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Abstract Robustness against attacks serves as evidence for complex network structures and
failure mechanisms that lie behind them. Most often, due to detection capability limitation or
good disguises, attacks on networks are subject to false positives and false negatives, meaning
that functional nodes may be falsely regarded as compromised by the attacker and vice versa.
In this work, we initiate a study of false positive/negative effects on network robustness
against three fundamental types of attack strategies, namely, random attacks (RA), localized
attacks (LA), and targeted attack (TA). By developing a general mathematical framework
based upon the percolation model, we investigate analytically and by numerical simulations
of attack robustness with false positive/negative rate (FPR/FNR) on three benchmark models
including Erdős-Rényi (ER) networks, random regular (RR) networks, and scale-free (SF)
networks. We show that ER networks are equivalently robust against RA and LA only when
FPR equals zero or the initial network is intact. We find several interesting crossovers in RR
and SF networks when FPR is taken into consideration. By defining the cost of attack, we
observe diminishing marginal attack efficiency for RA, LA, and TA. Our finding highlights
the potential risk of underestimating or ignoring FPR in understanding attack robustness.
The results may provide insights into ways of enhancing robustness of network architecture
and improve the level of protection of critical infrastructures.

Keywords Complex networks · False positive · False negative · Percolation · Attack
robustness

1 Introduction

Complex systems can often be characterized by networks in which the nodes of the network
are the components of the system and the links connecting the nodes represent the interactions
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between the components. The past two decades or so have witnessed numerous advances in
network science becausemany real-world networks such as the Internet, theWorldWideWeb,
protein-protein interaction networks, metabolic networks, food webs, and social networks
are found to have a variety of topological and dynamical properties [1–4]. The function and
stability of networks rely crucially on the interconnections between nodes in which failed
nodes will disable others connecting through them to the network and may destroy or cripple
the entire network. As such, it is of great importance to understand network robustness, i.e.,
how the structure of a network changes as the nodes in it are removed either through random
or malicious attacks [5]. In theoretical studies, percolation model [3,6–8] plays a prominent
role in understanding attacks on networks where the percolation phase transition occurs at a
certain critical occupation probability pc, abovewhich a giant component (proportional to the
size of the original network) exists showing the robustness of amacroscopic cluster. Using the
giant component as the relevant order parameter, some remarkable robustness characteristics
of complex networks are observed. These include the Achilles’ heel phenomenon [5,9,10],
namely, heterogeneous networks are highly robust against random attacks but are extremely
fragile to attacks targeted at hubs, and cascading processes in interdependent networks [11–
13].

In most existing studies on attack robustness, the initial network is assumed to be intact
and all nodes are functional for simplicity. Moreover, the tacit assumption has often been
made that the states of the nodes are accurate to the attacker. However, in real scenarios, the
initial networkmostly contains amixture of functional and dysfunctional (i.e., compromised)
nodes, and some observation errors are prevalent. In particular, a functional node has a chance,
referred to as false positive rate (FPR) [14], to be regarded as compromised by the attacker (so
that attacks will not be launched against it). This may be due to the limitation of the attacker’s
detection capability and/or the disguise of the nodes. For proactive cyber defense, for example,
IP mutation techniques have been proposed to disguise the identity of hosts from sniffers and
scanners based on software-defined networking [15]. To protect distributed software systems,
message forwarding and traffic padding [16,17] are exploited to camouflage the real traffic
flow so that the functional components are obscured from attack. Similarly, false negative
rate (FNR) [14] indicates the probability of falsely viewing an already dysfunctional node as
functional (which may incur subsequent vain attacks). In military actions, false targets can
be deployed to lure the attacker away from genuine elements and increase the cost of the
attacker.

The aim of this paper is to investigate how the existence of FPR and FNR influences the
robustness of complex networks under attacks in terms of the critical percolation thresh-
old and the giant component size. Here, three typical classes of attack strategies are
considered:

– Random attack (RA), where randomly chosen nodes are removed from the network,
meaning that each node in the network is attacked with the same probability. RA consists
of the simplest percolationmodel, which naturally describes system decay, random errors
or attacks without prior knowledge of the network topology; see e.g. [3,5–7,10,11].

