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Abstract In this paper we study first-passage percolation in the configuration model with
empirical degree distribution that follows a power-law with exponent τ ∈ (2, 3). We assign
independent and identically distributed (i.i.d.) weights to the edges of the graph. We investi-
gate the weighted distance (the length of the shortest weighted path) between two uniformly
chosen vertices, called typical distances. When the underlying age-dependent branching pro-
cess approximating the local neighborhoods of vertices is found to produce infinitely many
individuals in finite time—called explosive branching process—Baroni, Hofstad and the sec-
ond author showed inBaroni et al. (J Appl Probab 54(1):146–164, 2017) that typical distances
converge in distribution to a bounded random variable. The order of magnitude of typical
distances remained open for the τ ∈ (2, 3) case when the underlying branching process is not
explosive. We close this gap by determining the first order of magnitude of typical distances
in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a
non-explosive age-dependent branching process with infinite mean power-law offspring dis-
tributions. This sequence tends to infinity with the amount of vertices, and, by choosing an
appropriate weight distribution, can be tuned to be any growing function that is O(log log n),
where n is the number of vertices in the graph. We show that the result remains valid for the
the erased configuration model as well, where we delete loops and any second and further
edges between two vertices.
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1 Introduction

Every logistic company wants to be the fastest, cheapest and deliver on time. In order to
achieve this, the routes they are driving should be (near-) optimal, meaning they should be
the least costly and fastest for them in order to be competitive. This is just an example where
weighted distances in a network play an important role. Other examples include the spreading
of epidemics through society, the spreading of rumours, videos and advertisement through
(online) social networks, and several other processes spreading on the internet.

The recent interest in understanding complex networks and processes on these networks
motivates the study of more and more elaborate models for these (weighted) networks. The
analysis of processes on these models often reveal finer topological aspects of the models
themselves. And, vice versa, the organisation and topology of a network affect the behaviour
of different processes on the network. Many real-life networks turn out to share some com-
mon properties, one of them being that the degree distribution follows a power-law [23,37],
examples include the world-wide web [6], the movie-actor collaboration network [5], the
network of citations of scientific publications [38], and many more. Another common prop-
erty is the small-world phenomenon, popularized by Millgram [35] as: “everyone on this
planet is separated from anyone else by only six people”. Mathematically speaking, a net-
work exhibits the small-world property if the minimal amount of connections to go from one
node to another is of order log(n) or log log(n) for ultra- small worlds, with n the amount of
nodes in the network. This effect is not only seen in social networks, but also in neurological
networks like the brain [1,17] or food webs [36]. A third common property is clustering as
pointed out by Watts and Strogatz [40]. High clustering means that two vertices in the graph
are more likely to be connected to one another when they have a common neighbor. This is
a common feature in e.g. social networks.

The natural way to model a network from a mathematical point of view is to see this
as a graph, where nodes are represented by vertices and their connections by edges. Since
real-life networks are large, models often involve randomness to determine the presence of
edges between the vertices. Random graphmodels that incorporate the (first two) abovemen-
tioned properties often serve as null-models for the analysis of real-life networks. Examples
include variation of inhomogeneous random graphs such as the Chung-Lu or Norros-Reitu
model [18,39], the configuration model [9,15], and the preferential attachment model [3].
Spatial variants are introduced to incorporate clustering, e.g. hyperbolic random graphs [14],
geometric inhomogeneous random graphs [16], scale-free percolation [20], spatial preferred
attachment [2,30], etc.

When modeling the spread of information in a network, edge weights to the edges can
be added that represent the passage time of the information through the edge. The weighted
distance is then theweight of the pathwith smallest total weight, corresponding to the passage
time of the information fromone vertex to the other.When the edge-weights are i.id., the study
of the resulting weighted graph is often called first-passage percolation (FPP). Introduced
by Hammersley and Welsh [24] for the grid Z

d , FPP can be seen as a flow, starting from a
vertex, flowing through the edges at a rate equal to the respective edge-weights, the weighted
distance corresponding to the time it takes the front of the flow to reach the other vertex.

First passage percolation has been studied on the Erdős-Rényi random graph see [12],
on inhomogeneous random graphs see [33]. FPP on the configuration model with finite
mean degrees for exponential edge-weights is treated in [11], with finite variance degrees
(i.e., power law exponent at least 3) and arbitrary edge-weight distributions in [13], and
for infinite variance degrees (power-law exponent ∈ (2, 3)) for a class of edge-weights [8].
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1084 E. Adriaans, J. Komjáthy

In particular, [8] determines the weighted distance when the edge-weights fall into what
they call the explosive class. In this case, weighted distances converge in distribution (see
Theorem 2.9 below), which heuristically means that regardless of how large the size of the
network gets, the average weighted distance in the networks stays bounded. This explains
the observed phenomena of extremely fast information spread in e.g. online networks such
as meme spreading or viral spreading. The other class, where the weight distribution is ‘non-
explosive’ is further studied in [7], for the special case when the edge weights are of the form
1 + X . For this case [7] shows that the weighted distance is tight around the typical graph
distance (that is, 2 log log n/| log(τ − 2)|, where τ is the power-law exponent), if and only if
the extra weight X falls into the explosive class.

In this paper we investigate the missing case, i.e., FPP on the configuration model with
infinite variance degrees (power-law exponent ∈ (2, 3)) and i.i.d. edge-weights that fall into
the ‘non-explosive’ class. We determine the first order of weighted distance in the highest
generality, thus, together with [7] providing an (almost) full picture of weighted distances
in the τ ∈ (2, 3) case. We also extend our results to the erased configuration model, when
self-loops are deleted and only one edge of every multiple edge is kept.

Structure In the next section we introduce the configuration model and state our results,
as well as discuss related results and open problems. In Sect. 3 we develop a coupling to
branching processes (BPs), and state and prove some ingredient lemmas about the degrees
and weighted distances within these BPs. In Sect. 4 we develop a crucial tool to prove the
upper bound of the main result, degree-dependent percolation. In Sect. 5, we prove the main
result and extend it to the erased configuration model.

Notation We say that a sequence of events (En)n∈N holds with high probability (whp) if
limn→∞ P(En) = 1. For a sequence of random variables (Xn)n≥1, we say than Xn converges

in probability to a random variable X, shortly Xn
P−→ X , if for all ε > 0, limn→∞ P(|Xn −

X | > ε) = 0. Similarly, we say that Xn converges in distribution to a random variable X,

shortly Xn
d−→ X , if limn→∞ P(Xn ≤ x) → P(X ≤ x) for all x ∈ R where P(X ≤ x) is

continuous. For a non-decreasing right-continuous function F(x) the generalised inverse of
F is defined as F (−1)(x) := inf{y ∈ R : F(y) ≥ x}. For an edge e = (x, y) we write Le for
the associated edge-length on e. We write lhs and rhs for the left-hand side and right-hand
side, respectively.

2 Model and Results

In this section we introduce the weighted configuration model and present our results. Then
we discuss related research and describe some open problems.

2.1 The Model

We consider the configuration model CMn(d) on n vertices with degree sequence d =
{d1, . . . , dn}. Let Hn := ∑

v∈[n] dv , the sum of the degrees with [n] := {1, 2, . . . , n}. If
Hn is odd we add an additional half-edge to vertex n, this does not further influence the
analysis and we refrain from discussing this issue further. Given the degree sequence, the
model is constructed as follows: To every vertex v ∈ [n] we assign dv half-edges, then we
take a uniform random matching of the half-edges, where any two matched half-edges form
an edge of the graph. The resulting random graph is denoted by CMn(d). After constructing
the edges, we assign each edge e an i.i.d. edge-length Le from distribution L . We denote the
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resulting weighted random graph by CMn(d, L), with L = (Le)e∈[Hn/2]. We assume that
the empirical distribution function of the degrees, defined as Fn(x) := 1

n

∑
v∈[n] 1{dv≤x},

satisfies the conditions for a power-law distribution, as given in the following assumption.

Assumption 2.1 (Power-law tail behavior). There exist τ ∈ (2, 3), γ ∈ (0, 1), C > 0 and
α > 1/2 such that for all x ∈ [0, nα),

1

xτ−1 e
−C(log x)γ ≤ 1 − Fn(x) ≤ 1

xτ−1 e
C(log x)γ , (2.1)

Additionally, we assume that minv∈[n] dv ≥ 2.

Under Assumptions 2.1, [32], there is a giant component of size n(1 − o(1)), thus two
uniformly chosen vertices lie whp in the same connected component. Let Dn denote a random
variable with distribution function Fn , the degree of an uniformly chosen vertex in [n]. We
define Bn as the (size biased version of Dn)-1.

P(Bn = k) := k + 1

Hn

∑

v∈[n]
1{dv=k+1} = k + 1

E[Dn]P(Dn = k + 1). (2.2)

Wewrite FBn for the distribution function of Bn . As shown in [29], FBn also satisfies a similar
bound as (2.1), namely, for some C� > 0,

1

xτ−2 e
−C�(log x)γ ≤ 1 − FBn (x) ≤ 1

xτ−2 e
C�(log x)γ . (2.3)

To be able to relate models with different values of n to each other, we pose an additional
assumption.

Assumption 2.2 (Limiting distributions). There exist distribution functions FD(x), FB(x)
such that for some κ > 0,

max{dTV(Fn, FD), dTV(FBn , FB)} ≤ n−κ ,

where dTV(F,G) := 1
2

∑
x∈N |F(x + 1) − F(x) − (G(x + 1) −G(x))| is the total variation

distance between two (discrete) probability measures.

