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Abstract Let Pn and Qn be twoprobabilitymeasures representing twodifferent probabilistic
models of some system (e.g., an n-particle equilibrium system, a set of random graphs
with n vertices, or a stochastic process evolving over a time n) and let Mn be a random
variable representing a “macrostate” or “global observable” of that system. We provide
sufficient conditions, based on the Radon–Nikodym derivative of Pn and Qn , for the set
of typical values of Mn obtained relative to Pn to be the same as the set of typical values
obtained relative to Qn in the limit n → ∞. This extends to general probability measures and
stochastic processes thewell-known thermodynamic-limit equivalence of themicrocanonical
and canonical ensembles, relatedmathematically to the asymptotic equivalence of conditional
and exponentially-tilted measures. In this more general sense, two probability measures that
are asymptotically equivalent predict the same typical ormacroscopic properties of the system
they are meant to model.

Keywords Equivalence of ensembles · Large deviation theory · Equilibrium systems ·
Nonequilibrium systems

1 Introduction

We study in this paper a notion of asymptotic equivalence of probability measures that
generalizes the equivalence of the well-known microcanonical and canonical ensembles in
the thermodynamic limit (see [1] and references therein). The basic problem that we consider
can be defined in a general way as follows. Let Mn be a random variable defined with respect
to two probability measures Pn and Qn indexed by n ∈ N. Can we establish conditions on
these measures such that
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EPn [Mn] = EQn [Mn], (1)

where E[ · ] denotes the expectation? For a fixed n < ∞, it is unlikely that such conditions
exist beyond the obvious requirement that Pn = Qn almost everywhere. In the limit n → ∞,
however, it is possible for two differentmeasures to concentrate on the same value so as to give
the same expectation. The aim of this paper is to put “bounds” on the differences between Pn

and Qn that guarantee that this concentration, which is related to the law of large numbers,
holds for a large class of random variables. Physically, this means that two probabilistic
models of a given system can predict the same typical or macroscopic properties of that
system even if the models are different.

The framework that we use to study this problem is the theory of large deviations [2–4].We
assume that the random variable Mn satisfies the large deviation principle (LDP) with respect
to Pn and Qn and define the set of concentration points of Mn relative to either measure as
the set of global minima and zeros of their respective rate function. In many applications,
this set reduces to a single value, which then represents the typical value of Mn (relative to
Pn or Qn) on which its expectation concentrates exponentially as n → ∞ (again relative to
Pn or Qn). In this context, the problem that we consider is: Under what conditions is the set
of concentration points of Mn relative to Pn equal to the set of concentration points of Mn

relative to Qn? In other words, under what conditions are the typical values of Mn the same?
To answer these questions, we formulate in Sect. 2 some large deviation results related to

the Radon–Nikodym derivative of Pn relative to Qn , which can be seen as a random variable
with respect to either measure, and then use these results in Sect. 3 to prove essentially the
following: If the Radon–Nikodym derivative is approximately equal to 1 almost everywhere,
on the logarithmic scale defined by the LDP, then the two sets of concentration points of Mn

obtained relative to Pn and Qn are the same (see the main Theorem 3). This condition on the
Radon–Nikodym derivative defines, as explained in Sect. 2, a general notion of asymptotic
equivalence of measures from which we can summarize our main result as follows: If Pn

and Qn are asymptotically equivalent, then they are also equivalent at the level of typical
values of Mn .

This result is known to hold for specific conditional and exponentially-tilted measures,
corresponding in statistical physics to the microcanonical and canonical ensembles, respec-
tively [1]. The contribution of this paper is to extend this asymptotic equivalence to a larger
class of probability measures, defining general probabilistic models and stochastic processes,
under precise large deviation hypotheses stated below. This extension has its source in recent
works applying classical ensemble theory to describe the paths of nonequilibrium processes
(see, e.g., [5–11]) and relies on a special symmetry property, referred to as the fluctuation
relation (see [12] for a review) that characterizes the fluctuations of physical quantities related
to these processes. Another source is the study of random graphs, such as the Erdös–Rényi
graph model and its variants, which become equivalent under some conditions in the infinite-
volume limit [13–17].

A formal result of Mori [18] pointed recently to this general equivalence for quantum sys-
tems, based on bounds on the relative entropy. The approach followed here was developed
independently and is completely different: it is based on the general language of probability
measures and their Radon–Nikodym derivative, and so covers both “static” and “dynamic”
processes. This is illustrated in Sect. 4 with many applications related to sequences of ran-
dom variables, equilibrium particle systems, random graphs, in addition toMarkov processes
evolving in discrete and continuous time. For this last application, our results provide condi-
tions under which two stochastic processes, representing, for example, two different models
for an information source or a nonequilibrium process, cannot be distinguished at the level
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964 H. Touchette

of ergodic averages or stationary states. We also revisit in that section the equivalence of
the microcanonical and canonical ensembles to clearly explain how our results extend the
equivalence of classical ensembles in statistical physics.