– Localized attack (LA), where nodes surrounding a seed node are removed layer by layer,
causing aggregated damage of adjacent components limited to a specific area. LA can
be induced by natural disasters such as earthquakes, floods, and tsunamis, as well as
mass attacks including hazardous chemicals, bomb blasts, and computer viruses; see e.g.
[8,18–22].

– Targeted attack (TA), where nodes with a higher degree (such as hubs) are more vulner-
able, meaning that nodes are attacked in decreasing order of their degree. TA reflects
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real-world situations like malicious attacks against transportation hubs or important
power stations, sabotage on the Internet, and actions on key figures of terrorist orga-
nizations; see e.g. [5–7,9,23–25].

We develop a mathematical framework for understanding the structure transition of a set of
common complex networks benchmarks under RA, LA, and TA, respectively. They include
Erdős-Rényi (ER) networks [26] with a Poisson degree distribution P(k) = e−λλk/k!
and average degree 〈k〉 = λ, random regular (RR) networks following a degenerated
degree distribution P(k) = δk,k0 meaning that each node has exactly k0 links, and scale-
free (SF) networks [2,3,5] characterized by a power-law degree distribution P(k) ∼ k−γ

(γ > 0) with a lower and upper cutoff, kmin and kmax. Our extensive simulations are
in good agreement with analytical calculations. In addition to the model networks, we
perform simulations on large-scale real-world networks, including a communication net-
work and an infrastructure network, to demonstrate the obtained results. Our method is
shown to be capable of predicting attack robustness and uncovering network structural
characteristics.

1.1 Related Work on Attack Robustness of Complex Networks

Due to practical significance of network robustness against deliberate attacks and failures, a
considerable amount of research effort has been devoted to understanding attack robustness
in the past decades. The pioneering work of Albert et al. [5] reveals an important property of
scale-free networks that they display a surprisingly high degree of tolerance against random
decay. Most of prior works dealing with the effect of removing nodes uniformly at random
or in decreasing order of their degrees are reviewed in [3,7]. Drawing upon numerical sim-
ulations, the recent work [23] systematically explores the structure transition of targeting
nodes for removal based on a number of measures including degree, betweenness, closeness,
and eigenvector centrality. A multi-strategy targeted attack launched sequentially based on
several centrality measures is studied numerically in [27]. Some other recent works focus on
random and targeted attacks on interdependent networks and competing networks; see, e.g.,
[11–13,28]. More recently, there has been some interest in the newly introduced localized
attack partly due to its analytical tractability [8,18,22]. However, as mentioned above, none
of these works take real situations involving FPR or FNR into account.

We mention that a concept similar in spirit to FPR is the acquaintance immunization [29],
in which one neighbor of a randomly selected node is vaccinated so that it will not be removed
from the network. However, acquaintance immunization and its variants are mostly studied
in the context of epidemic spreading on networks for a different purpose (emphasizing virus
propagation and epidemic threshold) using different approaches [30,31].

1.2 Contributions

Some of our main findings are summarized in Tables 1, 2, and 3.
The rest of the paper is organized as follows. In Sect. 2, we describe the models and

present the analytical frameworks geared towards attack robustness in the presence of falsie
positives and false negatives under RA, LA, and TA, respectively. In Sect. 3, we perform
numerical experiments on synthetic networks. In Sect. 4, we illustrate the obtained results
on real-world networks of diverse nature. Some discussions regarding benefit-cost ratio and
possible extensions are provided in Sect. 5.
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Table 1 Attack robustness of ER
networks with average degree
〈k〉 = 4

ER networks

Results Meanings

pc pc decreases as α

increases
More robust with
larger FPR

RA=LA when α = 0
or q = 1

Equally robust against
RA and LA when
no FPR or the initial
network is intact

TA≥LA ≥ RA when
α > 0a

LA is between TA
(δ = 0) and TA
(δ = 1) in terms of
attack robustness

P∞ P∞ increases as α

increases
The same as above

RA=LA when α = 0
or q = 1

RA≥LA≥TA when
α > 0a

PCR PCR grows steadilyb

as p increases and
soars when close to
p = 1

Diminishing marginal
attack efficiency for
RA, LA, and TA

PCR increases as α

increases
More efficient with
larger FPR

PCR decreases as β

decreases
Less efficient with
larger FNR

aTA indicates targeted attack with
δ = 1; see (15) for the definition
of δ
bShowing small peaks at pc