We denote the random variables following the distribution FD and FB of Assumption 2.2

by D and B. Clearly Assumption 2.2 implies Dn
d−→ D and Bn

d−→ B. Since FD and FB

are independent of n, it is elementary to show that they satisfy (2.1) and (2.3) for all x ∈ N.
The goal of this paper to study the weighted distances in CMn(d, L).

Definition 2.3 (Graph- and Weighted distance, Hopcount). Let u and v be two vertices in
CMn(d, L). Then the graph distance dG(u, v) is the number of edges used by the shortest
path between u and v. The weighted distance or L-distance between u and v is defined as

dL(u, v) := min
π :u→v

∑

e∈π

Le, (2.4)

where the minimum is taken over all paths connecting u to v present in CMn(d, L). We set
dL(u, v) = 0 if u = v and dL(u, v) = ∞ if u and v are not connected. We define dH (u, v),
the hopcount, as the number of edges on the optimal path realising dL(u, v). Finally, for two
sets of vertices A, B, dL(A, B) := minx∈A,y∈B dL(x, y).

The following theorem states the main result of this paper:
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1086 E. Adriaans, J. Komjáthy

Theorem 2.4 (Weighted distances).Consider the weighted configuration modelCMn(d, L)

satisfying Assumptions 2.1–2.2 and let u and v be two uniformly chosen vertices from [n].
Suppose that the distribution function FL(x) of L satisfies that

∞∑

k=1

F (−1)
L (e−ek ) = ∞ (2.5)

Then, for the weighted distance,

dL(u, v)
/

2

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)

P−→ 1. (2.6)

For the hopcount, for all ε > 0

lim
n→∞ P

(
dH (u, v)

/
2

log log n

| log(τ − 2)| ≤ 1 − ε
)

= 0, (2.7)

and whp, there exist at least one path of length at most 1+ ε times the denominator in (2.6),
with number of edges at most (1 + ε)2 log log n/| log(τ − 2)|.

Convergence in distribution of the hopcount around 2 log log n/| log(τ − 2)| remains an
open question, since the upper bound does not follow from our techniques. Namely, we
cannot exclude the possibility of a much longer path with optimal total edge-length.

The weighted erased configuration model is defined as follows. After CMn(d, L) is con-
structed,we remove all self-loops and, if there aremultiple-edges between twovertices, one of
the edges is chosen uniformly at random independent of the edge weights and the other edges
are deleted. The resulting graph is called the weighted erased configuration model, shortly
ECMn(d, L). Let us denote the L-distance in this graph by deL(u, v) and the hopcount by
deH (u, v).

Theorem 2.5 (Weighted distances in the erased configuration model). Consider the erased
configurationmodelECMn(d, L) satisfyingAssumptions2.1–2.2and let u andv beuniformly
chosen from [n]. Suppose that the distribution function FL(x) of L satisfies (2.5). Then the
results of Theorem 2.4 remain valid for deL(u, v) and deH (u, v) as well.

Remark 2.6 (I.i.d. degrees). Using concentration techniques it can be shown that Assump-
tions 2.1 and 2.2 are satisfied whp when the degrees are i.i.d. coming from a background
distribution function F(x) satisfying (2.1) for all x ∈ N, see [13].

Remark 2.7 [Explosive vs non-explosive edge-weight distributions]Given a particular distri-
bution L for the edgeweights, convergence versus divergence of the sum in (2.5) is elementary
to check, and it depends on the behaviour of FL around 0. The steeper FL at the origin, the
smaller the sum in (2.5): the sum converges e.g. if FL(x) increases as a polynomial in x
around 0, which is the case for exponential, uniform, Gamma distributions. Distributions
with support separated away from 0 always give a divergent sum, and distributions with
inverse F (−1)

L (z) = O(1/ log log(1/z)) also diverge. This corresponds to the family of dis-
tributions FL(t) = exp{−C exp{−c/tβ}}, that give explosion for β < 1 but non-explosion
for β ≥ 1.

Note that (2.5) does not require that FL is continuous. By setting the edge weights to
be deterministic and equal to 1 in Theorem 2.4, we obtain the following corollary. Stronger
results about the graph distance were already obtained in [28,29].
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Corollary 2.8 (Graph distances). Consider the configuration model CMn(d) satisfying
Assumptions 2.1–2.2 and let u and v be uniformly chosen vertices from [n]. Then

dG(u, v)/2
log log n

| log(τ − 2)|
P−→ 1. (2.8)

A counterpart of Theorem 2.4 is [8, Theorem], which we cite here for comparison.

Theorem 2.9 (Weighted distances with explosive edge-weights [8]). Consider the weighted
configuration model CMn(d, L) satisfying Assumptions 2.1–2.2 and let u and v be two
uniformly chosen vertices from [n]. Suppose that the distribution function FL(x) of L satisfies
that the sum in (2.5) converges. Then

dL(u, v)
d−→ Y (1) + Y (2), (2.9)

where Y (1), Y (2) are i.i.d. copies of some a.s. finite random variable.

Theorems 2.4 and 2.9 together describe typical distances in the configuration model with
power law degrees, with exponent τ ∈ (2, 3) for all edge-weight distributions L . Next we
discuss some related literature and pose some open problems.

2.2 Discussion and Open Problems

Relation to age-dependent branching processes The configuration model has a tree-like local
structure. Since most cycles are long, the local neighborhood of a uniformly chosen vertex
exploration around a vertex can be coupled to a branching process (BP). When the edge-
weights are incorporated in the model and in the coupling, this BP becomes age-dependent.
In an age-dependent BP, individuals have an i.i.d. lifetime and give birth to their i.i.d. number
of offspring upon death. Let us denote such a BP with offspring distribution X and life-time
distribution σ by BP(X, σ ). Let us write BP(D, X, σ ) for D i.i.d. copies of BP(X, σ ). Then,
the local neighborhood of a vertex in CMn(d, L) can be approximated by BP(D, B, L).
Explosion of a BP means that the BP produces infinitely many individuals in finite time,
with positive probability. In 2013 Amini et al [4] gave a necessary and sufficient condition
for the explosion of BP(X, L), for offspring distributions X that satisfy P(X ≥ x) ≥ x−1−ε

for some ε > 0. In an unpublished note [34], under the stronger assumption that X satisfies
x−1−ε ≤ P(X ≥ x) ≤ x−ε for some ε > 0, the second author simplified this criterion
to the sum in (2.5) being finite. The criterion (2.5) comes from the following observation:
the L-length of any path in a BP leading to infinity can be lower bounded by the sum of
the minimum edge-lengths in each generation. In generation k, the number of individuals is
doubly exponential in k. The minimum of this many i.i.d. random variables of distribution
L is approximately the kth term in the sum in (2.5). If this sum is infinite, the BP cannot
explode, thus the summability of the minimums in each generation is necessary for the BP
to explode. In [4], the authors showed that this notion of minimum-summability is sufficient
as well by constructing an algorithm that finds an infinite path with finite total length.

To show distributional convergence of weighted distances in CMn(d, L), as in Theo-
rem 2.9, when the underlying BP explodes was the content of [8]. It remained open to
characterise the growth of weighted distances when explosion does not happen. It follows
from [4] that in the nonexplosive case, for offspring distribution X satisfying (2.3), the time
to reach the first individual in generation � grows as

�∑

k=1

F−1
L (exp{−(τ − 2)−k}).
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1088 E. Adriaans, J. Komjáthy

This, combined with the fact that the graph distance of a typical vertex to a maximal degree
vertex is log log n/| log(τ − 2)|, gives a strong intuitive explanation for the formula for
dL(u, v) in Theorem 2.4. Unfortunately, the BP approximation for CMn(d) fails much ear-
lier than reaching the maximal degree vertex, and the BP techniques do not reveal enough
information on the structure of the optimal path leading generation k of the BP, in partic-
ular, they do not provide good enough lower bounds on the degrees along the path. These
are the reasons why we need to use a different technique, degree-dependent percolation, to
show the upper bound on dL(u, v). Unfortunately, this technique is not fine enough to show
distributional convergence of the fluctuations of dL(u, v) around its typical value.

Problem 2.10 (Tightness, distributional covergence). Consider CMn(d, L) satisfying
Assumptions 2.1–2.2 and let u and v be uniformly chosen vertices from [n]. Suppose the
distribution function FL(x) satisfies (2.5). Determine the conditions under which

dL(u, v) − 2

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)

, dH (u, v) − 2
log log n

| log(τ − 2)| (2.10)

are tight sequences of random variables. Do these sequences converge in distribution?

Infinite mean degrees, i.e., when τ ∈ (1, 2), is investigated in [10,21], where the authors
show that the graph distance is whp 2 or 3, the weighted distance converges to the sum of two
random variables. Finite variance degrees, τ > 3, is studied in [11,13,22,27]. In this case
typical graph distances are of order log n, weighted distances scale as a constant times log n
with converging fluctuations around this value, while the hopcount, centered around another
constant times log n, satisfies a central limit theorem.

It still remains open to characterise weighted distances for the boundary exponents, i.e.,
when τ ∈ {2, 3}. For the τ = 3 case, even the explosion of the underlying age dependent
BP is an open question. For τ = 2, local neighborhoods grow faster than double-exponential
and the precise growth depends sensitively on the slowly varying function involved, thus the
techniques used here do not apply directly.

Problem 2.11 (τ = 2 or 3). Characterise weighted distances for the case when the degree
distribution follows a power law (with a slowly varying function correction term) when τ = 2
and when τ = 3.

We further expect that similar results hold for a large class of power-law graph models,
specially in the τ ∈ (2, 3) regime, including inhomogeneous random graphs (e.g. the Chung-
Lu or Norros-Reitu models), spatial models such as the geometric inhomogeneous random
graphs and scale-free-percolation.

2.3 Overview of the Proof

Next we give an overview of the proof of Theorem 2.4. The proof consists of two parts, a
lower and an upper bound that use slightly different techniques.

