⊥bx1K (x1, x2)P

⊥bx2 . . . bxn . (4.1)

Note that evaluation of 〈b(K P⊥b)n〉 by summation over all diagrams would produce com-
binatorial factors growing more rapidly than Cn and hence we need to proceed differently.
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Let again R � 1 and 0 ≤ j0 < n s.t.

|x j0 − x j0+1| ∼ R and max
0≤ j<n

|x j − x j+1| � R. (4.2)

We denote

S =
{

(x1, . . . , xn−1) ∈ (Zd)n−1 and {x0, . . . , x j0} ∩ {x j0+1, . . . , xn} �= φ

subject to (4.2)

}
(4.3)

E[(4.1)] only involves the irreducible graphs in (4.1), due to the presence of the projection
operators P⊥. This means that

E[bx0 P⊥bx1 P⊥bx2 · · · P⊥bxn ] = 0

whenever there exists some 0 ≤ j < n such that {x0, . . . , x j } ∩ {x j+1, . . . , xn} = φ. From
the preceding, it follows in particular that

E[(4.1)] = E[(4.4)]
defining

(4.4) =
∑

(x1,...,xn−1)∈S
bx0K (x0, x1)P

⊥bx1 . . . bxn .

Our goal is to prove

Lemma 2 For all ε > 0, we have

|E[(4.4)]| < Cn
ε R

−d+4ε|x0 − xn |−d (4.5)

which clearly implies the Theorem.
For definition (4.3)

S =
⋃

0≤ j1≤ j0
j0< j2≤n

S j1, j2

where

S j1, j2 = {(x1, . . . , xn−1) ∈ (Zd)n−1 subject to (4.2) and x j1 = x j2}. (4.6)

Note that these sets S j1, j2 are not disjoint and we will show later how to make them disjoint
at the cost of another factor Cn .

Consider the sum ∑
(x1,...,xn−1)∈S j1, j2

bx0K (x0, x1)P
⊥bx1 · · · bxn = (4.7).

We claim that for all ε > 0

|(4.7)| < Cn
ε R

−d+4ε|x0 − xn |−d (4.8)

(thus without taking expectation).
To prove (4.8), factor (4.7) as

(K P⊥b) j1(x0, x j1)(K P⊥b) j0− j1(x j1 , x j0)K (x j0 , x j0+1)P⊥bx j0+1 ,

(K P⊥b) j2− j0(x j0+1, x j1)(K P⊥b)n− j2−1(x j1 , xn) (4.9)
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with summation over x j0 , x j0+1, x j1 .
Using the deterministic bound implied by Lemma 1

|(K P⊥b)�(x, y)| < C�
ε |x − y|−d+ε (4.10)

we may indeed estimate

|(4.7)| < R−dCn
ε

∑
x j0 ,x j0+1,x j1

|x0 − x j1 |−d+ε|x j1 − x j0 |−d+ε|x j0+1 − x j1 |−d+ε|x j1 − xn |−d+ε

< Cn
ε R

−d+4ε|x0 − xn |−d .

Remains the disjointification issue for the sets S j1, j2 .
Our device to achieve this may have an independent interest. Define the disjoint sets

S′
j1, j2 = S j1, j2

∖( ⋃
j< j1

j0< j ′≤n

S j, j ′ ∪
⋃

j0< j ′< j2

S j1, j ′
)
. (4.11)

Replacing S j1, j2 by S′
j1, j2

in (4.7), we prove that the bound (4.8) is still valid.
Note that, by definition, (x1, . . . , xn−1) /∈ ⋃

j< j1
j0< j ′≤n

S j. j ′ means that

{x0, . . . , x j1−1} ∩ {x j0+1, . . . , xn} = φ. (4.12)

n Thus we need to implement the condition (4.12) in the summation (4.7) at the cost of a
factor bounded by Cn .

We introduce an additional set of variables θ̄ = (θx )x∈Zd , θx ∈ T = R/2πZ and consider
the corresponding Steinhaus system. Denote E = {0, 1, . . . , j1 − 1}, F = { j0 + 1, . . . , n}.
Replace in (4.7)

{
bx j by bx j e

iθx j for j ∈ E

bx j by bx j e
−iθx j for j ∈ F.

(4.13)

After this replacement, (4.7) becomes a Steinhaus polynomial in θ̄ , i.e. we obtain
∑

(x1,...,xn−1)∈S j1, j2

ei(
∑

j∈E θx j −
∑

k∈F θxk )bx0K (x0, x1)P
⊥bx1 . . . bxn (4.14)

for which the estimate (4.8) still holds (uniformly in θ̄).
Next, performing a convolution with the Poisson kernel Pt (θx ) = ∑

n∈Z t |n|einθx in each
θx (which is a contraction), gives∫

(4.14)
∏
x

Pt (θ
′
x − θx )

dθx

2π

=
∑

(x1,...,xn−1)∈S j1, j2

twx̄ e
i(

∑
j∈E θ ′

x j
−∑

k∈F θ ′
xk

)
bx0K (x0, x1)P

⊥ · · · bxn (4.15)

where 0 ≤ t ≤ 1 and

wx̄ =
∑
x

∣∣ |{ j ∈ E; x j = x}| − |{k ∈ F; xk = x}|∣∣ ≤ |E | + |F | = D.
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Note that the condition {x j , j ∈ E} ∩ {xk; k ∈ F} = φ is equivalent to wx̄ = D and
(4.14) obtained by projection of (4.15), viewed as polynomial t , on the top degree term. Our
argument is then concluded by the standard Markov brothers’ inequality.

Lemma 3 Let P(t) be a polynomial of degree ≤ D. Then

max−1≤t≤1
|P(k)(t)| ≤ D2(D2 − 12)(D2 − 22) · · · (D2 − (k − 1)2)

1, 3, 5 . . . (2k − 1)
max−1≤t≤1

|P(t)|. (4.16)

Indeed, we conclude that for all θ̄∣∣∣ ∑
(x1,...,xn−1)∈S j1, j2

wx̄=D

ei
(∑

j∈E θx j −
∑

k∈F θxk

)
bx0K (x0, x1)P

⊥ . . . bxn

∣∣∣ < Cn . (4.8)

and set then θ̄ = 0.

Funding The J. Bourgain was partially supported by NSF Grants DMS-1301619.
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