2 Theoretical Framework on Attacks Involving False Positives and False
Negatives

We consider a random network characterized by an arbitrary degree distribution P(k), which
is the probability that a randomly chosen node has k links. The generating function of the
degree distribution is defined as G0(x) = ∑∞

k=0 P(k)xk [3,32]. We assume that there are
a fraction q of functional nodes and a fraction 1 − q of failed nodes in the initial network.
Given a functional node, the probability of its being regarded as “failed” by the attacker
is denoted by α, i.e., FPR. To avoid confusion, we shall use quotation marks to emphasize
the states of nodes with respect to the attacker, which can be real or unreal. Analogously,
FNR is signified by β, which is the probability that a failed node is regarded as “func-
tional” by the attacker. As a rule, only “functional” nodes will be attacked and then become
failed.

We assume that attack is launched against the network until a fraction 1− p of “functional”
nodes in the entire network are attacked. A major characteristic of network functionality is
the relative size of the giant component, denoted by P∞, which consists of all functional
nodes after attack. The critical threshold at which the giant component first collapses, i.e.
P∞ ∼ 0, is denoted by pc. In the following, we address three types of attacks, RA, LA, and
TA, respectively.
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Table 2 Attack robustness of
RR networks with degree 4

RR networks

Results Meanings

pc pc decreases as α

increases
More robust with
larger FPR

RA=TA≥LA
when q = 1

Equally robust
against RA and
TA when the
initial network is
intact

TA≥RA≥LA
when q < 1

More robust
against RA than
against TA when
the initial
network is not
intact

Most robust
against LA in
terms of pca

P∞ P∞ increases as α

increases
Similar as above
(but with some
exceptions on
robustness of
LAa)

LA≥RA=TA
when q = 1

LA≥RA≥TA
when q < 1
(with some
exceptionsa)

PCR PCR grows
steadilyb as p
increases and
soars when close
to p = 1

Diminishing
marginal attack
efficiency for
RA, LA, and TA

PCR increases as
α increases

More efficient
with larger FPR

PCR decreases as
β decreases

Less efficient with
larger FNR

aIt happens that P∞(RA) >

P∞(TA) > P∞(LA) when q <

1, α and p are relatively large
(see Fig. 6a), indicating that the
network can be the least robust
against LA in terms of P∞
bShowing small peaks at pc

2.1 Random Attack

In a random attack, each “functional” node is attacked with probability 1 − p. It is easy
to see that the RA process can be accommodated by the classical node percolation [3,6]
with occupation probability αq + p(1 − α)q using law of total probability. Recall that the
generating function of the degree distribution isG0(x) = ∑∞

k=0 P(k)xk . The size distribution
of the clusters that can be reached following a randomly selected edge is generated in a self-
consistent equation [6]

H1(x) =1 − αq − p(1 − α)q

+ [αq + p(1 − α)q]xG1(H1(x)), (1)

where G1(x) = G ′
0(x)/G

′
0(1). Then the probability generating function for the size of the

cluster to which a randomly selected node belongs is generated by
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Table 3 Attack robustness of SF
networks with γ = 2.47 and
average degree 4.01

SF networks

Results Meanings

pc pc decreases as α

increases
More robust with
larger FPR

LA≥RAa for all
α and q

Always more
robust against
RA than against
LA and TA

TA ≥ RA for all α
and q

LA and TA are
comparable with
appropriate δ

P∞ P∞ increases as α

increases
The same as above

RA ≥ LAa for all
α, q, and p

RA ≥TA for all α,
q,p

PCR PCR grows
steadilyb as p
increases and
soars when close
to p = 1

Diminishing
marginal attack
efficiency for
RA, LA, and TA

PCR increases as
α increases

More efficient
with larger FPR

PCR decreases as
β decreases

Less efficient with
larger FNR

TA≥RA TA and LA are
more efficient
than RA

LA≥RA a

aThis is the case when γ is
relatively small; otherwise, the
inequality reverses
b Showing small peaks at pc