2.3.1 Lower Bound

Let us denote the graph distance ball of radius k around a vertex q in CMn(d) by BG
k (q),

and the set of vertices precisely at graph distance k away from q by �BG
k (q). For the
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proof of the lower bound we show that BG
k (u), BG

k (v) can be coupled to two independent
branching processes (BPs), with the first generation having distribution function FD and all
further generations having distribution function FB from Assumption 2.2. We show that the
coupling can be maintained until two random indices κn(u), κn(v) such that polynomially
many vertices in n are found around both vertices u, v, and that BG

κn(u)(u), BG
κn(v)(v) are whp

disjoint. Since any path connecting u, v must intersect the boundaries of these sets, we obtain
the lower bound

dL(u, v) ≥ dL
(
u,�BG

κn(u)(u)
)

+ dL
(
v,�BG

κn(v)(v)
)

≥
∑

q=u,v

κn(q)−1∑

i=0

min
x∈�BG

i (q),y∈�BG
i+1(q)

{L(x,y)}
(2.11)

where we obtained the second line by lower bounding dL(q,�BG
κn(q)(q)) by the sum of the

minimal edge lengths connecting �BG
i (q) to �BG

i+1(q) over i . We show that this sum of
minima is larger than (1 − ε) times the denominator of the lhs of (2.6) whp.

2.3.2 Upper Bound

The upper bound also couples the neighborhoods Bk(u), Bk(v) to two disjoint BPs, but we
exploit the coupling only until we reach vertices uKn , vKn of degree at least K̃n , for some
carefully chosen K̃n that tends to infinity with n, but dL(u, uKn ) and dL(v, vKn ) are still
of negligible length compared to the denominator of the lhs of (2.6). Then we connect the
vertices uKn and vKn using degree-dependent percolation that we describe now.

The idea for degree-dependent percolation originates from [7], and it is an extension of a
construction by Janson [31]. In the percolated graph, we keep edges independently of each
other, with probabilities that depend on the degrees of the end vertices of the edge. We use
the i.i.d. edge lengths to realise the percolation, i.e., an edge e = (x, y) is kept if and only if
its edge length satisfies

Lx,y ≤ ξ(dx , dy), (2.12)

for some appropriately chosen threshold function ξ(·, ·). We use a result from [7,31], that
states that the percolated graph can be looked at as a subgraph Gr of a configuration model
with a new degree sequence dr. We choose ξ in such a way that the new degree sequence still
satisfies the power-law condition in (2.1), for the same τ but possibly different C, γ . Note
that Gr is a subgraph of the original CMn(d, L), and as a result any path present in Gr was
necessarily also present in CMn(d, L). We show that uKn , vKn has percolated degree at least
Kn .

Then, we construct two paths, emanating from uKn and vKn , and reaching vertices u
�, v�

of percolated degree at least nα(τ−2), respectively, in this percolated graph. We control the
(growing) degrees of vertices along these paths and as a result (2.12) gives an upper bound on
the edge-lengths along these paths. More precisely, analogous to [7], we define a sequence
yi (Kn) with y0 = Kn and layers in the graphs �i := {v ∈ [n] : dv ≥ yi (Kn)}, for
0 ≤ i ≤ imax with imax the number of layers. We show that a vertex in �i is connected to a
vertex in �i+1 whp, moreover the total error probability over all the layers tends to zero as
Kn → ∞. Thus whp there exist paths from uKn , vKn where the i th vertex along the path has
degree at least yi (Kn). Finally, we connect the vertices u�, v� in Gr via a path of length at
most three edges using vertices with degree at least n1/2+δ for some small δ > 0. The length
of the constructed path is at most
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1090 E. Adriaans, J. Komjáthy

dL(u, v) ≤ dL(u, uKn ) + dL(v, vKn ) + 2
imax∑

i=0

ξ(yi (Kn), yi+1(Kn)) + 3ξ(nα(τ−2), n1/2).

(2.13)

The first two terms on the rhs, coming from the branching processes, are negligible due to
the choice of Kn , and the last term also since it tends to zero with n. With the proper choice
of ξ(·, ·), the middle term becomes at most (1 + ε/2) times the denominator of (2.6).

3 Exploration Around Two Vertices

The goal of this section is to couple the neighborhoods Bk(u), Bk(v) of the two uniformly
chosen vertices u, v to two independent BPs. We first show that, for q ∈ {u, v} the coupling
can be maintained until k = κn(q) = log log n/| log(τ − 2)|+ a tight random variable. Then,
using the growth of the BPs, we make (2.11) quantitative by giving a whp lower bound on
the minimum of edge-lengths connecting consecutive generations in the BPs.

As a preparation for the upper bound, as in (2.13), we determine Mn , the number of
generations needed to reach a vertex with degree at least Kn , that we denote by qKn , for
q ∈ {u, v}. Finally, we give an upper bound on dL(q, qKn ) for q ∈ {u, v}.
3.1 Coupling of the Exploration to a Branching Process

First we explain the coupling of the neighborhoods of the vertices u and v to branching
processes. The coupling uses an exploration, where we reveal the pairs of half-edges and
thus the neighbors of vertices together with their degrees one-by-one, in a breadth-first-
search manner. By Ut ,Vt we denote the subgraphs consisting of vertices at graph distance
of at most t from u and v, respectively. The forward degree of a vertex v in the exploration
denotes then the number of new (not previously discovered) neighbors of a vertex upon
exploration. We slightly adjust [29, Lemma 2.2]) to our setting, since Assumptions 2.1–2.2
are a special case of the assumptions of [29, Lemma 2.2]). An alternative formulation and
proof can be found in [11, Proposition 4.7].

Lemma 3.1 (Coupling error of the exploration process, [29]). Consider CMn(d) satisfying
Assumptions 2.1–2.2. Then, in the exploration process started from two uniformly chosen
vertices u and v, the forward degrees (X (n)

k )k≤sn of the first sn newly discovered vertices can
be coupled to an i.i.d. sequence Bk from distribution B as in Assumption 2.2. So, there is a
coupling (X (n)

k , Bk)k≤sn with the following error bound

P(∃k ≤ sn, X
(n)

k �= Bk) ≤ Cs(2τ−2−2ε)/(τ−ε)
n n(2−τ+ε)/(τ−ε)

+ Cs2nn
(1+ε)
τ−1 −1 + snn

−κ . (3.1)

An immediate corollary is the following:

Corollary 3.2 (Whp coupling of the exploration to BPs, [29]). In the configuration model
satisfying Assumptions 2.1 and 2.2, let t be such that

|Ut ∪ Vt | ≤ 2min{n(1−(1+ε)/(τ−1)−δ)/2, n−(τ−2−2ε)/2(τ−1−ε), n(2−τ+ε)/(τ−ε), nκ−δ}
=: 2nθ(δ) (3.2)
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for some δ > 0. Then (Ut ,Vt ) can be whp coupled to two i.i.d. BPs with generation sizes
(Z (u)

k , Z (v)

k )k>0 with distribution FB for the offspring in the second and further generations,
and with distribution F for the offspring in the first generation.

The proofs of Lemma 3.1 and Corollary 3.2 can be found in [29, Sect. 2].
Davies in [19] shows that for a BP with offspring distribution satisfying the tail behavior

in (2.3), the sequence of random variables Yk := (τ −2)k log(Zk) converges almost surely. It
is elementary to extend his result to a BP where the root has a different offspring distribution
(see [8] for details). Having this result in mind for the two BPs coupled to the neighborhoods
of u, v, we rewrite the generation sizes as

Z (q)

k =: exp
{( 1

τ − 2

)k

Y (q)

k

}
. (3.3)

Fixing a small δ > 0, we define for q ∈ {u, v},
κn(q) := max

{
k : Z (q)

k ≤ nθ(δ)
}

, (3.4)

and then Corollary 3.2 implies that �Bκn(q)(q) has size Z (q)

κn(q) since the coupling can still

be maintained. Combining (3.3) and (3.4) we obtain that Y (q)

κn(q) converges in distribution
to two independent copies of the same random variable Y . The convergence now is only
distributional, since there is no coupling between the BPs for different values of n. Using
(3.3) and (3.4), we can provide an implicit description of κn(q), q ∈ {u, v}.
Claim 3.3 (Last generation of the exploration). Consider CMn(d) satisfying Assump-
tions 2.1–2.2. Let u and v be two uniformly chosen vertices. Then we can couple the
BFS-exploration around u and v to two BPs until generation that has the implicit repre-
sentation

κn(q) =
log log n + log

(
θ(δ) fn(q)/Y (q)

κn(q)

)

| log(τ − 2)| for q ∈ {u, v}, (3.5)

where κn(q) is an integer; Y (q)

κn(q), for q ∈ {u, v} are independent and converge in distribution,
and fn(q) ∈ (τ − 2, 1] describes the exponent θ(n) fn(q) that satisfies Z (q)

κn(q) = nθ(n) fn(q).

Themessage of this claim is that the coupling canbemaintaineduntil log log n/| log(τ−2)|
+ a tight random variable many generations.