2 General Framework

2.1 Notations

We consider two probability measures Pn and Qn on a space �n , with n ∈ N, which define
technically two sequences of probability spaces. Following the introduction, we also consider
a random variable Mn : �n → M, called a macrostate or observable, which is a function of
the space �n to a Polish space M, that is, a complete separable metric space [3].

We give examples in Sect. 4 of different measures and macrostates. To fix the ideas, it is
useful to picture�n as the space of microscopic configurations of a system of n particles and
Pn and Qn as two probability distributions or statistical ensembles determining the likelihood
of a configuration or microstate denoted by ω = (ω1, ω2, . . . , ωn) ∈ �n , where ωi is the
state of the i th particle taking values in some set � so that �n = �n . In this case, Mn could
represent the total energy of the system, for example, or its magnetization if we consider a
spin model. Alternatively, ωi ∈ � could be the state of a stochastic process at time i , so that
ω = (ω1, ω2, . . . , ωn) is a path of the process from time 1 to time n and �n = �n is the set
of all such paths. The observable Mn in that case is a functional of the paths, which often
takes the form of an additive or ergodic average

Mn = 1

n

n∑

i=1

f (ωi ), (2)

where f is some function of�, e.g., a real-valued function, in which caseM is simplyR. The
measures Pn and Qn then represent two different models for the stochastic process inducing
two distributions for Mn .

To compare these two measures, we use the Radon–Nikodym derivative (RND) of Pn

relative to Qn , denoted by

Rn = d Pn

d Qn
. (3)

This quantity establishes, as is well known, a bridge between expectations relative to Pn and
Qn as follows:

EPn [ · ] = EQn [Rn · ]. (4)

In particular,

Pn(B) = EPn [1B] = EQn [Rn1B], (5)

where 1B is the indicator or characteristic function of the set B.
The RND, as a function Rn(ω) of the elements ω ∈ �n , is a real random variable having

different distributions in general relative to Pn and Qn . To discuss the properties of these
distributions, we will make the simplifying assumption throughout this paper that Pn and
Qn have the same support on �n , so that Pn is absolutely continuous with respect to Qn and
Qn is absolutely continuous with respect to Pn . In this case, Rn is finite and strictly positive
almost surely on the support of Pn or Qn . The action Wn , defined by
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Wn = −1

n
log Rn, (6)

is then also a real and finite random variable on the support of Pn or Qn . Up to a constant,
Wn is just the log-likelihood of Pn relative to Qn .

The reason for introducing the action is that, in many applications of interest, the RND
behaves exponentially with n, so that its fluctuations are more conveniently studied by trans-
forming it, as is common in large deviation theory, to a random variable whose distribution
relative to Pn or Qn concentrates in the limit n → ∞. The main insight needed for proving
equivalence of measures is to analyze this concentration using large deviation theory.

2.2 Large Deviation Principles

The macrostate Mn and the action Wn are two random variables relative to Pn or Qn . The
goal, following the introduction, is to compare the typical values of Mn obtained under each
measure by analyzing, via the distribution of Wn , the differences between these measures.
The main hypothesis used to establish this comparison, which is the central hypothesis of
this work, is that Mn and Wn jointly satisfies the large deviation principle, defined as follows.

Let Y be a Polish space, Yn a sequence of random variables mapping �n into Y , Pn a
sequence of measures on �n , and I a lower semi-continuous function that maps Y to [0,∞]
with compact level sets. For any subset A ⊆ Y , define

I (A) = inf
y∈A

I (y). (7)

We say that Yn satisfies the large deviation principle (LDP) with respect to Pn with rate
function I if

lim sup
n→∞

1

n
log Pn(Yn ∈ C) ≤ −I (C) (8)

for any closed subset C of Y and

lim inf
n→∞

1

n
log Pn(Yn ∈ O) ≥ −I (O) (9)

for any open subset O of Y . The function I (y), which is called the rate function, is known
to be unique and non-negative, I ≥ 0 [2–4]. Its domain is the set of values y ∈ Y for which
I (y) < ∞.

The LDP translates in technical terms the fact that the distribution of Yn decays expo-
nentially in n, except on sets such that I = 0. In many applications, the two large deviation
bounds above are found to be the same for “normal” sets A, such as closed intervals or
compact balls, which leads to

lim
n→∞ −1

n
log Pn(Yn ∈ A) = I (A). (10)

In the case where Y is a Euclidean space and Yn has a density pn(y) with respect to the
Lebesgue measure, we can also write more simply

lim
n→∞ −1

n
log pn(y) = I (y), (11)

which clearly shows that the leading behaviour of the density of Yn is a decaying exponential
in n, except where I (y) = 0, with corrections in the exponential that are smaller than linear in
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n. In the large deviation and information theory literature [2–4,19], this exponential scaling
or approximation is often taken to define a logarithmic equivalence expressed by

pn(y) � e−nI (y) (12)

or

P(Yn ∈ A) � e−nI (A). (13)

In this sense, an � bn means that an and bn are equal up to eo(n) corrections in n or, more
precisely,

lim
n→∞

1

n
log

an

bn
= 0. (14)

With these definitions, we express our main hypotheses as follows.

