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Abstract Let G be a connected graph in which almost all vertices have linear degrees and
let T be a uniform spanning tree ofG. For any fixed rooted tree F of height r we compute the
asymptotic density of vertices v for which the r -ball around v in T is isomorphic to F . We
deduce from this that if {Gn} is a sequence of such graphs converging to a graphon W , then
the uniform spanning tree of Gn locally converges to a multi-type branching process defined
in terms ofW . As an application, we prove that in a graph with linear minimum degree, with
high probability, the density of leaves in a uniform spanning tree is at least e−1 − o(1), the
density of vertices of degree 2 is at most e−1 + o(1) and the density of vertices of degree

k � 3 is at most (k−2)k−2

(k−1)!ek−2 + o(1). These bounds are sharp.

Keywords Uniform spanning tree · Graph limits · Benjamini-Schramm convergence ·
Graphon · Branching process

1 Introduction

It is a classical fact [9,11] that a uniformly chosen tree from the set of nn−2 trees on n
vertices, viewed from an independently chosen uniform random vertex, is locally distributed
as a Poisson(1) Galton–Watson branching process conditioned to live forever when n is
large. One can use this result to find the distribution of a certain “local” structures. For
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instance, it follows that the degree distribution of a uniformly chosen vertex of a uniformly
chosen tree on n vertices converges to the law of a Poisson(1) + 1 random variable.

A uniformly chosen tree on n vertices is a uniform spanning tree (UST) of the complete
graph on n vertices. Our goal in this paper is to explicitly describe the local structure of the
UST of any dense graph or, equivalently, of a sequence of dense graphs converging to a given
graphon. Let us first present this result.

Given a connected graph G we write T for a uniformly drawn spanning tree of G and
BT (v, r) for the graph-distance ball of radius r in T around the vertex v ∈ V (G). Our goal
is to describe the asymptotic distribution of BT (X, r), viewed up to graph isomorphism,
where X is a uniformly chosen random vertex of G. To that aim, let Ω = [0, 1] and μ be
the Lebesgue measure on Ω . For a given graphon W : Ω2 → [0, 1] (see Sect. 1.1 for a brief
introduction to graphons) and ω ∈ Ω we write deg(ω) = ∫

y∈Ω
W (ω, y)dy, and call this

number the degree of ω. A graphon is called nondegenerate if for almost every ω ∈ Ω we
have deg(ω) > 0.

Let T be a fixed rooted tree with � � 2 vertices and of height r � 1. We write by StabT
the set of graph automorphisms of T that preserve the root. In what follows we denote the
vertices of T by the numbers {1, . . . , �} such that the vertices p, . . . , � are the vertices at
height r of T and p ∈ {2, . . . , �}. Given a nondegenerate graphon W and a tree T as above
we define

Freq(T ;W ) := 1

|StabT |
∫

ω1,...,ω�

exp

⎛

⎝−
p−1∑

j=1

bW (ω j )

⎞

⎠

∑�
j=p deg(ω j )

∏�
j=1 deg(ω j )

×
∏

(i, j)∈E(T )

W (ωi , ω j )dω1 · · · dω� , (1)

where

bW (ω) =
∫

y∈Ω

W (ω, y)

deg(y)
dμ. (2)

Theorem 1.1 Let T be afixed rooted tree as above, andW : Ω2 → [0, 1]be anondegenerate
graphon. Then for any ε > 0 there exists ξ = ξ(ε,W, T ) > 0 such that if G is a connected
simple graph on at least ξ−1 vertices that is ξ -close to W in the cut-distance, then with
probability at least 1 − ε a uniformly chosen spanning tree T of G satisfies

∣
∣P(BT (X, r) ∼= T ) − Freq(T ;W )

∣
∣ � ε ,

where X is an independently and uniformly chosen vertex of G, and by BT (X, r) ∼= T we
mean that between the two rooted trees there is a graph-isomorphism preserving the root.

Theorem 1.1 is a natural statement in the context of limits of graph sequences. It asserts
that if {Gn} is a sequence of connected graphs converging to a graphon W , then the UST of
Gn converges locally to a certain multi-type branching process that is defined in terms ofW .
This interpretation involve two graph limit procedures: a dense graph limit [7,16] to describe
the limit of the dense graph sequence Gn , and sparse graph limit to describe the random limit
of the UST of Gn , known as Benjamini–Schramm convergence [4]. We refer the reader to
Sects. 1.1 and 1.2 for an introduction to these limiting procedure, and begin by describing
the limiting branching process.

Definition 1.2 Given a nondegenerate graphon W : Ω2 → [0, 1] we define a multi-type
branching process κW . The process has continuum many types that are either (anc, ω) or
(oth, ω), where ω ∈ Ω . Here, “anc” stands for “ancestral” and “oth” stands for “other”.
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(1) The initial particle (i.e., the root) has type (anc, ω), where the distribution of ω is μ.
(2) If a particle has type (oth, ω), then its progeny is {(oth, ω1), . . . , (oth, ωk))} where

{ω1, . . . , ωk} are a Poisson point process on Ω with intensity W (ω,ω′)
deg(ω′) at ω′ ∈ Ω . In

particular, k has distribution Poisson (bW (ω)), where bW (·) is defined in (2).
(3) If a particle has type (anc, ω) the progeny is {(anc, ω0), (oth, ω1), . . . , (oth, ωk))}

where {ω1, . . . , ωk} are a Poisson point process onΩ with the same intensity as above and
ω0 is an independent new particle of Ω which is distributed according to the probability
measure on Ω that has density W (ω,·)

deg(ω)
.

We note that an ancestral vertex (i.e., of type anc) always has at least 1 progeny and
since the initial particle is ancestral the process κW survives forever with probability 1. The
following theorem is quickly deduced from Theorem 1.1 at Sect. 4.2.

Theorem 1.3 Suppose that {Gn} is a sequence of simple connected graphs of growing orders
that converge to a nondegenerate graphon W in the cut-distance and let Tn be a UST of Gn.
Then the sequence {Tn} almost surely converge in the Benjamini–Schramm sense to κW .

Since the L1-norm (corresponding to the edit distance in graph theory) is finer than the
cut-norm, we in particular obtain the following. Suppose that G is a large connected simple
n-vertex graph with minimum degree �(n). Suppose that we add and/or delete o(n2) edges
in a way that the resulting graph G ′ stays connected. Then the structure of a typical UST of
G and of G ′ is very similar in the Benjamini–Schramm sense. Even this statement seems to
be new.

When Gn are a sequence of dense regular graphs, then the function bW : Ω → (0,∞)

defined in (2) is identically 1 and we obtain the following.

Corollary 1.4 Suppose that {Gn} is a sequence of simple connected regular graphs of grow-
ing orders that converge to a nondegenerate graphon W in the cut-distance and let Tn be a
UST of Gn. Then the sequence {Tn} almost surely converge in the Benjamini–Schramm sense
to a Poisson(1) Galton–Watson branching process conditioned to live forever.

Theorem 1.3 allows us to deduce several extremal properties of the UST on dense graphs.
The number of vertices of degree k � 1 in the UST of the complete graph Kn is (e−1/(k −
1)!+o(1))n. In fact, using Prüfer codes one can establish that the degree of the a vertex in the
UST of Kn has distribution 1 + Bin(n − 2, 1

n ) ≈ 1 + Poisson(1).1 Using Theorem 1.1 we
are able to find the extremal values of the number of vertices of degree k in a general dense
graph. In the following theorem we show that the complete graph (or any other regular dense
graph) is the minimizer of the number of leaves and the maximizer of the number of vertices
of degrees 2 and 3 among the class of dense graphs. Somewhat surprisingly, the maximizer
for the number of vertices of degree k � 4 is a different dense graph (see Sect. 5).

Theorem 1.5 For any k � 1 we denote by Lk the random variable counting the number of
vertices of degree k in a UST of a simple connected graph G. For every ε, δ > 0 there exist
numbers n0 ∈ N and γ > 0 such that the following holds: Whenever G is a graph on n � n0
vertices with at least (1 − γ )n vertices of degrees at least δn then

P
(
L1 � (e−1 − ε)n

)
� ε , (3)

P
(
L2 � (e−1 + ε)n

)
� ε , (4)

1 Prüfer codes, see e.g. [19, p. 245], provide a standard bijection between spanning trees of Kn and and words
of length n−2 over the alphabet V (Kn). A quick look at this bijection shows the number of occurrences of any
letter v ∈ V (Kn) in a Prüfer code is the degree of the vertex v in the corresponding spanning tree decreased
by 1. Therefore, the degree of v in a uniform spanning tree has indeed distribution 1 + Bin(n − 2, 1

n ).
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and for any k � 3 we have

P

(

Lk �
(

1

(k − 1)!
(k−2)k−2

ek−2 + ε

)

n

)

� ε. (5)

We derive Theorem 1.5 in Sect. 5. The rest of this section is organized as follows. We first
give the formal definitions and background of dense and sparse graph limits necessary for
the reader to parse the statement of Theorems 1.1 and 1.3. Next we discuss some aspects of
the theorem, such as the necessity of its assumptions. We end this section with a discussion
of related results in the literature.

1.1 Dense Graph Limits

Graphonswere introduced byBorgs et al. [7,16] as limit objects to sequences of dense graphs.
Here, we review basic facts and we refer the reader to [15, Part II] for a thorough treatment
of the subject. A graphon is a symmetric Lebesgue measurable function W : Ω2 → [0, 1],
where Ω is any standard atomless probability space.2 The underlying measure on Ω will be
always denoted by μ.

Given a measurable function U : Ω2 → [−1, 1] we define its cut-norm by

‖U‖˝ = sup
S,T

∣
∣
∣
∣

∫

x∈S

∫

y∈T
U (x, y)

∣
∣
∣
∣ , (6)

where S and T range over all measurable subsets of Ω . Now, we can define the key notion
of cut-distance. For two graphons W1,W1 : Ω2 → [0, 1], we define

δ˝(W1,W2) = inf
ϕ

‖Wϕ
1 − W2‖˝ , (7)

where ϕ : Ω → Ω ranges through all measure preserving automorphisms of Ω , and Wϕ
1

stands for a graphon defined by Wϕ
1 (x, y) = W1(ϕ(x), ϕ(y)). Note that the definition of

δ˝(W1,W2) extends in a straightforward way if W2 lives on some other standard atomless
probability space Λ. In that case, ϕ ranges of all measure preserving bijections from Λ to Ω .

Suppose that G is an n-vertex graph. Then we can consider a graphon representation
of G. To this end, partition an atomless standard probability space Ω into n sets, each set of
measure 1

n , Ω = ⊔
v∈V (G) Ωv . Then define a graphonWG to be 1 on Ωu ×Ωv for each edge

uv ∈ E(G), and 0 otherwise. Note that WG is not unique as it depends on the choice of the
partition {Ωv}. With the notion of a graphon representation, we can define distance between
a graph and a graphon. Namely, ifW : Ω2 → [0, 1] is a graphon and G is a graph, we define
δ˝(W,G) := δ˝(W,WG). This definition does not depend on the choice of the representation
WG . We say that G is α-close toW if δ˝(W,G) � α. Though through much of the paper, we
shall work with loopless multigraphs (introduced in Sect. 2.1), we always restrict ourselves
to graphs when representing as graphons, or when referring to the cut-distance.

Throughout the paper, all sets and functions are tacitly assumed to be measurable. Con-
versely all our constructions of auxiliary sets and functions are measurable, too.

We say that a sequence (Gn)n of simple graphs converges to a graphon W if and only
if δ˝(W,Gn) → 0. Now, it is possible to understand the first sentence of Theorem 1.3. The
following statement, proved first in [16], is the core of the theory of graphons.

Theorem 1.6 For every sequence of simple graphs of increasing orders there exists a sub-
sequence which converges to a graphon.

2 Recall that all such probability spaces are isomorphic.
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1.2 Sparse Graph Limits

Let G• denote the space of rooted locally finite graphs viewed up to root-preserving graph
isomorphisms. That is, each element of G• is (G, �) where G is a graph and � is a vertex
of it, and two such elements (G1, �1) and (G2, �2) are considered equivalent if and only if
there exists a graph automorphism ϕ : G1 → G2 such that ϕ(�1) = �2. Given a rooted
graph (G, �) and an integer r � 1 we write BG(�, r) for the graph-distance ball of radius r
around � in G, that is, BG(�, r) ∈ G• is a finite graph rooted at � on the set of vertices of
graphs distance at most r from � in G together with all the edges induced from G. There is a
natural notion of a metric on G•. The distance between two elements (G1, �1), (G2, �2) ∈ G•
is defined to be 2−R where R � 0 is the largest number such that there is a root-preserving
graph isomorphism between BG1(�1, R) and BG2(�2, R). Having defined the metric we can
consider probability spaces on G• with respect to the Borel σ -algebra.

We say that the law of a random element (G, �) ∈ G• is the Benjamini–Schramm limit
of a (possibly random) sequence of finite graphs Gn , if and only if, for any fixed integer
r � 1 the random variable BGn (�n, r) converges in distribution to BG(�, r) where �n is an
independently chosen uniform random vertex of Gn . In this case we say that the sequence
Gn Benjamini–Schramm converges to (G, �). Note that by putting r = 1 in the definition
we deduce that in this convergence the degree of the random root �n must converge to the
degree of � which explains why this limiting procedure is best suited for sparse graphs. See
further discussion in [4].

We have finished defining all the needed terminology required to parse Theorems 1.1
and 1.3.

1.3 Necessity of the Assumptions

The assumptions in Theorem 1.3 are the minimal necessary. First, we obviously need the
assumption that Gn are connected in order for spanning trees to exist.

Next we claim that the local structure of a uniform spanning tree cannot be determined
from a degenerate graphon W . Indeed, suppose that a graphon W is given, and let Ω0 be the
elements of Ω that have zero degree W and Ω+ = Ω\Ω0. Assume that W is degenerate so
that μ(Ω0) = δ > 0.

We can now construct two graph sequences that converge to W . We start with dense
graphs Gn of size (1 − δ)n that converge3 to W+ = W|Ω+ and in the first sequence we
attach to Gn a path of length δn at an arbitrary vertex and in the second sequence we attach
δn edges arbitrary to an vertex of Gn creating δn new vertices of degree 1. It is clear that
both sequences converge to W . However, the USTs on the two sequences have different
Benjamini–Schramm limits. Indeed, let p1 denote the probability that in κW+ the root is a
leaf. Then the probability that a randomly chosen vertex is a leaf in the first sequence tends
to (1 − δ)p1 and in the second sequence this probability tends to (1 − δ)p1 + δ.

1.4 Discussion

Theorem 1.3 shows that the local structure of the UST is continuous on the space of dense
graphs with the cut-metric (7) and describes this local structure explicitly. As mentioned
earlier, the only instance in the literature of Theorem 1.3 that we are aware of is the case of
the UST of the complete graph Kn . In this case Grimmett [9] showed that the limiting object

3 Such a sequence can be obtained for example by taking typical inhomogeneous random graphs G(n,W+),
see [15, Lemma 10.16].
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is an infinite path upon which we to each vertex an independent Poisson(1) branching
process—that is, a Poisson(1) branching process conditioned to survive forever. This is
precisely κW where corresponding graphon W is just W ≡ 1.

The analogous continuity result for sparse graphs is also true, though in this case it is
typically harder to describe explicitly the limiting object.

Theorem 1.7 [1, Proposition 7.1] Suppose that {Gn} is a Benjamini–Schramm convergent
sequence of connected graphs and let Tn be a UST of Gn. Then there exists a random rooted
tree (T, �) such that Tn Benjamini–Schramm converges to (T, �).

The limiting object in the above theorem (T, �) is the wired uniform spanning forest of
the Benjamini–Schramm limit (G, �) of the graphs {Gn}, see [18].

One can also ask whether the normalized number of spanning trees is continuous with
respect to taking graph limits. Given a graph G, let t (G) be the number of spanning trees in
G. In the bounded-degree model, Lyons [17, Theorem 3.2] proved that n−1 log t (G) is con-
tinuous in the Benjamini–Schramm topology. In the dense model, the natural normalization
of t (G) is n−1t (G)1/n . For example when G = Kn then by Cayley’s formula, n−1t (G)1/n

tends to 1, and when G is a typical Erdős–Rényi random graphG(n, p) for p ∈ (0, 1) fixed,
then n−1t (G)1/n tends to p. However, one cannot expect that with no further assumptions
continuity of this parameter with respect to the cut-metric will hold. Indeed, let Gn formed
by a clique of order n− n√

log n
and a path of length n√

log n
attached to it at an arbitrary vertex.

