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Abstract In this paper, we establish a moderate deviation principle for the Langevin dynam-
ics with strong damping. The weak convergence approach plays an importantrole in the proof.
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1 Introduction

For every ¢ > 0, consider the following Langevin equation with strong damping

G5 (1) = b(g* (1) — “LDGe (1) + 0 (¢° (1) B().

1.1
q°(0) =g € R, §4°(0)=peR’. a-b

Here B(t) is a d-dimensional standard Wiener process, defined on some complete stochastic
basis (2, F, {F:}r>0, P). The coefficients b, o and o satisfy some regularity conditions (see
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Sect. 2 for details) such that for any fixed ¢ > 0, T > 0 and k > 1, Eq.(1.1) admits a unique
solution ¢¢ in L¥(Q; C([0, T1; RY)). Let g, (1) := g°(t/¢), t > 0, then Eq. (1.1) becomes

{ezqe(r) = b(qe (1)) — a(qe (1))Ge (1) + /a0 (ge (1),

. (1.2)
g:(0) =g €RY, §.(0) =2 e R,

where w(t) := /eB(t/¢),t > 0, is also a R9-valued Wiener process.

In [3], Cerrai and Freidlin established a large deviation principle (LDP for short) for
Eq. (1.2) as ¢ — 0+. More precisely, for any 7 > 0, they proved that the family {g¢}c~0
satisfies the LDP in the space C([0, T]; R4 ), with the same rate function / and the same
speed function £ ~! that describe the LDP of the first order equation

b)) o(g:) . ,
_ . g(0) =g e RY. 13
ae® " Vatgy VO @ =qc (1.3)

Explicitly, this means that

ge(t)

(1) for any constant ¢ > 0, the level set { f; I (f) < c} is compact in C([0, T]; R9)y;
(2) for any closed subset F C C([0, T']; Rd),

limsupeloglP(g. € F) < — inf I1(f);
e—0+ fer

(3) for any open subset G € C([0, T]; RY),
liminf ¢ log P > —inf I(f).
im inf & log (g: € G) = nf. f)

The dynamics system (1.3) can be regarded as the random perturbation of the following
deterministic differential equation

 blgo(0)

Go(1) = . q0(0) =q € R". (1.4)

a(qo(?))
Roughly speaking, the LDP result in [3] shows that the asymptotic probability of P(|lg. —
qoll > &) converges exponentially to 0 as ¢ — 0 for any § > 0, where || - || is the sup-norm

on C([0, T]; RY).

Similarly to the large deviations, the moderate deviations arise in the theory of statistical
inference quite naturally. The moderate deviation principle (MDP for short) can provide us
with the rate of convergence and a useful method for constructing asymptotic confidence
intervals (see, e.g., recent works [6,8,9,11] and references therein). Usually, the quadratic
form of the rate function corresponding to the MDP allows for the explicit minimization,
and particularly it allows one to obtain an asymptotic evaluation for the exit time (see [10]).
Recently, the study of the MDP estimates for stochastic (partial) differential equation has
been carried out as well, see e.g. [1,7,12,13] and so on.

In this paper, we shall investigate the MDP problem for the family {g:}s~0 on
c(o,1]; ]Rd). That is, the asymptotic behavior of the trajectory

|
Veh(e)

Here the deviation scale satisfies

X (1) = (qe(t) —qo()), t€[0,T]. (1.5)

h(e) = +o0o and /sh(s) = 0, ase — 0. (1.6)

Due to the complexity of g., we mainly use the weak convergence approach to deal with
this problem. Comparing with the approximating method used in Gao and Wang [5], our
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method is simpler since we only need the moment estimation rather than the exponential
moment estimation of the solution.

The organization of this paper is as follows. In Sect. 2, we present the framework of the
Langevin equation, and then state our main results. Section 3 is devoted to proving the MDP.

2 Framework and Main Results

Let | - | be the Euclidean norm of a vector in RY, (-, -) the inner production in R4, and

|l - llgs the Hilbert-Schmidt norm in R?*? (the space of d x d matrices). For a function

b:R! - R Db = ( = bi) is the Jacobian matrix of b. Recall that || - || is the
7 1<i,j=<d

sup-norm on C ([0, T]; RY). Throughout this paper, T > 0 is some fixed constant, C(-) is a
positive constant depending on the parameters in the bracket and independent of €. The value
of C(-) may be different from line to line.