Hypotheses 1

• The couple (Mn, Wn) satisfies, as a random variable on the product space M × R, the
LDP relative to Pn with joint rate function K P ;

• (Mn, Wn) satisfies the LDP relative to Qn with joint rate function K Q;
• K P and K Q have the same domain.

These hypotheses are satisfied in many applications. The first one means essentially that

pn(Mn = m, Wn = w) � e−nK P (m,w), (15)

assuming formally that the joint probability density of Mn and Wn exists. A similar result
holds for Qn with the rate function K Q . In the absence of densities, the meaning of the LDP
is as defined above with the upper and lower bounds. In all cases, our prior assumption that
Pn and Qn have the same support is reflected in the hypothesis that K P and K Q have the
same domain.

In general, it is known that having the joint LDP for two randomvariables implies that each
random variable also satisfies the LDP. This marginalization of the LDP can be derived from
the definition of this principle or from the so-called contraction principle [3, Thm. 4.2.1],
and leads to variational formula for the marginal rate functions of Mn and Wn .

Proposition 1 Under Hypotheses 1, Mn satisfies the LDP relative to Pn with marginal rate
function

JP (m) = inf
w∈R K P (m, w) (16)

and the LDP relative to Qn with marginal rate function

JQ(m) = inf
w∈R K Q(m, w). (17)

which has the same domain as JP . Similarly, Wn satisfies the LDP relative to Pn and Qn

with rate functions

IP (w) = inf
m∈M K P (m, w) (18)

and

IQ(w) = inf
m∈M K Q(m, w), (19)

respectively, having the same domain.
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These formulae can be justified easily in terms of densities by applying the LDP and
the Laplace principle for approximating exponential integrals. Considering, for example, the
marginalization of Wn in

pn(Mn = m) =
∫

R

pn(m, w)dw �
∫

R

e−nK P (m,w)dw (20)

leads to

pn(Mn = m) � exp

(
−n inf

w∈R K P (m, w)

)
= exp (−n JP (m)) (21)

in the limit n → ∞.
We give next a rigorous proof for measures based on the contraction principle of large

deviation theory [3], which is itself an application of the Laplace principle [4,20].

Proof The contraction principle states that, if Yn satisfies the LDP with rate function I , then
Zn = f (Yn) satisfies the LDP with rate function

J (z) = inf
y: f (y)=z

I (y) (22)

if the “contraction” function f is continuous [3, Thm. 4.2.1].
In the case of marginalizing, for example, from (Mn, Wn) to Mn , the contraction function

is simply a projection f (Mn, Wn) = Mn , which is continuous under the natural product
topology for the space of (Mn, Wn). Therefore,

JP (m) = inf
w∈R: f (m,w)=m

K P (m, w) = inf
w∈R K P (m, w). (23)

All other contractions follow in the same way. Moreover, the fact that the marginal rate
functions have the same domain simply follows from our assumption that the joint rate
functions have the same domain. 	


Many techniques can be used to derive the LDP for Mn and Wn and the corresponding
rate function, though the derivation of LDPs is, as always, a difficult problem. In the case of
equilibriummany-particle systems, one can use the contraction principle for observables Mn

that admit a representation function, as described in Sect. 5.3.4 of [20], or contractions based
on the so-called level 3 of large deviations [2], which are however very difficult to work
with. For Markov processes, one can also use the contraction principle when considering
observables that depend on both the state of the process and its jumps or increments [10].
In this case, the contraction is applied to the level 2.5 of large deviations, which involves
explicit LDPs for the empirical measure and empirical current [21–23]. Finally, when Mn

takes values in R
d one can use the Gärtner–Ellis Theorem, which is based on the following

function:

λP (k, η) = lim
n→∞

1

n
log EPn [en〈k,Mn〉+nηWn ], (24)

called the scaled cumulant generating function. Here k ∈ R
d , 〈·, ·〉 is the standard scalar

product, and η ∈ R. Provided that this function exists in an open neighbourhood of the origin
and is “steep” (see [2–4] for details), this theorem states that (Mn, Wn) satisfies the LDPwith
rate function K P given by the Legendre–Fenchel transform of λP :

K P (m, w) = sup
k∈Rd ,η∈R

{〈k, m〉 + ηw − λP (k, η)}. (25)
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For independent and identically distributed random variables, λP reduces to a simple cumu-
lant function, while for Markov processes it is given by the dominant eigenvalue of a matrix
or linear operator [3,24,25].

2.3 Typical Sets and Values

Since rate functions are non-negative, we have as a consequence of Prop. 1 that, if (m∗, w∗)
is a zero of K P , then m∗ must be a zero of JP (m) and w∗ must be a zero of IP (w). A similar
result holds relative to Qn .

The zeros of rate functions will play an important role in the remaining, so it is important
to discuss their interpretation. To this end, let us consider the rate function JP describing the
large deviations of Mn relative to Pn , and let EP denote the set of zeros of JP , which also
corresponds to the set of global minima of JP :

EP = {m ∈ M : JP (m) = 0}. (26)

Because JP has compact level sets, EP is compact and non-empty.
In general, EP represents the typical set on which the distribution of Mn concentrates in

the limit n → ∞. To be more precise, it can be proved (see [26, Thm. 2.5]) that the sequence
Pn(Mn ∈ · ) converges weakly to a probability measure � onM such that �(EP ) = 1. This
follows because the probability of any point that is not in EP decays exponentially as a result
of the LDP, so that Pn(Mn ∈ · ) must concentrate on EP as n → ∞. For this reason, EP is
called the concentration set or the typical set of Mn relative to Pn .