Proof Fix δ > 0 small enough and set θ(δ) as in Corollary 3.2. Corollary 3.2 then implies
that the coupling error converges to zero as long as |Bk1(u)∪Bk2(v)| ≤ 2nθ(δ). The definition
of κ(q) in (3.5) implies that this is indeed satisfied for k1 := κn(u), k2 := κn(v). The value
of κn(q) in (3.5) is obtained by an elementary rearrangement of the formula (3.3) when k is
replaced by κn(q), and we took the integer part of the obtained expression. Note that κn(q)

is well-defined this way since the generation sizes are increasing doubly exponentially for
all large enough k due to (3.3) and the fact that Y (q)

k would converge if we would let k tend
to infinity, and as a result the total size of Bk(q) is 1 + o(1) times the last generation size. 
�

Next we make (2.11) quantitative by giving a lower bound on the length of the path from
q to generation κn(q). Recall that �Bk(w) is the set of vertices at distance k from a vertex
w in CMn(d).
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Lemma 3.4 (Lower bound on shortest path length). Consider CMn(d) satisfying Assump-
tions 2.1–2.2 with i.i.d. edge lengths from distribution L with distribution function FL

satisfying (2.5). Let u, v be two uniformly chosen vertices. Then, for q ∈ {u, v}, with κn(q)

as in (3.5),

lim
n→∞ P

⎛

⎜
⎜
⎝dL(u,�Bκn(q)(q)) > (1 − ε)

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)
⎞

⎟
⎟
⎠ = 1. (3.6)

Proof Under the coupling between the neighborhoods of u, v to the BPs established in
Corollary 3.2 and Claim 3.3, for all i ≤ κn(q), |�Bi (q)| = Z (q)

i , the size of generation i
in the BP coupled to the neighborhood of u. Using the idea in (2.11), dL(u,�Bκn(q)(q)) is
longer than the sum of the minimum edge-lengths between consecutive generations. That is,

dL(u,�Bκn(q)(u)) ≥
κn(q)−1∑

i=0

min

{

L (q)

i,1, . . . L
(q)

i,Z (u)
i

}

, (3.7)

where L (u)

i, j are i.i.d. for all i, j and q ∈ {u, v}. We let

Cn := max

{

sup
1≤k≤κn(q)

Y (q)

k , h(n)

}

(3.8)

with h(n) a function defined later on. By (3.3), Z (q)

i = exp{(τ − 2)−i Y (q)

i }, thus, using, (3.8),
Z (q)

i ≤ exp{(τ − 2)−i Cn}. (3.9)

For i.i.d. L j , the following tail bound holds for any N ∈ N, z(N ) > 0:

P

(

min
j≤N

L j > z(N )

)

= (1 − FL(z(N )))N ≥ 1 − NFL(z(N )) (3.10)

which is at most 1/N ξ when we set, for some ξ > 0, z(N ) := F (−1)
L (1/N 1+ξ ). Using that

the minimum in (3.7) is non-increasing when increasing the number of variables involved,
by (3.9), we can set N to be exp{(τ − 2)−i Cn} to estimate the i th term in (3.7) from below
using (3.10). Conditioning on the value Cn, κn(q), combined with a union bound, yields that
the inequality

κn(q)−1∑

i=0

min
{
Li,1, . . . Li,Z (u)

i

}
≥

κn(q)−1∑

i=0

F (−1)
L

(
e−(τ−2)−i Cn(1+ξ)

)
, (3.11)

holds with error probability (conditioned on Cn, κn(q)) at most

E(Cn) :=
∞∑

i=0

e
−
(

1
τ−2

)i
Cnξ ≤ C1e

−Cnξ (3.12)

for some constant C1 > 0. Combining (3.7) and (3.11) yields that under the coupling, with
error probability given in (3.12),

dL(q,�Bκn(q)(q)) ≥
κn(q)−1∑

i=0

F (−1)
L

(

e
−
(

1
τ−2

)i
Cn(1+ξ)

)

. (3.13)
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Next we transform the rhs to match the format in (3.6). With �a
 = min{m ∈ Z,m ≥
a}, �b� = max{m ∈ Z,m ≤ a}, we use the following inequalities valid for monotone
non-increasing functions g with g(0) < ∞:

�b�∑

k=�a
+1

g(k)
(�)≤
∫ b

a
g(x)dx,

∫ z+1

0
g(x)dx

(�)≤
z∑

k=0

g(k). (3.14)

We use (�) to bound the rhs of (3.13) from below, then we carry out the variable trans-
formation 1/(τ − 2)xCn(1 + ξ) = 1/(τ − 2)y , and transform the integral back to a
sum using (�). The variable transformation shifts the summation boundaries by C̃n :=
log(Cn(1 + ξ))/| log(τ − 2)|, and we obtain that

κn(q)−1∑

i=0

F (−1)
L

(

e
−
(

1
τ−2

)i
Cn(1+ξ)

)

≥
κn(q)+�C̃n�∑

i=�C̃n+1

F (−1)
L

(

e
−
(

1
τ−2

)i
)

. (3.15)

We bound the upper summation boundary on the rhs from below. Recall Cn from (3.8), then

�C̃n� =
⌊
log((1 + ξ)max{sup1≤k≤κn

Y (q)

k , h(n)})
| log(τ − 2)|

⌋

≥ log Yκn(q)

| log(τ − 2)| − 1 (3.16)

Using now the formula for κn(q) from (3.5),

κn(q) + �C̃n� ≥ log log n + log(θ(n) fn(q)(τ − 2))

| log(τ − 2)| . (3.17)

Next, the lower summation boundary on the rhs of (3.15) is not 1, and, if C̃n → ∞, then this
might cause too much difference from the desired sum in (3.6). Thus, for any fixed ε > 0 we
define

Rn(ε) := max
z

⎧
⎨

⎩

z−1∑

k=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)

≤ ε

2

�log log n/| log(τ−2)|�∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)⎫
⎬

⎭
.

(3.18)

Since the sum on the rhs between the brackets tends to infinity with n, so will Rn(ε). Setting
C̃n = Rn(ε), combined with (3.17) and the fact that the summands tend to zero then implies
that

κn(q)+�C̃n�∑

i=�C̃n+2

F (−1)
L

(

e
−
(

1
τ−2

)i
)

> (1 − ε)

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)

, (3.19)

as desired. The choice C̃n = log(Cn(1+ ξ))/| log(τ − 2)| = Rn(ε), establishing the choice
h(n) = 1/(1 + ξ) (τ − 2)−Rn(ε) in (3.8). Since Rn(ε) tends to infinity, so will Cn , ensuring
that the error probability in (3.12) tends to zero as well. This finishes the proof of the lower
bound. 
�

Next we do some preparations for the proof of the upper bound. First we investigate the
number of generations we need to explore to reach a vertex of degree at least K̃n .
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Lemma 3.5 (Generations needed to reach degree K̃n).ConsiderCMn(d) satisfying Assump-
tions 2.1–2.2. Let u, v be two uniformly chosen vertices and K̃n = O(log n) a sequence that
tends to infinity with n. Then, for q ∈ {u, v}, for any M with M | log(τ − 2)| > 1,

lim
n→∞ P

(

max
w∈�BM log log K̃n (q)

dw < K̃n

)

= 0. (3.20)

Proof For brevity we write Mn := M log log K̃n . By Corollary (3.2), and Claim 3.3, for
q ∈ {u, v} (Bk(q))k≤κn(q) can be coupled to a BP, where, in each generation the degrees are
i.i.d. from distribution B as in Assumption 2.2. Recall (3.3), write 1 + δ = M | log(τ − 2)|
and condition on whether Y (q)

Mn
is less than 1/(log K̃n)

δ/2 or not. Then

P

(

max
w∈�BMn (q)

dw ≤ K̃n

)

≤ P

⎛

⎝ max
w∈Z (q)

Mn

Bw ≤ K̃n | Y (q)

Mn
> 1/(log K̃n)

δ/2

⎞

⎠

+ P

(
Y (q)

Mn
< 1/(log K̃n)

δ/2
)

. (3.21)

By Davies [19], the limiting variable limn→∞ Y (q)

k is almost surely positive on survival of
the BP. By Assumption 2.1, P(B ≥ 1) = 1 and thus the BP cannot go extinct and therefore
P(Y (q)

Mn
= 0) = 0. Thus, the second term on the rhs in (3.21) converges to zero. For the first

term,

P

(
max

w∈Z (q)
Mn

Bw ≤ K̃n | Z (q)

Mn

)
= (FB(K̃n))

Z (q)
Mn .

Using the lower bound on FB from (2.3), with L(x) := exp{−C�(log x)γ } we obtain

(FB(K̃n))
Z (q)
Mn ≤

(
1 − L(K̃n)

K̃n
τ−2

)Z (q)
Mn ≤ exp

{
−L(K̃n)Z

(q)

Mn
/K̃n

τ−2
}

. (3.22)

Using that Z (q)

Mn
= exp{(τ − 2)−MnY (q)

Mn
} by (3.3) in (3.22), we obtain that

P

(
max

w∈Z (q)
Mn

Bw ≤ K̃n | Y (q)

Mn
>

1

(log K̃n)δ/2

)

≤ exp
{

− exp{−C�(log K̃n)
γ } exp{(log K̃n)

1+δ/2}
K̃n

τ−2

}

≤ exp
{

− exp
{
(log K̃n)

1+δ/2(1 − C�(log K̃n)
γ−1−δ/2) − (τ − 2)(log K̃n)

−δ/2}
}

≤ exp
{

− exp
{
1/2(log K̃n)

1+δ/2}
}

n→∞−−−→ 0. (3.23)

where we used that Mn = M log log Kn , with 1 + δ = M | log(τ − 2)|, the last inequality
holds for K̃n large. Thus both probabilities on the rhs in (3.21) tend to zero as K̃n tends to
infinity, which completes the proof. 
�

In the proof of the upper bound of the main theorem we run the exploration algorithm
until we reach a vertex of degree K̃n . The path to this vertex is the sum of i.i.d. copies of
edge weights. We show that whp this sum is less than some ε1 > 0 times the denominator
of the lhs of (2.6).
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Lemma 3.6 (Upper bound on the length of the path in the exploration process). Let (Li )i≥1

be i.i.d. from distribution FL satisfying (2.5). Then for all ε1 > 0 there exists a choice of Mn

such that Mn tends to infinity with n and

lim
n→∞ P

⎛

⎜
⎜
⎝

Mn∑

i=0

Li < ε1

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)
⎞

⎟
⎟
⎠ = 1. (3.24)

The lemma immediately follows from the following, more general result.