The sequence {Gn} converges to the complete graphonW ≡ 1 but the number of spanning is
substantially lower than for complete graphs; indeed, in this case it can easily by seen using
Cayley’s formula that n−1t (Gn)

1/n tends to 0.
However, when we impose a minimum degree condition on the graphs, we can infer the

asymptotic normalized number of spanning trees from the limit graphon.

Theorem 1.8 Let δ > 0. Suppose that G1,G2, . . . is a sequence of simple connected graphs
that converge to a graphon W. Suppose that the order of Gn is n and the minimum degree is
at least δn. Then the number of spanning trees satisfies

lim
n→∞

n
√
t (Gn)

n
= exp

(∫

x
log(degW (x))

)

.

��
Theorem 1.8 follows almost immediately from a result due to Kostochka [12] which states

that if 1 < d1 � d2 � · · · � dn is the degree sequence of a simple connected graph G then
for some absolute constant C > 0 we have

∏
i di

d(Cn log d1)/d1
1

� t (G) �
∏

i di
n − 1

. (8)

To see that (8) yields Theorem 1.8, it is enough to recall that the degree distribution of a limit
graphon is inherited fromdegree distribution of graphs that converge to it (see Lemma5.1(1)).
In the case of regular graphs, Theorem 1.8 can also be derived from [2,8].

Lastly, let us mention a result of a similar flavor to ours in the context of percolation
[5]. There, the authors show that the critical percolation probability of a dense graph is 1

λn
where λn is the largest eigenvalue of the adjacency matrix. In particular it follows that if two
dense graphs are close in the cut-metric, then this threshold is also close. They also describe
the limiting local structure of bond percolation on dense graph in terms of a branching
process on the limiting graphon. While there is some resemblance to the branching process
of Theorem 1.3, they are quite different.
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1.5 About the Proof of Theorem 1.1

Our proof combines, for the first time to the best of our knowledge, two seemingly unrelated
mathematical areas, Kirchhoff’s electric network theory and Szemerédi’s regularity lemma-
like graph partitioning techniques. These two are shown here to work seamlessly together.

Kirchhoff’s theory of electric networks [10] allows to compute the probability that a given
edge e = xy is in a UST of a connected graph. This probability is precisely the effective
electric resistance between x and y, when we consider the graph as an electric network and
let current flow from x to y, see Sect. 3.1.1 and (24). Since there is an edge connecting x to
y, this quantity is always a number in [0, 1]. This is the starting point of our proof.

Next we use partition theory (Sect. 2) to decompose our graph G into a bounded number
of dense expanders so that different expanders of the decomposition are connected by o(n2)
edges. Heuristically, the UST of G is close the union of independent USTs on each of these
dense expanders.

Thus, it is natural to study electric theory on dense expanders. It is intuitive (and easy to
prove) that if x and y are two vertices in graph, then the effective resistance between x and y
is at least 1

deg(x) + 1
deg(y) since at the most efficient scenario the electric current splits equally

from x to all its neighbors and arrives to y equally from all of y’s neighbors. Of course this
lower bound is not sharp—the graph could be the disjoint union of two large stars around x
and y and an edge connecting x and y, in which case the resistance between x and y is 1.

However, when the graph is a dense expander, one can use random walks estimates and
employ the fascinating and classical connection between random walks and electric net-
works, to deduce a corresponding approximate upper bound, see Corollary 3.3. The random
walk estimate we prove (Lemma 3.2) states that if one starts a random walk on a dense
expander from some vertex that is not x or y, then the probability that x is visited before y
is (1+o(1)) deg(x)

deg(x)+deg(y) .
It is now quite pleasant to observe that Rayleigh’s monotonicity (21), which states that

the electric resistance can only decrease by enlarging a network, shows that this upper bound
on the resistance holds in each expander in the decomposition of G, and the matching lower
bound holds for most edges of G since there are o(n2) edges between components, see
Lemma 3.3.

This explains why for most edges inG the probability that they are exhibited in the UST is
the sum of the degree reciprocals. An iterative argument is presented in Sect. 3.3, employing
the spatial Markov property of the UST (Proposition 3.1), to control the probability of events
such as BT (v, r) ∼= T . There are some delicate technicalities to overcome involving the
“outside” effects of the decomposition. Once these are overcome, one reaches the discrete
version Freq(T ;G) of the parameter Freq(T ;W ) of Theorem 1.1 and we show that this
parameter approximates the desired probability (Lemma 3.12). In Sect. 4 it is shown that
Freq(T ;G) is close to Freq(T ;W ), its continuous counterpart, if G is close to W in the
cut-distance, concluding the proof.

1.6 Organisation of the Paper

We tried to write the paper so that it can be read by probabilists and graph theorists alike.
For this reason we recall even concepts relatively well known to one of the communities in
a pedestrian manner. Also, at places we try to convey an idea of a proof even when this idea
is standard, but in only one of the two communities.

In Sect. 2 we introduce a suitable decomposition of dense graphs, into so-called linear
expanders. In Sect. 3 we prove the discrete estimate approximating the probability of the
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event P(BT (X, r) = T ) by the discrete parameter Freq(T ;G). In Sect. 4 we show that
Freq(T ;G) and Freq(T ;W ) are close whenever G andW are close in the cut-metric. Lastly,
in Sect. 5 we derive Theorem 1.5.

2 Decomposing Dense Graphs into Linear Expanders

2.1 Dense Expanders

Informally, a graph is a dense expander if whenever a vertex set and its complement are of
linear size (in the order of the graph) then there are quadratically many edges between these
two parts. So, a primal example of a dense graph that is not an expander is a disjoint union
of two cliques of order n

2 with a perfect matching connecting them.
We give our definition of expansion for loopless multigraphs. That is, self-loops are not

allowed, and two verticesmay be connected by several edges. The quantity e(A, B) counts all
ordered pairs ab that form an edge, a ∈ A and b ∈ B, including multiplicities. Note that each
edge with both endvertices in A∩ B contributes twice to e(A, B). For a vertex v and a vertex
set A, we write deg(v, A) := e({v}, A). Wewrite deg(v) := deg(v, V ), where V is the vertex
set of the (multi)graph. Note that with these conventions, we have 2e(G) = ∑

v∈V deg(v),
and

∑
a∈A deg(a, B) = e(A, B) = ∑

b∈B deg(b, A), for each vertex sets A and B.

Definition 2.1 We say that a loopless multigraph H is a γ -expander if for eachU ⊆ V (H),
we have e(U, V (H)\U ) � γ |U |(v(H) − |U |).

We will later use a simple observation. Removing edges from an expander can obviously
render its expansion properties. However, if one removes edges touching only one vertex
while leaving the degree of the vertex high, the expansion properties are not damaged by too
much as the following simple proposition states.

Proposition 2.2 Let G be a γ -expander loopless multigraph on m vertices and let v ∈ V (G)

be a vertex. Assume that the maximal number of edges between any two vertices in V (G)\{v}
is at most � ∈ N. Consider the graph G ′ obtained from G by erasing some set of edges
emanating from v of size at most �m so that the degree of v in G ′ is at least γm. Assume also
that 8�2γ −2 � m . Then G ′ is a γ

2 -expander.

Proof We need to prove that for any U ⊆ V (G),

eG ′(U, V (G)\U ) � γ

2
|U |(m − |U |). (9)

By symmetry it is enough to prove it when |U | � m/2. We proceed by considering two
cases. In the first case we assume |U | � 4γ −1�. Then, since we erased at most �m edges,
we have

eG ′(U, V (G)\U ) � γ |U |(m − |U |) − �m � γ

2
|U |(m − |U |) ,

since in this case γ |U |(m − |U |) � 2�m.
In the second case we assume that |U | � 4γ −1�. If U = {v}, then (9) follows since the

degree of v in G ′ is at least γm. If v /∈ U , then the maximum number of edges that could
have been erased from eG(U, V (G)\U ) is at most �|U |, hence

eG ′(U, V (G)\U ) � γ |U |(m − |U |) − 4�2γ −1 � γ

2
|U |(m − |U |) ,
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since γ |U |(m − |U |) � γm and 8�2γ −2 � m. Lastly, if v ∈ U and |U | > 1, then

eG ′(U, V (G)\U ) � eG(U\{v}, V (G)\U ∪ {v}) − �|U | � γ

2
|U |(m − |U |) ,

by the same logic as above, concluding the proof. ��
2.2 Expander Decomposition of Dense Graphs

The main result of this section, Theorem 2.7, asserts that each graph that is close to a non-
degenerate graphon can be decomposed into a bounded number expanders that are almost
isolated from each other. In Definition 2.6 below we describe the expander decomposition
that we actually use. Let us recall that the need of such a decomposition (rather than a single
expander) stems from examples such as that of a disjoint union of two cliques of order n

2
with a perfect matching connecting them mentioned at the beginning of Sect. 2.1. Passing
to a limit we see that in the graphon perspective, the perfect matching vanishes and we are
left with two components. Therefore, we now introduce graphon counterparts to the notion
of graph connectivity and components, and give their basic properties.

Definition 2.3 A graphon W on a ground space (Ω,μ) is disconnected if either W = 0
a.e. or there exists a subset A ⊆ Ω with 0 < μ(A) < 1 such that W = 0 a.e. on A × Ac;
otherwise W is connected.

We shall require a result of Bollobás, Janson and Riordan [6, Lemma 5.17] which enables
us to decompose a graphon into (at most) countably many connected components.

Lemma 2.4 Let W : Ω × Ω → [0, 1] be a graphon. Then there exists a partition Ω =⋃N
i=0 Ωi into measurable subsets with 0 � N � ∞ such that μ(Ωi ) > 0 for i � 1,

the restriction of W to Ωi × Ωi is connected for each i � 1, and W = 0 a.e. on (Ω ×
Ω)\⋃N

i=1(Ωi × Ωi ).

Bollobás et al. [5, Lemma 7] showed that connectivity implies an apparently stronger
statement.

Lemma 2.5 Let W : Ω2 → [0, 1] be a connected graphon, and let 0 < α < 1
2 be given.

There is some constant β = β(W, α) > 0 such that
∫
A×Ac W � β for every measurable

subset A ⊆ Ω with α � μ(A) � 1
2 .

We can now give our definition of expander decomposition.

Definition 2.6 Suppose that G is a loopless multigraph of order n. We say that V (G) =
V0 � V1 � . . . � Vk is a (γ, η, ε)-expander decomposition if

(G1) |V0| � εn,
(G2) for each i ∈ [k] we have that e(Vi , V \Vi ) � η|Vi |n,
(G3) for each i ∈ [k] and each U ⊆ Vi , we have e(U, Vi\U ) � γ |U ||Vi\U |.
Theorem 2.7 Suppose that W : Ω2 → [0, 1] is a nondegenerate graphon. Then for every
ε, η > 0 there exist positive constants γ = γ (W, ε, η), ξ = ξ(W, ε, η) and n0 = n0(W, ε, η)

such that if G is a graph with v(G) > n0 and δ˝(G,W ) < ξ then G admits a (γ, η, ε)-
expander decomposition.

For the proof of Theorem 2.7, we shall need the following result. While we were not able
to find an explicit reference, we consider this result folklore. To this end, we need the notion
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of subgraphons which we introduce now. Suppose that W : Ω2 → [0, 1] is a graphon on a
probability space (μ,Ω). Similarly to the graph case, for a set Λ ⊆ Ω we have the notion
of a subgraphon of W induced by Λ. This is the restricted function W [Λ] := W�Λ×Λ. In
order forW [Λ] to be a graphon, we always have to consider it together with the renormalized
probability space (

μ(·)
μ(Λ)

,Λ).

Lemma 2.8 Suppose that W : Ω2 → [0, 1] is a nondegenerate graphon. Suppose that we
have a partition Ω = Ω∗ � ⊔k

i=1 Ωi such that for each i ∈ [k] we have that W is zero
almost everywhere on Ωi × (Ω\Ωi ). Then for every λ > 0 there exists a number ξ > 0 so
that we have the following. If G is an n-vertex graph with δ˝(G,W ) < ξ then there exists a
partition V (G) = ⊔k

i=0 Vi such that for each i ∈ [k],
(a) |V0| = μ(Ω∗)n ± λn, and |Vi | = μ(Ωi )n ± λn,
(b) eG(Vi , V (G)\Vi ) < λn2,
(c) δ˝(G[Vi ],W [Ωi ]) < λ.

Proof of Theorem 2.7 Suppose that we are given a graphon W : Ω2 → [0, 1] and two
parameters ε, η > 0. By Lemma 2.4, there exists a partition Ω = ⊔K

i=1 Ωi (with K � ∞)

into components ofW . Let k ∈ N be such thatμ
(⋃k

i=0 Ωi

)
� 1− ε

4 . SetΩ
∗ := ⋃K

i=k+1 Ωi .

Let α = min

{
ε
6k ,min

i∈[k]
μ(Ωi )
40

}

. Lemma 2.5 shows the existence of a positive constant β =
β(W, α) such that

∫∫

A×(Ωi \A)

W � β for all i ∈ [k] and all A ⊆ Ωi with αμ(Ωi ) � μ(A) � μ(Ωi )/2. (10)

Let γ, ξ and λ satisfy

γ = min

{
μ(Ωi )η

48
,
μ(Ωi )β

500

}

and 0 < ξ � λ � min

{

β,min
i∈[k] μ(Ωi )η

}

. (11)

Suppose that G is a graph given at the input of the proposition.
Let V (G) = V ′

0 � V ′
1 � . . . � V ′

k be a partition satisfying properties of Lemma 2.8 for

the graphon W and its partition Ω = Ω∗ � ⊔k
i=1 Ωi , together with input error parameter

ξ and output error parameter λ. We will modify this partition to obtain a (γ, η, ε)-expander
decomposition of G.

Lemma 2.8(a) gives that

|V ′
0| � 1

2εn. (12)

For each i ∈ [k], we perform the following cleaning procedure. Let U : Ω2
i → [0, 1] be

a graphon representation of G[V ′
i ] on the (renormalized) probability space Ωi such that we

have ‖W [Ωi ] −U‖˝ < λ. Such a representation exists by Lemma 2.8(c).
Let P0

i := V ′
i and Q0

i := ∅. Now, for j = 1, 2, 3, . . . we proceed as follows. If there

exists at least one set X j
i ⊆ P j−1

i of size at most 3
5 |P j−1

i | with e(X j
i , P

j−1
i \X j

i ) < γ |X j
i |n,

then we take this set, and let Q j
i := X1

i ∪ X2
i ∪ . . . ∪ X j

i , P
j
i := V ′

i \Q j
i , and proceed with

j + 1. If no set X j
i exists, then we set j (i) := j − 1, Vi := P j (i)

i , and terminate. Since the

sets X j
i ( j = 1, 2, . . . , j (i) − 1) are nonempty, we will stop eventually.
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For every i ∈ [k] and every j ∈ [ j (i)], we have

e(Q j
i , P

j
i ) =

j∑

�=1

e(X�
i , P

j
i ) �

j∑

�=1

e(X�
i , P

�−1
i \X�

i ) � γ n
j∑

�=1

|X�
i | = γ |Q j

i |n. (13)

Claim 2.7.1 For each i ∈ [k],
|V ′

i \Vi | � 3αn. (14)

Proof Suppose to the contrary that |V ′
i \Vi | � 3αn. Let j ∈ {0, 1, 2, . . . , j (i)} be the largest

index for which

|P j
i | � 1

4 |V ′
i |. (15)

Now, there are two cases to consider. Either |P j+1
i | < 1

4 |V ′
i | and then we have |P j

i | �
( 14 + 3

5 )|V ′
i | by the way we chose the set X j+1

i . Another case is that j = j (i), that is, we

terminated in the step j . Then, by our assumption, |V ′
i \P j

i | = |V ′
i \Vi | � 3αn. Put together,

|Q j
i | = |V ′

i \P j
i | � min

{
(1 − 1

4 − 3
5 )|V ′

i |, 3αn
} = 3αn, (16)

as |V ′
i | � 1

2μ(Ωi )n (by Lemma 2.8(a)) and α � 1
40μ(Ωi ) (by (11)).