H0(x) = 1 − αq − p(1 − α)q

+ [αq + p(1 − α)q]xG0(H1(x)). (2)

Hence, the mean size of small clusters is

H ′
0(1) = [αq + p(1 − α)q]

·
{

1 + [αq + p(1 − α)q]G ′
0(1)

1 − [αq + p(1 − α)q]G ′
1(1)

}

, (3)

which diverges when 1 = [αq + p(1 − α)q]G ′
1(1) marking the critical value pc at which

the giant component collapses. Therefore, for q > 0 and α < 1 we have

pc(RA) = min

⎧
⎨

⎩
max

⎧
⎨

⎩
0,

1
G ′
1(1)

− αq

(1 − α)q

⎫
⎬

⎭
, 1

⎫
⎬

⎭
. (4)

Note that we recover the critical occupation probability pc = 1/G ′
1(1) in [6] for an initially

intact network with no false positives; i.e., q = 1 and α = 0. When q > 1/G ′
1(1), the initial

network has a giant component, and we observe that pc(RA) is a decreasing function with
respect to α. This agrees with our intuition that the network becomes more robust when α
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increases, namely, more nodes are protected from attack. Moreover, it is easily seen from (4)
that pc(RA) = 1 when q ≤ 1/G ′

1(1), and that pc(RA) decreases with respect to q .
The fraction S(RA) of the giant component in the network is given by

S(RA) = 1 − H0(1) = [αq + p(1 − α)q][1 − G0(H1(1))], (5)

where H1(1) satisfies H1(1) = 1 − αq − p(1 − α)q + [αq + p(1 − α)q]G1(H1(1)). By
definition, we have P∞(RA) = S(RA). From (4) and (5) we observe that pc and P∞ do
not change with β because a failed node remains so regardless of the attacker’s perspective.
However, the introduction of FNR is not only for the generality of the work. Recall in the
beginning of this section that the considered attack is launched against the network until a
fraction 1 − p of “functional” nodes are attacked. Despite not changing the static quantities
such as pc and P∞, β clearly plays a role in this rule and affects the percolation process. The
influence of FNR is manifested in the cost of attack (see Sect. 2.4 below) and the dynamical
performance-cost ratio in the process of attack (c.f. Figs. 4, 7, and 10).

2.2 Localized Attack

We next consider the localized attack on the network by attacking a fraction 1− p of “func-
tional” nodes starting from a randomly chosen root node, its nearest neighbors (shell 1), next
nearest neighbors (shell 2), and so forth [18]. Formally, shell l is defined as the set of nodes
that are at distance l from the root.

In the network of N nodes (with N → ∞ in the thermodynamic limit), we divide the
whole attack process into three regimes (c.f. Fig. 1): (i) We first attack a fraction 1 − p of
“functional” nodes starting from the root node as follows. The attacker checks nodes in the
ascending order of their distance from the root. If a node is “functional”, then it is removed
from the network, otherwise it maintains the same state. The nodes in the same shell of the
root are checked randomly, and after nodes in shell l are fully checked, the attacker begins
checking nodes in shell l + 1. The process continues until a fraction 1 − p of “functional”
nodes in the entire network are removed. We define the attacked area as the set consisting of
all nodes that are checked and are removed after the attack. After the attack, we suppose that
the links connecting the attacked area to outside (i.e., the rest of the nodes) are still left in
place and that all links connecting two nodes outside the attacked area are also present (see
Fig. 1b); (ii) We remove these links connecting the attacked area to outside (see Fig. 1c); (iii)
We remove all failed nodes (together with their incident links) outside the attacked area (see
Fig. 1d).