If JP has a unique minimum and zero m∗, then the sequence Pn(Mn ∈ · ) converges
weakly to the delta measure δm∗ [26, Thm. 2.5], so that m∗ is the unique concentration or
typical value of Mn . In this case, Mn satisfies a weak law of large numbers in the sense that

lim
n→∞ Pn(‖Mn − m∗‖ > ε) = 0, (27)

where ε is any positive real number and ‖·‖ is ametric onM.We then also say that Mn → m∗
in probability (relative here to Pn).

These notions of typical sets and values can be applied to any of the rate functions defined
before. In applications, it is more common to find that a random variable satisfying the LDP
has a unique typical value than a “extended” typical set, so we focus here mainly on the
former type of concentration. In general, a random variable has a unique typical value if its
rate function is strictly convex.

2.4 Fluctuation Relations

The different rate functions defined up to now are not independent, since probabilities
obtained with Pn can be expressed, as shown in (5), as modified expectations with respect
to Qn that involve the RND. This leads, as shown next, to a simple relation between the rate
functions involving the action, referred to in statistical physics as fluctuation relations [27].

Proposition 2 The joint rate functions K P and K Q of (Mn, Wn) are related by

K P (m, w) = w + K Q(m, w) (28)

for all m ∈ M and w ∈ R. Similarly, the marginal rate functions IP and IQ of Wn satisfy

IP (w) = w + IQ(w) (29)

for all w ∈ R.
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This result is obvious if we assume again that densities exist. Then the Radon–Nikodym
formula (5) simply becomes

pn(m, w) = EQn [e−nWn δ(Mn − m)δ(Wn − w)] = e−nwqn(m, w). (30)

The proof next translates this observation for measures using another important result
of large deviation theory known as Varadhan’s lemma. We refer to [28, Thm. 1.3.4] or [3,
Thm. 4.3.1] for the general formulation of this result.

Proof The probability measure

Pn(Mn ∈ A, Wn ∈ B) =
∫

A

∫

B
Pn(dm, dw) (31)

is equivalent, using the Radon–Nikodym formula (5), to

Pn(Mn ∈ A, Wn ∈ B) =
∫

A

∫

B
e−nw Qn(dm, dw). (32)

This has the form of an exponential integral with Xn = (Mn, Wn) and h(x) = −w in the
notations of Theorem 1.3.4 of [28]. The function h in our case is not bounded. However,
since Rn is strictly positive on the support of Pn , the large deviation upper bound

lim sup
n→∞

1

n
log Pn(Mn ∈ A, Wn ≤ −C) ≤ − inf

w≤−C
K P (A, w) (33)

implies

lim
C→∞ lim sup

n→∞
1

n
log Pn(Mn ∈ A, Wn ≤ −C) = −∞ (34)

for anymeasurable A. Therefore, the technical condition stated in [28, Thm. 1.3.4] is satisfied,
leading to the main result

lim
n→∞ −1

n
log Pn(Mn ∈ A, Wn ∈ B) = inf

m∈A,w∈B
{w + K Q(m, w)}. (35)

Since rate functions are unique [3, Lem. 4.1.4], the right-hand side must be the rate function
of (Mn, Wn) relative to Pn , which proves (28).

The same reasoning applied to Pn(Wn ∈ A) yields (29). Alternatively, we can derive (29)
more directly by applying the contraction principle to marginalize Mn from (28) following
Prop. 1. 	


The relations (28) and (29) are interpreted in statistical physics as symmetries on rate
functions that impose general constraints on the fluctuations of nonequilibrium processes
(see [12] for a review). In this context, Pn refers to the probability measure of a stationary
Markov process modelling a nonequilibrium process, Qn is the probability measure of the
time-reversed process, and Wn is then called the entropy production. We will come back to
this example in Sect. 4.

3 Concentration Equivalence

We are now ready to prove the equivalence of Pn and Qn at the level of the typical sets of
Mn defined, respectively, as

EP = {m ∈ M : JP (m) = 0} (36)
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and

EQ = {m ∈ M : JQ(m) = 0}. (37)

Since JP and JQ have compact level sets, EP and EQ are non-empty and compact.
The basic idea for proving this equivalence is contained in the fluctuation symmetry (28),

which shows that the rate function K P (m, w) and K Q(m, w) can vanish on the same value
m if they vanish for w = 0. To prove that EP = EQ , we then need to make sure that w = 0 is
the only value where these rate functions vanish, so that Wn has a unique typical value equal
to 0 with respect to both Pn and Qn .