We learn from (13) that

e(Q j
i , P

j
i ) � γ |Q j

i |n
(15)

� 4γ |Q j
i ||P j

i | · n

|V ′
i |

� 5γ |Q j
i ||P j

i | · 1

μ(Ωi )

(11)
<

β
100 |Q j

i ||P j
i |.
(17)

Let Λ ⊆ Ωi represent the vertices of P
j
i . We have μ(Λ) � 1

4μ(Ωi ) − λ � 1
5μ(Ωi ), due

to Lemma 2.8(a) and (15). Similarly, (16) gives μ(Ωi\Λ) � αμ(Ωi ). Thus, (10) applies.
We have ∫

Λ

∫

Ωi\Λ
U �

∫

Λ

∫

Ωi\Λ
W − ‖W [Ωi ] −U‖˝

(10)

� β − λ ,

which contradicts (17). ��
We have defined the sets V1, V2, . . . , Vk . Set V0 := V ′

0 ∪⋃k
i=1(V

′
i \Vi ). Let us now check

that V (G) = V0 � V1 � . . . � Vk is indeed a desired expander decomposition.
As for property (G1), we have

|V0| = |V ′
0| +

k∑

i=1

|V ′
i \Vi |

(12), Cl2.7.1

� 1
2εn + 3αkn � εn.

For (G2), we first notice that

|Vi |
(14)

� |V ′
i | − 3αn � (μ(Ωi ) − λ)n − 3αn � 1

2μ(Ωi )n,

as α � 1
12μ(Ωi ). Thus we find, as required,

e(Vi , V \Vi ) � e(V ′
i , V \V ′

i ) + e(V ′
i \Vi , Vi )

(13)

� λn2 + 4γ |V ′
i \Vi |n

Cl2.7.1

� λn2

+ 12γαn2 � η|Vi |n,

where the last inequality holds since |Vi | � 1
2μ(Ωi )n, λ � μ(Ωi )η, and γ � μ(Ωi )η

48 .
Finally, property (G3) follows immediately from the stopping condition. This completes

our proof of Theorem 2.7. ��
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2.3 Properties of the Expander Decomposition

For the proof of Theorem 1.1 we argue that the majority of vertices do not “see” much
beyond the component in the expander decomposition they belong to. This is formalized in
the following definitions.

Definition 2.9 Suppose that G is a loopless multigraph of order n. Assume that V (G) =
V0 � V1 � . . . � Vk is some expander decomposition of G. For a vertex v we write i(v) for
the unique i ∈ {0, 1, . . . , k} such that v ∈ Vi . Given α > 0 and ε > 0 we say that v ∈ V \V0
is (α, ε)-good with respect to the decomposition if the following hold:

(a) deg(v) � �(εn),
(b) deg(v; Vi(v)) � (1 − O(ε2)) deg(v),

(c)
∑

u∈Vi(v),u∼v

( 1

deg(u; Vi(v))
− 1

deg(u)

)
� O(α1/2),

(d)
∑

u∈Vi(v),u∼v

1

deg(u; Vi(v))
� O(α−1/4).

Definition 2.10 Suppose thatG is a looplessmultigraph of order n. Given numbersβ, α, γ >

0 and ε ∈ (0, α), we say that G has an (β, α, γ, ε)-good-decomposition if

(1) G admits a (γ, ε5, ε5)-expander decomposition V (G) = V0 � V1 � . . . � Vk , and
(2) At least (1 − O(α1/4))n vertices of G are (α, ε)-good.
(3) At least (1 − O(β))n vertices of G have degree at least �(α1/10n).

Next we refine Theorem 2.7.

Lemma 2.11 For any β > 0 and any nondegenerate graphon W : Ω2 → [0, 1], there exist
α, ε, γ, ξ > 0 with β � α � ε � γ � ξ such that if G is a simple graph on n � ξ−1

vertices with d˝(G,W ) � ξ , then G has a (β, α, ε, γ )-good-decomposition.

Proof Let β and W be given. Since W is nondegenerate, there exists α > 0 such that any
m-vertex graph (m is arbitrary) that is ξ1-close (for ξ1 > 0 sufficiently small) to W has
at least (1 − β)m of degrees at least α1/10m, so requirement (3) of Definition 2.10 holds.
Similarly, we can find constants ε ∈ (0, α20) and ξ2 > 0 such that any m-vertex graph
(m is arbitrary) which is ξ2-close to W has at most αm vertices of degrees at most εm.
We apply Theorem 2.7 with input ε5 and η = ε5 and retrieve γ > 0 and ξ3 > 0. We set
ξ := min(ξ1, ξ2, ξ3). Suppose now that G = (V, E) is a graph satisfying the assumptions of
the lemma. Theorem 2.7 readily gives item (1) of Definition 2.10.

To show item (2), we first note that by property (G2) of the expander decomposition we
have that e(Vi , V \Vi ) � ε5n|Vi | for all i ∈ [k]. By summing over i we deduce that

k∑

i=1

e(Vi , V \Vi ) � ε5n2. (18)

Denote by S the set of vertices of V \V0 violating (b) of Definition 2.9 using 1 as the
implicit constant in the term O(ε2),4 that is,

S = {
v ∈ V \V0 : deg(v; V \Vi(v)) � ε2 deg(v)

}
.

4 Note that later, in the proof of Lemma 3.10, we shall be forced to use larger implicit constants in (b) of
Definition 2.9.
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Then by (18) we have that

ε5n2 �
∑

v∈S
deg(v; V \Vi(u)) � ε2

∑

v∈S
deg(v).

Therefore
∑

v∈S deg(v) � ε3n2, from which we learn that

|S ∩ {v : deg(v) � εn}| � ε2n. (19)

We deduce that
∣
∣{v ∈ V \V0 : deg(v) � εn or deg(v; V \Vi(v)) � ε2 deg(v)

}∣∣ � (α + ε2)n. (20)

Next, for i ∈ [k] we write
∑

v∈Vi

∑

u∈Vi ,u∼v

(
1

deg(u; Vi ) − 1

deg(u)

)

= |Vi | −
∑

u∈Vi

deg(u; Vi )
deg(u)

=
∑

u∈Vi

deg(u; V \Vi )
deg(u)

.

We sum this over i ∈ [k] and get that
∑

v∈V \V0

∑

u∈Vi(v),u∼v

(
1

deg(u; Vi ) − 1

deg(u)

)

=
∑

u∈V \V0

deg(u; V \Vi(u))

deg(u)
� (α + ε2)n + ε2n = O(αn) ,

where we bounded the ratio by 1 for those vertices counted in (20), and by ε2 for the vertices
that were not. From the last inequality we deduce that there cannot be more than �(α1/2n)

vertices v ∈ V \V0 such that requirement (c) in the definition of (α, ε)-good is not satisfied.
Lastly, to show (d), we have that

k∑

i=1

∑

v∈Vi

∑

u∈Vi :u∼v

1

deg(u; Vi ) =
k∑

i=1

|Vi | � n ,

therefore there cannot be more than �(α1/4n) vertices v ∈ V \V0 such that (d) is violated.
This concludes our proof. ��

Part (2) of Definition 2.10 asserts that there are many (α, ε)-good vertices in the graph, yet
there could still be components of the decomposition Vi in which themajority of their vertices
are not (α, ε)-good. These cannot occupy too much of the mass. Indeed, for some i ∈ [k],
we say the set Vi is (α, ε)-big if at least (1−O(α1/8))|Vi | of its vertices are (α, ε)-good, and
e(G[Vi ]) � �(α1/9|Vi |n).

Proposition 2.12 Suppose that G is a graph with n vertices that has a (β, α, γ, ε)-good-
decomposition (as in Definition 2.10). Then

∑

i∈[k]:Vi is (α,ε)−big

|Vi | � (1 − O(β1/8))n.

Proof Let I1 be the indices i ∈ [k] such that Vi has �(α1/8n) vertices that are not (α, ε)-
good. Since this is a (β, α, γ, ε)-good-decomposition we have that the total number of not
(α, ε)-good vertices is O(α1/4n). Hence,

∑

i∈I1
|Vi | � O(α1/8n) = O(β1/8n).
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Next, let I2 be the indices i ∈ [k] such that e(G[Vi ]) = O(α1/9|Vi |n). Put V ′ = ⋃
i∈I2 Vi .

We have
∑

v∈V ′
deg(v) � 2

∑

i∈I2
e(G[Vi ]) +

∑

i∈I2
e(Vi , V \Vi ) � O(α1/9|V ′|n) + ε5|V ′|n

= O(α1/9|V ′|n).

If |V ′| = �(β1/8n), then by property (3) in Definition 2.10, we may bound
∑

v∈V ′ deg(v)

from below by �(α1/10|V ′|n), giving a contradiction to the last estimate. The proof is con-
cluded since

∑
i∈[k] |Vi | � (1 − ε5)n. ��

3 Local Neighborhoods of the UST via Electric Networks

3.1 Preliminaries

Suppose that G = (V, E) is a loopless multigraph. We denote by {Xt }t�0 the simple random
walk starting from some (possibly random) vertex X0. That is, {Xt }t�0 is a Markov chain

with state space V and transition matrix p(x, y) = e({x},{y})
deg(x) . We denote by Pv the probability

measure of the simple randomwalk started at a vertex v. We will frequently use two stopping
times: the hitting time of a vertex v is the random variable τv := min{t � 0 : X (t) = u} and
the hitting time after zero of a vertex v is the random variable τ+

v := min{t > 0 : X (t) = v}.
Clearly when X0 �= v these two random times are equal.

3.1.1 Effective Resistance

Our analysis relies on the relation between random walks, USTs and the theory of electrical
networks. We briefly recall here the basic theory we will use and refer the reader to [18,

Chapter 2] for a comprehensive study. Given a graph G = (V, E) we write
−→
E for the set

of directed edges of size 2|E | which contain each edge of E in both direction. Given two

distinct vertices u, v we say that an antisymmetric function f : −→
E → R is a flow from

u to v if for each vertex w /∈ {u, v} the sum of f over edges outgoing from w is zero. A
flow is called unit if the sum of f over edges outgoing from u is 1. The effective resistance
Reff (u ↔ v;G) between u and v is defined as the minimum energy E( f ) = ∑

e∈E f (e)2 of
any unit flow f from u to v. If u and v are not in the same connected component, we define
effective resistance between them to be ∞. When it is clear what the underlying graph G is
we simply write Reff (u ↔ v). From this definition it is immediate that if G ′ is a subgraph
of G, then

Reff (u ↔ v;G) � Reff (u ↔ v;G ′) . (21)

The latter inequality is also known as Rayleigh’s monotonicity law. The discrete Dirichlet’s
principle gives a dual definition of the effective resistance in terms of functions on the vertices.
It states that

Reff (u ↔ v)−1 = inf

⎧
⎨

⎩

∑

(x,y)∈E
(h(x) − h(y))2 : h : V → R , h(u) = 0 , h(v) = 1

⎫
⎬

⎭
,

(22)
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see [18, Exercise 2.13]. We will also a basic probabilistic interpretation of the effective
resistance which can be found in [18, Chapter 2]:

Pu
[
τv < τ+

u

] = 1

deg(u)Reff (u ↔ v)
. (23)

3.1.2 Uniform Spanning Trees

There is a fundamental connection between the uniform spanning tree and electric networks
due to Kirchhoff [10]. Let G be connected loopless multigraph and e = xy be an edge of
the graph. As before we denote by T a UST of G. Kirchhoff’s formula [10] (see also [18,
Chapter 4]) states that for any edge e = (x, y) of G we have

P(e ∈ T ) = Reff (x ↔ y). (24)

Let S be a subset of E(G). We would like to condition on events of the form S ⊆ T or
S ∩ T = ∅. We denote by G/S the loopless multigraph obtained from G by contracting the
edges of S and erasing any loops that has been formed, and by G − S the graph G with the
edges of S erased. The following is an easy and classical observation, see [18, Chapter 4].

Proposition 3.1 Let G be a connected loopless multigraph and S a subset of edges of G.

(1) If G−S is connected, then the UST T of G conditioned on S∩T = ∅ has the distribution
of the UST on G − S.

(2) If S does not contain a cycle, then the UST T of G conditioned on S ⊆ T has the
distribution of S ∪ TG/S where TG/S is a UST of G/S.

3.1.3 Mixing Time

Let G = (V, E) be a finite connected loopless multigraph and consider the lazy simple
random walk on it, that is, the Markov chain on the vertex set V with transition probability
p(x, y) = e({x},{y})

2 deg(x) whenever x �= y and p(x, x) = 1/2 for any vertex x . Let π be the
stationary distribution π(x) = deg(x)/2|E | and for each two disjoint subsets of vertices
A, B we write

Q(A, B) =
∑

x∈A,y∈B
π(x)p(x, y) = e(A, B)/4|E |.

The Cheeger constant Φ∗ is defined as

Φ∗ = min
S:π(S)� 1

2

Q(S, V \S)

π(S)
,

where π(S) = ∑
x∈S π(x). This “bottleneck” ratio is frequently used to control the spectral

gap of the lazy random walk from which we may bound its mixing time. Let 1 = λ1 > λ2 �
· · · � λn � 0 be the eigenvalues of the transition matrix p (we have λ1 > λ2 since G is
connected, and λn � 0 since the chain is lazy, see [14]). A result by Jerrum and Sinclair [20],
Lawler and Sokal [13] and Alon and Milman [3] states that

Φ2∗/2 � 1 − λ2 � 2Φ∗. (25)

Assume now that G is a γ -expander as in Definition 2.1 and that the number of parallel
edges between any two vertices is at most f � 1. Then the degree of each vertex is at most

123



The Local Limit of the Uniform Spanning Tree on Dense Graphs 517

f n, hence π(S) � f |S|n/2|E | for any S ⊆ V . Similarly, for any S ⊆ V we have that
π(V \S) � f n|V \S|/2|E |, so if π(V \S) � 1/2 we get that |V \S| � |E |/ f n. Since the
minimum degree in a γ -expander is at least γ (n − 1) we get that if π(V \S) � 1/2, then
|V \S| � γ (n − 1)/2 f . Putting all this together we get that if G is a γ -expander and n � 2,
then

Φ∗ � γ |S||V \S|
2|S| f n � γ 2

8 f 2
,

from which we get by (25) that

1 − λ2 � cγ 4

f 4
, (26)

where c = 1/128. Recall that the total variation distance ‖μ−ν‖TV between two probability
measures μ and ν on the same probability space is defined to be supA |μ(A) − ν(A)|, where
the sup is ranging over all events A. For ε > 0 the ε-mixing-time Tmix(ε) of the chain is
defined as

Tmix(ε) = min
{
t : ‖pt (x, ·) − π(·)‖TV � ε for all x ∈ V

}
.

The mixing time and the spectral gap are related via the following statement, see [14, Theo-
rem 12.4],

Tmix(ε) � 1

1 − λ2

[
1

2
log

1

minx∈V π(x)
+ log(1/2ε)

]

.

Since f � 1 bounds the maximal number of parallel edges between any two vertices,
we get that |E | � f n2 and hence π(x) � γ (n − 1)/2|E | � cγ /( f n) for some universal
constant c > 0. We deduce from this, the above bound on Tmix(ε) and (26) that

Tmix(ε) � C f 4γ −4[ log n + log f/γ + log ε−1] , (27)

for some universal constant C > 0.

3.2 Random Walks on Dense Expanders

Lemma 3.2 Suppose that H is a loopless multigraph on n vertices that is a γ -expander and
that the number of parallel edges between any two vertices is at most f � 1. Then for any
two distinct nodes u and v and a node w �= v we have that

Pw

[
τv < τ+

u

] = deg(v)

deg(u) + deg(v)
+ O(γ −7 f 7n−1 log(n)).

Proof Let us assume that there are no edges between u and v—this can only matter for the
assertion of the statement when w = u and in this case affect the estimate by the probability
that this edge is traversed on the first step of the random walk; the latter probability is at
most O(γ −1 f/n) the assumption, since deg(u) � γ n. This error is swallowed in the error
estimate of the lemma.