Since there areqN random functional nodes and (1−q)N random failed nodes in the initial
network on average, the attacked area is composed of (1− p)(1−α)qN + (1− p)(1− q)N
nodes. Hence, there are a fraction s := p + αq(1 − p) of nodes outside the the attacked
area. We first consider the regime (i). Let As(k) be the number of nodes with degree k
out of the attacked area. In the limit of N → ∞, following the approach introduced in
[18,22,33], we find that the probability to have a node with degree k outside the attacked
area, Ps(k) = As(k)/(sN ), is given by

Ps(k) = P(k)
f k

G0( f )
, (6)

and the average degree outside the attacked area is 〈k(s)〉 = ∑∞
k=0 Ps(k)k = f G ′

0( f )
/G0( f ), where f ≡ G−1

0 (s). We write Gs(x) = ∑∞
k=0 Ps(k)x

k = G0( f x)/G0( f ) for the
generating function of Ps(k).
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Fig. 1 Schematic illustration of the LA process. a A fraction q of nodes are initially functional (black
represents the functional nodes, white the failed nodes, and shadowed the functional nodes that are not known
to the attacker due to FPR). b A fraction 1 − p of “functional” nodes are removed starting from the central
node (root). The attacked area is indicated by a red contour. All links connecting to nodes outside the attacked
area are envisaged to be present. c Links connecting the attacked area to outside are removed. d Failed nodes
outside the attacked area are removed

In the regime (ii), the number of links connecting the attacked area to outside can be
expressed as

L̃(s) = Ns〈k(s)〉L(s)

Ns〈k(s)〉 + L(s)
= N

[

f G ′
0( f ) − G ′

0( f )
2

G ′
0(1)

]

, (7)

where L(s) = N [G ′
0(1) f

2 − G ′
0( f ) f ] means the number of open links belonging to the

outer shell of the attacked area [33]. Due to the randomness of interconnections, the resultant
network outside the attacked area can be thought of as the outcome of a bond percolation
with occupation probability given by q̃ = 1− L̃(s)/(sN 〈k(s)〉) = G ′

0( f )/[G ′
0(1) f ]. At this

stage, the probability generating function of nodes’ degree distribution, signified by G̃0(x),
becomes [18,22]

G̃0(x) =Gs(1 − q̃ + q̃x)

= 1

G0( f )
G0

[

f + G ′
0( f )

G ′
0(1)

(x − 1)

]

. (8)

We finally consider the regime (iii), which consists of a node percolation with occupation
probability q . As the random connection process can be modeled by a branching process,
we define G̃1(x) = G̃ ′

0(x)/G̃
′
0(1) to be the generating function of the underlying branching
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process.Accordingly, the size distributions of the clusters that can be reached froma randomly
chosen link, and the clusters that can be traversed by randomly following a starting node are
generated, respectively, by [3,32]

H̃1(x) = 1 − q + qxG̃1[H̃1(x)] (9)

and
H̃0(x) = 1 − q + qxG̃0[H̃1(x)]. (10)

The mean size of small clusters equals

H̃ ′
0(1) = q

[

1 + qG̃ ′
0(1)

1 − qG̃ ′
1(1)

]

. (11)

The diverging point of (11) indicates the critical occupation probability pc(LA), at which a
giant component first forms. A direct calculation shows that

pc(LA) = min

{

max

{

0,
sc − αq

1 − αq

}

, 1

}

(12)

is determined by
G ′

0(1) = qG ′′
0( f ), (13)

where f ≡ G−1
0 (s). Clearly, pc(LA) = 1 when q ≤ 1/G ′

1(1),
1 and similarly as in the RA

case, pc(LA) is a decreasing function with respect to both α and q .
Using (9) and (10), the fraction S of the giant component in the resultant network outside

the attacked area is given by

S(LA) = 1 − H̃0(1) = q[1 − G̃0(H̃1(1))], (14)

where H̃1(1) satisfies H̃1(1) = 1−q+qG̃1(H̃1(1)). The relative size of the giant component
as a fraction of the original network is given by P∞(LA) = sS(LA).

From (12), (13), and (14), we can easily reproduce the critical values pc(LA) and P∞(LA)

in [18] when the initial network is intact and FPR is absent, namely, when q = 1 and α = 0.
Again, FNR, β, does not affect pc and P∞.

