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Abstract A lot of progress has been made recently in our understanding of the random-field
Ising model thanks to large-scale numerical simulations. In particular, it has been shown that,
contrary to previous statements: the critical exponents for different probability distributions
of the random fields and for diluted antiferromagnets in a field are the same. Therefore,
critical universality, which is a perturbative renormalization-group prediction, holds beyond
the validity regime of perturbation theory. Most notably, dimensional reduction is restored at
five dimensions, i.e., the exponents of the random-field Ising model at five dimensions and
those of the pure Ising ferromagnet at three dimensions are the same.
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1 Introduction

The random-field Ising model (RFIM) is the simplest disordered system. Its Hamiltonian is

H = −J
∑

〈xy〉
σxσy −

∑

x

hxσx , (1)
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where σx = ±1 on a hypercubic lattice in D dimensionswith nearest-neighbor ferromagnetic
interactions. The hx are independent random magnetic fields obeying different probability
distributions. The RFIM has a long history. Let us remind some of the most important results.

The perturbative renormalization group (PRG) can be carried out to all orders of pertur-
bation theory (in fact this is the only known case where PRG can be carried to all orders).
It predicts dimensional reduction and supersymmetry [1–3]. This means that the critical
exponents of the RFIM in d dimensions are the same as the exponents of the pure Ising
model in d − 2 dimensions. It has been proven that dimensional reduction is not true in three
dimensions [4].

There are some other open questions we would like to address in this paper. What about
other predictions of PRG? Are some predictions still true? What about higher dimensions?
Why PRG breaks down at three dimensions? There have been recently very large-scale
simulations which clarify these questions. The main conclusions are: contrary to previous
statements universality is true in three, four, and five dimensions. Diluted antiferromagnets in
a field are in the same universality class with the RFIM. PRG breaking is a low-dimensional
phenomenon. PRG and dimensional reduction are restored at five dimensions. There is a
maximum violation of self-averaging in the distribution of low lying excited states near the
critical point.

2 Universality

The explanation of critical universality is a major success of the renormalization group. In the
case of the RFIM, PRG predicts that different random-field Ising models, where the random
fields are drawn from different probability distributions, belong to the same universality
classes. Also, more surprisingly, diluted antiferromagnets in a field are predicted to belong
to the same universality class. These two predictions have been recently shown numerically
to be true in three, four, and five dimensions [5–10], despite the failure of PRG. Previous
numerical simulations are incompatible with these predictions for universality.

Because of these older simulations, the prevailing viewwas that universality is not valid for
the RFIM because of the failure of PRG. This view has changed thanks to recent simulations
by Fytas and Martín-Mayor [5,6]. They considered double Gaussian (considering also the
bimodal and Gaussian limits) and Poissonian random-field distributions in three dimensions.
They found the same exponents for all distributions of the random fields.

What explains the disagreement with previous work? Subdominant corrections to scal-
ing. For finite sizes there is no simple power-law behavior near the critical point. There are
subdominant corrections to single power-law behavior. Large lattice sizes and high-precision
data are needed in order tomeasure the subdominant corrections to scaling. Fytas andMartín-
Mayor simulated systems with linear sizes up to L = 196 and 107 samples per size. Further-
more you need the appropriate theoretical framework in order to analyze these corrections.

In field theory, subdominant corrections are controlled by the Callan–Symanzik β(g)

function. ω = dβ
dg

∣∣∣
g=g∗ is a universal exponent and controls the leading corrections to

scaling. The same exponent, ω, controls corrections to scaling for all observables. When you
have good enough data allowing you to compute those non-leading corrections, you find that
all considered probability distributions of the random fields have the same exponents, thus
confirming universality.

Subsequently Picco and Sourlas [7], using the same methods, have shown that the three-
dimensional diluted antiferromagnets in a field belong to the same universality class with
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Fig. 1 (Color figure online)
Pictorial representation of the
non-crossing mechanism that
protects universality (see relevant
discussion in the main text). The
figure, which has an illustrative
purpose only, depicts the operator
dimension of three generic
operators as a function of the
dimension of space
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the RFIM, contrary to previous assertions. Fytas et al., computed critical exponents at four
and five dimensions for both the Gaussian and Poissonian distributions. Exponents are the
same for both distributions and universality is valid also at four and five dimensions, see
Refs. [8–10]. Universality is of course not only valid in PRG but is a general property of
the renormalization group, but it is in general very hard to show that two different physical
systems belong to the same universality class except by using the PRG. This is particularly
the case of the RFIM.

Why critical universality, as established by the PRG is valid in three dimensionswhile PRG
is broken? In PRG, universality is established usingWilson’s operator product expansion and
the ε expansion, i.e. close to the upper critical dimension, Du = 6 in the case of the RFIM.
One classifies the operators into relevant, marginal, or irrelevant according to their scaling
dimensions. The scaling dimensions of the operators DO are functions of the dimension of
space d . The DO(d)’s change when the dimension of space is changed. A necessary and
sufficient condition for non changing universality classes as the dimension of space d varies
is for the scaling dimensions DO(d) of the leading operators not to cross when the dimension
of space is lowered from d = Du down to d = 3 as this is illustrated in Fig. 1.