Claim 3.7 Let (Li )i≥1 be i.i.d. random variables from distribution FL , and let (am)m≥1 be
an arbitrary sequence that tends to infinity as m → ∞. Then, there exists a deterministic
sequence (zL(m))m≥1 with limm→∞ zL(m) = ∞ such that

lim
m→∞ P

( zL (m)∑

i=1

Li ≤ am
)

= 1.

Proof We distinguish two cases, based on the tail behavior of L . When FL does not satisfy
any of these cases, L can be stochastically dominated by a random variable that does satisfy
(at least) one of these cases and then the result follows by a simple stochastic domination
argument.
Case (1): E[L] < ∞. In this case, for some δ ∈ (0, 1), let

zL(m) := max
z∈N

{
z ≤ aδ

m

}
(3.25)

Clearly zL(m) tends to infinity with m when am does. Markov’s inequality implies that

P

⎛

⎝
zL (m)∑

i=0

Li ≥ am

⎞

⎠ ≤ zL(m)E[L]
am

→ 0. (3.26)

Case (2): E[L] = ∞ and additionally P(Li > x) ≤ 1/g(x) for some non-decreasing
function g(x). For some small δ, ε2 > 0, we define zL(m) implicitly by

zL(m)g(−1)((zL(m))1+ε2) = a1−δ
m , (3.27)

where g(−1)(x) = inf{y ∈ R : g(y) ≥ x}. Since g(x) is non-decreasing and am tends to
infinity, zL(m) tends to infinity as well. Note that when g(x) ≥ xa for some a ∈ (0, 1),
capturing regularly varying cases, a lower bound on (3.27) can be explicitly calculated:

zL(m) ≥ a(1+(1+ε2)/a)−1(1−δ)
m

To estimate the lhs of (3.26) in this case, we use a truncation argument. We condition (3.24)
on the maximum of the Li being larger than Tm := g(−1)

(
(zL(m))1+ε2

)
or not, which gives

us the following upper bound

P

⎛

⎝
zL (m)∑

i=0

Li ≥ am

⎞

⎠ ≤ P (∃i ≤ zL(m) : Li > Tm) + P

⎛

⎝
zL (m)∑

i=0

Li1{Li≤Tm } ≥ am

⎞

⎠ .

(3.28)
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First we focus on the first term in (3.28). Using that P(Li > x) = 1/g(x) and the value Tm ,

P (∃i ≤ zL(m) : Li > Tm) ≤ zL(m)P (Li ≥ Tm) ≤ zL(m)

(zL(m))1+ε2
= (zL(m))−ε2 ,

(3.29)

that tends to zero as m tends to infinity. Next we investigate the second term in (3.28) which
we bound with Markov’s inequality,

P

⎛

⎝
zL (m)∑

i=0

Li1{Li≤Tm } ≥ am

⎞

⎠ ≤ zL(m)E[Li1{Li≤Tm }]
am

(3.30)

Now we observe that E[Li1{Li≤Tm }] ≤ Tm , and use this bound on the rhs of (3.30), and
(3.27),

zL(m)E[Li1{Li≤Tm }]
am

≤ zL(m)Tm
am

≤ a1−δ
m

am
≤ a−δ

m (3.31)

Combining (3.29) and (3.31) implies that (3.28) tends to zero as m tends to infinity. This
finishes the proof. 
�

4 Degree-Dependent Percolation on the Configuration Model

In this section we make the degree dependent-percolation precise, that we have described in
Sect. 2.3.2. Percolation for the configuration model was studied in [31] and later adjusted for
the degree-dependent version in [7].

The induced subgraph of G on vertex set S is the largest subgraph of G with edges that
have both endpoints in S. We denote the induced graph of a graph G restricted to the vertices
in a set S by G |S . Let p(d) : N → [0, 1] be a monotone decreasing function of d . For a
half-edge s wewrite the percolation probability shortly as ps := p(dv(s))with v(s) the vertex
that s is attached to and dv(s) the degree of vertex v(s). Now we define two different ways
to percolate the configuration model. After that we show equality in distribution for the two
different percolated graphs.

Definition 4.1 (Edge percolation). Consider a configuration model CMn(d)with half-edges
already paired into edges. Delete any edge between vertices with degrees d, d ′ in the graph
independently of all other edges with probability p(d)p(d ′). We denote the resulting graph

by C̃M
p(d)

n (d).

As described in Sect. 2.3.2, we can realize the egde percolation on CMn(d, L) by using
the i.i.d. edge-lengths in (Le)e as auxiliary variables to determine which edges to keep. Then,
the threshold function ξ(d, d ′) as in (2.12) must satisfy P(L ≤ ξ(d, d ′)) = p(d)p(d ′) for
all d, d ′ ∈ N.

Definition 4.2 (Half-edge percolation). Given a degree sequence d = (d1, . . . , dn) and a
half-edge s, we keep a half-edge with probability ps independently. If we do not keep it,
then we create a new vertex with one half-edge corresponding to the deleted half-edge. We
call the newly created vertex and half-edge artificial. We denote the total number of artificial
vertices by A. After this procedure is carried out for all half-edges, we pair all the half-edges
uniformly at random, (including the artificial ones as well). In the end we take the induced
subgraph on the n original vertices. We denote the resulting graph by CMp(d)

n (d).
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By denoting the number of half-edges that are kept at vertex i by dri , and 1(A) a sequence

with A repetitions of the value 1, CMp(d)
n (d) is nothing but CMn+A((dr , 1(A)))|[n], i.e.,

the induced subgraph of the first n vertices of a configuration model with n + A vertices,
and degree sequence (dr , 1(A)) that is dri for i ≤ n and 1 for i ≥ n. A result in [7] is the
following:

Proposition 4.3 (Equality in distribution of two percolated graphs). Consider a function

p(d), the degree-dependent percolation C̃M
p(d)

n (d) as in Definition 4.1. Then CMp(d)
n (d)

d=
C̃M

p(d)

n (d), where CMp(d)
n (d) is the half-edge percolation as described in Definition 4.2.

The message of Proposition 4.3 is that we can understand the (connectivity) properties of

the graph after the degree-dependent edge percolation C̃M
p(d)

n (d) by studying a configuration
model CMn+A(dr , 1(A)) restricted to the first n vertices. In some sense this corollary enables
to change the order of percolation and pairing. So, now onwe focus on studying the properties
of CMp(d)

n (d) = CMn+A(dr , 1(A))|[n]. Importantly, we need to control the new degree

sequence in CMp(d)
n (d). Recall that the vector dr := {dr1 , . . . , drn} denotes the number of kept

half edges attached to vertices in [n] in Defintion 4.2. Let us write Fr
n (x) := 1

n

∑n
i=1 1{dri ≤x}.

The goal is to find conditions on p(d) such that Fr
n (x) still satisfies the conditions of (2.1),

when Fn did so.

Lemma 4.4 (Empirical degree distribution after half-edge percolation). Consider CMn(d)

with degree sequence satisfying Assumption 2.1. Perform half-edge percolation as described
in Definition 4.2 on CMn(d) with percolation function p(d) satisfying

p(d) > b exp{−c(log(d))η} (4.1)

for some constants b, c > 0 and η ∈ (0, 1). Then there exists θ > 0 such that for all
x ∈ [θ, nα] the empirical degree distribution Fr

n (x) of the degrees after percolation still
satisfies Assumption 2.1, except the condition on the minimal degree, with the same τ, α, but
possibly different γ ∈ (0, 1).

Proof By Definition 4.2, half-edges are kept independently, and thus, given di , dri
d= Bin

(di , p(di )), where Bin(n, p) is a binomial random variable with parameters n and p. As a
result the random variables (dri )i≤n are independent given the initial degrees (d1, . . . , dn).
The upper bound in Assumption 2.1 for Fr

n is elementary since

1 − Fr
n (x) = 1

n

n∑

i=1

1{Bin(di ,p(di ))>x} ≤ 1

n

n∑

i=1

1{di>x} = 1 − Fn(x). (4.2)

Next we show the lower bound. First we define for all x < nα

S(x) := {v : dv ≥ s(x)} (4.3)

where s(x) > x is a function of x that is defined later. Clearly,

1 − Fr
n (x) ≥ 1

n

∑

i∈S(x)

1{Bin(di ,p(di ))>x} (4.4)

We choose the value of s(x) such that the probability that the indicators within the sum are
1 with high enough probability, for all i ∈ S(x). Namely, if we choose s(x) such that the
expectation of the binomial, di p(di ), is higher than 2x for all vertices in S(x), then we can
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use the concentration of binomial random variables [25, Theorem 2.21] to get an upper bound
on the probability that the indicator functions are 1. Let

s(x) = 2x

b
e2c(log(2x/b))

η

(4.5)

then we find that

s(x)p(s(x)) ≥ 2xe2c(log(2x/b))
η

e−c(log(2x/b)+2c(log(2x/b))η))η

= 2xe2c(log(2x/b))
η

e−c
(
log(2x/b)(1+2c(log(2x/b))η−1)

)η
.