2.3 Targeted Attack

In a targeted attack, a fraction 1 − p of “functional” nodes are attacked and removed based
on their degrees. Following [25,34], we assign to each node a value

Wδ(ki ) = kδ
i

∑N
i=1 k

δ
i

, (15)

to represent the probability that a node i with degree ki is attacked if it is “functional”, where
δ is a real and N is the number of nodes in the network as before. When δ > 0, nodes
with higher degree have a higher probability to be removed; pushing it to the limit δ → ∞
yields the attack strategy that nodes are removed strictly in the decreasing order of degrees.
The case δ < 0 implies the opposite strategies. Note that the case δ = 0 is equivalent to
the random attack with equal probability. In fact, we can show that pc(TA) = pc(RA) and
P∞(TA) = P∞(RA) when δ = 0; see below and Appendix A.

1 When q = 1/G′
1(1), it follows from (13) that sc = 1 and hence pc = 1. However, if q < 1/G′

1(1), the
solution sc of (13) can be larger than one, which is an extraneous root as s by definition cannot exceed one.
This is why we formally impose an upper bound in (12).
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Given a δ, we divide the targeted attack process into three regimes: (i) We remove the
failed nodes in the initial network. Namely, (1− q)N nodes are removed in this regime; (ii)
We attack a fraction 1− p of “functional” nodes according to (15) in the remaining network.
The attacked area now consists of the failed nodes in the remaining network. Then we assume
that all links connecting the attacked area and the remaining nodes are still left in place; (iii)
We remove those links connecting the attacked area and the remaining nodes.

Since a fraction 1 − q of nodes are removed randomly from the initial network in the
regime (i), the probability generating function for the node degree of the remaining network
is [3,34]

Ḡ0(x) := G0(1 − q + qx), (16)

and the corresponding degree distribution is denoted by P̄(k) := 1
k!

dk Ḡ0
dxk

∣
∣
∣
x=0

. Let Ḡ1(x) =
Ḡ ′

0(x)/Ḡ
′
0/(1) = G1(1 − q + qx).

In the regime (ii), there are (1 − p)(1 − α)qN nodes in the attacked area. Let t =
[qN − (1− p)(1−α)qN ]/qN = p+α(1− p). Therefore, there are a fraction t of nodes in
the resulting network. Let At (k) be the number of nodeswith degree k out of the attacked area.
Let Gδ(x) = ∑∞

k=0 P̄(k)xk
δ
[34,35]. Following the method introduced in [34], we find that

the probability to have a node with degree k outside the attacked area, Pt (k) = At (k)/(tqN ),
can be expressed by

Pt (k) = P̄(k)
gk

δ

Gδ(g)
, (17)

and the average degree outside the attacked area is 〈kδ(t)〉 := ∑∞
k=0 Pt (k)k

δ =
gG ′

δ(g)/Gδ(g), where g ≡ G−1
δ (t). We write Gt (x) = ∑∞

k=0 Pt (k)x
k = 1

t

∑∞
k=0

P̄(k)gk
δ
xk for the generating function of Pt (k).

In the regime (iii), since the network is randomly connected, the resultant network outside
the attacked area can be viewed as the outcome of a bond percolation with occupation
probability given by

q̂ = tqN 〈k(t)〉
qN 〈k〉 = tG ′

t (1)

Ḡ ′
0(1)

, (18)

where 〈k(t)〉 is the average degree of remaining nodes, and 〈k〉 is the average degree of the
remaining network after the regime (i). Using the same approach as in [3], the probability
generating function of remaining nodes’ degree distribution, signified by Ĝ0(x), becomes

Ĝ0(x) =Gt (1 − q̂ + q̂x)

= 1

Gδ(g)

∞∑

k=0

P̄(k)gk
δ [1 + q̂(x − 1)]k . (19)

As the random connection process can be modeled by a branching process, we define

Ĝ1(x) = Ĝ ′
0(x)

Ĝ ′
0(1)

= G ′
t (1 + q̂(x − 1))

G ′
t (1)

(20)

to be the generating function of the underlying branching process. By combining (20) and
the criterion for the network to collapse [32], 1 = Ĝ ′

1(1), we find that tc satisfies

G ′
t (1) = q̂G ′′

t (1) (21)
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where g ≡ G−1
δ (t). Therefore,

pc(TA) = min

{

max

{

0,
tc − α

1 − α

}

, 1

}

. (22)

The fraction S of the giant component in the resultant network outside the attacked area
satisfies

S(TA) = 1 − Ĝ0(u), (23)

where u satisfies the transcendental equation u = Ĝ1(u), and g = G−1
δ (p + α(1 − p)).