If this is the case, the classification of operators into relevant, marginal, and irrelevant
remains unchanged when the dimension of space is lowered.

The ε expansion computes the dimension of the operators and their derivativeswith respect
to d at d = Du. Why the classification is still valid for ε = 3 when PRG is broken? In fact we
do not know of any case of the classification into universality classes using the ε expansion
not been valid at lower dimensions. Why is this so?

The reason for the scalingdimensions of operators not to crosswhen the dimensionof space
decreases is probably the following [11]. Scaling dimensions of operators are eigenvalues of
the scaling transformations, i.e. of the group of dilatations of space. It is well known from the
early days of quantum mechanics that in the generic case the eigenvalues of operators, that is
the eigenvalues of the matrices in their matrix representation, do not cross if one changes a
single parameter [12]. This phenomenon is called repulsion of eigenvalues. If universality is
valid around d = 6 dimensions there is big chance to be valid at d = 3 dimensions because
of eigenvalue repulsion. Validity of universality at three dimensions does not depend on the
validity of PRG at this dimension. The previous argument can be inverted. If it is found by
other means, like experiments or numerical simulations, that universality classes in three
dimensions coincide with those established by the ε expansion, it means that PRG is valid
near the upper critical dimension Du, i.e. the epsilon expansion is valid.
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Fig. 2 Numerical estimates of
critical exponents as a function of
the dimension of space for the
3d [5], 4d [8,9], and 5d
RFIM [10]. The data points
corresponding to d = 6 are the
mean-field exponents

3 Discussion on the Dimensional Reduction Restoration

Recent numerical simulations computed the critical exponents for the Gaussian and Pois-
sonian probability distributions of the random fields at four [8,9] and five dimensions [10].
It was found that PRG and dimensional reduction is violated at four dimensions. On the
contrary our simulations are compatible with the validity of PRG and dimensional reduction
in five dimensions. In five dimensions we simulated Gaussian and Poissonian random fields,
for linear sizes 4 ≤ L ≤ 28 and 107 samples per size. Numerical results for our estimates
of critical exponents as a function of the space dimensionality are summarized in Fig. 2.
In the main panel we show the cases for ν, η, and the violation of hyperscaling exponent
θ = 2 − η + η [9]. In the corresponding inset we present the anomalous dimension η on its
own for clarity reasons.

The most compelling evidence comes from fitting the data assuming dimensional reduc-
tion, i.e. assuming that the critical exponents of the RFIM in five dimensions are equal to
those of the pure Ising model in three dimensions, which are known very precisely. As all
the exponents are assumed to be known there are very few parameters to fit. The quality
of the fit, χ2 per degree of freedom, is excellent: 3.43/7 for ν, 13.37/11 for η, and 4.15/7
for the difference 2η − η. We conclude that PRG and dimensional reduction are restored at
five dimensions and that the breaking of PRG is a low-dimensional phenomenon. Tarjus et
al. [13–15] using functional renormalization group, also argue that dimensional reduction is
restored for dimensions larger than 5.1.

Why PRG is valid at higher dimensions? What is the reason of PRG failure at low dimen-
sions? As PRG is valid at all orders of perturbation theory, the reason of its breaking must be
non perturbative. Parisi and Sourlas [16] proposed that the reason is the formation of bound
states, which is a non perturbative phenomenon. The mass of the bound state provides a new
length scale which is not taken into account in the traditional PRG analysis.

The argument for the formation of bound states is the following: first Kardar et al. [17,18]
observed that interactions among replicas are attractive—this is not the case for branched
polymers and dimensional reduction holds in that case. For the random interface problem
they computed the spectrum of the effective Hamiltonian with Bethe ansatz and found the
lowest states to be bound states. Then Brézin and De Dominicis [19,20] wrote the Bethe–
Salpeter equation for 〈sαsβ(0)sαsβ(x)〉 in the RFIM, where α and β are two different replica
indices and they found an instability in the Bethe–Salpeter kernel for d < 6 most probably
implying the existence of bound states. As remarked by Parisi [21],
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Fig. 3 (Color figure online) Illustration of the probability distribution P(dm, d j, δh, L) for d j = 0. Left
panel: L = 60 and two values of δh. Right panel: L = 60, L = 120 and δh = 0.45L−γ /ν

〈sα(0)sα(x)〉 = 〈σ(0)σ (x)〉, (2)

where 〈σ(0)σ (x)〉 is the average over samples of 〈σ(0)σ (x)〉, and
〈sαsβ(0)sαsβ(x)〉 = (〈σ(0)σ (x)〉)2, (3)

where the replica indices α �= β.
Parisi and Sourlas [16] found that for large x in three dimensions