Assume that the coefficients b, & and o in (1.2) satisfy the following hypothesis.

Hypothesis 2.1 (a) The mappings b : R — R? and o : R? — RI*4 gre continuously
differentiable, and there exists some constant K > 0 such that for all x, y € RY,

[b(x) —b(V)| < K|x — yl, (2.1
and

llo(x) —ollus = Klx =yl lo(x)]ns < K.

Moreover, the matrix o (q) is invertible for any ¢ € R?, and o= : R — R4*4 g
bounded.

(b) The mapping « : RY > R belongs to C Ii (]Rd) and there exist some constants 0 < g <
oy and K > 0 such that

oy = 1nf a(x), o = sup a(x) and sup |Va(x)| < K.
xeRd xeRd
Notice that:
(1) IDb|lus < K since b is continuously differentiable and satisfies (2.1);

(2) o/a is Lipschitz continuous and bounded due to the Lipschitz-continuity and the bound-
ness of the functions o and 1/«.

Under Hypothesis 2.1, according to [5, Theorem 2.2], we know that the family
{(gg — qo)/[ﬁh(s)]}6>0 satisfies the LDP on C ([0, T]; R?) with speed h2(e) and a good
rate function / given by

1) = 2 N 1 2.2)
= m , .
2h =To(h) "

where

t T
H = !h e C([0, TTI; RY); h(r) :f h(s)ds, |hl|3, ::f Vz(z)|2dz < oo} (2.3)
0 0

and

t
Fo(h(t)) = f D (M) Fo(h(s))ds + / CACLICIFPRYN 2.4)
0 a(qo(s)) a(qo(s))

with the convention inf § = oo. This special kind of LDP is just the MDP for the family
{ge}e>0 (see [4]).
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The main goal of this paper is to prove that the family {g.}.~o satisfies the same MDP as
the family {g}¢~0 on C([0, T1; RY).

Theorem 2.2 Under Hypothesis 2.1, the family {(q: — qo)/[/€h(€)1}e=0 obeys an LDP on
C ([0, T1; R?) with the speed function h (&) and the rate function I given by (2.2).

3 Proof of MDP
3.1 Weak Convergence Approach in LDP

In this subsection, we will give the general criteria for the LDP given in [2].

Let (2, F, IP) be a probability space with an increasing family {F;}o<;<7 of the sub-o-
fields of F satisfying the usual conditions. Let £ be a Polish space with the Borel o-field
B(E). The Cameron-Martin space associated with the Wiener process {w(#)}o</<r (defined
on the filtered probability space given above) is given by (2.3). See [4]. The space H is a
Hilbert space with inner product

T
(hy. o) :=f0 (i1 (5. a(s)) ds.

Let A denote the class of all {F; }o<;<7-predictable processes belonging to H a.s.. Define
forany N € N,

Sy = {h eH; /OT h(s)) ds < N}.
Consider the weak convergence topology on H, i.e., for any h,, h € H,n > 1, h, converges
weakly to h as n — +o0 if
(hy —h,g)n — 0, asn — +o0, Vg € H.
Itis easy to check that Sy is a compact set in H under the weak convergence topology. Define
Ay :=1{p € A; ¢(0) € Sy, P-as.}.

We present the following result from Budhiraja et al. [2].

Theorem 3.1 (/2]) Let € be a Polish space with the Borel o-field B(E). For any ¢ > 0, let
I’y be a measurable mapping from C([0, T1]; R?) into E. Let Xo(-) 1= Te(w(-)). Suppose
there exists a measurable mapping 'y : C([0, T1]; R — & such that

(a) for every N < 400, the set

{ro (/ h(s)ds> s he SN}
0
is a compact subset of £;

(b) for every N < +oo and any family {h®};~o C Ay satisfying that h® (as Sy-valued
random elements) converges in distribution toh € Ay as ¢ — 0,

I, (w(-) + L / hg(s)ds> converges to I'g (/ h(s)ds)
Ve Jo 0

in distribution as ¢ — 0.
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Then the family {X;}e>0 satisfies the LDP on E with the rate function I given by

. | P
I(g) = inf {5/ |h(s)] ds}, gEE, 3.1)
0

heH:g=To(f; h(s)ds)
with the convention inf ) = oo.