We denote by Plazy the lazy random walk on the graph, that is, the random walk that with
probability 1/2 stays put and otherwise jumps to a uniformly chosen neighbor. It is clear that
if w is a vertex such that w /∈ {u, v} then P

lazy
w (τv < τ+

u ) = Pw(τv < τ+
u ). We will first

show, via a coupling argument, that for any two vertices w1, w2 /∈ {u, v} we have
P
lazy
w1 (τv < τ+

u ) = P
lazy
w2 (τv < τ+

u ) + O(γ −6 f 6n−1 log(n)). (28)
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Indeed, let {Xt }t�0 and {Yt }t�0 be two lazy simple random walks starting at w1 and
w2, respectively. We put ε = n−1 in (27) and bound log( f/γ ) by f/γ and get that if
T = Cγ −5 f 5 log(n), then ‖XT − π‖TV � n−1 and the same estimate holds for YT , hence
‖XT −YT ‖TV � 2n−1 (where by ‖XT −Yt‖TV wemean the total variation distance between
the laws of XT and YT ).

By [14, Proposition 4.7] we deduce that we can couple the walks {Xt } and {Yt } so that
XT = YT with probability at least 1 − 2n−1. If this occurs we continue the coupling so that
Xt = Yt for all t � T byusing the same randomneighbor at each stepof thewalk.Thus, if both
walks have not visited u or v between time 1 and T , then the event {τv < τ+

u } occurs for {Xt } if
andonly if it occurs for {Yt }. Since theminimal degree of H is at leastγ (n−1) and themaximal
number of parallel edges between any two vertices is at most f we learn that the probability
of visiting u or v between time 1 and T is at most T f/γ (n − 1) � 2Cγ −6 f 6n−1 log(n),
concluding the proof of (28).

We now continue the proof of the lemma for the case that w = u. If the walker starts at u
and τv < τ+

u , then it cannot be lazy in the first step. Hence

P
lazy
u (τv < τ+

u ) = 1

2
Pu(τv < τ+

u ). (29)

Consider now the Markov chain on the two states {u, v} with transition probabilities

p(u, v) = P
lazy
u (τv < τ+

u ) , p(v, u) = P
lazy
v (τu < τ+

v ) ,

with p(u, u) = 1 − p(u, v) and p(v, v) = 1 − p(v, u). This is the lazy random walk
“watched” on the vertices u and v. By summing over paths it is immediate that

deg(u)p(u, v) = deg(v)p(v, u). (30)

In order to visit v before returning to u, the lazy walker must walk to a random neighbor in
the first step, so

p(u, v) = 1

2
P
lazy
N (u)(τv < τ+

u ) , (31)

where P
lazy
N (u) indicates a uniform starting position from the set N (u) of neighbors of u.

Similarly, when starting from v, in order to return to v before visiting u, the lazy walker can
either stay put on the first step, or jump to a uniform neighbor of v and from there visit v

before u, thus

p(v, v) = 1

2
+ 1

2
P
lazy
N (v)(τv < τ+

u ). (32)

Since we assumed there are no edges between u and v, by (28) we have that

P
lazy
N (v)(τv < τ+

u ) = P
lazy
N (u)(τv < τ+

u ) + O(γ −6 f 6n−1 log(n)).

This together with (31) and (32) gives that p(u, v)+ p(v, u) = 1/2+O(γ −6 f 6n−1 log(n)).
Together with (30) and the fact that all degrees are at least γ (n − 1) and at most f n gives
that

p(u, v) = deg(v)

2(deg(u) + deg(v))
+ O(γ −7 f 7n−1 log(n)) ,

concluding the proof of lemma when w = u by (29). The proof for any w /∈ {u, v} can now
be completed easily. By (28) and our assumption that there are no edges between u and v

shows that
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P
lazy
w (τv < τ+

u ) = P
lazy
N (u)(τv < τ+

u ) + O(γ −6 f 6n−1 log n) ,

and so the lemma follows by (31). ��
Corollary 3.3 Suppose that H is a loopless multigraph on n vertices that is a γ -expander
and that the number of parallel edges between any two vertices is at most f � 1. Then for
any two vertices u �= v

Reff (u ↔ v) = (1 + O(γ −8 f 8n−1 log(n)))

(
1

deg(u)
+ 1

deg(v)

)

.

Proof Follows immediately by (23) and Lemma 3.2 together with the fact that all degrees
are at least γ (n − 1) and at most f n. ��

We now extend Corollary 3.3 to the setting of a general dense graph.

Lemma 3.4 Suppose that G is a loopless multigraph with n vertices given together with a
(γ, ε5, ε5)-expander decomposition V (G) = V0 � V1 � . . . � Vk. Assume further that the
maximal number of parallel edges among any two pairs of vertices is at most f � 1. Assume
that γ −8 f 8n−1 log n � ε. Let i ∈ [k] and u �= v be two distinct vertices of Vi . Then

(1 − O(ε))

(
1

deg(u)
+ 1

deg(v)

)

�Reff (u ↔ v) � (1 − O(ε))

(
1

deg(u; Vi ) + 1

deg(v; Vi )
)

,

and if in addition u and v are (α, ε)-good, then

Reff (u ↔ v) = (1 + O(ε)))

(
1

deg(u)
+ 1

deg(v)

)

.

Proof Since G[Vi ] is a γ -expander on at least γ n vertices, by Corollary 3.3 together with
Rayleigh’s monotonicity (21) we have

Reff (u ↔ v) � (1 + O(γ −8 f 8n−1 log(n))

(
1

deg(u; Vi ) + 1

deg(v; Vi )
)

,

giving the upper bound of the first assertion of the lemma. The upper bound of the second
assertion immediately follows using the part (b) of Definition 2.9.

For the lower bound we will use Dirichlet’s principle (22) and let h : V (G) → [0, 1] be
the function assigning h(v) = 1, h(u) = 0 and for any vertex x /∈ {u, v} we put h(x) =
deg(v)/(deg(u) + deg(v)). By our assumption there are at most f edges (x, y) such that
x = u and y = v in which h(y) − h(x) = 1. Next, there are at most deg(u) edges (x, y)
for which x = u and h(y) − h(x) = deg(v)/(deg(u) + deg(v)). Similarly, there are at most
deg(v) edges (x, y) for which y = v and h(y) − h(x) = deg(u)/(deg(u) + deg(v)). All
other edges (x, y) of the graph have h(x) − h(y) = 0. Hence by (22) we have

Reff (u ↔ v)−1 � f + deg(u) deg(v)2 + deg(v) deg(u)2

(deg(u) + deg(v))2

� deg(u) deg(v)

deg(u) + deg(v)
(1 + γ −4 f 2n−1) ,

where we used the fact that since each Vi is a γ -expander, its cardinality must be �(γ n) and
hence deg(u) and deg(v) can be bounded below by �(γ 2n) and above by f n. This gives the
required lower bound. ��
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3.3 The Density of Fixed Trees in the UST

The main result of this section, Lemma 3.12, allows express the frequency of a given fixed
rooted tree T in a graph using a discrete analogue of the parameter Freq, see Definition 3.6
below.

Let us introduce some definitions and a setting that will be used throughout this section.
In what follows we are always given an arbitrary β > 0 and a nondegenerate graphon W .
We then apply Lemma 2.11 and extract the corresponding α, ε, γ and ξ so that if G is a
connected graph on n vertices and n is sufficiently large (as a function of α, ε and γ ) and
δ˝(G,W ) � ξ , then G has a (β, α, γ, ε)-good decomposition as in Definition 2.10. We
denote the given expander decomposition of G by V (G) = V0 � V1 � . . . � Vk . In light of
the quantification of Lemma 2.11 we may assume that

β � α � ε � γ � ξ � n−1.

Next, let T be a finite rooted tree of height r and � vertices denoted by 1, . . . , � so that
1 is the root of T . Given a graph G we say that � distinct vertices (v1, . . . , v�) of G are
compatible with T if the pairs

T (v1, . . . , v�) := {
(vq , vt ) : (q, t) ∈ E(T )

}
,

are all edges of G. Without loss of generality we may assume that the numbering {1, . . . , �}
of the vertices of T is such that there exists some p ∈ {2, . . . , �} such that the vertices of
distance r from the root (which all must be leaves) are p, . . . , �.

Definition 3.5 Assume the setting as introduced at the beginning of Sect. 3.3. Given some
fixed � � 1 and i ∈ [k] we say that an �-tuple of distinct vertices of G are i-pure if each
vertex in the �-tuple belongs to Vi and is (α, ε)-good.

Next we define Freq(T ;G) which is the discrete analogue of Freq(T ;W ). Note the nota-
tion Freq(T ;G) does not reflect the fact that this parameter depends on the partition, and not
just on the graph G.

Definition 3.6 Assume the setting as introduced at the beginning of Sect. 3.3. For each
i ∈ [k] we define

Freq(T ;G, i) := |StabT |−1
∑

(v1,...,v�)
i-pure

compatible with T

|Vi |−1 exp

⎛

⎝−
p−1∑

j=1

b(v j )

⎞

⎠

∑�
j=p deg(v j )

∏�
j=1 deg(v j )

,

where

b(v) =
∑

u∈Vi(v),u∼v

1

deg(u)
. (33)

Note that (33) is a graph counterpart to the graphon quantity defined in (2).
Finally, let

Freq(T ;G) :=
∑

i∈[k]:Vi is (α,ε)−big

|Vi |
n

· Freq(T ;G, i) . (34)
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We denote by T a sample of the UST of G and by BT (v, r) the graph-distance ball in T
of radius r around v ∈ V (G) and we think about it as a subset of edges of T . We will begin
our proof with estimating the probability that BT (v, r) is manifested on an i-pure �-tuple of
vertices (as in Definition 3.5) that are compatible with T ; later we will see that that all other
manifestations of BT (v, r) are negligible. For an i-pure �-tuple that is compatible with T we

write BT (v1, r)
pure∼= T (v1, . . . , v�) for the event

• the edges T (v1, . . . , v�) are in T , and,
• for each 1 � j � p − 1, the edges of emanating from v j that are not in T (v1, . . . , v�)

and have both endpoints in Vi are not in T .

Lemma 3.7 Assume the setting as introduced at the beginning of Sect. 3.3, and let T be a
UST of G. Let T be a fixed rooted tree with � � 2 vertices 1, . . . , � and height r � 1 (as
usual T is rooted at 1). Assume that the vertices at height r of T are {p, . . . , �} for some
2 � p � �. Then for any i ∈ [k] and any i-pure �-tuple (v1, . . . , v�) that is compatible with
T we have that

P
(
BT (v1, r)

pure∼= T (v1, . . . , v�)
) = (1 + O(�α1/4)) exp

⎛

⎝−
p−1∑

j=1

b(v j )

⎞

⎠ ·
∑�

j=p deg(v j )
∏�

j=1 deg(v j )
,

where b(v) is defined in (33).

Proof Assume that n is large enough as in Lemma 3.4. We first show by induction that the
probability that T (v1, . . . , v�) ⊆ E(T ) is

(1 + O(�ε))

∑�
j=1 deg(v j )

∏�
j=1 deg(v j )

. (35)

Indeed, when T contains only one edge this statement follows immediately from Kirchoff’s
formula (24) and Lemma 3.4. If T has more than one edge, assume without loss of generality
that � is a leaf in T at distance r from the root and that (q, �) is an edge of T . We then use
the induction hypothesis on the tree T \{�}, which has � − 1 vertices. We condition on the
event T (v1, . . . , v�)\{(vq , v�)} ⊆ E(T ) and contract these � − 1 vertices to a single vertex
of degree deg(v1) + · · · + deg(v�−1). We shall make use of Proposition 3.1 when working
with the contracted graph. Since the contracted multigraph is still a γ -expander with at most
� parallel edges between any two vertices, and the vertices (v1, . . . , v�) are all (α, ε)-good,
we may apply Lemma 3.4 and Kirchoff’s formula (24) to get that the probability that the
edge (vq , v�) of G is in T is

(1 − O(ε))

(
1

deg(v�)
+ 1

deg(v1) + · · · + deg(v�−1)

)

.

By our induction hypothesis we get that the required probability is

(1 − O((� − 1)ε))(1 − O(ε))

∑�−1
q=1 deg(vq)

∏�−1
q=1 deg(vq)

(
1

deg(v�)
+ 1

deg(v1) + · · · + deg(v�−1)

)

,

concluding the proof of (35).
We now condition on the event T (v1, . . . , v�) ⊆ E(T ) and turn to compute the probability

that all other edges of G emanating from v1, . . . , vp−1 which have both endpoints in Vi are
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not in T . That is, the event that Ev j ∩ T = ∅ for all 1 � j � p − 1, where Ev j are all the
edges of G between v j and Vi\{v1, . . . , v�}.

Let j be an integer 1 � j � p − 1 and condition additionally on all the edges of
(Ev1 ∪ · · · ∪ Ev j−1) ∩ T = ∅ (if j = 1 there is no further conditioning). We will prove that
under this conditioning the probability that Ev j ∩ T = ∅ is

(1 + O(α1/4)) exp
(−b(v j )

) ·
∑�

q= j+1 deg(vq)
∑�

q= j deg(vq)
. (36)

Thus, once (36) is proved, by multiplying it over j = 1, . . . , p − 1, we get that conditioned
on O and on EG(T ) ⊆ E(T ), the probability that all the required edges are not in T is

(1 + O(�α1/4)) exp

⎛

⎝−
p−1∑

j=1

b(v j )

⎞

⎠ · deg(vp) + · · · + deg(v�)

deg(v1) + · · · + deg(v�)
.

We multiply (35) by this and get the required assertion of the lemma.
We are left to prove (36). Enumerate the neighbors of v j which are not in {v1, . . . , v�}

by u1, . . . , udeg(v j ;Vi ). For each 1 � m � deg(v j ; Vi ) we condition on the first m − 1 edges
being closed, by Proposition 3.1we remove these edges from the graph, and after this removal
the graph remains an γ

2 -expander by Proposition 2.2. Thus, by Lemma 3.4 we have that in
this conditioned graph the resistance on the m-th edge is

(1 + O(ε))

(

rm + 1
∑�

q= j deg(vq) − (m − 1)

)

, (37)

where rm satisfies

1

deg(um)
� rm � 1

deg(um; Vi ) . (38)

We do not necessarily know if um is (α, ε)-good itself, and that is why it is not necessarily
the case that the two bounds on rm are up to (1+O(ε)) apart from each other. However, we
will use the fact that v j is (α, ε)-good and use property (c) of this definition.

By (37), the probability that all other edges emanating from v j are closed, conditioned on
this already occurring for v1, . . . , v j−1, is

deg(v j )∏

m=1

[

1 − (1 + O(ε))

(

rm + 1
∑�

q= j deg(vq) − (m − 1)

)]

,

which equals

exp
(

− (1 + O(ε))
∑

m

rm
)

· exp
(

− (1 + O(ε))
∑

m

1
∑�

q= j deg(vq) − (m − 1)

)

. (39)

Since v j is (α, ε)-good, by property (c) of the definition we learn that

∑

m

rm = (
1 + O(α1/2)

)∑

m

1

deg(um)
= (

1 + O(α1/2)
)
b(v j ).

Property (d) of the same definition asserts that b(v j ) � α−1/4, hence the first term in (39) is

exp
(

− (1 + O(ε))
∑

m

rm
)

=
(
1 + O(α1/4)

)
e−b(v j ).
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To handle the second term of (39) we note that

∑

m

1
∑�

q= j deg(vq) − (m − 1)
= log

( ∑
q= j deg(vq)∑

q= j+1 deg(vq)

)

+ O((εn)−1).

Since {v1, . . . , v�} are (α, ε)-good we have that the ratio inside the logarithm is at most
1 + �ε−1 and so the second term of (39) equals

(
1 + O(ε log(ε−1))

)∑�
q= j+1 deg(vq)

∑�
q= j deg(vq)

.

We multiply these two terms of (39) and get that (36) holds. ��
Using Lemma 3.7 we may estimate the probability that BT (X, r) ∼= T “purely”, that is,

that E(BT (X, r)) ∩ E(G[Vi ]) is a rooted tree that is isomorphic to T . We denote this event

by BT (X, r)
pure∼= T . Note that E(BT (X, r))∩E(G[Vi ]) need not even be a tree, so the events

BT (X, r)
pure∼= T and BT (X, r) ∼= T can be very different.

Corollary 3.8 Assume the setting as introduced at the beginning of Sect. 3.3, and let T be
a UST of G. Fix i ∈ [k] and let X be a uniformly chosen random vertex of Vi . Then

P

(
BT (X, r)

pure∼= T
)

= (1 + O(�α1/4))Freq(T ;G, i) ,

where Freq(T ;G, i) is defined in Definition 3.6.