Since η < 1, the factor 1 + 2c(log(2x/b))η−1 in the exponent of the last factor is at most
3/2 whenever x ≥ b

2 exp
{
(4c)1−η

} := b
2 θ̂ . Using this fact and the monotonicity of dp(d),

we find that for all di > s(x),

di p(di ) ≥ s(x)p(s(x)) ≥ 2xec/2(log 2x/b)
η ≥ 2x . (4.6)

Then, for all di > s(x), by [25, Theorem 2.21],

P (Bin(di , p(di )) > x) ≤ P

(

Bin(di , p(di ) >
s(x)p(s(x))

2

)

≤ e−s(x)p(s(x))/8 ≤ e−x/4 <
1

8
,

(4.7)

whenever x > 4 log 8. Using this we get for all x ≥ max
{ b
2 θ̂ , 4 log 8

} := θ

P

(

n(1 − Fr
n (x)) ≤ S(x)

4

)

≤ P

⎛

⎝
∑

i∈S(x)

1{Bin(di ,p(di ))>x} ≤ S(x)

4

⎞

⎠

≤ P

(

Bin(|S(x)|, 7/8) ≤ |S(x)|
4

)

≤ e−|S(x)|/8.

Combining this estimate with a union bound,

P

(

∃x ∈ [θ, nα] : n(1 − Fr
n (x)) ≤ |S(x)|

4

)

≤
nα
∑

x=θ

e−|S(x)|/8 ≤ nαe−|S(nα)|/8, (4.8)

since |S(x)| decreases as x increases. Using (2.1) |S(x)| can be bounded from below as
follows

|S(x)| = n(1 − Fn(s(x))) ≥ n
1

s(x)τ−1 e
−c(log s(x))η .

It is elementary to calculate that, with s(x) as in (4.5), the rhs satisfies satisfies the lower
bound in Assumption 2.1, with the same τ, α, while the new value of γ is max{γ old, η}.
Using this bound for |S(x)| within the probability sign in (4.8) and for |S(nα)| on the rhs of
(4.8) we arrive at:

P

(

∃x ∈ [θ, nα] : 1 − Fr
n (x) ≤ 1

s(x)τ−1 e
−c(log s(x))η

)

≤ eα log ne−nεe−c(log n)η n→∞−−−→ 0.

(4.9)


�

123



Weighted Distances in Scale-Free Configuration Models 1099

Next we prepare more for the proof of the upper bound of Theorem 2.4, by comparing the
degree of a fixed vertex before and after the half-edge percolation. This will be used to ensure
that uKn , vKn in Sect. 2.3.2 still has sufficiently high degree in the percolated subgraph.

Lemma 4.5 (Degree after percolation vs original degree). Apply half-edge percolation as
described in Definition 4.2 with percolation function p(d) satisfying (4.1) on CMn(d). Let
K̃n = O(log n) an arbitrary sequence that tends to infinity with n. We define

Kn := sup
{
m : 2m ≤ K̃nbe

−c(log K̃n)
η
}

. (4.10)

Then a vertex w with dw ≥ K̃n in CMn(d) has drw ≥ Kn in CMp(d)
n (d) whp.

Proof First we investigate the expected degree of a vertex after percolation. Consider a vertex
w with degree dw , as before drw denotes the degree after the half-edge percolation. Recall

that drw
d= Bin(dw, p(dw)). Thus

E[drw] ≥ E[Bin(dw, be−c(log dw)η )] = dwbe
−c(log dw)η = belog dw(1−c(log dw)η−1).

The rhs is monotone increasing in dw, and tends to infinity as dw → ∞. Therefore, by
setting Kn as in (4.10), Kn tends to infinity when K̃n does. By (4.10), the expectation of
a Bin(dw, p(dw)), for any dw ≥ K̃n , is larger than 2Kn . Knowing that, we can use the
concentration of binomial random variables [26, Theorem 2.21] to obtain a bound on the
probability that the binomial is smaller than Kn , i.e.

P
(
Bin(dw, p(dw)) < Kn | dw ≥ K̃n

) ≤ exp {−Kn/4} ,

since Kn tends to infinity this finishes the proof. 
�

5 Upper and Lower Bound on Weighted Distances

In this section we give the proofs of Theorems 2.4 and 2.5. We start with the main result as
stated in Theorem 2.4, after that we give the proof of Theorem 2.5. We start with the lower
bound as stated in the following lemma:

Lemma 5.1 (Lower bound on the weighted graph distance). Consider CMn(d) satisfying
Assumptions 2.1–2.2 and let u and v be uniformly chosen from [n]. Suppose the edge lengths
are i.i.d. with distribution function FL(x) that satisfies (2.5). Then for all ε > 0

lim
n→∞ P

⎛

⎜
⎜
⎝dL(u, v) > (1 − ε)2

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)
⎞

⎟
⎟
⎠ = 1, (5.1)

and for the hopcount

P (dH (u, v) > (1 − ε)2 log log n/| log(τ − 2)|) = 1. (5.2)

Proof We consider two uniformly chosen vertices u and v. We do a BFS-exploration on both
sides and by Lemma 3.3, we can couple these explorations whp to two independent BPs until
generations κn(u), κn(v) respectively. We write �Bκn(q)(q) for the set of vertices at distance
κn(q) from vertex q ∈ {u, v}, respectively. By the coupling, these explorations are disjoint
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1100 E. Adriaans, J. Komjáthy

whp. Since any path connecting u, v must intersect �Bκn(u)(u),�Bκn(v)(v), we have the
following lower bounds on the weighted distance and the hopcount between u, v:

dL(u, v) ≥ dL(u,�Bκn(u)(u)) + dL(v,�Bκn(v)(v)),

dH (u, v) ≥ κn(u) + κn(v).
(5.3)

Then, (5.1) directly follows from the first inequality and Lemma 3.4. By (5.3), the result of
the lemma follows by a union bound. For the hopcount, the second inequality combined with
Lemma 3.3 yields (5.2), since Y (q)

κn(q) converges in distribution. 
�
For the proof of the upper bound we use a proposition, similar to [7, Proposition 2.1],

which gives an upper bound on the path length between two vertices of a fixed degree of at
least K . In our setting the vertices have degree at least Kn with Kn tending to infinity with
n. We provide the adjusted proof since the adjustments are non-trivial.

Proposition 5.2 Consider CMn(d) satisfying (2.1) for all x ∈ [θ, nα] for some given θ ∈ R

and some α > 1/2. Let w be a vertex with degree at least Kn. Then, whp, there exists a path
(π0 = w,π1 . . . , πimax = w�) from w to a vertex w� with degree at least n(τ−2)α such that
the degree dπi of the i th vertex on the path satisfies

dπi ≥ (K 1−δn
n

)
(

1
τ−2

)i

=: ỹi (Kn), (5.4)

with δn → 0 as Kn → ∞. Whp, imax, the length of this path is at most

imax ≤ log log n

| log(τ − 2)| − log log Kn

| log(τ − 2)| . (5.5)

Proof We shall denote the number of edges on the path from w to w� by imax and we define
the following sets of vertices

�i := {v ∈ [n] : dv ≥ yi (Kn)} (5.6)

for some increasing sequence yi (Kn) =: yi to be determined shortly. (�i )i≤imax can be seen
as layers of the graph, where imax is the maximal i such that �i is non-empty. Our goal is
to prove that there exists a sequence yi (Kn), defining the layers �i , such that the following
holds:

lim
n→∞

imax∑

i=0

P (πi ∈ �i , πi � �i+1 | dw ≥ Kn) = 0, (5.7)

where πi is a vertex chosen from �i according to the size-biased distribution, equivalently,
vertex πi is the vertex that a uniformly chosen half-edge from �i is attached to. Conditioning
on the total number of half edgesHn in CMn(d), andHyi , the number of half-edges attached
to vertices in the set �i , by pairing the half-edges of a vertex z ∈ �i , we can pair at least yi/2
half-edges before all the half-edges of z are paired, and each of these half-edges is paired to
a half-edge attached to a vertex in �i+1 with probability at least 1 − Hyi+1/Hn . Thus,

P
(
z ∈ �i , z � �i+1 | Hyi+1 ,Hn

) ≤
(

1 − Hyi+1

Hn

)yi /2

. (5.8)

Note in particular that this bound holds when the vertex z is chosen randomly from �i in a
way that does not take into account its connections, in particular it holds when z is chosen
according to the size-biased distribution from �i . Since any vertex in �i has degree larger
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than yi and |�i | = n(1 − Fn(yi )), Hyi ≥ yi n(1 − Fn(yi )). Under Assumptions 2.1, 2.2,
Hn ≤ ϕn for some ϕ ∈ R, thus, we have by (5.8)

P (πi ∈ �i , πi � �i+1) ≤ exp

{

− yi yi+1(1 − Fn(yi+1))

2ϕ

}

. (5.9)

For now we focus on the term in the exponent. Using (2.1), we lower bound

yi yi+1(1 − Fn(yi+1))

2ϕ
≥ c̃yi y

2−τ
i+1 e

−C(log yi+1)
γ = c̃yi y

2−τ−C(log yi+1)
γ−1

i+1 , (5.10)

with C defined in (2.1) and c̃ some positive constant. Now we would like to choose the
sequence yi = yi (Kn) such that (5.9) converges to zero in particular that (5.7) holds. We
claim that this holds when yi is given by the following recursion

y0 = Kn, yi+1 = y(τ−2+A(log yi )γ−1)−1

i (5.11)

with A > 0 defined later. Note that for sufficiently large Kn , since γ < 1,

τ − 2 + A(log y0)
γ−1 < 1 (5.12)

Now let �n = A(log Kn)
γ−1, then

yi+1 ≥ y(2−τ+�n)
−1

i ≥ · · · ≥ K (τ−2+�n)
−i

n , (5.13)

in particular, yi is increasing doubly exponentially. We use the recursion relation of (5.11)
in (5.10)

c̃yi y
2−τ−C(log yi+1)

γ−1

i+1 = c̃y

2−τ−C(log yi+1)γ−1

τ−2+A(log yi )
γ−1 +1

i ≥ c̃y
A(log yi )