3.2 Reduction to the Bounded Case

Under Hypothesis 2.1, for every fixed ¢ > 0, Eq. (1.2) admits a unique solution g, in
LK(Q; Cc(0,T]; Rd)). According to the proof of Theorem 3.3 in [3], we know that the
solution g, of Eq. (1.2) can be expressed in the following form:

t t
qg(t)zq—}—/ b(qa(s))dH\/E/ TGS ys) + Re), (3.2)
0 (ge(s)) o a(gs(s)
where
Re(t) =2 / Ie*Af“)ds _ / te*f‘smb(qg(s))ds
€ Jo a(g:(1)) Jo i
t s 1
+ / ( / e‘*‘s“*”b(qg(r))dr>27<Va(qs(s)),qs(s>>ds
o \Jo a(qe(s))
1 | ,
- mHs(f)‘f‘/o mﬂs(ﬂ(va(%@))v%(S)>ds
5
=y 150, (3.3)
k=1
with

1 t
Ag(t,s) = 87/ a(gs(r))dr,  Ag(1) = Ag(1,0),

t
He (1) i= Jee™ 4@ f e o (gs (s))dw(s).
0

We denote the solution functional from C ([0, T']; R?) into C([0, T];: RY) by G., i.e.,
Ge(w(t)) :=qe(1), V1 €[0,T]. (3.4)
Let

Ge(w(t)) — qo(1)

Xe(1) :==Te(w(n)) == Jeh(®)

, Vt €0, T]. (3.5)

Then X, solves the following equation

X = ! / [b(QO(S) + VEh(©)Xe(s)) b(é]o(S)):|
T Jene) Jo Lalqols) + VEhE)Xe(s) | algo(s)
L [ 0 (qo(s) + vEh(e)Xe(s) Re(1)
+— dw(s) + :
h(s)/o a0 + vah@Xeon S T Jenie)

We shall prove that {X;}.~0 obeys an LDP on C([0, T]; R4 ) with speed function hz(s)
and the rate function / given by (2.2).

tel0,T] (3.6)
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Since the family {g; }¢~o satisfies the LDP in the space C ([0, T']; R9) with the rate function
I and the speed function e ! under Hypothesis 2.1 (see Cerrai and Freidlin [3]), there exist
some positive constants R, C such that

limsupelogP (llgell > R) < —C.

e—0

Noticing (1.6), we have

. 1
lim S(l)lp hT(S) logP (|lgell = R) = —o0. 3.7

£—>

For any fixed constant M > R, define

b(x), |x| < M;
PMx) :={g(x), M<|x| <M+1;
0, x| > M+ 1,

where g(x) is some infinitely differentiable function on R4 such that b™ (x) is continuous
differentiable on R?. Then for all ¢ € [0, T], we denote

bM
q(’)”(t):=q+/0 M ds;

(@ ()
BM (g (s)) / o (g (5))

M = & d & d RM ;

e () ’”/o 2@y P VE ) iy YW RO

XM (1) = / bM(qé‘l(S)+fh(8)XM(s)) Mgy’ o) ]
fh(a“) a(qq’ () + eh(©) XM (s)) a(qy’ ()

RS / o (gl (5) + Veh(e) XM (s)) RY (1)
h(e)

+ s
2@l s) + Jene x M) T enee)

where the expression of RM (¢) is similar to Eq. (3.3) with b, g™ in place of b, g..

Notice that ||go] is finite by the continuity of b and «. Hence, we can choose M large
enough such that go(¢) = qg” (t), forall + € [0, T]. Then for some M large enough, by
Eq. (3.7), for all § > 0, we have

lim su; lo IP’(HX — 8)

ool () o

. qe — Qp
=limsu 710 P 1)

Hopfﬂ() s (’ Jeh(e) ‘ )

<limsu logP M~ 0
- eaOphz( ) g ( — e )
1
<limsup —5— log P(lge | = M) = —oo, (3.8)
e—0 N(e)

which means that X is hz(s)-exponentially equivalent to X é” . Hence, to prove the LDP for
(X )es0 on C([0, T1; RY), it is enough to prove that for {Xﬁ”},»o, which is the task of the
next part.
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3.3 The LDP for {X¥},.