〈σ(0)σ (x)〉 ∼ exp (−mx) (4)

and
(〈σ(0)σ (x)〉)2 ∼ exp (−mx) (5)

with the same m! m is the mass of the intermediate state with the lowest mass. This means
that there exists a state in replica field theory that couples to both the sα(x) and sαsβ(x)
operators. Not such state exists in perturbation theory. They concluded to the existence of
a new state, not present in perturbation theory, which couples to both sα(x) and sαsβ(x).
This must be a bound state, in agreement with Brézin and De Dominicis. They also pointed
out that the space dimension plays a crucial role in the formation of bound states. In the
formation of bound states there is a competition between the attractive forces and the size
of the available phase space. The size of phase space increases with the dimension of space
making the formation of bound states more difficult in higher dimensions. We expect that
for high enough dimensions bound states will no longer exist, and PRG predictions should
hold. This argument does not predict at which dimension PRG is restored.

Another remarkable fact is the maximum violation of self-averaging in the sample to
sample fluctuations, as explained below. In order to compute the magnetic susceptibility,
one can add a small translation invariant magnetic field δh. For each sample compute m0,
the ground-state magnetization at J = Jc + d j , where Jc denotes the critical point, add δh
and find the new ground-state magnetization m′. The resulting change of the ground-state
magnetization due to δh is dm = m0 − m′.

Consider the probability distribution P(dm, d j, δh, L) of dm over the random field sam-
ples in three dimensions, see Fig. 3. The left panel of the figure shows P(dm, d j, δh, L) of
dm for d j = 0, i.e. at J = Jc, for L = 60 and two values of δh. We see it is a bimodal
probability distribution. Increasing δh onlymodifies the size of the two peaks. Note the bound
0 ≤ dm ≤ 2, implying that our bimodal distribution, with one of the peaks at dm ∼ 2, is a
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Fig. 4 (Color figure online) Illustration of the probability distribution P(dm, d j, δh, L) for d j = 0.3L−1/ν ,
δh = 2.2L−γ /ν (left panel) and d j = 0.6L−1/ν , δh = 1.1L−γ /ν (right panel)

maximum violation of self-averaging. The right panel of Fig. 3 illustrates P(dm, d j, δh, L)

of dm for d j = 0, i.e. at J = Jc for L = 60 and L = 120 and δh = 0.45L−γ /ν . γ is the
critical exponent of the magnetic susceptibility. Clearly, P(dm, d j, δh, L) obeys finite-size
scaling.

The next two panels in Fig. 4 present P(dm, d j, δh, L) for d j = 0.3L−1/ν and δh =
2.2L−γ /ν , and d j = 0.6L−1/ν and δh = 1.1L−γ /ν , respectively. Results for three different
system sizes are shown, namely for L = 30, 60, and L = 90.

We observe again strong violations of self-averaging, obeying finite-size scaling. They are
not finite volume artifacts. We have no theoretical explanation of these maximal violations
of self-averaging.

The reader might be puzzled by our findings of a bimodal distribution of dm and at the
same time the finite-size scaling relation dm

δh ∼ Lγ /ν . This is possible, as it is illustrated by
the toy model of the following bimodal probability distribution

ptoy(dm, δh, L) = p0δ(dm) + p1δ(dm − c) ; p1 ∼ δhLγ /ν ; p0 + p1 = 1, (6)

where c is a constant and δh is small. In this model 〈(dm)k〉 ∼ δhck Lγ /ν .

4 Conclusions

In summary, numerical simulations have provided a significant step forward in our under-
standing of the RFIM. The combination of an appropriate fluctuation-dissipation formalism
with modern finite-size analysis [5,6] has provided strong evidence for universality at space
dimensions d = 3 [5–7], d = 4 [8,9], and d = 5 [10]. The evidence for violations of basic
predictions of the PRG, such as dimensional reduction, is crystal clear at d = 3 and d = 4.
On the other hand, our rather accurate results at d = 5 are compatible with dimensional
reduction. Although universality is a prediction of the PRG, it is obvious that universality
is valid outside of the perturbative regime. An argument based on eigenvalue-repulsion has
been proposed to explain why universality is robust against non-perturbative effects [11].

Nevertheless many open questions remain. Our results are based on numerical simulations
with their inherent error bars. Even when error bars are very small they do not replace a
mathematical proof. In particular we cannot exclude the possibility that PRG is broken for
any d < Du = 6 (a non-analytic dependence in d − Du, such as exp [1/(d − Du)], cannot
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be excluded). It could also in theory be possible that such exponentially small contributions
violate universality.

If bound states are responsible for the breaking of the PRG, one should introduce the fields
representing these bound states and write the effective Hamiltonian in terms of these fields.
We do not know what these fields are. This effective Hamiltonian can be very different than
the original one. The relation between the fields of this Hamiltonian and the original ones
can be very complicated. A well known example in this context is the sine-Gordon model
where the effective field theory is the massive Thirring model [22–24]. The fermions of the
massive Thirring model are exponential functions of the bosons of the sine-Gordon model.
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