Proof This is immediate since the event E(BT (X, r)) ∩ E(G[Vi ]) ∼= T is the union over

all i-pure tuples (v1, . . . , v�) of the event BT (v1, r)
pure∼= T (v1, . . . , v�). These events are

not disjoint, since for each automorphism of τ of T that fixes the root, we can permute
(v1, . . . , v�) according to τ and get the identical event. However, up to this invariance, the
events are disjoint (which explains the factor of |StabT |−1 in the definition of Freq(T ;G, i))
and so Lemma 3.7 gives the proof. ��

Corollary 3.8 is an annealed statement, that is, the probability space is the product of
the UST probability measure and an independent uniform vertex X . A quenched statement
follows by a second moment argument. We will first need the following assertion.

Lemma 3.9 Suppose that G is a connected graph on n vertices and S ⊆ V (G). Let T be a
spanning tree of G and let X be a uniformly chosen vertex of some set A ⊆ V (G). Then for
any fixed rooted tree T of height r we have that

P (BT (X, r) ∼= T and V (BT (X, r)) ∩ S �= ∅) � |T |2|A|−1|S|.
Furthermore, if in addition G has some decomposition V (G) = V0 � V1 � . . . � Vk, then for
each i ∈ [k],

P

(

BT (X, r)
pure∼= T and V (BT (X, r)) ∩ Vi ∩ S �= ∅

)

� |T |2|A|−1|S|.

Proof We prove only the first statement; the second follows by the same logic. Fix v ∈ S. For
each vertex q of T , if T contains an induced copy of T such that v takes the place of q , then
the probability that BT (X, r) = T such that v takes the place of q is at most degT (q)/|A|
since once we choose which edge of T that touches v corresponds to the edge of T that
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touches q towards the root of T , then the corresponding root in T is chosen and X has to
be chosen precisely to be that root. We bound this probability by |T |/|A| and use the union
bound over the vertices q of T and v of S. ��

We are now ready to prove the quenched version of Corollary 3.8. Observe that without
the assumption that Vi is (α, ε)-big Freq(T ;G, i) can be very small or event 0 (for instance,
Vi could have size less than ε5n and if all the vertices of V0 are connected to each vertex of
Vi , then Vi has no (α, ε)-good vertices at all). Thus, we cannot hope to have the have the
concentration required for the following quenched statement without this assumption.

Lemma 3.10 Assume the setting as introduced at the beginning of Sect. 3.3. Let T be a UST
of G. Fix i ∈ [k] and assume that Vi is (α, ε)-big. Let X be a uniformly chosen vertex of Vi .
Then with probability at least 1 − O(�α1/8) the random tree T is such that

P

(

BT (X, r)
pure∼= T

)

= (1 + O(α1/16))Freq(T ;G, i).

Proof We write by Z = Z(T ) the T -measurable random variable counting the number of

vertices v of Vi such that BT (v, r)
pure∼= T . Corollary 3.8 is equivalent to the assertion that

EZ = (1 + O(�α1/4))Freq(T ;G, i) · |Vi |. (40)

The second moment of Z is

EZ2 =
∑

v,v′∈Vi
P

(

BT (v, r)
pure∼= T and BT (v′, r)

pure∼= T

)

. (41)

We will show that for any v ∈ Vi ,

∑

v′∈Vi
P

(

BT (v′, r)
pure∼= T | BT (v, r)

pure∼= T

)

� (1 + O(�α1/4))Freq(T ;G, i)|Vi |. (42)

If we have this, then since Corollary 3.8 gives that

∑

v∈Vi
P

(

BT (v, r)
pure∼= T

)

= (1 + O(�α1/4))Freq(T ;G, i) · |Vi | ,

by putting both in (41) we get that

EZ2 = (1 + O(�α1/4))
[
Freq(T ;G, i) · |Vi |

]2
.

Hence

Var(Z) = O(�α1/4)[Freq(T ;G, i) · |Vi |
]2

,

and so by Chebychev’s inequality we learn that

P
(|Z − EZ | � α1/16Freq(T ;G, i) · |Vi |

)
� O(�α1/8) ,

concluding the proof.

To prove (42) we fix v ∈ Vi and condition on the event BT (v, r)
pure∼= T and on the vertices

(v1, . . . , v�)which form BT (v, r). By Proposition 3.1 we contract the edges of T in BT (v, r)
and erase the edges we conditioned that are not in T . Denote the resulting multigraph by G∗
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and by v∗ the vertex to which the vertices v1, . . . , v� have been identified. We consider the
loopless multigraph G∗ with the partition

V (G∗) = V0 � V1 � . . . � Vi−1 � V ∗
i � Vi+1 � . . . � Vk ,

whereV ∗
i isVi with the vertices v1, . . . , v� replaced by v∗.Wenowclaim that this partition is a

(β, α, γ /2, ε)-good-decomposition (as inDefinition 2.10). First, by Proposition 2.2 the graph
G∗[V ∗

i ] is still a γ /2-expander and so the partition V0�V1� . . .�Vi−1�V ∗
i �Vi+1� . . .�Vk

is a (γ /2, ε5, ε5)-expander decomposition of G∗. Next we verify that the number of good
vertices has not dropped by too much. Indeed, from each vertex u ∈ Vi\{v1, . . . , v�} at most
� edges touching it were erased and hence it is immediate to check in Definition 2.9 that,
as long as n is large enough (in terms of ε and α), if u was (α, ε)-good in G, then it is
(α, ε)-good in G∗—the constants may have changed, but they are swallowed in theO(·) and
�(·) notation of Definition 2.9.

Thus we may apply Corollary 3.8 and obtain that

∑

v′∈V ∗
i

P

(

BT (v′, r)
pure∼= T | G∗

)

= (1 + O(�α1/4))Freq(T ;G∗, i) · |V ∗
i |. (43)

We wish to bound the sum in (42) by the above sum, however, there are two important
differences between the sums. The first is the difference in the input to the Freq function. ��
Claim 3.10.1 If Vi is (α, ε)-big, then

cγ �+1e−�/γ � Freq(T ;G, i) � �γ −�−1 ,

for some universal constant c > 0.

Proof Since Vi is (α, ε)-big we have at least (1 − O(α1/8))|Vi | vertices which are (α, ε)-
good and these must span at least �(α1/9|Vi |n) edges, since the number of edges of G[Vi ]
touching non (α, ε)-good vertices of Vi is at mostO(α1/8|Vi |n) and we also have e(G[Vi ]) =
�(α1/9|Vi |n). Thus the average degree of this graph is d = �(α1/9n), and, by greedily
removing vertices of degree d/4 we can obtain a subgraph of G[Vi ] of minimal degree
�(α1/9n) = �(γ n) such that all of its vertices are (α, ε)-good. Thus it is immediate to find
�(γ �n�) copies of the tree T .We deduce that the number of �-tuples counted in Freq(T ;G, i)
is at least �(γ �n�) and at most n�. Since each vertex degree in Vi is at most n and at least
γ n we learn that each �-tuple contributes to Freq(T ;G, i) at most �γ −�−1n−� and at least
γ e−�/γ n−� and the claim follows. ��

By this claim, since Vi and V ∗
i differ by � − 1 vertices, and �-tuples of Vi which one of

vertices is in {v1, . . . , v�} can contribute at most O(�γ −�−1n−1) to Freq(T ;G, i) we learn
that

Freq(T ;G, i) = (1 + O(�γ −�−1n−1))Freq(T ;G∗, i) , (44)

and n can be taken large enough to that the error in the O-notation above is O(�α1/4). This
handles the first difference.

The second difference is that BT (v′, r)may be isomorphic to T inG by using some of the
edges in T (v1, . . . , v�) that were contracted to v∗ in G∗. In this case, it does not necessarily
hold that BT (v′, r) ∼= T in G∗, so it is possible that this contribution to (42) is large and not
counted for in (43). We will show that this is not the case.

We bound the LHS of (42) as follows. The terms corresponding to v′ ∈ {v1, . . . , v�}
we bound by 1 and get a negligible contribution of �. For any other v′ we split the event

123



526 J. Hladký et al.

BT (v′, r)
pure∼= T according to whether V (BT (v′, r)) ∩ V (BT (v, r)) = ∅. This intersection

is empty if and only if v∗ /∈ V (BT (v′, r)) in the graph G∗, and if it is empty, then it holds

that BT (v′, r)
pure∼= T in G∗. Thus the LHS of (42) is at most

� +
∑

v′∈V ∗
i

P

(

BT (v′, r)
pure∼= T | G∗

)

+
∑

v′∈V ∗
i

P

(

BT (v′, r)
pure∼= T and v∗ ∈ V (BT (v′, r)) | G∗

)

.

The first term in the above is negligible, the second we bound using (43) and (44) by the RHS
of (42). The third term we bound using Lemma 3.9 applied on the graph G∗ with S = {v∗}
and A = V ∗

i , giving the bound

∑

v′∈V ∗
i

P

(

BT (v′, r)
pure∼= T and v∗ ∈ V (BT (v′, r)) | G∗

)

� �2 ,

which is also negligible. This completes the proof of (42) and concludes the proof of the
lemma. ��

We now turn to estimating the event BT (X, r) ∼= T rather than the “pure” version of this
event. To that aim we define

O = {
(x, y) ∈ T : i(x) �= i(y) or x ∈ V0 or y ∈ V0

}
, (45)

that is, O is the set of edges of T that are between components or contained in V0. We first
assert that this set cannot be too large.

Lemma 3.11 Assume the setting as introduced at the beginning of Sect. 3.3. Let T be a UST
of G and O ⊆ T be defined in (45). Then

E|O| = O(α1/4n).

Proof Let us assume that n is large enough as in Lemma 3.4. By Lemma 3.4 and Kirchoff’s
formula (24) we have that

E|T ∩ E(G[Vi ])| � (1 − O(ε))
1

2

∑

u∈Vi

∑

v∈Vi :v∼u

(
1

deg(u)
+ 1

deg(v)

)

= (1 − O(ε))
∑

u∈Vi

deg(u; Vi )
deg(u)

.

Hence

E

∣
∣
∣
∣
∣
T ∩

k⋃

i=1

E(G[Vi ])
∣
∣
∣
∣
∣
� (1 − O(ε))

∑

u∈V \V0

deg(u; Vi(u))

deg(u)
.

For any u that is (α, ε)-good we have by part (b) of Definition 2.9 that deg(u; Vi(u)) �
(1 − ε2) deg(u). Since at least (1 − O(α1/4))n vertices are (α, ε)-good we deduce that

E

∣
∣
∣
∣
∣
T ∩

k⋃

i=1

E(G[Vi ])
∣
∣
∣
∣
∣
� (1 − O(α1/4))n.

The proof is now completed since |T | = n − 1 with probability 1. ��
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We now reach our final destination.

Lemma 3.12 Assume the setting as introduced at the beginning of Sect. 3.3. Let T be a UST
of G and let X be a uniformly chosen vertex of G. Then with probability at least 1−O(�α1/8)

for the random tree T we have

P (BT (X, r) ∼= T ) = (1 + O(�2α1/16))Freq(T ;G) + O(�2β1/8).

Proof Let O be defined in (45). We apply Lemma 3.10, together with Lemma 3.11 and
Markov’s inequality, and get that with probability at least 1 − O(�α1/8) the random tree T
satisfies

(1) |O| � α1/8n, and
(2) For each i ∈ [k] for which Vi is (α, ε)-big we have that

P

(

BT (X, r)
pure∼= T

)

= (1 + O(�α1/16))Freq(T ;G, i) ,

where X is a uniformly chosen vertex of Vi .

Let X be a uniformly chosen vertex of G. By Proposition 2.12 the probability that X is in
either V0 or in some Vi that is not (α, ε)-big is at most O(β1/8). Conditioned on X ∈ Vi we
have that X is uniform random vertex of Vi . Hence we may sum item (2) above over these
i’s and get that with probability at least 1 − O(�α1/8) the random tree T satisfies

P(BT (X, r)
pure∼= T ) = (1 + O(�α1/16))Freq(T ;G) + O(β1/8) ,

by definition of Freq(T ;G).

Assume T satisfies these. If BT (X, r) ∼= T but not BT (X, r)
pure∼= T , then we must

have that BT (X, r) ∼= T and BT (X, r) ∩ V (O) �= ∅. Similarly, if BT (X, r)
pure∼= T but not

BT (X, r) ∼= T , thenwe similarlymust have that BT (X, r)
pure∼= T and BT (X, r)∩V (O) �= ∅.

Since |P(A) − P(B)| � P(A\B) + P(B\A) we have that
∣
∣
∣
∣P (BT (X, r) ∼= T ) − P

(

BT (X, r)
pure∼= T

)∣
∣
∣
∣ = O(�2β1/8) ,

where the last inequality is due to Lemma 3.9 with A = V (G) and S = V (O). ��

4 Proof of Theorems 1.1 and 1.3

4.1 Deriving Theorem 1.1 from Lemma 3.12 via Anatomies

In this section, we deduce Theorem 1.1 from Lemma 3.12. The main technical result of this
section, Lemma 4.3, says that the quantity Freq is continuous in a certain robust sense. To
prove Lemma 4.3, we need to group the elements ofΩ for a given graphonW : Ω2 → [0, 1]
to groups with similar degrees. Actually, we need a recursive refinement of this, as follows.
We call the above partition of Ω according to the degrees anatomy of depth 1. Now, having
defined an anatomy of depth d , anatomy of depth d+1 is a decomposition ofΩ into groups in
which elements have approximately similar degrees into every individual cell of the anatomy
of depth d . Let us make this precise.
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Suppose that h ∈ N and S is a finite set. Let C(h, S) be the partition of [0, 1]S into
Voronoi cells generated by points p ∈ {0, 1

h , . . . , h−1
h , 1}S (we assign each boundary point

to one arbitrary neighboring cell to break ties). Note that these cells form (h + 1)|S| cubes
of the form

∏
i∈S

[
max{0, 2ri−1

2h },min{1, 2ri+1
2h }

]
, for some

{
ri ∈ {0, . . . , h}}i∈S .5 In the

degenerate case S = ∅, we define C(h, S) := {∅}. We call the points p the centers of the
cells. When C ∈ C(h, S) is a Voronoi cell with center p = (pi )i∈S , for i ∈ S we write
centeri (C) := pi .

Let us write b for an (abstract) element. Below, the only purpose of b will be to refer to a
coordinate that will have to do with the function bW (·).

Now, suppose that d ∈ N and h ∈ N
d . For t ∈ [d], we write ht for the t-coordinate of h,

and h�t� for the t-dimensional vector obtained from h by removing the last d− t components.
For h ∈ N, letDh,0 := C(h,∅) and for d ∈ N and h ∈ N

d letDh := C
(
hd ,Dh�d−1� � {b}).

We have

d∑

t=0

∣
∣Dh�t�

∣
∣ = h̄(h) , (46)

for a suitable tower-function h̄(·).
Suppose W : Ω2 → [0, 1] is a graphon and h ∈ N is arbitrary. Let A∅ := Ω . We call

{A∅} = {AC }C∈Dh,0 anatomy of W of depth 0. Suppose that d ∈ N, h ∈ N
d and that we

already know the anatomy {AC }C∈Dh�d−1�
of W of depth d − 1, which is a partition of Ω .

Now, for each ω ∈ Ω we consider the |Dh�d−1�|-tuple of degrees
degd(ω) := (

degW (ω,AC )
)
C∈Dh�d−1�

.