In this subsection, we prove that for some fixed constant M large enough , {X f” }e=0 obeys
an LDP on C([0, T1; R?) with speed function h2(e) and the rate function / given by (2.2).
Without loss of generality, we assume that b is bounded, i.e., || < K for some positive
constant K. Then g is also Lipschitz continuous and bounded, and by the differentiability of

g, D(g) is also bounded. From now on, we can drop the M in the notations for the sake of
simplicity.

3.3.1 Skeleton Equations

For any & € H, consider the deterministic equation:

L blgo(s)) "5 (go(s))
hit)y = D<7) h(s)d /7;1 ds. 3.9
S /E aos) ) DT agoen O 3:9)

Lemma 3.2 Under Hypothesis 2.1, for any h € H, Eq. (3.9) admits a unique solution g"
in C([0, T1; RY), denoted by gh(-)=:F0 (fo h(s)ds). Moreover, for any N > 0, there exists
some positive constant C(K, N, T, ag, a1) such that

sup
heSy

y”sC«JWTﬂmmy (3.10)

Proof The existence and uniqueness of the solution can be proved similarly to the case
of stochastic differential equation (1.3), but much more simply. (3.10) follows from the
boundness conditions of the coefficient functions and Gronwall’s inequality. Here we omit
the relative proof. O

Proposition 3.3 Under Hypothesis 2.1, for every positive number N < 400, the family

Ky = iFo (/ﬁ(s)ds);h € SN}
0

is compact in C ([0, TT; RY).

Proof To prove this proposition, it is sufficient to prove that the mapping I'g defined in
Lemma 3.2 is continuous from Sy to C([0, T]; R?), since the fact that Ky is compact
follows from the compactness of Sy under the weak topology and the continuity of the
mapping 'y from Sy to C([0, T]; R%).

Assume that #,, — h weakly in Sy as n — oco. We consider the following equation

g () —g" (1)
t t
- /0 D(qu“))) (8" )= g" ) ds + fo TGOS (5, (5) = i(s)) ds

a(qo(s)) a(qo(s))
=17(@) + I3 (1).
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Due to Cauchy-Schwartz inequality and the boundness of functions o, o, we know that for
any0 <t <n<T,

|1 (1) — L (1) =

2 6 (g0(s)) ,; :
—— (hy, —h d
/,l 2oty () —hE)ds

1 1
t 2 2 t 1
< /2 SACLIOM ) .(/2|h,,(s)—h(s)|2ds>2
t a(qo(s)) HS 1
<C(K,a0)N ¥ (t — 11)?. 3.11)

Hence, the family of functions {73 },> is equiv-continuous in C([0, T']; RY). Particularly,
taking 1 = 0, we obtain that

I'| <C(K,N,T,ap) < oo, (3.12)
2

where C(K, N, T, ap) is independent of n. Thus, by the Ascoli-Arzeld theorem, the set
{I}}y>1 is compact in C([0, T1; RY).
On the other hand, for any v € R?, by the boundness of o'/«, we know that the function

ZEZ(?; v belongs to L2([0, T']; RY). Since h, — h weakly in L%([0, T]; RY) as n — +o00, we
know that

t
<I§ ), v) = /0 % (l'zn(s) — fz(s)) vds — 0, asn — oo. (3.13)

Then by the compactness of {/3'},>1, we have

lim_ |17 =o0. (3.14)

Set "' (t) = supg<s<; ’g/’" (s) — g" (s)’. By the boundness of D(b/«), we have

t
") < C(K,ao,oel)/o ¢"(s)ds + || 17 -

By Gronwall’s inequality and (3.14), we have

C(K,ap,a)T | H 12n’

thn_thSe ’—)O, asn — 0o,

which completes the proof. O
3.3.2 MDP

For any predictable process i taking values in L2 ([0, T]; R?), we denote by ¢“ (¢) the solution
of the following equation

2" (t) = b(q" (1)) — a(q" (1)) (1) + /o (q" ()W (t)
+/eh(e)a (gl (t)u(t), t €10, T], (3.15)
qt0) =g eR?, 440) =L R

As is well known, for any fixed ¢ > 0, T > 0 and k > 1, this equation admits a unique
solution ¢/ in LK(Q; € ([0, T1; RY)) as follows