As a result, we assume from now on that the rate functions IP and IQ of Wn each have
a unique zero, which is not necessarily equal to 0, and define the following. We say that Pn

and Qn are asymptotically equivalent if

lim
n→∞

1

n
log

d Pn

d Qn
= 0 (38)

in probability with respect to Pn and Qn . Note that this definition is consistent with the
symmetry (29), for if IQ(0) = 0 then IP (0) = 0, and vice versa.

The next theorem, which is the main result of this paper, shows that this notion of asymp-
totic equivalence of measures is sufficient for EP to coincide with EQ .

Theorem 3 Assume that Mn and Wn satisfy the joint LDP stated in the Hypotheses 1 and that
the rate functions IP and IQ of Wn each have a unique zero. If Pn and Qn are asymptotically
equivalent, then EP = EQ.

Proof The assumption that IP and IQ have unique zeros, coupled with the assumption that
Pn is asymptotically equivalent to Qn , implies that IP (0) = IQ(0) = 0 and that w = 0 is
the only point where this equality holds.

The equality IP (0) = 0 leads with (18) to

0 = IP (0) = inf
m∈M K P (m, 0). (39)

Let A denote the set of minimizers of the infimum over m. Then K P (m∗, 0) = 0 where
m∗ ∈ A and, from (16), we obtain

JP (m∗) = inf
w∈R K P (m∗, w) = K P (m∗, 0) = 0, (40)

which implies that m∗ ∈ EP .
By applying the symmetry (28), we also have K Q(m∗, 0) = 0 and so

JQ(m∗) = inf
w∈R K Q(m∗, w) = K Q(m∗, 0) = 0, (41)

which implies that m∗ ∈ EQ .
This only shows that all m∗ ∈ A are in EP and in EQ or, equivalently, that A ⊂ EP and

A ⊂ EQ . To prove that all m ∈ EP are in fact in A, assume that m̄ ∈ EP and that the infimum
over w in (40) is achieved at 0. Then

0 = JP (m̄) = K P (m̄, 0) (42)

so that m̄ ∈ A. On the other hand, if the infimum is achieved for w̄ �= 0, then

IP (w̄) = inf
m∈M K P (m, w̄) = K P (m̄, w̄) = 0, (43)
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which would contradict the fact thatw = 0 is the only zero of IP (w). Consequently, we have
proved that A = EP and so that EP ⊂ EQ .

To prove the equality of the two sets, we only have to use the same argument by starting
with Qn to show similarly that all m ∈ EQ are also in EP , so that EQ ⊂ EP . Consequently,
EP = EQ . 	


The result of Theorem 3 is natural considering that the notion of asymptotic equivalence
and the LDP are based on the same logarithmic scale (�), defined in (14), so that differences
betweenmeasures that are neglected on that scale should not affect the LDP of Mn . One has to
be careful with this intuition, however, because it is known that sub-exponential differences
between Pn and Qn can lead to different rate functions [1]. What Theorem 3 shows is that
such differences do not influence the concentration of Mn , although they can influence the
fluctuations of Mn . In other words, if Pn and Qn are asymptotically equivalent, then the rate
functions JP and IQ for Mn are not necessarily equal, but have the same zeros.

The next result relates the notion of asymptotic equivalence, defined in (38) in terms of
Wn , to the relative entropy

D(Pn ||Qn) =
∫

d Pn log
d Pn

d Qn
= EPn

[
log

d Pn

d Qn

]
(44)

or Kullback–Leibler distance [19]. This result is potentially useful for determining whether
Pn and Qn are asymptotically equivalent without having to explicitly derive the rate function
of Wn .

Theorem 4 Assume the same hypotheses as in Theorem 3. If Pn and Qn are asymptotically
equivalent, then

lim
n→∞

1

n
D(Pn ||Qn) = lim

n→∞
1

n
D(Qn ||Pn) = 0. (45)

Conversely, if the limits above hold, then Pn and Qn are asymptotically equivalent.

Proof The proof only relies on the law of large numbers for Wn . If Wn satisfies the LDP
relative to Pn and its rate function IP has a unique zero w∗, as assumed, then

lim
n→∞ EPn [Wn] = w∗. (46)

Therefore, if Pn and Qn are asymptotically equivalent, then w∗ = 0 and

lim
n→∞ EPn [Wn] = lim

n→∞ −1

n
EPn

[
log

d Pn

d Qn

]
= lim

n→∞ −1

n
D(Pn ||Qn) = 0. (47)

The same applies relative to Qn .
To prove the converse, note that if the limit (46) in mean applies for Wn and IP has a

unique zero, as assumed, then the limiting meanw∗ must be that zero. Hence, if the first limit
for the relative entropy shown in (45) holds, then IP (0) = 0. Since the same applies for IQ ,
we conclude that Pn and Qn are asymptotically equivalent. 	

Remarks

1. The result of Theorem 3 was already known to hold, as mentioned in the introduction, for
the specific probability measures that are the microcanonical and canonical ensembles of
statistical physics (see Sect. 4). The notion of asymptotic equivalence of measures used
here comes from that context.
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972 H. Touchette

2. The equivalence result is valid for any random variable Mn that satisfies the joint LDP
with Wn . This means concretely that, if two probabilistic models of some system are
asymptotically equivalent, then they are indistinguishable at the level of their typical
sets. They are equivalent models predicting the same typical properties.