γ−1−C(log yi+1)γ−1

τ−2+�n
i (5.14)

Choose A ≥ 2C and use that the sequence yi is increasing and the lower bound in (5.13),
then

c̃y
A(log yi )

γ−1−C(log yi+1)γ−1

τ−2+�n
i ≥ c̃ exp

{
C(log yi )γ

τ − 2 − �n

}

≥ c̃ exp
{ C̃(log Kn)

γ

(τ − 2 + �n)iγ

}
, (5.15)

with C̃ = C/(τ − 2− �n). Combining everything from (5.10), we can use this lower bound
in the exponent on the rhs of (5.9), and, since τ − 2 + �n < 1, the rhs of (5.9) is summable
in i . Summing the lhs of (5.9) over i and then use the above bound we obtain

∞∑

i=0

P (πi ∈ �i , πi � �i+1 | dw ≥ Kn) ≤ Ĉ exp
{

− c̃ exp
{ C(log Kn)

γ

(τ − 2 + �n)γ

}}
, (5.16)

which tends to zero with n as Kn tends to infinity with n. This result yields the statement of
(5.7). Using the result of [7, Lemma 2.6], the lower bound in (5.13) can be improved to

yi ≥ (K 1−δn
n

)(τ−2)−i = ỹi (Kn), (5.17)

with δn → 0 as Kn → ∞.1

The path in the statement of the lemma is then constructed as follows, starting from the
first vertex π0 := w. By the first term in the sum in (5.7), π0 is whp connected to at least
one vertex in �1. By the fact that the pairs of the half edges of π0 are chosen uniformly,
π1 is a vertex attached to a uniformly chosen half-edge in �1. As a result, π1 is chosen

1 From the proof of [7, Lemma 2.4], it is immediate that δn ≤ D̃(log Kn)γ−1 for some constant D̃ > 0.
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according to the size-biased distribution within �1. Then we iterate this procedure to obtain
π2, π3, . . . in �2, �3, . . . until the layers become empty by the constraint that the maximal
degree guaranteed to exist is of order nα . We denote the last vertex on the path by w�. The
constructed path might jump across a layer, so the number of layers is an upper bound on the
length of the path from w to w�. The last layer that is nonempty is then �imax with imax is the
largest integer with

K (1−δn)(τ−2)−imax

n ≤ nα. (5.18)

Since δn → 0, α < 1, the following upper bound then holds

imax ≤ log log n − log log Kn + logα − log(1 − δn)

| log(τ − 2)| ≤ log log n − log log Kn

| log(τ − 2)| . (5.19)

We yet have to show that yimax ≥ nα(τ−2). For this, elementary rearrangement yields that the

lhs of (5.18) equals nα(τ−2)β , with β ∈ [0, 1) the fractional part of the middle term in (5.19).
This finishes the proof. 
�
Lemma 5.3 (Upper bound on the weighted graph distance).ConsiderCMn(d, L) satisfying
Assumptions 2.1–2.2 and u, v two uniformly chosen vertices. Suppose the edge weights are
i.i.d. from FL(x) that satisfies (2.5). Then for all ε > 0

lim
n→∞ P

⎛

⎜
⎜
⎝dL(u, v) < (1 + ε)2

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)
⎞

⎟
⎟
⎠ = 1. (5.20)

Further, there exists a path between u, v with at most (1 + ε)2 log log n/(τ − 2) edges and

having total length at most (1 + ε)2
∑
⌊

log log n
| log(τ−2)|

⌋

i=1 F (−1)
L

(

e
−
(

1
τ−2

)i
)

.

Proof For brevity let an := ∑
⌊

log log n
| log(τ−2)|

⌋

i=1 F (−1)
L

(

e
−
(

1
τ−2

)i
)

. First we construct the initial

segments of the connecting path from both ends from u, v, as described heuristically in
Sect. 2.3.2. Let Mn be as in Lemma 3.6, with ε1 := ε/3. Then, consider any vertex w

of graph distance Mn away in CMn(d) from q ∈ {u, v}, chosen independently of (Le)e.
Then, since the edge-lengths in CMn(d, L) are i.i.d. on the edges of the path from q to w, by
Lemma 3.6, dL(q, w) ≤ anε/3 in CMn(d, L)whp. As a result of Lemma 3.5, for anyM with
M | log(τ − 2)| > 1, at graph distance M log log K̃n away from q ∈ {u, v}, there is at least
one vertex with degree K̃n in CMn(d) whp. Thus, by defining K̃n via Mn = M log log K̃n ,
(equivalently, K̃n := exp

{
exp{Mn/M}}), we find vertices with degree at least K̃n at graph

distance Mn away from q ∈ {u, v}, whp. Then, pick qKn for q ∈ {u, v} in an arbitrary way
among these vertices that is independent of (Le)e. Then, the previous argument applies and
whp,

dL(q, qKn ) ≤ anε/3 (5.21)

in CMn(d, L) for q ∈ {u, v}.
Next we connect uKn , vKn using degree-dependent percolation. When applying edge-

dependent percolation (as in Definition 4.1) on CMn(d, L), we can use the edge-lengths
(Le)e as auxiliary variables to decide which edge to keep. Namely, we keep edge e iff
Le ≤ ξ(d, d ′), with ξ(d, d ′) satisfying P(L ≤ ξ(d, d ′)) = p(d)p(d ′). By Proposition 4.3,
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we can consider the percolated (sub)graph as an instance of a configuration model where the
new degree sequence is (dr , 1(A)). We yet have to specify the percolation function that we
use. For some c > 0, η ∈ (0, 1) to be determined later, let

p(d) = exp{−c(log d)η}. (5.22)

The conditions of Lemma 4.5 apply, thus, with Kn as in (4.10), drqKn ≥ Kn whp for q ∈ {u, v}.
Further, the conditions of Lemma 4.4 are also satisfied, thus the (dr , 1(A)) sequence obtained
after percolation still satisfies Assumption 2.1 (except the condition on the minimal degree
being at least 2). Hence, following Proposition 5.2, we construct a path connecting uKn , vKn

in the percolated graph, with good control on the (percolated) degrees along the path. Note
that this path only uses vertices with percolated degree strictly larger than one, i.e., artificial
vertices are not used, and as a result the constructed path is part of CMp(d)

n (d) by definition.
For q ∈ {u, v}, we use the constructed path as described in Proposition 5.2 starting from

qKn to reach a vertex q� with drq� ≥ nα(τ−2). A lower bound on the degree of the i th vertex
on this path is given by ỹi (Kn) =: ỹi in (5.4). Since p(d) is monotone decreasing, ξ(d, d ′) is
non-increasing in both variables. Thus, the edge-lengths on the constructed path are at most
ξ(ỹi , ỹi+1) for i = 0, 1, . . . , imax − 1. Hence, for q ∈ {u, v}

dL(qKn , q
�) ≤

imax−1∑

i=0

ξ(ỹi , ỹi+1). (5.23)

Next we connect the two high-degree vertices u� and v�. Recall that Hn stands for the total
number of half-edges, and is at least some constant ϕ times n under Assumption 2.1 even
without the minimal degree assumption. Fix δ ∈ (0, α − 1/2) and write �1/2+δ := {w :
drw ≥ n1/2+δ}, as well as H1/2+δ :=∑w∈�1/2+δ

drw. Then, following (5.8)–(5.10),

P
(
q�

� �1/2+δ | Hn,H1/2+δ

) ≤
(

1 − H1/2+δ

Hn

)nα(τ−2)/2

≤ exp
{
−cnα(τ−2)+(2−τ)(1/2+δ)−o(1)

}
, (5.24)

which tends to zero as n → ∞ since 1/2 + δ < α. Thus, we can find vertices u��, v�� ∈
�1/2+δ such that (q�, q��) are kept edges in the percolated graph whp. Finally, we show that
the edge (u��, v��) is also present whp in the percolated graph.

P
(
u��

� v�� | Hn
) ≤

(

1 − n1/2+δ

Hn

)n1/2+δ/2

≤ exp
{
−cn(1+δ)−1

}
, (5.25)

which tends to zero as n → ∞. By the monotonicity of ξ , whp, the vertices u� and v� are
connected via at most 3 edges with length at most

dL(u�, v�) ≤ 3ξ(nα(τ−2), n1/2). (5.26)

Combining (5.21), (5.23) and (5.26), we arrive at (2.13). In what follows we show that the rhs
of (5.23) is at most (1 + ε/3)an . By the definition of edge-percolation in Definition 4.1, we
keep an edge connecting verticeswith degrees yi , yi+1 with probability atmost p(yi )p(yi+1).
Using the form p(d) from (5.22) and its monotonicity, and the lower bound on yi from
Prop. 5.2,

p(yi )p(yi+1) ≤ exp{−c(log yi )
η − (log yi+1)

η}
≤ exp

{
−c̃(τ − 2)−η(i+1)(log K 1−δn

n )η
}

, (5.27)
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with c̃ = c(1 + (τ − 2)η). Recall that we keep an edge e between vertices with degrees
d, d ′ iff its edge-length is at most ξ(d, d ′) in the edge-percolation. This gives us ξ(d, d ′) =
F (−1)
L (p(d)p(d ′)), and, by monotonicity again, from (5.27) it follows that

ξ(yi , yi+1) ≤ F (−1)
L

(
exp

{− c(log K 1−δn
n )η(τ − 2)−η(i+1)}

)
. (5.28)

Combining (5.27) with the bound on imax from Proposition 5.2, (5.23) can be bounded above
as

dL(qKn , q
�) ≤

⌊
log(log n/ log Kn )

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(
exp

{− c(log K 1−δn
n )η(τ − 2)−ηi}

)
. (5.29)

Similar to the proof of Lemma 3.4, we need to transform the rhs to the desired form in (5.20).
Using similar bounds as in (3.14), we rewrite the sum to an integral, change variables as
(τ −2)−ηx (log K 1−δn

n )η =: (τ −2)−y , and change the integral back to a sum. This operation
shifts the summation boundaries by η log log Kn/| log(τ − 2)| and multiplies the whole sum
by η. We obtain

dL(qKn , q
�) ≤ 1

η

⌈
η

log log n
| log(τ−2)|

⌉

∑

i=
⌊
η

log log Kn
| log(τ−2)|

⌋
F (−1)
L (e−1/(τ−2)i ). (5.30)

By choosing η ∈ (0, 1) in (5.22) such that 1/η < 1 + ε/3 so we obtain that

dL(qKn , q
�) ≤ (1 + ε/3)

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)

. (5.31)

Finally, it is not hard to see that 3ξ(nα(τ − 2), n1/2) ≤ anε/3 holds as well for all large
enough n. Combining everything, we arrive at

dL(u, v) ≤
∑

q∈{u,v}

(
dL(q, qKn ) + dL(qKn , q

�)
)+ dL(u�, v�)

≤ 2an(ε/3 + (1 + ε/3)) + anε/3 ≤ 2an(1 + ε).