1
qe (1) = Ge (w(t) +h(8)f b't(S)dS> ;
0

where G, is defined by (3.4).
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Lemma 3.4 Under Hypothesis 2.1, for every fixed N € N and ¢ > 0, let u® € Ay and ',
be given by (3.5). Then XS“S(-) =T, (w(-) + h(e) fo ut (s)ds) is the unique solution of the
following equation

X (1) — / ! [b(q0<s)+ﬁh<s>ng(s» - b(Qo(S))i| s
‘ 0 Veh(e) | a(go(s) + Veh(e)XE (5)  alqo(s)
/’ o (@o(s) + VERE XL () .
0 a(go(s) + eh(e) X1 (s))
L /’ 7 (go(s) + /Eh(e) XY ()
h(e) Jo alqo(s) + eh(e) X1 ()

(s)ds

RY (1)
Veh(e)

dw(s) + te[0,T], (3.16)

where

t t
¢ _ 1 —AY (s) — 71 / —AL (1.9) u®
RY (1) = e 8y € b d
¢ ® & /0 ‘ g O‘(qgg(t)) 0 ¢ (qs (s)ds

t s . 1
—AY (s,r) u® I ut -
o[ (e e e ) o (P o0 ) as

1
alg (1)

1
(gt ()

X t 1 X X
1,u® 1,u® u® - u®
HI (1) + /0 oy O (Ve o). o) ds

B2 (1) + H2 () (Va@l (). 42 () ds

t |
/0 a?(g (s))

with
£ 1 4 £ & £
Ay (t,s5) = 7/ algy (r)dr, Ay (1) = A7 (1,0),
& S
€ ! u® e
HY (1) i= Joe 4 O fo et Do (g ()dw(s), (.17
& 1 ME? s
H>" (1) := /eh(e)e ¢ “)/0 ee Og (g (s))if (s)ds.
Furthermore, there exists a positive constant gy > 0 such that for any ¢ € (0, &o],
T . 2
E U [x2 o) dr} < C(K,N. T, a0, a1, Ipl, gD. (3.18)
0

Moveover, we have

e 112
E[Hx }SC(K,N,T,Oto,On,IPI,IKII) (3.19)

To prove Lemma 3.4 and our main result, we present the following three lemmas. The
first lemma is similar to [3, Lemma 3.1].
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Lemma 3.5 Under Hypothesis 2.1, for any T > 0, k > 1 and N > 0, there exists some
constant &y > 0 such that for any u® € Ay and ¢ € (0, g9], we have

Lut o [F k k *
sup BB 0] | < Ce KN, T,a0,00) (gl + 11k +1)

1€[0,T]
Kk _keot
+C(k,K)e2t2e 2 . (3.20)
Moveover, we have
E|m| < VeC(K. N, T. a0, an)( + lg] + Ip)). (3.21)

Proof Notice that Eq. (3.15) can be rewritten as the following equation: for all # € [0, T'],

q" 1) = p* (),
2Pl (1) = b(g (1)) — a (g™ (1) pY (1) + e (g )W (1) + Veh(e)o (g (1))t (¢),
g (0) =g eRY, pv(0) =L eRI

From the notation given in Eq. (3.17), we have
€ 3 l _quf 1 ! _puf . 3 l 13
g (1) = pi ()= —e A Wp 4 ?2/0 e~ Up(g! (s))ds + g—sz'” (t)

1 .
+8—2H;'“ (1). (3.22)

Integrating with respect to ¢, we obtain that
ut L Ve L Y Ve
q ) =q+ - e ¢ Ypds + — e e Vb(q. (r))drds
€ Jo €= Jo Jo

1 ! & 1 ! &
= | HX ()ds+— | HM (s)ds.
+£2/0 : (s)s+82f0 e (5)ds

By Hypothesis 2.1 and Young’s inequality for integral operators, we have

e & ! e
¢ O] < lql+ bl +CK T, om)/o 1+ |g ()]s

t t
+C(K,ao)ﬁh(a)/ |,f(s)|ds—|—8i2/ ‘Hgl‘”g(s)‘ds
0 0
< C(K,N.T,a) (lg] + €lp| + eh(e))

1 [ . to
+8—2/ ’He‘*“ (S)‘ds—i—C(K, T,ao)/ ql (s)’ds.
0 0

Since limg_.¢ 4/€h(¢) = 0, for & small enough, by Gronwall’s inequality,

e 1!
2! (0] = CCKN.T.au)lgl + 1pl + 1) + C&. Toa) 5 [
0

HM ()| ds. (323)

Hence by the similar proof to that in [3, Lemma 3.1], we obtain (3.20) and (3.21). ]

For Hsz*"s (1), we have the following estimation.