Then for each F ∈ Dh we defineAF := (degd)
(−1)(F) ∩ (exp(−bW (·)))(−1)(F). In words,

each cell AF ⊆ Ω has the property that for each C ∈ Dh�d−1� and for each ω ∈ AF we
have that

degW (ω,AC ) = centerC (F) ± 1
2hd

and exp(−bW (ω)) = centerb(F) ± 1
2hd

. (47)

We call {AF }F∈Dh the anatomy of W of depth d . Obviously, {AF }F∈Dh is a partition of
Ω . Consider an arbitrary ω ∈ AF . Summing (47) over all C ∈ Dh�d−1� (for which (46) tells
us that there are h̄(h�d − 1�) summands), we get

degW (ω) =
∑

C∈Dh�d−1�

centerC (F) ± h̄(h�d−1�)
2hd

. (48)

For this reason, we shall call the number
∑

C∈Dh�d−1�
centerC (F) the degree of AF (inW ),

and denote it by deganatW (AF ).
Suppose U : Ω2 → [0, 1] and X ⊆ Ω . Suppose that d ∈ N, h ∈ N

d , and κ � 0 are
given. Let B∅ := Ω and for each t ∈ [d] let {BC }C∈Dh�t�

be a partition of Ω . Suppose that
for each t ∈ [d], each F ∈ Dh�t�, each C ∈ Dh�t−1� and each ω ∈ BF\X we have

∣
∣degU (ω,BC ) − centerC (F)

∣
∣� 1

2ht
+κ and |exp(−bU (ω)) − centerb(F)|� 1

2hd
+κ.

(49)

5 Strictly speaking, when some but not all coordinates ri are 0 or h, these are not cubes but rectangular prisms.
This is however not important.
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We then say that
{
{BF }F∈Dh�t�

}d

t=0
are κ-approximate anatomies ofU up to depth d with

exceptional set X .
Note that when we take κ = 0 and X = ∅ then we recover the notion of anatomies.
Our next lemma says that two graphons that are close in the cut-distance have similar

anatomies.

Lemma 4.1 Suppose that W : Ω2 → [0, 1] is a nondegerate graphon and d ∈ N, h ∈ N
d

are arbitrary. Let
{
{AF }F∈Dh�t�

}d

t=0
be the anatomies of W up to depth d. For every κ > 0

there exists a number δ > 0 such that the following holds for every graphonU : Ω2 → [0, 1]
with‖W−U‖˝ < δ. There exists a set X ⊆ Ω ofmeasure atmostκ so that

{
{AF }F∈Dh�t�

}d

t=0
are κ-approximate anatomies of U up to depth d with exceptional set X.

Proof Suppose that we are given W , d , h, and κ as above.
Since W is nondegenerate, there exists β ∈ (0, 10−6) such that the measure of the set

S :=
{
ω ∈ Ω : deg(ω) < 16 4

√
β
}

is less than κ2

100 . Let δ := min{βκ4

400 , κ2

4h̄(h)2
}. Suppose that U is given with ‖W −U‖˝ < δ. It

is enough to prove that there exists a set Xb ⊆ Ω of measure at most κ
4 such that for each

t ∈ [d] and each F ∈ Dh�t�, we have for each ω ∈ F\Xb that

|exp(−bU (ω)) − centerb(F)| � 1
2hd

+ κ , (50)

and that (with t and F as above) for each C ∈ Dh�t−1� we have that all but at most κ
4h̄(h)2

measure of elements ω ∈ AF satisfy

degU (ω,AC ) � centerC (F) − 1

2ht
− κ , (51)

and all but at most κ
4h̄(h)2

measure of elements ω ∈ AF satisfy

degU (ω,AC ) � centerC (F) + 1

2ht
+ κ. (52)

The lemma will then follow from (46) by taking X to be the union of Xb together with the
exceptional sets from (51), (52) over all t , C , and F . ��

The following claim clearly implies (50).

Claim 4.1.1 There exists a set Xb of measure at most κ
4 such that for all ω ∈ Ω\Xb we

have |bW (ω) − bU (ω)| < κ .

For the proof of Claim 4.1.1, we need Claims 4.1.2–4.1.4 below.

Claim 4.1.2 Suppose that Γ : Ω2 → [0, 1] is a graphon and that A ⊆ Ω . Then
∫

x∈Ω

∫

ω∈A

Γ (x, ω)

degΓ (ω)
� μ(A).

Proof By Fubini’s Theorem, we have
∫

x∈Ω

∫

ω∈A

Γ (x, ω)

degΓ (ω)
=

∫

ω∈A

1

degΓ (ω)

∫

x∈Ω

Γ (x, ω)=
∫

ω∈A

1

degΓ (ω)
degΓ (ω, A)�μ(A).

��
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Claim 4.1.3 Suppose Γ1, Γ2 : Ω2 → [0, 1] are two graphons and that f : Ω → [0,C] is
an arbitrary function. Then

∫

x∈�

∣
∣
∣
∣

∫

ω∈�

f (ω)(Γ1(x, ω) − Γ2(x, ω)

∣
∣
∣
∣ � 2C · ‖Γ1 − Γ2‖˝ .

Proof By [15, (8.20)] we can alternatively express as ‖Γ1 − Γ2‖˝

‖Γ1 − Γ2‖˝ = sup
F,G:�→[0,1]

∣
∣
∣
∣

∫

x

∫

y
G(x)F(y)(Γ1(x, y) − Γ2(x, y))

∣
∣
∣
∣ =

= 1

C
· sup
F :�→[0,C],G:�→[0,1]

∣
∣
∣
∣

∫

x

∫

y
G(x)F(y)(Γ1(x, y) − Γ2(x, y))

∣
∣
∣
∣ .

� 1

2C
· sup
F :�→[0,C],G:�→[−1,1]

∣
∣
∣
∣

∫

x

∫

y
G(x)F(y)(Γ1(x, y) − Γ2(x, y))

∣
∣
∣
∣ .

The claim follows by considering in the latter supremum functions

F(·) := f (·) and G(·) := sgn

(∫

y
f (y)(Γ1(·, y) − Γ2(·, y))

)

.

��
For the last auxiliary claim, we shall introduce an auxiliary notion. Below we shall work

with not necessarily symmetric L1-functions K : Ω2 → [0,+∞). Note that the notions of
cut-norm and cut-distance extend to this setting.6 The following claim is then obvious.

Claim 4.1.4 Suppose that ε > 0 and Γ, Γ ′ : Ω2 → [0, 1] are two L1-functions such
that for each x, y ∈ Ω , max(Γ (x, y), Γ ′(x, y)) < (1 + ε)min(Γ (x, y), Γ ′(x, y)). Then
‖Γ − Γ ′‖˝ � ε. ��
Proof of Claim 4.1.1 Let

D :=
{
ω ∈ Ω\S : degW (ω) �=

(
1 ± β0.3κ2

4

)
degU (ω)

}
.

Since for each ω ∈ D we have | degW (ω)−degU (ω)| � 3β0.55κ2 we get from ‖W −U‖˝ <
βκ4

400 that μ(D) � κ2

100 .

Put A := S ∪ D. We have μ(A) � κ2

50 .
We have

∫

x∈Ω

|bW (x) − bU (x)| �
∫

x∈Ω

∣
∣
∣
∣

∫

ω∈Ω\A
W (x, ω)

degW (ω)
− U (x, ω)

degU (ω)

∣
∣
∣
∣

+
∫

x∈Ω

∣
∣
∣
∣

∫

ω∈A

W (x, ω)

degW (ω)
− U (x, ω)

degU (ω)

∣
∣
∣
∣ (53)

The second term on the right-hand side of (53) is bounded byClaim 4.1.2 by atmost 2μ(A) �
κ2/50. Now, let us consider the L1-function Ũ , defined by

Ũ (x, y) :=
{

degW (y)
degU (y) ·U (x, y) if y /∈ A

U (x, y) if y ∈ A
.

6 Note that in this case, the cut-norm really has to be defined over all rectangles in (6), and not only over all
squares.
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Observe thatU and Ũ satisfy the assumptions of Claim 4.1.4 with error parameter
(

β0.3κ2

4

)
.

Then the first term of the right-hand side of (53) can be rewritten as
∫

x∈Ω

∣
∣
∣
∣

∫

ω∈Ω

1Ω\A(ω)

degW (ω)
·
(
W (x, ω) − Ũ (x, ω)

)∣∣
∣
∣ . (54)

Observe that the function
1Ω\A(·)
degW (·) is bounded by above by

1
16 4√β

. Claim 4.1.3 tells us that (54)

is at most

1

8 4
√

β
·
(
‖W −U‖˝ + ‖U − Ũ‖˝

) C4.1.4

� 1

3200
β3/4κ2 + β0.3κ2

4 · 8β1/4 <
κ2

25
.

Plugging this back into (53) we obtain that
∫
x∈Ω

|bW (x) − bU (x)| < κ2

4 . The claim follows.
��

It now remains to prove (51) and (52). We will only prove (51) since the proof of (52)
is verbatim. So, suppose that (51) fails, i.e., the set X := {ω ∈ AF : degU (ω,AC ) >

centerC (F) + 1
2ht

+ κ} satisfies μ(X) > κ
2h̄(h)

. By the definition of AF we have for every

ω ∈ X that degW (ω,AC ) � centerC (F) + 1
2ht

. Therefore,
∫

X×AF

W �
(

centerC (F) + 1

2ht

)

μ(X) but

∫

X×AF

U >

(

centerC (F) + 1

2ht
+ κ

)

μ(X) �
(

centerC (F) + 1

2ht

)

μ(X) + κ2

2h̄(h)
.

��
This is a contradiction to the fact that ‖U − W‖˝ < δ.

For the proof of Lemma 4.3 we need the following result.

Proposition 4.2 Suppose that W : Ω2 → [0, 1] is a nondegenerate graphon. Then

Ex∈Ω [bW (x)] = 1.

Proof By Fubini’s Theorem,

Ex∈Ω [bW (x)] =
∫

x

(∫

y

W (x, y)

deg(y)
dy

)

dx =
∫

y

(∫

x

W (x, y)

deg(y)
dx

)

dy = 1.
��

Lemma 4.3 puts a relation between quantities Freq(T ;W ) and Freq−(T ;G, V0, E0),
where G is a graph, V0 ⊆ V (G) and E0 ⊆ E(G), and Freq−(T ;G, V0, E0) is defined as

Freq−(T ;G, V0, E0) := |StabT |−1

×
∑

v1,...,v�∈V (G)\V0∀i j∈E(T ):viv j∈E(G)\E0

1

v(G)
exp

⎛

⎝−
p−1∑

j=1

bG(v j )

⎞

⎠

∑�
j=p degG(v j )

∏�
j=1 degG(v j )

.

Weare now ready to state Lemma 4.3. It says that the parameter Freq(T ; ·) is continuous in
a certain sense.While it would be possible to prove continuity of Freq(T ; ·) for nondegenerate
graphons with respect to the cut-distance, here we need to put a relation between Freq(T ; ·)
of a graphon and the parameter Freq−(T ; ·) of a graph that is close to that graphon. Let us
note that while our proof of continuity is long, the statement itself is natural. Indeed, the
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definition (1) is an integration involving products of values of the graphon over the edges of
T (similar to the way that is used to define the density of T in the graphon), degrees in the
graphon and the function b(·) from (2) which is also defined using degrees in the graphon.
As subgraph densities are continuous with respect to the cut-metric, and so is the degree
sequence (c.f. Lemma 5.1), it is actually plausible to have continuity of many graph(on)
parameters obtained by combinations thereof.

Lemma 4.3 Suppose that W : Ω2 → [0, 1] is a nondegenerate graphon and T is a fixed
tree. For every ε > 0 there exists a > 0 such that for every χ > 0 there exists n0 ∈ N and
δ > 0 such that if G is a graph and V0 ⊆ V (G), E0 ⊆ E(G) satisfy

(a) n > n0,
(b) δ˝(W,G) < δ,
(c) |V0| � an, |E0| � an2, and
(d) for each v ∈ V (G)\V0 we have degG(v) � χn,

then we have

|Freq(T ;W ) − Freq−(T ;G, V0, E0)| < ε. (55)

Proof Suppose that W , T , and ε are given.
Let L be the height of T . Suppose that the vertices of T are [�]. Suppose that 1 is the root

of T , suppose that the height of each vertex i is denoted gi and that the vertices of T are
enumerated so that we have 0 = g1 < g2 � g3 � · · · � gp−1 < gp = gp+1 = · · · = g�

= L .
In the course of deriving Theorem 1.3 from Theorem 1.1 in Sect. 4.2 we prove that

Freq(T ;W ) � 1.7 In particular, the function fW : Ω� → [0,+∞),

fW (ω1, . . . , ω�) := exp

⎛

⎝−
p−1∑

j=1

bW (ω j )

⎞

⎠ ·
∑�

j=p degW (ω j )
∏�

j=1 degW (ω j )
·

∏

(i, j)∈E(T )

W (ωi , ω j )

(56)

is integrable. Let δ0 > 0 be such that for any set A ⊆ Ω�, μ⊗�(A) < δ0 we have
∫

A
fW � ε

10
. (57)

Since W is nondegenerate, there exists a number Δ ∈ (0, δ0
4� ) such that the set

Ωsmall := {ω ∈ Ω : degW (ω) < 2Δ}
has measure less than δ0

2� .

Let a := min{ δ0
10� , εΔ�

400�� }. Now, suppose that χ is given.

Let h ∈ N
L+1 and d ′, d, τ, κ > 0 satisfy

min (Δ, ε, χ, δ0) � d ′ � d � τ � 1

h1
� 1

h2
� . . . � 1

hL
� 1

hL+1
� κ > 0. (58)

We note that the above dependencies are tower-type, i.e.,

1

hi
� h̄(h�i�)

hi+1
. (59)

7 At this moment, we have not established Theorem 1.3 nor Theorem 1.1. However, the fact Freq(T ;W ) � 1
did not rely on the validity of either of these theorems, but rather followed from making the connection to the
branching process κW .
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Let
{
{AF }F∈Dh�t�

}L+1

t=0
be the anatomies of W up to depth L + 1. Let δ be given by

Lemma 4.1 for input graphon W and parameters h and κ .
Suppose now that the graph G is given. Take a graphon representation U of G such that

‖W − U‖˝ < δ. Lemma 4.1 tells us that there exists a set X ⊆ Ω of measure at most κ

such that
{
{AF }F∈Dh�t�

}L+1

t=0
are a κ-approximate anatomies of U up to depth L + 1 with

exceptional set X .
Given a vertex v ∈ V (G), we write Ωv ⊆ Ω for the set representing v in U . We write

Λvert := ⋃
v∈V0 Ωv , and Λedge = ⋃

uv∈E0
(Ωu × Ωv ∪ Ωv × Ωu). By assumption (c) we

have

μ(Λvert) � a and μ⊗2(Λedge) � 2a. (60)

To express Freq−(T ;G, V0, E0), we introduce a counterpart to (56) that reflects U ,

fU (ω1, . . . , ω�) := exp

⎛

⎝−
p−1∑

j=1

bU (ω j )

⎞

⎠ ·
∑�

j=p degU (ω j )
∏�

j=1 degU (ω j )
·

∏

(i, j)∈E(T )

U (ωi , ω j )

and a version f −
U , which takes into the account the “deleted” vertices V0 and edges E0,

f −
U (ω) :=

{
0 if ∃ i ∈[�] : ωi ∈⋃

v∈V0 Ωv or ∃i j ∈ E(T ) : (ωi , ω j ) ∈ ⋃
vw∈E0

Ωv×Ωw,

fU (ω) otherwise.

Note that the assumption (d) implies that

f −
U � �

χ�
on the whole domain Ω�. (61)

We say that a map π : [�] → {AF }t=1,...,L+1;F∈Dh�t�
is a depth preserving anatomy

assignment if for each i ∈ [�] we have π(i) = AF for some F ∈ Dh�L+1−gi �. This means
that the root 1 is assigned an anatomy of depth L + 1 while vertices further from the root
are assigned anatomies of smaller depths. Note that depth preserving anatomy assignment
partition the set Ω� it the sense that

Ω� =
⊔

π :[�]→{AF }t=1,...,L+1;F∈Dh�t�
depth preserving anatomy assignment

�∏

j=1

π( j). (62)

In particular,

1 =
∑

π :[�]→{AF }t=1,...,L+1;F∈Dh�t�
depth preserving anatomy assignment

�∏

j=1

μ (π( j)) , and (63)

1 =
∑

π :[�]→{AF }t=1,...,L+1;F∈Dh�t�
depth preserving anatomy assignment

�∏

j=[�]\{ j∗}
μ (π( j)) for each j∗ ∈ [�]. (64)

We need to define three additional classes of depth preserving anatomy assignments.

• We say that a depth preserving anatomy assignment π is singular if there exists i ∈ [�]
such that a positive measure of the elementsω ∈ π(i) satisfy degW (ω) � Δ, or bW (ω) >

Δ−1.
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• We say that a depth preserving anatomy assignment π is dense if for every vertex j ∈ [�]
and every child j∗ of j we have that centerπ( j∗)(π( j)) > d · μ(π( j∗)). If this fails for
some pair j j∗, then we call j∗ a witness. (Of course, several witnesses may exist.)