(5.32)

This finishes the proof of (5.20). For the second statement, recall that for some M ≥
1/| log(τ − 2)|, Mn = M log log(K̃n) and note that the number of edges on the constructed
path is at most

2M log log K̃n + 2
log log n − log log Kn

| log(τ − 2)| + 3, (5.33)

where the relation between K̃n and Kn is described in Lemma 4.5 in (4.10). From (4.10) it
is elementary to check that for all n large enough

log log Kn = log log K̃n + log(1 − c(log K̃n)
η−1) = log log K̃n + o(1), (5.34)

thus, writing M := (1 + z)/| log(τ − 2)| for some z > 0, the number of edges in the
constructed path is at most
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2 log log n + 2z log log K̃n + o(1)

| log(τ − 2)| + 3 ≤ (1 + ε)
2 log log n

| log(τ − 2)| , (5.35)

as desired. 
�

Proof of Theorem 2.4 Lemma 5.1 states the proof of the lower bound and Lemma 5.3 the
proof of the upper bound. These combined prove the statement of the theorem. 
�
5.1 Erased Configuration Model

In this section we prove Theorem 2.5.

Proof of Theorem 2.5, lower bound The strategy of the proof is the following: first we show
that the lower bound is also valid in the erased model. Then, we show that the constructed
paths in the proof of the upper bound between vertices q, qKn and qKn , q

� are whp simple
for q ∈ {u, v}, and as a result they survive the erasing procedure whp. Finally, we connect
u�, v� in the erased model in some other way than that in the original model.

First we start with the lower bound. The proof of Lemma 5.1 consists of a BFS exploration
around the two vertices u and v. These explorations can whp be coupled to two BP trees
and therefore all edges within these trees are whp simple. So this lemma remains valid after
erasure and thus the lower bound follows both for the weighted distance as well as for the
hopcount. 
�

In the proof of the upper bound we again use a coupling to BP trees to find uKn , vKn . Thus,
the path between q, qKn is again whp simple and thus it survives erasure. Next we investigate
the constructed path between qKn , q

�. This path is constructed in the percolated graph. The
erasure happens before the degree-dependent percolation, so edges of the path constructed in
Proposition 5.2 could in principle be deleted earlier in the erasure procedure. We show that
the edges on the constructed path were not part of a multiple edge whp, meaning that they
were whp not erased before. For this, we state a lemma that gives a bound on the original
degree of a vertex, given its percolated degree dr . This lemma is the ‘reverse’ of Lemma 4.5.

Claim 5.4 (Degree after percolation vs original degree). Apply half-edge percolation as
described in Definition 4.2 with percolation function p(d) satisfying (4.1) on CMn(d). Let
ω(n) be an arbitrary sequence that tends to infinity with n. Let s(x) be defined as in (4.5).
Then, for a vertex w ∈ CMn(d),

P(dw ≥ s(x) | drw ≤ x) ≤ c exp{−x/4} (5.36)

for some c > 0.

Proof The proof directly follows from Bayes’ theorem applied to the lhs of (5.36), and
following the calculations between (4.5) and (4.7). 
�

Lemma 5.5 (No multiple edges on the path qKn , q
�). Let ui and ui+1 be two consecutive

vertices on the constructed path between uKn , u
� in Proposition 5.2 and i = 0, . . . imax − 1,

then

lim
n→∞ P(≥ 2 edges connecting ui ↔ ui+1| ≥ 1 edge connecting ui ↔ ui+1) = 0.

(5.37)
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Proof Note that the path in Prop. 5.2 is later, in the proof of Theorem 2.4 is constructed in
the percolated graph. Thus ui , the i th vertex on this path has percolated degree at least as in
(5.4). Without loss of generality we can assume that

drui ≤ (K 1−δn
n

)
(

1
τ−2

)i+1

=: yi+1, (5.38)

since otherwise the path has ‘jumped’ a layer and one can consider the path to be shorter
by an edge. Recall that duimax

≥ nα(τ−2) holds as well. Applying Claim 5.4 on (ui )i≤imax−1,
using the upper bound in (5.38),

P
(∃i ≤ imax−1, dui ≥ s(yi+1) | drui ≤ yi+1∀i ≤ imax−1

) ≤
imax−1∑

i=0

c exp{−yi+1/4}

(5.39)

which tends to zero with n since it is a constant times the first term.
We can rewrite the probability in (5.37) as

1 − P(1 edge ui ↔ ui+1) − P(ui � ui+1)

1 − P(ui � ui+1)
. (5.40)

We investigate the probabilities in (5.40) separately starting with the probability that there is
exactly one edge between those twovertices.We lower bound the probability that precisely the
j th half-edge of ui connects to ui+1, and the others do not. Note that for the kth half-edge the
probability of not connecting to ui+1 is at least (Hn−dui+1 −2(k−1))/(Hn−2(k−1)−1) ≥
1 − dvi+1/Hn . Thus

P(1 edge ui ↔ ui+1) ≥
dui∑

j=1

dui+1

Hn − 2dui

dui −1
∏

k=1

(

1 − dui+1

Hn

)

≥ dui+1dui
Hn − 2dui

(

1 − dui+1

Hn

)dui
. (5.41)

Next we bound the probability that there is no edge between two consecutive vertices, both
from above and below.

P(ui � ui+1) ≤
�dui /2�∏

k=1

(

1 − dui+1

Hn − 2dui

)

=
(

1 − dui+1

Hn − 2dui

)dui /2

, (5.42)

P(ui � ui+1) ≥
dui∏

k=1

(

1 − dui+1

Hn

)

=
(

1 − dui+1

Hn

)dui
. (5.43)

Using series expansion for Eqs. (5.41)–(5.43), we obtain an upper bound on (5.40):

1 − P(1 edge ui ↔ ui+1) − P(ui � ui+1)

1 − P(ui � ui+1)
≤ 2dui dui+1

Hn

/(

1 − dui dui+1

4(Hn − dui )

)

.

(5.44)

By (5.39), whp, dui+1 ≤ s(yi+1), and further, by the definition of imax in (5.18), and s(·) in
(4.5), s(yimax−k) ≤ nα(τ−2)k (1+o(1)) for k ∈ {1, 2}. Thus, for all i ≤ imax−2, whp

dui dui+1

Hn
≤ c

s(yimax−2)s(yimax−1)

n
≤ nα(τ−2)(τ−1)(1+o(1))−1.
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The rhs converges to zero as n tends to infinity as long as α < ((τ − 2)(τ − 1))−1, which
we have assumed in Assumption 2.1. 
�
Proof of Theorem 2.5, upper bound As mentioned before, we construct a path in
ECMn(d, L) to connect u, v. For this it is enough to construct a path with all its edges begin
simple edges in CMn(d, L). This path has a huge overlap with the path in the upper bound of
Theorem2.4.Namely, the segments between u, uKn and v, vKn arewhp using simple edges by
the coupling to BP trees. The segments between uKn , uimax−1 and vKn , vimax−1 are whp using
simple edges again so they survives erasure. Next we connect uimax−1 to vimax−1. Note that the
constructed path in CMn(d, L) might use multiple edges so we need a different connecting
path. However, qimax−1 for q ∈ {u, v} are vertices with degree at least nα(τ−2)(1+o(1)). In the
proof of Theorem 2.4, we created a 3-hop connection between uimax = u� and vimax = v� in
the percolated graph, see (5.25)–(5.26). When we erase a multiple edge, we keep one edge
independently of its edge-length. Thus, from every multiple edge at least one edge remains.
Hence, an analogous construction as in (5.25)–(5.26) can be repeated, not for the percolated
graph but for the original graph, developing a 5-hop connection between uimax−1, vimax−1.
The edge-lengths on this path are simply i.i.d. copies of L . Thus,

deL(u, v) ≤ d(u, uKn ) + d(v, vKn ) + 2
imax−2∑

i=0

ξ(yi , yi+1) +
5∑

i=1

Li . (5.45)

For all ε > 0

lim
n→∞ P

⎛

⎜
⎜
⎝

5∑

i=1

Li ≤ ε/3

⌊
log log n

| log(τ−2)|
⌋

∑

i=1

F (−1)
L

(

e
−
(

1
τ−2

)i
)
⎞

⎟
⎟
⎠ = 0.

Then we treat the terms in (5.45) similarly as we did in the proof of Theorem 2.4 (see (5.23)
and (5.27)–(5.31)) finishes the proof. 
�
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