Lemma 3.6 Under Hypothesis 2.1, for any T > 0, k > 1 and N € N, there exists some
constant &y > 0 such that for any u® € Ay and ¢ € (0, &g], we have

e[|

k ® L
] <C(K,N,ag)ezh"(e). (3.24)
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Moderate Deviations for the Langevin Equation... 855

Proof For any t € [0,T] and u® € Ay, by the boundness of o and Cauchy-Schwarz
inequality, we have

€ ! u® € .
|12 0| = ’ﬁh@)e“s " /0 M Vo (g (5))it" (s)ds

& t ué .
< K\/eh(e)e m/ e it (s)| ds
0

1
ut t ut 2 T 2
< K\/eh(e)e 4 © (/ e (”ds) </ }iﬁ(s)|2ds>
0 0

1

£ 1 ué 2
< KN Jeh(e)e ¥ © < f A (S)ds>
0

Since AY (1) = E% fot a(g! (r))dr, we have

t uE t 82 2 s ué
/ eZAg (s)ds — / _ de 2 f() Ol(qs (r))dr
0 0 2a(gy (s)

2 t 5 ut
< £ dez Jo e enar
2a0 Jo
2
& uf
= (M0 1),
20

Hence

Nl—=

3
£ lgjh(g) _Auf u®
H2 (1 ‘ < kN3 EEY A (e“s o _ 1)
20| = e

< C(K, N, ap)e> his)e ¢ DAL ©)
= C(K. N.ap)e?h(e),
and furthermore

2 ¥ %k
IEHHg* < C(K, N, ap)e’* hk(e),

which completes the proof. O

Lemma 3.7 Under Hypothesis 2.1, for any T > 0 and any u® € Ay, we have
R,

E Jeh(e) — 0, as ¢—0. (3.25)
Moreover, we have
R |2
E|: Jeh®) j| -0, as ¢ —> 0. (3.26)

Proof Similarly to the proof [3, (3.17)], under Hypothesis 2.1, we have

5 k,u®
Zk:l Ia 1
=———| < —C(K,N,T,ap, a1, Ipl,1qg]) = 0, ase — 0. (3.27)

Veh(e) || = h(e)
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Next, we will estimate [E and E . By Lemma 3.6, we have
g,,s 1 2.uf

< E HH | < ec(k, N, 0, 0. 3.8

Jen® | = eh@m s <eC( og) — as e — ( )
By Cauchy-Schwarz inequality, we have

17 C(K,
E < ( aO)E su / ‘qu (s)‘ q (s)‘ds

Veh(e) Veh(e) 1€l0, T]

ST
it @) ]ds]

L oo 2
|H1 )| ds,

CK,a0) [ [T AR
= ey Ly Bl ol o] 8]

By (3.23), we have for all £ > 0 small enough,

[

Hence, by (3.20) and Lemma 3.6, we have

N CK.T.ap) (7
Q' @| ds < CHN. T, Ipl. g + ==
0

17 u®

Jeh(e)
1

C(K’N’ T»Ol07|17|,|‘1|) r 2.uf 2] >2
: Jeh(z) (/0 EUH @l |as

1 1
T 2 T
+ CK.N.T,20) (/ E [‘Hf*”g(s) 2] ds) i . (/ E [‘Hsl’“g(s)
0 0

2 2
s )
e2h(e)

<JeC(K,N,T,ap, a1, |pl,1qg]) = 0, ase — 0. (3.29)

This together with (3.27) and (3.28) implies (3.25).
(3.26) can be easily obtained by applying the similar estimation process for

ltu
s i=1,2,3,---,7,

Veh(e)

as given above. Hence we omit the proof. O
Now we prove Lemma 3.4.