• We say that a depth preserving anatomy assignment π is non-problematic if it is dense,
and it is not singular.

For a depth preserving anatomy assignment π , we write �π = ∏�
i=1(π(i)\X).

The next claim establishes some basic properties of singular depth preserving anatomy
assignment. ��
Claim 4.3.1 Suppose that π is a singular depth preserving anatomy assignment, and that
i ∈ � is a witness of singularity. Then we have that π(i) ⊆ Ωsmall or that bW (ω′) > 1

2Δ for
all ω′ ∈ π(i).

Proof The definition of singular depth preserving anatomy assignment says that there exists
ω ∈ π(i) such that degW (ω) � Δ, or bW (ω) > Δ−1.

Let us first deal with the former case. A double application of (48) gives that for each
ω′ ∈ π(i) we have

degW (ω′) � deganatW (π(i)) + h̄(h�L − 1 − gi �)

2hL−gi

� degW (ω) + 2h̄(h�L − 1 − gi �)

2hL−gi

(58),(59)
< 2Δ.

Therefore, in this case, π(i) ⊆ Ωsmall.
We can deal with the latter case, but using (47) instead of (48). We have

bW (ω′) > Δ−1 − 4

2hL−gi
� 1

2Δ
for all ω′ ∈ π(i). ��

The next key claim says that the integrals of fW and f −
U over sets corresponding to

non–problematic depth preserving anatomy assignment are almost the same.

Claim 4.3.2 Suppose that π : [�] → {AF }t=1,...,L+1;F∈Dh�t�
is a non-problematic depth

preserving anatomy assignment. Let

eπ
vert :=

�∑

i=1

μ (π(i) ∩ Λvert) ·
∏

k∈V (T )\{i}
μ(π(k)) , and

eπ
edge :=

∑

i j∈E(T )

μ⊗2

⎛

⎝Λedge ∩
⋃

i j∈E(T )

π(i) × π( j)

⎞

⎠ ·
∏

k∈V (T )\{i, j}
μ(π(k)).

Then for the quantities

Q1 :=
∫

ω∈�π

fW (ω) and

Q2 :=
∫

ω∈�π

f −
U (ω)

we have Q1 = Q2 · (1 ± d) ± (eπ
vert+eπ

edge)�

Δ� .
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Proof Suppose that j ∈ V (T ). If j �= 1, then we write Par( j) for the parent of j in T . Let
us write Fj for the tree obtained from T by erasing the edge from j to Par( j) and taking
the component containing j . When j = 1, we take Fj := T . Also, for j = 1 we define
centerπ( j) (π(Par( j))) := 1.

For j ∈ V (T ), write

R j :=
∏

k∈V (Fj )\{ j}
centerπ(k) (π(Par(k))) .

Here, recall the convention that a product over the empty set is 1. This in particular applies
when j is a leaf and j �= 1.

We first want to show that the quantities
∫

(ω1,...,ω�)∈�π

∏

(i, j)∈E(T )

W (ωi , ω j ) and
∫

(ω1,...,ω�)∈�π

∏

(i, j)∈E(T )

U (ωi , ω j )

are very close. To this end, for j ∈ V (T ) we define A j (ω j ) = Bj (ω j ) := 1 if j is a leaf
(different than the root) and otherwise we define

A j (ω j ) :=
∫

{ωk∈π(k)\X}k∈V (Fj )\{ j}

∏

(a,b)∈E(Fj )

W (ωa, ωb) ,

Bj (ω j ) :=
∫

{ωk∈π(k)\X}k∈V (Fj )\{ j}

∏

(a,b)∈E(Fj )

U (ωa, ωb).

(65)

Inductively for t = L+1, L , . . . , 0, assume that for each vertex j ∈ V (T ) at height g j = t ,8

for each ω j ∈ π( j) we have

A j (ω j ) = R j · exp
(
± v(Fj )

h1

)
(66)

and for every ω j ∈ π( j)\X we have

Bj (ω j ) = R j · exp
(
± v(Fj )

h1

)
. (67)

Now, let suppose that the statement is true for all vertices at height t +1. Let j be an arbitrary
vertex at height t , and let ω j ∈ π( j) be arbitrary. When j is a leaf then (66) and (67) hold
trivially. So, suppose that j has some children j1, j2, . . . , jq . Since these children are at
height t + 1, applying the induction hypothesis, we disintegrate (65) with respect to these
children, and get

A j (ω j ) =
q∏

c=1

⎛

⎝
∫

ω jc∈π( jc)\X
W (ω j , ω jc )

∫

{ωk∈π(k)\X}k∈V (Fjc )\{ jc}

∏

(a,b)∈E(Fjc )

W (ωa, ωb)

⎞

⎠

=
q∏

c=1

(∫

ω jc∈π( jc)\X
W (ω j , ω jc ) · A jc (ω jc )

)

(66)=
q∏

c=1

(∫

ω jc∈π( jc)\X
W (ω j , ω jc ) · R jc exp

(
± v(Fjc )

h1

)
)

8 Note that the first step of the induction is satisfied trivially, as the height of T is L .

123



536 J. Hladký et al.

=
q∏

c=1

degW (ω j , π( jc)\X) ·
q∏

c=1

(
R jc exp

(
± v(Fjc )

h1

))

=
q∏

c=1

(degW (ω j , π( jc)) ± κ) ·
q∏

c=1

(
R jc exp

(
± v(Fjc )

h1

))
.

Now, each of the factors in the first product equals to centerπ( jc)(π( j))± 1
hL+1−g j

by using the

property (47). Since π is a dense depth preserving anatomy assignment and since μ(π( jc))
is a positive number which depends only on h�L − g j �, we have

degW (ω j , π( jc)) ± κ = centerπ( jc)(π( j)) · (1 ± √
κ).

Since (1 ± √
κ)q = exp(± 1

h1
), we just verified (66) for j and ω j .

We can get exactly the same calculations for Bj (ω), where ω ∈ π( j)\X and get

Bj (ω j ) =
q∏

c=1

(degU (ω j , π( jc)) ± κ) ·
q∏

c=1

(
R jc exp

(
± v(Fjc )

h1

))

Now, the fact ω j is a non-exceptional element of the cell π( j) of the κ-approximate anatomy
{AF }F∈Dh�L+1− j�

(for U ) implies (67).

Clearly, the term
∫
ω1∈π(1)\X A1(ω1) corresponds to the term

∫ ∏
(i, j)∈E(T ) W (ωi , ω j ) in

the definition of Q1. We shall now control all the remaining terms. The idea is that these all
are almost constant since we are working inside one anatomy cell. Let us first deal with the
terms in the definition of Q1.

As π( j) is non-singular for each j ∈ [�], the denominator of
∑�

j=p degW (ω j )
∏�

j=1 degW (ω j )
is at least

Δ�. Further, the fluctuations in the denominator are at most
∑�

j=1
h̄(h�L−g j �)

hL+1−g j
� τ around

C1 := ∏�
j=1 deg

anat
W (π( j)) by (48). Similarly, the nominator is bounded from below by

Δ, and the fluctuations in the nominator are at most
∑�

j=p
h̄(h�L−g j �)

hL+1−g j
� τ around C2 :=

∑�
j=p

∑
F∈Dh�L−g j �

centerF (π( j)). The fluctuations in the term exp
(
−∑p−1

j=1 bW (ω j )
)

are at most τ around C3 := ∏p−1
j=1 centerb(π( j)). Also, since π( j) is non-singular for each

j ∈ [p − 1], we have C3 > exp(− �
Δ

). The two upper-/lower- bounds we have derived
using from the non-singularity will be used below to transform an additive error of the type
value ± error to a multiplicative one, value · (1 ± error

lower bound on the value ). Therefore,

Q1 =
∫

(ω1,...,ω�)∈�π

exp

⎛

⎝−
p−1∑

j=1

bW (ω j )

⎞

⎠ ·
∑�

j=p degW (ω j )
∏�

j=1 degW (ω j )
·

∏

(i, j)∈E(T )

W (ωi , ω j )

=
∫

(ω1,...,ω�)∈�π

(C3 ± τ) · C2 ± τ

C1 ± τ
·

∏

(i, j)∈E(T )

W (ωi , ω j )

= C3 · C2

C1
· (1 ± 6τ · exp( �

Δ
)
) ·

∫

(ω1,...,ω�)∈�π

∏

(i, j)∈E(T )

W (ωi , ω j )

= C3 · C2

C1
· (1 ± 6τ · exp( �

Δ
)
) ·

∫

ω1∈π(1)\X
A1(ω1)
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(66)= C3 · C2

C1
· (1 ± 6τ · exp( �

Δ
)
) · μ(π(1)\X) · R1 · exp(± �

h1
)

= C3 · C2

C1
· μ(π(1)\X) · R1 · (1 ± d

3

)
. (68)

We now attempt to show that this quantity is close to Q2. First, let us introduce a modified
quantity in which even integration over V0 and E0 is considered, Q+

2 := ∫
ω∈�π

fU (ω).

Now, we claim that we get exactly the same bound as in (68) even for Q+
2 . Let us

explain that there are no traps in doing so. First, we can use
∫
ω1∈π(1)\X B1(ω1) to control

∫ ∏
(i, j)∈E(T ) U (ωi , ω j ), exactly in the same way as we used

∫
ω1∈π(1)\X A1(ω1) to con-

trol
∫ ∏

(i, j)∈E(T ) W (ωi , ω j ), because (67) is a perfect counterpart to (66). The remaining
quantities appearing in the definition of Q2 are again centered around the constants C1,

C2, and C3 as above, except the fluctuations can be bigger by κ since
{
{AF }F∈Dh�t�

}L+1

t=0
are only κ-approximate anatomies for U (as opposed to exact anatomies for W ). However,
κ is the smallest constant in (58) and thus this additional error can be easily swallowed
by other error terms. Third, the upper- and lower- bounds based on non-nonsigularity
that we used to transform an additive errors to multiplicative ones are still valid when
the additional approximation term κ is taken into account. Therefore, we conclude that
Q+

2 = C3 · C2
C1

· μ(π(1)\X) · R1 · (1 ± d
3

)
. This finishes the proof.

Now, let us show that we have |Q+
2 − Q2| <

(eπ
vert+eπ

edge)�

Δ� . Clearly, we have Q+
2 � Q2.

On the other hand, if for some (ω1, . . . , ω�) ∈ �π we have that f −
U (ω1, . . . , ω�) = 0 but

fU (ω1, . . . , ω�) > 0 then for some i ∈ [�]we have ωi ∈ π(i)∩Λvert or for some i j ∈ E(T )

we have (ωi , ωi ) ∈ π(i) × π( j) ∩ Λedge. ��
Claim 4.3.3 Suppose that π : [�] → {AF }t=1,...,L+1;F∈Dh�t�

is a depth preserving anatomy

assignment that is not singular. Suppose that j∗ ∈ [�] is a witness that it is not dense either.
Then

∫

∏�
j=1 π( j)

fW <
d�

Δ�
·
∏

j∈[�]
μ(π( j)) + �

hL+1−g j∗ · Δ�
·

∏

j∈[�]\{ j∗}
μ(π( j)). (69)

Proof Let us bound all the terms in (56). More precisely, let k j∗ ∈ E(T ) be any edge that
witnesses that π is not a dense depth preserving anatomy assignment. To bound fW , we shall
use that

fW (ω1, . . . , ω�) � exp

⎛

⎝−
p−1∑

j=1

bW (ω j )

⎞

⎠ ·
∑�

j=p degW (ω j )

Π�
j=1 degW (ω j )

· W (ωk, ω j∗).

The term exp
(
−∑p−1

j=1 bW (ω j )
)

is trivially at most 1. The nominator in the term
∑�

j=p degW (ω j )
∏�

j=1 degW (ω j )
is at most � while the denominator is at least Δ� by non-singularity. Finally,

because k j∗ ∈ E(T ) is an edge that witnesses that π is not a dense depth preserving anatomy
assignment. Then for every choice of ωk ∈ π(k), we have that

∫
ω j∗∈π( j∗) W (ωk, ω j∗) =

degW (ωk, π(ω j∗)) � d · μ(π( j∗)) + 1
2hL+1−g j∗

. The claim now follows by integrating over

the remaining dimensions. ��
We are now ready to express Freq(T ;W ) and Freq−(T ;G, V0, E0) in a way that most

terms will approximately cancel. To express Freq(T ;W ), we work with the function fW
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defined in (56). Also, we partition the integration over Ω� in (1) into terms corresponding to
individual depth preserving anatomy assignments as in (62).

|StabT | · Freq(T ;W ) =
∑

π non-problematic

∫

�π

fW

+
∑

π non-problematic

∫

∏�
j=1 π( j)\�π

fW

+
∑

π not dense and not singular

∫

∏�
j=1 π( j)

fW

+
∑

π singular

∫

∏�
j=1 π( j)

fW .

(70)

Now, we have

|StabT | · Freq−(T ;G, V0, E0) =
∑

π non-problematic

∫

�π

f −
U

+
∑

π non-problematic

∫

∏�
j=1 π( j)\�π

f −
U

+
∑

π not dense and not singular

∫

∏�
j=1 π( j)

f −
U

+
∑

π singular

∫

∏�
j=1 π( j)

f −
U .

(71)

We will show that the first sums in (70) and (71) cancel almost perfectly, and that all the
remaining terms are negligible.

Claim 4.3.2 tells us that for the first sums in (70) and (71) we have

∑

π non−probl.

∫

�π

fW =
∑

π non−probl.

∫

�π

f −
U · (1 ± d) ±

∑

π non−probl.

(eπ
vert + eπ

edge)�

Δ�
. (72)

We have

∑

π non−probl.

eπ
vert =

�∑

i=1

∑

π non−probl.

μ (π(i) ∩ Λvert) ·
∏

k∈V (T )\{i}
μ(π(k))

(64)

�
�∑

i=1

μ (Λvert)
(60)

� � · a , and

∑

π non−probl.

eπ
edge =

∑

i j∈E(T )

∑

π non−probl.

μ⊗2

⎛

⎝Λedge ∩
⋃

i j∈E(T )

π(i) × π( j)

⎞

⎠

·
∏

k∈V (T )\{i, j}
μ(π(k))

� |E(T )|μ⊗2 (
Λedge

) (60)

� � · 2a.
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Recall that in the course of proving Theorems 1.3 from 1.1 we showed that
∫
ω∈Ω

fW (ω) �
|StabT | � ��. In particular, using the above bounds, we can turn the multiplicative error
in (72) into an additive error,

∑

π non-probl.

∫

�π

fW =
∑

π non-probl.

∫

�π

f −
U ± 2d�� ± 3a�2

Δ�

=
∑

π non-probl.

∫

�π

f −
U ± ε

100
.

(73)

Let us now focus on the second sum in (70). Observe that the set
⋃

π non-problematic
∏�

j=1
π( j)\�π has measure at most � · μ(X) � δ0. Therefore, (57) applies, and we get that

∑

π non-problematic

∫

∏�
j=1 π( j)\�π

fW � ε

10
.

Let us now turn to the third sum in (70). We write

∑

π not dense and not singular

∫

∏�
j=1 π( j)

fW �
L∑

g=0

∑

π :witness at height g

∫

∏�
j=1 π( j)

fW ,

where the last sum ranges over all non-singular depth preserving anatomy assignments π

with a witness for not being dense at height g. By Claim 4.3.3 and by (63) and (64) for each
g ∈ {0, . . . , L} we have

∑

π :witness at height g

∫

∏�
j=1 π( j)

fW � d�

Δ�
+ �2

hL+1−g · Δ�
� d ′

L + 1
.