3. The asymptotic equivalence of Pn and Qn is a sufficient but not a necessary condition for
EP = EQ . In some cases (see Sect. 4), we can indeed have EP = EQ for specific random
variables Mn even though Pn and Qn are not asymptotically equivalent.

4. The notion of asymptotic equivalence is transitive: If Pn is asymptotically equivalent to
Qn and Qn is asymptotically equivalent to Fn , then Pn is asymptotically equivalent to
Fn . This can be checked directly from the definition of asymptotic equivalence.

5. When the limits (45) for the relative entropy hold, Pn and Qn are said to have zero
divergence rate [29] or to be equivalent in the specific relative entropy sense [1,30–32].
For Markov processes, the action and relative entropy can be related to transition and
waiting times [33].

6. We need not assume for proving Theorem 3 that the rate function JP and JQ defining
the typical sets EP and EQ have unique zeros. This assumption is only required for IP

and IQ so as to have unique typical values for Wn relative to Pn and Qn which, by the
assumption of asymptotic equivalence, are equal to 0.

7. An open problem is to determine what happens when Wn has another typical value other
than 0 or when w = 0 is only in the typical set of Pn or Qn without being a real
concentration value. The proof given here suggests that EP and EQ should have in this
case some overlap without being equal, as is known to happen for the microcanonical
and canonical ensembles when they are partially equivalent [26].

8. Another open problem is to generalize our results when Pn and Qn do not have the same
support. In this case, the symmetry relations expressed in Prop. 2 do not seem to hold
on the whole domain of the rate functions involved, but only on their intersection. It
is not clear then whether or not this is enough to have equivalence of typical sets, as
there is no guarantee that the zeros of the rate functions relative to Pn are also zeros of
the rate functions relative to Qn , which makes their comparison more complicated. The
microcanonical and canonical ensembles, which do not have the same support, should
serve as a starting point for understanding this problem.

4 Applications

We illustrate in this section the result of Theorem 3 using various examples of probability
measures and stochastic processes. The examples are simple: they are presented to discuss
certain aspects of that theorem and to give an idea of how it can be applied to measures that
describe a wide range of “static” and “dynamic” probabilistic models.

4.1 Independent Random Variables

We first consider a sequence X1, X2, . . . , Xn of real random variables, assumed to be inde-
pendent and identically distributed (iid) according to some density p, defining our model Pn ,
or the density q , defining Qn . For example, we can choose p ∼ N (0, 1) to be a standard
normal random variables and q ∼ N (μ, σ 2) to be a Gaussian random variable with mean μ

and variance σ 2. In this case, the RND is simply
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Rn =
n∏

i=1

p(Xi )

q(Xi )
= e−nWn , (48)

where

Wn = μ

σ 2 Mn + (σ 2 − 1)

2σ 2 Cn − μ2

2σ 2 − log σ (49)

with

Mn = 1

n

n∑

i=1

Xi , Cn = 1

n

n∑

i=1

X2
i . (50)

To determine whether Pn and Qn are asymptotically equivalent, we need to find the rate
functions IP and IQ of the action Wn . This can be done easily with the Gärtner–Ellis theorem
(see Sect. 2) or by contraction of the joint LDP of Mn and Cn above. From the form of Wn ,
however, it is clear that Pn and Qn are asymptotically equivalent if and only if μ = 0 and
σ = 1, that is, if and only if we trivially have p = q . In this case, Wn = 0 with probability
1, so that IP and IQ are degenerate on w = 0.

Forμ = 0 and σ �= 1, Mn → 0 in probability relative to both Pn and Qn , although the two
measures are not asymptotically equivalent. For this observable, we therefore have EP = EQ ,
which shows that the condition of asymptotic equivalence is not a necessary condition for
the equivalence of EP and EQ , as noted in Remark 3. Note, however, that EP �= EQ if we
take the observable to be Cn , since Cn → 1 in probability relative to Pn while Cn → σ 2 in
probability relative to Qn , assuming again μ = 0. This suggests that, if Pn and Qn are not
asymptotically equivalent, then there is at least one observable for which EP �= EQ , a result
that would be interesting to prove in general.

The asymptotic equivalence obtained for p = q applies in a more general way to any iid
sequences satisfying the hypotheses of this work. This follows from Theorem 4 by noting
that

lim
n→∞

1

n
D(Pn ||Qn) = D(p||q) =

∫
dx p(x) log

p(x)

q(x)
(51)

and that D(p||q) vanishes if and only if p(x) = q(x) almost everywhere [19].
To go beyond this trivial case of equivalence, we can consider sequences of random

variables that are independent but not identically distributed. In particular, we can consider
in Qn all but one random variable, say X1, to have the same distribution p, so that

Rn(x1, x2, . . . , xn) = p(x1)p(x2) · · · p(xn)

q(x1)p(x2) · · · p(xn)
= p(x1)

q(x1)
(52)

and thus

Wn = 1

n
log

q(X1)

p(X1)
. (53)