The proof of Lemma 3.4 For any ¢ > 0 and u® € Ay, define

h2 t
(8)/ |u8(s)|2ds}dlp>.
2 J
dQMﬁ

Since ~55- is an exponential martingale, Q* is a probability measure on . By Girsanov
theorem, the process

t
dQ* = exp{—h(s)/ it (s)dw(s) —
0

t
wi () = w(t) + h(s)/ u(s)ds
0
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is a R?-valued Wiener process under the probability measure Q*". Rewriting Eq. (3.16) with
w¥(t), we obtain Eq. (3.6) with w®(¢) in place of w(r). Let ng be the unique solution of
Eq. (3.6) with w®(¢) on the space (2, F, Q*). Then XE"S satisfies Eq. (3.16), Q*-as.. By
the equivalence of probability measures, X gs satisfies Eq. (3.16), P-a.s..

Now we prove (3.18). By (3.26), there exists some constant &g > 0 such that for any
£ € (0, 80],

&€

Veh(e)

Notice that b/« is Lipschitz continuous and o/« is bounded, then we have

<C(K,N,T,a,a1,|pl,lql). (3.30)

‘ :

- 2 t . 2
[x2 ) sC<K,ao,a1)/ X )| ds + KN T a0)
0

2

C(K, ap) 331

h?(e)

RY (1)
Veh(e)

Hence by (1.6) and (3.30), for any € € (0, &o], taking expectation in both sides in (3.31), we
have

w2 (1) + C

e 12 T . 12
E“Xg )| } < C(K,ozo,al)/ JEUX;‘ )| ]ds+C(K, N.T, a0, 01, |pl. q)).
0
By Gronwall’s inequality, we get
Y
E[‘Xé‘ (t)‘ ] < C(K,N,T,a, a1, |pl, gD, (3.32)
then by Fubini’s theorem,
T . 2
E[/ x| ds] < C(K, N, T, a9, a1, Ipl, Ig]). (3.33)
0

First taking supremum with respect to ¢ € [0, T'] in (3.31), and then taking expectation in
both sides, for any ¢ € (0, 9], by BDG inequality, (1.6), (3.30) and (3.33), we obtain that

o2 Ty e )2
E[sz ]sC(K,ao,al)lE[/ [x¢ )| ds}+C(K,N, T, a0, a1, |pl, Ig)
0
<C(K,N,T,ap,a1,|pl, lql),
which completes the proof. O

Proposition 3.8 Under Hypothesis 2.1, for every fixed N € N, let {u®}¢~0 be a family of
processes in Ay that converges in distribution to some u € Ay as ¢ — 0, as random
variables taking values in the space Sy, endowed with the weak topology. Then

I, (w(~) + h(e) / lf(s)ds> — Ty (/ L't(s)ds) ,
0 0

in distribution in C([0, T]; RY) as ¢ — 0.

Proof By the Skorokhod representation theorem, there exists a probability basis
(2, F, (¥1),P), and on this basis, a Brownian motion w and a family of F;-predictable
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processes {it°}¢~0, i taking values in SN,_I?’-a.s., such that the joint law of (u°, u, w) under
P coincides with that of (i°, u#, w) under P and

lim (i@ — i, gy =0, Vg e H, P-a.s..

e—0

Let X 5’28 be the solution of a similar equation to (3.16) with u® replaced by #° and w by

w, and let X* be the solution of a similar equation to (3.9) with 4 replaced by u. Thus, to
prove this proposition, it is sufficient to prove that
lim ”X§ —X%| =0, in probability. (3.34)

e—0

From now on, we drop the bars in the notation for the sake of simplicity.
Notice that, for any ¢ € [0, T,

XY (1) — X“(1)

. /’ ! b(qo(s) + /eh(e) X (s))  blgo(s)) D (b(qo(S))) I
= _ - - (s) ¢ ds
Veh(e) | alqo(s) + eh(e) X4 (s))  alqo(s)) a(qo(s))

/t [G(qo(s) HOXE @) o) 706D '(s)} ds
0

z u
a(go(s) + /eh(e) XX (5)) a(qo(s))
1 [T o(qo(s) + veh(e) XX (5)) RY (1)
— d
T e /0 a0 + varex o Ot e
=y ¥ . (3.35)

k=1

We shall prove this proposition in the following four steps.
Step 1: For the first term Yal*“g, denote x, (1) := /ch (e)XZg (1), by Taylor’s formula, there
exists a random variable 7, taking values in (0, 1) such that

v o)

t
_ / [D <b(qo(S) + ne(S)xg(S))> X“(s)— D (b(qo(S))> Xu(s)] ds‘
0 a(qo(s) + ne(s)xe(s)) a(qo(s))