Therefore,

∑

π not dense and not singular

∫

∏�
j=1 π( j)

fW < d ′. (74)

The fourth sum of (70) can be bounded from above as follows. If π is singular then by
Claim 4.3.1 there exists i ∈ [�] such that we have bW (ω) > 1/(2Δ) for all ω ∈ π(i),
or we have π(i) ⊆ Ωsmall. Since the average value of bW is 1 by Proposition 4.2, the
measure of the elements that satisfy the former condition is at most 2Δ. Thus, the mea-
sure of the set

⋃
π

∏�
j=1 π( j), where the union ranges over all depth preserving anatomy

assignments π which are singular at coordinate i , is at most 2Δ + μ(Ωsmall) < δ0
�
. We

conclude that the measure of
⋃

π singular
∏�

j=1 π( j) is less than δ0. Therefore, (57) applies,
and

∑
π singular

∫
∏�

j=1 π( j) fW � ε
10 . It now remains to bound the second, third, and the fourth

term (71). Recall that when bounding the corresponding terms in (70) above, we argued that
the domains of integration of the second and the fourth term have measures at most δ0 each.
Combining this with the upper bound (61), we get that the second and the fourth term are at
most δ0 · �

χ� < ε
100 , using (58). So, the only term we have to control now is
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∑

π not dense and not singular

∫

∏�
j=1 π( j)

f −
U

=
∑

π not dense and not singular

∫

�π

f −
U +

∑

π not dense and not singular

∫

∏�
j=1 π( j)\�π

f −
U .

(75)

The first summand can be bounded by 2d ′ in exactly the same way as we derived (74). To see
this, recall that on �π the degrees into anatomies are similar for W and for U and thus we
can make use of the “non-denseness” and “non-singularity” assumption even for f −

U (with
slightly worse constants). The second summand of (75) corresponds represents integration
over a set of measure at δ0. In other words, we can bound the second summand of (75) by

ε
100 in the same way we bounded the second and the fourth term of (71).

The lemma now follows by expanding Freq(T ;W ) − Freq−(T ;G, V0, E0) using (70)
and (71) and using the bounds above. ��

Theorem 1.1 now follows in a straightforward way by combining Lemmas 3.12 and 4.3.

Proof of Theorem 1.1 Suppose that a graphon W , an �-vertex tree T and ε > 0 are given.
Let a > 0 by given by Lemma 4.3 for W , T , and ε

2 . Lemma 2.11 with parameter β :=
c1 · min{a8, ε16} (for a sufficiently small constant c1) yields positive constants α, ε′, γ and
ξ ′ with β � α � ε′ � γ � ξ ′. Now, let n0 and δ′ be numbers given by Lemma 4.3 for
input parameters as above together with χ := γ . Set ξ := min(ξ ′, δ, 1

n0
).

Suppose that G is a graph with d˝(G,W ) � ξ . Owing to Lemma 2.11, we know that G
has a (β, α, ε′, γ )-good decomposition V (G) = V0 � V1 � . . . � Vk . Lemma 3.12 now tells
us that with probability at least 1 − O(�α1/8) the uniform spanning tree T of G satisfies

PX (BT (X, r) ∼= T ) = (1 + O(�2α1/16))Freq(T ;G) + O(�2β1/8). (76)

Recall that the quantity Freq(T ;G) is defined in (34), and depends on the decomposition
V (G) = V0 � V1 � . . . � Vk . Observe that Freq(T ;G) = Freq−(T ;G,U0, E0), where U0 is
the union of V0 and sets Vi (i � 1) that are not (α, ε′)-big, and E0 consists of all edges running
across twodistinct (α, ε′)-big sets {Vi }i . Proposition 2.12 tells us that |U0| = O(β1/8n) < an.
The fact that V (G) = V0 � V1 � . . . � Vk is a (γ, ε′5, ε′5)-expander decomposition (in
particular, (G2) of Definition 2.6 applies) tells us that |E0| � ε′5n2 < an2. Thus, Lemma 4.3
gives Freq(T ;G) = Freq(T ;W ) ± ε

2 . Plugging this back to (76) and using that the term
(1 + O(�2α1/16)) can be bounded by (1 ± ε

4 ) and the term O(�2β1/8) is smaller than ε
4 , we

get the theorem. ��
4.2 Proof of Theorem 1.3 from Theorem 1.1

Let T be a fixed rooted tree with � � 2 vertices and height r . We denote the vertices of
T , as before, by {1, . . . , �} so that 1 is the root and the vertices of distance r from the
root are {p, . . . , �} for some 2 � p � �. Our goal is to show that the probability that the
first r generations of the branching process yield a tree which is root-isomorphic to T is
Freq(T ;W ).

First, the factor of |StabT |−1 comes from the |StabT | different vertex labellings of T which
yield the same event. Secondly, we may split this event to � − p + 1 disjoint events, indexed
by the vertices q ∈ {p, . . . , �} at height r of T , and each of these is the event that the path
from 1 to q is the first r steps of the ancestral path defined in κW . We will show that the
probability of each of these events is precisely
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∫

ω1,...,ω�

exp

⎛

⎝−
p−1∑

j=1

bW (ω j )

⎞

⎠ · deg(ωq)
∏�

j=1 deg(ω j )
·

∏

(i, j)∈E(T )

W (ωi , ω j )dω1 · · · dω�, (77)

which is the q-th term in (1) when we expand the sum over j in the numerator. We denote
the path from 1 to q in T by x1, . . . , xr where x1 = 1 and xr = q . By definition of κW , the
density function of the first r ancestral particles ωx1 , . . . , ωxr is

q−1∏

j=1

W (ωx j , ωx j+1)

deg(x j )
.

Thirdly, by independence of the branching process, conditioned on this path, the rest of
the branching process emanating from the particles on this path is independent and all new
particles (if there are any) are “other” particles. Given a particle of type ω (either ancestral or
other), the number of its other progeny is distributed as Poisson(bW (w)) random variable,

so the probability that it equals k � 0 is e−bW (ω)bW (ω)k

k! . Given the the number of its “other”
progeny is k, these k points of Ω are distributed as k i.i.d. points drawn from the probability
density function W (ω,ω′)

bW (ω) deg(ω′) . Thus, conditioned on having k progeny, the density of these
k-tuple {ω1, . . . , ωk} of points is

k!
b(ω)k

k∏

i=1

W (ω, ωi )

deg(ωi )
.

The k!/bW (ω)k cancels with the bW (ω)k/k! in the probability of having k points and we are
left with last term times e−bW (ω). We now apply this throughout all the branching points of
the tree T (even for k = 0) and this concludes the proof (note that we do not have a factor
for e−bW (ω) for tree vertices at level r since we do not care if they have progeny or not). ��

5 Bounds on the Number of Vertices of a Given Degree in the UST

In this section we prove Theorem 1.5. Let us make two remarks beforehand. Firstly, we
cannot hope for converse bounds to the theorem. Indeed, let us take a small α > 0 and let
us consider the complete bipartite graph Kαn,(1−αn) with color classes A and B, |A| = αn,
|B| = (1− α)n. The handshaking lemma tells us that for any spanning tree T of Kαn,(1−αn)

we have

n − 1 =
∑

b∈B
degT (b) = (1 − α)n +

∑

b∈B,degT (b)>1

(degT (b) − 1).

In particular, the last sum can have at most αn − 1 summands. We conclude that T has more
than (1 − 2α)n leaves, and less than 2αn vertices of degrees more than 1.

Secondly, as we mentioned in the beginning of this paper, the degree distribution of a UST
in a complete graph is approximately Poisson(1)+1. Considering Theorem 1.5, we see that
the complete graph is an asymptotic minimizer for the number of leaves (density e−1), the
asymptotic maximizer for the number of vertices of degree 2 (density e−1) and 3 (density
e−1/2). However, the density of vertices degree k � 4 in the UST of the complete graph is
e−(k−1)/(k−1)!which is smaller than the (k−2)k−2e−(k−2)/(k−1)! given by Theorem 1.5.
Examining the proof shows that the bounds in Theorem 1.5 for k � 4 are optimal in the
following sense. Let α > 0 be arbitrarily small, and let Gn,k,α be the graph obtained by
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taking a complete graph on n/(k − 2) vertices and additional n(k − 3)/(k − 2) vertices such
that each of the n2(k − 3) possible edges between the two parts is retained with probability
α and erased otherwise, independently of all other edges. It is a straightforward computation
using Theorem 1.3 (see also the proof of Theorem 1.5 below) to show that for n large, with
high probability the proportion of vertices of degree k in a UST will be arbitrarily close, as
α → 0, to 1

(k−1)! ((k − 2)/e)k−2.
We are almost ready to prove the theorem. We will need the following folklore statement

that provides a relation between degrees in a graphon and finite graphs that converge to it.
Lemma 5.1 is easy to prove directly, but let us note that is a straightforward consequence of
Lemma 4.1 for anatomies of depth 1.

Lemma 5.1 Suppose that G1,G2, . . . are finite graphs converging to a graphon W : Ω2 →
[0, 1].
(1) Suppose that 0 � a < b � 1 are given. and let d be the measure of points of Ω whose

degree is in the interval (a, b). Then for an arbitrary ε > 0 there exists an n0 such that
for every n > n0 we have that in Gn there are at least (d − ε)v(Gn) many vertices with
degrees in the interval ((a−ε)v(Gn), (b+ε)v(Gn)) and there are at most (d+ε)v(Gn)

many vertices with degrees in the interval ((a + ε)v(Gn), (b − ε)v(Gn)).
(2) Suppose that there exists α > 0 such that in each Gn, all but at most on(1)v(Gn) vertices

have degrees at least αv(Gi ). Then W is nondegenerate.

Proof of Theorem 1.5 We start by proving (3). Assume by contradiction that there are
ε0, δ0 > 0 such that there exists a sequence of graphs Gn (which we assume have n vertices)
such that

(A) at least (1 − o(1))n vertices of Gn are of degree at least δ0n, and,
(B) P

(
L1(n) � (e−1 − ε0)n

)
> ε0,

where L1(n) is the number of leaves in a UST of Gn . By Theorem 1.6 we may assume
without loss of generality that Gn is a converging sequence and let W be the corresponding
limit graphon. By Lemma 5.1(2) and assumption (A) we deduce that W is nondegenerate.
Let Tn be a UST of Gn . By Theorem 1.3 the sequence Tn almost surely satisfies that

lim
n→∞P(degTn

(X) = 1) = Ex∈Ω

[
P[1 + Poisson(bW (x)) = 1]] = Ex∈Ω

[
e−bW (x)

]
,

where X is a uniformly chosen vertex ofGn . By Proposition 4.2we have thatEx∈Ω [bW (x)] =
1. Hence Jensen’s inequality implies that

lim
n→∞P(degTn

(X) = 1) � e−1.

Since L1(n) = nP(degTn
(X) = 1) we arrive at a contradiction to assumption (B), show-

ing (3).
The proof of (4) and (5) proceeds similarly. We fix k � 2 and make the an analogous

contradictory assumption as in (A) and (B). We have that

lim
n→∞P(degTn

(X) = k) = Ex∈Ω

[
P[1 + Poisson(bW (x)) = k]]

= 1

(k − 1)!Ex∈Ω

[
e−bW (x)bW (x)k−1

]
.

When k = 2, since ye−y � e−1 for all y � 0 we learn that the last quantity is at most e−1,
proving (4) by contradiction. When k � 3, it follows by Lemma 5.2 (provided immediately
below) that the last quantity is at most 1

(k−1)! ((k − 2)/e)k−2, similarly proving (5). ��
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The last missing piece is to state and prove the optimization result that was key for our
proof of Theorem 1.5 above.

Lemma 5.2 Let b : [0, 1] → [0,∞) satisfy
∫
[0,1] b(x)dx = 1. Then for any k � 2,

∫

[0,1]
e−b(x)b(x)kdx �

(
k − 1

e

)k−1

.

Proof For ease of notation, let f (x) = e−x xk . Fix κ > 0. Approximating b(x) by simple
functions, we can find n ∈ N and n non-negative numbers b1, . . . , bn such that 1

n

∑n
i=1 bi =

1, and
∫
[0,1] f (b(x))dx � 1

n

∑n
i=1 f (bi ) + κ . Hence

∫

[0,1]
e−b(x)b(x)kdx � max

(b1,...,bn)∈C
Φ(b1, . . . , bn) + κ,

where Φ(b1, . . . , bn) := 1
n

∑n
i=1 f (bi ) and C := {(b1, . . . , bn) ∈ [0,+∞)n : 1

n

∑n
i=1 bi �

1}. To prove the lemma, it thus suffices to show that Φ|C �
( k−1

e

)k−1
.

By abuse of notation, we use the same symbol �b = (b1, . . . , bn) to denote the maximizer
of Φ|C . As f ′(x) = e−x xk−1(k − x) < 0 for every x > k, f (x) is decreasing on (k,∞),
and consequently

0 � bi � k for all i ∈ [n]. (78)

There are two possibilities.

Case 1 There exists a non-negative number y so that bi ∈ {0, y} for every i ∈ [n].
Let λ ∈ [0, 1] denote the proportion of i ∈ [n] with bi = y. Then λy = 1

n

∑n
i=1 bi � 1.

Hence

Φ(�b) = λe−y yk � e−y yk−1 �
(
k − 1

e

)k−1

,

as required.

Case 2 bi receives at least two positive values.
Let i and j be two arbitrary indices such that 1 � i < j � n and min{bi , b j } > 0.

For every small ε > 0, two vectors �b′ := (b1, . . . , bi + ε, . . . , b j − ε, . . . , bn) and �b′′ :=
(b1, . . . , bi − ε, . . . , b j + ε, . . . , bn) clearly belong to the domain C. By Taylor’s formula
and the optimality of �b, we thus obtain

0 � Φ(�b) − Φ(�b′) = ( f ′(b j ) − f ′(bi ))ε + Obi ,b j (ε
2),

0 � Φ(�b) − Φ(�b′′) = −( f ′(b j ) − f ′(bi ))ε + Obi ,b j (ε
2).

This forces f ′(bi ) = f ′(b j ).
As f ′′(x) = e−x xk−2((x − k)2 − k), we see that f ′′(x) > 0 for x ∈ (0, k − √

k), and
f ′′(x) < 0 for x ∈ (k − √

k, k). It follows that f ′(x) is increasing in [0, k − √
k], and

decreasing in [k − √
k, k]. Hence for each α ∈ R, the equation f ′(x) = α has at most two

solutions in [0, k].
From the discussion above and (78), we learn that there are two numbers y and z satisfying

the following properties:

(i) bi ∈ {0, y, z} for every i ∈ [n],
(ii) f ′(y) = f ′(z), that is, e−y yk−1(k − y) = e−z zk−1(k − z),
(iii) 0 < y < z � k.
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Let λ and μ be the proportions of i ∈ [n] such that bi = y and bi = z, respectively.

Then λ + μ � 1, λy + μz
(i)= 1

n

∑n
i=1 bi � 1, and Φ(�b) (i)= Ψ (λ,μ), where Ψ (λ,μ) :=

λ f (y) + μ f (z).
We will view y and z as constants, and seek to maximize Ψ (λ,μ) under the constraints:

λ,μ � 0, λ + μ � 1, and λy + μz � 1. Let (λ0, μ0) be a maximizer of Ψ . We claim that
min{λ0, μ0} = 0. Before proving the claim, let us show how it implies the lemma. Indeed,
if one of λ0 and μ0 is zero, say μ0, then

Φ(�b) = Ψ (λ,μ) � Ψ (λ0, μ0) = λ0e
−y yk � e−y yk−1 �

(
k − 1

e

)k−1

,

as desired.
It remains to prove that min{λ0, μ0} = 0. Suppose to the contrary that λ0, μ0 > 0. Let

λ1 = λ0 − ε and μ1 = μ1 + εy/z, where ε > 0 is a small constant. It is not difficult to verify
that λ1, μ1 � 0, λ1 + μ1 � 1, and λ1y + μ1z � 1. Thus, by the optimality of (λ0, μ0), we
get Ψ (λ1, μ1) � Ψ (λ0, μ0), giving e−z zk−1 � e−y yk−1. Combined with (iii), we obtain
e−z zk−1(k−z) < e−y yk−1(k− y), contradicting (ii). This completes our proof of the lemma.

��

Remark 5.3 Our proof of Theorem 1.5 crucially relied on our running assumption that almost
all the degrees in the graph G are linear. It seems natural to investigate similar extremal
questions with a weakened form of this assumption. The minimal meaningful assumption
seems to be that G contains no vertices of degree 2; this is to avoid the case of paths. This
general setting seems much more complicated. For example, the proportion of leaves in a
uniform spanning tree on an n×n torus is asymptotically almost surely (1−2/π)· 8

π2 +o(1) ≈
0.294 (see for example [18, p. 112]), which is less than the lower bound of e−1 ≈ 0.368 in
Theorem 1.5.
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