The relative size of the giant component as a fraction of the original network is given by
P∞(TA) = tqS(TA).

As mentioned before, we will show the equivalence of RA and TA in the case δ = 0 in
Appendix A. Also, note that when p = 1, i.e., no attacks are launched, we have P∞(RA) =
P∞(LA) = P∞(TA) for all q (clearly, α and β play no role herein). This can be shown
straightforwardly by comparing (5), (14), (23) and a similar argument as in Appendix A. The
details are left to the interested reader.

2.4 Cost of Attack

To appropriately evaluate the effectiveness of attack, the attack cost should be factored in. In
[28], the authors analyzed the attack cost for two competing networks, in which the stronger
network may take over inactive nodes from the weaker network at a price of reduction of its
own robustness. Here, with the attacker as an external object and in the presence of FPR and
FNR, it is natural to define the attack cost, c = c(p), as

c = [(1 − α)q + β(1 − q)](1 − p), (24)

which measures the fraction 1− p of “functional” nodes that are attacked. The reason behind
is that the action of attack incurs costs [36]. Moreover, we define the attack performance-cost
ratio (PCR) when a fraction 1 − p of “functional” nodes are attacked as

PCR = 1 − P∞
c

, (25)

which quantifies the efficiency of attacks. The quantity PCR in (25) measures the change
of remaining network size excluding the giant component per “functional” node attacked.
Hence, a higher value of PCR indicates a more efficient attack, which may cause more severe
damages and is likely exploited by malicious attackers. See also Sect. 5 for a discussion
regarding PCR.

3 Results

In this section, we conduct analytical analysis and numerical calculations of the theoretical
expressions obtained above to better appreciate and test the effect of FPR and FNR on attack
robustness for some model networks. All the simulation results are obtained for networks
with N = 106 nodes.

The networks are generated via configuration model [3,32] with a prescribed degree dis-
tribution detailed below.A pair of labels (L1, L2) is associatedwith each node in the network.
We initially label each node as failed with probability 1 − q and functional with probability
q in L1 independently. Each functional(L1) node is labeled as failed with probability α and
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functional with probability 1 − α in L2 independently. Similarly, each failed(L1) node is
labeled as failed with probability 1−β and functional with probability β in L2 independently.
To obtain the percolation threshold pc, we begin with p = 1 and a list of functional(L2)

nodes. We take nodes progressively from the list according to RA, LA, TA strategies respec-
tively, and change its state in L2 to failed with probability 1 − p; each failed(L2) node is
then deleted together with its incident links. After checking the whole list, we then remove
all remaining failed(L1) nodes and their incident links in the network, calculate the fraction
P∞ of the giant component. We reduce p and repeat the process until P∞ < 10−3.

Due to the possible randomness in the node labeling/selection operation of the attack
strategies, the plotted results are averaged over 100 independent simulation runs for each of
the randomly generated networks. The error bars of the 100 simulation runs with respect to
their average are less than 0.01 in all of the simulation cases. We do not plot the error bars
for the sake of having a better visual effect.

3.1 Erdős-Rényi Networks

AnERnetwork follows a Poisson degree distribution P(k) = e−λλk/k! (k ≥ 0)with average
degree λ. Therefore, G0(x) = G1(x) = eλ(x−1). For RA, it follows easily from (4) and (5)
that

pc(RA) = min

{

max

{

0,
1 − αλq

(1 − α)λq

}

, 1

}

, (26)

and
P∞(RA) = [αq + p(1 − α)q]