- /Z D (b(CIo(S) + ﬂe(S)xe(S))> ' (Xus(s) _ Xu(s)) ds
“1Jo a(qo(s) + ne(s)xe(s)) ¢
N /t [D (b(qo(S) + Ua(s)xs(s))> D <b(qo(S))>] ~X”(s)a’s’
0 a(qo(s) + ne(s)xe(s)) a(qo(s))

=10+ 320
For the first term y!!, by the boundness of D (%), we have
t .
W) < €K, a, al)/ X2 ) = X"(9)| . (336)
0
Next we deal with the second term y612. For each R > ||qo|| and p € (0, 1), set

b b
p(2)w-n(2)w).
a a

NR,p = sup
[x|<R,|y|<R,|x—y|<p

@ Springer



Moderate Deviations for the Langevin Equation... 859

Then by the continuous differentiability of g, we know that for any fixed R > 0,
lim NR,p = 0.
p—0

Since /eh(¢) — 0 as & — 0, there exists some g9 > 0 small enough such that for all

0<e<eg,
b b .
(D (5) (qo+ne/eh(e)XY )—D (;) (qo)) X

sup

| < nri1p [ XY
lqoll<R./Eh(e)IXE l1<p

for any p € (0, 1).
Thus, we obtain that for any r > 0, R > ||qol,

P (2] >r)
<P (Veh(e) | X2 > o) + P (nrsr [X°] > )
POl e Csefier]. o

By (3.10) and (3.19), letting ¢ — 0 and then p — 0 in (3.37), we can prove that

=

lim P (|»2]| = r) =0, foranyr > 0. (3.38)
e—

Step 2: For the second term Ysz*”g we have

y2 (t)‘

_ /' 7 (q0(s) + VEh(E) XL (5))
0 a(qo(s) +veh(e) XL (5)

/ [0 (qos) + VEREXE () 0 (go(s))
0 | %) + VEREXE(5)  algo(s)

y2 )| +

(i°(s) —ii(s)) ds

i| u(s)ds

v 2|
Using the same argument as that in the proof of (3.14), we obtain that

lim ” 2l H =0, as. (3.39)

e—>0
Since || Yf”‘g’l H < C(K,N,T,ap), by the dominated convergence theorem, Eq. (3.39)
implies that

lim E

e—0

2uf, 1 _
vzt <o,
Due to the Lipschitz continuity of o /«, we have
T
[v202] < ek ao,an) / Veh@ | x4 | -1l ds. (3.40)
0

By (3.18) and Holder’s inequality, we get

[

x£ |- |u<r)|dt} < C(K.N. T.a0, 1, Ipl. Iq).
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Hence by (1.6), we obtain that

E ‘ y2 | = 0, ase - 0. (3.41)

Step 3: For the third term Yg”‘s , by BDG inequality and (1.6), we have

/f 0 (qo(s) + v/eh(e) X" (s)) dw(s)
0 a(qo(s) + /eh(e)X¥ (s))
%
ds)
HS

— 0, ase — 0. (3.42)

&

Y3,u

&€

E|

=——E| sup
h(e) |ieo0,1]

nee /

- C(K,T,aq)
h(e)

(0 %0 T)(qo(s) + +/eh(e) X (5))
a?(qo(s) + eh(e) X (s))

Step 4: For the last term Ye4 ’”e, by Lemma 3.7, we have

E |y

— 0, as &— 0. (3.43)
By Eq. (3.35) and (3.36), we obtain that

sup
0<s<t

X (5) = X" (s)|

t

< C(K, ap, o1) sup

ng (v) — X“(v)‘ ds + sup ygu(s)

0 O<v<s 0<s<t
+ sup [Y2U )]+ sup [12 ()| + sup [vEs)]. (3.44)
0<s<tr 0<s<r O<s<t
Using Gronwall’s inequality, we have that
Jx - x| <21+ 3 |ne] ).
1=2,3,4

This, together with (3.38), (3.41), (3.42) and (3.43), implies that

lim fo — x*| =0, in probability,

e—0
which completes the proof. O

According to Theorem 3.1, the MDP of { X}, follows from Proposition 3.3 and Propo-
sition 3.8, which completes the proof of our main result Theorem 2.2.
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