In this case, Wn → 0 as n → ∞ relative to both Pn and Qn , provided that p and q do
not scale with n and have the same support. Under these additional conditions, Pn and Qn

are then asymptotically equivalent. This can be generalized, as is clear from the form of Rn

above, to cases where a number N < n of independent random variables have a different
distribution q under Qn , so long as N/n → 0 as n → ∞.
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4.2 Microcanonical and Canonical Ensembles

The microcanonical and canonical ensembles are the main probabilistic models used in
statistical physics to study equilibrium systems. Both are defined by transforming a basic
measure μn on the space �n of configurations or microstates of a system of n particles
for which the random variable Mn is interpreted as a macrostate. On the one hand, the
microcanonical ensemble is the measure on �n obtained by conditioning μn on Mn ∈ B:

μn(dω|Mn ∈ B) = μn(dω, Mn ∈ B)

μn(Mn ∈ B)
=

{
μn(dω)/μn(B) if Mn(ω) ∈ B
0 otherwise,

(54)

where ω is an element of �n . Usually, Mn ∈ R is the energy of the system and B is a very
thin interval [m̄ − ε, m̄ + ε], called the energy shell, located around a fixed value m̄. Taking
this to represent our model Pn , we then have

Pn(dω) = μn(dω|Mn ∈ [m̄ − ε, m̄ + ε]). (55)

On the other hand, the canonical ensemble is themeasure on�n that transformsμn according
to

Qn(dω) = enk Mn(ω)

Eμn [enk Mn ]μn(dω), k ∈ R (56)

provided that Eμn [enk Mn ] < ∞. This measure is also called the exponential-tilting of μn or
the exponential family, and represents physically the distribution of a system of n particles
with energy Mn in contact with a heat bath at inverse temperature β = −k. Mathematically, it
also represents a “softening” of themicrocanonical measure in which the “hard” conditioning
constraint Mn = m̄ is replaced by the “soft” constraint EQn [Mn] = m̄ on the average of Mn .

To prove the equivalence of these two measures, we need to assume that Mn satisfies the
LDP with respect to μn with rate function I . Assuming that I is convex at m̄ and choosing
k ∈ ∂ I (m̄), where ∂ I denotes the sub-differential of I [34], it can be shown that Wn → 0
in probability relative to both Pn and Qn [1]. The two measures or ensembles must then
be equivalent at the level of typical sets of random variables that satisfy the LDP in both
ensembles. The full proof of this result can be found in [1], so we do not repeat it here.

Physically, nonequivalent ensembles arise when the interactions between particles in a
macroscopic system are long-range, with mean-field interactions being an extreme case of
long-range interactions. For examples of such systems, see [1,26,35]. When the interaction
is short or finite range, the microcanonical and canonical ensembles are generally equivalent.

The equivalence of themicrocanonical and canonical ensembles has also been investigated
recently in the context of random graphs [15–17], sometimeswith different notions of asymp-
totic equivalence [14]. What is found in general is that a microcanonical ensemble of random
graphs in which a fixed number of constraints are considered is equivalent to a canonical
ensemble of graphs in which these constraints are imposed on average with an exponential
(canonical) tilting. One example is the Erdös–Rényi ensemble in which all graphs with N
nodes and E links have the same probability, and E is such that the degree per node 2E/N
converges to a constant d as N → ∞ (sparse regime). In the limit where N → ∞, this
microcanonical graph ensemble is known to be equivalent with the more common canonical
ensemble in which the N vertices are linked at random with probability p = d/N . However,
if an extensive number of constraints proportional to the number of nodes are imposed, then
the microcanonical and canonical ensemble can be nonequivalent. This is illustrated in [15]
with random graphs in which the whole degree sequence is fixed.
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4.3 Generalized Canonical Ensembles

The canonical ensemble is not the only probability measure that is asymptotically equivalent
to the microcanonical ensemble. More generally, we can replace the canonical measure Qn

in (56) by

Fn(dω) = enh(Mn(ω))

Eμn [enh(Mn)]μn(dω), (57)

where h : M → R is a real function of Mn such that Eμn [enh(Mn)] < ∞. This defines in
statistical physics a generalized canonical ensemble [36–38], which has the same support as
the canonical ensemble measure (56) and which can bemade equivalent to both the canonical
ensemble and the microcanonical ensemble.

The asymptotic equivalence with the microcanonical ensemble is discussed in detail in
[36]. To see how the generalized canonical ensemble can be equivalent with the standard
canonical ensemble, let us assume as before that Mn satisfies the LDP relative to μn with
rate function I and define

φ(h) = lim
n→∞

1

n
log Eμn [enh(Mn)] (58)

and

λ(k) = lim
n→∞

1

n
log Eμn [enk Mn ], (59)

assuming that both are finite. By Varadhan’s lemma [28, Thm. 1.3.4], it is known that these
two functions can be expressed in terms of the rate function I as

φ(h) = sup
m∈M

{h(m) − I (m)} (60)

and

λ(k) = sup
m∈M

{km − I (m)}. (61)

Moreover, under the hypothesis of this lemma, it can be proved (see [2, Thm. 11.7.2] or [1,
Thm. 14]) that Mn satisfies the LDP relative to Fn with rate function

IF (m) = I (m) − h(m) + φ(h) (62)

and the LDP relative to Qn (the canonical ensemble) with rate function

IQ(m) = I (m) − km + λ(k). (63)

Combining these results, we see that, if h and k are chosen such that IF (m) and IQ(m) have
the same unique minimum and zero m̄, then φ(h) = h(m̄) − I (m̄) and λ(k) = km̄ − I (m̄).
Consequently,

lim
n→∞

1

n
log

d Fn

d Qn
= h(m̄) − km̄ + λ(k) − φ(h) = 0 (64)

in probability relative to both Fn and Qn , which means that we have asymptotic equivalence.
This follows here because the RND is a function of Mn only and both Fn and Qn concentrate
on the same value m̄ of Mn .

Specific examples of generalized ensembles related to long-range and mean-field inter-
acting systems are discussed in [36–39]. The advantage of using the generalized canonical
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ensemble is that it can be used to describe the microcanonical properties of many-body
systems whenever the canonical ensemble itself is not equivalent with the microcanonical
ensemble. This happens generically when the entropy is nonconcave as a function of the
energy in the thermodynamic limit. For more details on equivalent versus nonequivalent
ensembles, we refer to [1,40].

4.4 Markov Processes

We close the list of examples by briefly discussing Markov processes, beginning with the
case of Markov chains.

Let X1, X2, . . . , Xn be an ergodic Markov chain on a set �, assumed to be finite for
simplicity, and consider two probability measures Pn and Qn on the space �n = �n defined
by the (homogeneous) transition kernels p(x, y) and q(x, y), respectively. Starting with the
same distribution ρ for X1, we thus write

Pn(x1, x2, . . . , xn) = ρ(x1)p(x1, x2) · · · p(xn−1, xn) (65)

and

Qn(x1, x2, . . . , xn) = ρ(x1)q(x1, x2) · · · q(xn−1, xn), (66)

so that

Wn = 1

n

n−1∑

i=1

log
q(xi , xi+1)

p(xi , xi+1)
. (67)

The rate function of Wn , if it exists, can be derived by contracting the LDP of the so-called
pair empirical distribution of the Markov chain; see Sect. 4.3 of [20]. Alternatively, we can
notice that the relative entropy rate of the two Markov chains is

lim
n→∞

1

n
D(Pn ||Qn) =

∑

(x,y)∈�2

μ(x)p(x, y) log
p(x, y)

q(x, y)
(68)

where μ(x) is the invariant distribution of the Markov chain with transition distribution
p(x, y) [19]. Since the relative entropy on the right-hand side above vanishes if and only
if p = q almost everywhere, we then obtain, similarly to iid sequences, that Pn and Qn

are asymptotically equivalent, under the conditions of Theorem 3, if they define the same
Markov chain with the same transition kernel. This applies to homogeneous Markov chains.
As in the case of iid sequences, there is more room for equivalence if we allow the transition
kernels to be time-dependent or compare Markovian with non-Markovian processes.

Similar results can be formulated for Markov chains on uncountable and continuous
spaces, provided that they have the LDPs required in Hypotheses 1. One can also consider
continuous-time processes, such as pure diffusions, by replacing �n with the space �T of
sample paths over the time interval [0, T ], in which case Pn and Qn are “path” measures
similar to the Wiener measure, denoted by PT and QT , whose action

WT = − 1

T
log

d PT

d QT
(69)

can be expressed in terms of stochastic integrals using Girsanov’s theorem [41]. The large
deviation limit defining the equivalence of PT and QT is then the long-time or ergodic limit
T → ∞.
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Many examples of stochastic processes related to nonequilibrium systems which are
asymptotically equivalent are treated in [10]. This work introduced together with [9] the
notion of asymptotic equivalence of processes in order to construct “modified” Markov pro-
cesses that are equivalent, in terms of typical properties, to Markov processes conditioned
on reaching certain large deviations. What is found in general is that the conditioned Markov
processes are not Markovian, but do become asymptotically equivalent in the long-time limit
to a homogeneous Markov process, given by a generalization of the Doob transform. For
more information on this large deviation conditioning problem, and its connections with
nonequilibrium versions of the microcanonical and canonical ensembles, we refer to [9–11].

To close this section, let us consider as an example an ergodic diffusion Xt with path
measure PT , and let QT be the path measure of the same process reversed in time (in the
sense of Haussmann and Pardoux [42]). If the process is reversible, that is, if it satisfies the
detailed balance condition, then it is known that the action WT , which corresponds to the
entropy production [27], depends only on the initial and final states:

WT = − 1

T
log

p(X0)

p(XT )
, (70)

where p is stationary density of Xt . Since this density does not scale with time, Xt and
its time-reversal must therefore be asymptotically equivalent, and so equivalent at the level
of typical values. This is expected physically, since the two processes are then statistically
indistinguishable. On the other hand, if Xt is irreversible, then the entropy production is
known to be strictly positive, which means that the process and its time-reversal are not
asymptotically equivalent. In this case, the two processes behave differently in terms of path
statistics and typical ergodic values.
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