{
1 − eλ[H1(1)−1]} , (27)

where H1(1) satisfies H1(1) = 1 − αq − p(1 − α)q + [αq + p(1 − α)q]eλ[H1(1)−1]. For
LA, we calculate that G̃0(x) = G̃1(x) = eλs(x−1). Using (12) and (14), we obtain

pc(LA) = min

{

max

{

0,
1 − αλq2

(1 − αq)λq

}

, 1

}

, (28)

and

P∞(LA) =[p + αq(1 − p)]q
·
{
1 − eλ[p+αq(1−p)][H̃1(1)−1]} , (29)

where H̃1(1) satisfies the transcendental equation H̃1(1) = 1 − q + q

·eλ[p+αq(1−p)][H̃1(1)−1]. For TA with δ = 1, using (18) and the fact that Ḡ0(x) = Ḡ1(x) =
eλq(x−1) we obtain q̂ = geλq(g−1). Hence, pc(TA) is given by (22), where tc is determined
by 1 = λqg2eλq(g−1) and t = eλq(g−1) using (21). It follows from (23) that

P∞(TA) =pq + αq(1 − p)

− qeλq(g−1)+λqg2eλq(g−1)(u−1), (30)

where u satisfies u = exp{λq(u − 1)(p + α(1 − p)){1 + 1
λq ln[p + α(1 − p)]}2} and g is

determined by p + α(1 − p) = eλq(g−1).
When α = 0, i.e., no false positives exist, it can be proved that pc(RA) = pc(LA) and

P∞(RA) = P∞(LA) by using a transformation H1(1) − 1 = p[H̃1(1) − 1] (c.f. Figs. 2, 3).
When q = 1, i.e., all nodes are functional in the initial network, we can show in a similar way
that pc(RA) = pc(LA) and P∞(RA) = P∞(LA) (c.f. Figs. 2, 3). Interestingly, these mean
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Fig. 2 Percolation threshold pc
as a function of initial functional
probability q for ER networks
with size N = 106 and λ = 4
under different FPR α = 0, 0.2,
and 0.5. Theoretical predictions
(solid lines) and simulations
(symbols) for RA, LA, and TA
(with δ = 1), respectively, agree
well with each other
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that RA and LA have exactly the same attack power for ER networks when either no false
positives exist or no initial failed nodes exist. The special case of having bothα = 0 and q = 1
is previously observed in [18], and the equivalence of the two strategies is interpreted by a
close competition between two factors behind LA. We will see below that this interpretation
can be largely extended in two directions.

Figure 2 shows the behavior of the critical value pc under RA, LA, and TA (with δ = 1)
for a variety of values of α. The results gathered in Fig. 2 allow us to draw several interesting
comments. First, as expected from the above theoretical results, an increase in the initial
functional probability q systematically yields an decrease in pc for all attack strategies and
values of α considered. The shared transition point of pc = 1 at q = 1/G ′

1(1) = 1/λ
marks the percolation threshold of the initial network, where a giant component first forms
[6]. Second, for any given value of q , the threshold pc is found to decrease with α for all
attack strategies because more functional nodes are prevented from being attacked when α

becomes larger. Third, when α = 0, namely, all functional nodes are exposed to the attacker,
we have pc(RA) = pc(LA) as commented above. Note that the initial failure is random; in
other words the functional nodes in the initial network still constitutes an ER network with
average degree λq . Therefore, the two competitive factors behind LA, namely, the factor due
to heterogeneity that hubs are more likely within the attacked area accelerating the network
fragmentation and the factor due to localization that only nodes on the surface of the attacked
area contribute to the breakdown mitigating the fragmentation process, compensate for each
other in ER networks as observed in [18]. In a like manner, when q = 1, the network facing
the attacker is again an ER network, as each node is regarded as “failed” with probability
α at random. Fourth, for α > 0, we observe in general that pc(TA) > pc(LA) > pc(RA)

indicating that TA (with δ=1 here) is the most powerful attack while RA (i.e., TA with δ = 0)
is the least. The interesting observation that LA is in-between can be explained as follows.
The high degree nodes are more likely to be attacked under TA as compared to LA;2 while
the functional nodes in the attacked hole3 under LA, i.e., those nodes that are checked by

2 In general, for q < 1 and α > 0, there exists a δ∗ = δ∗(λ) such that the inequality pc(TA(δ)) > pc(LA)

holds for all δ > δ∗. Note that δ∗ increases with λ since there is a higher probability that hubs in a denser
network are attacked under LA. In principle, the value of δ∗ can be analytically determined in our framework.
3 Here, “attacked hole” means those nodes that are checked by the attacker during the LA process. It is slightly
different from the attacked area defined in Sect. 2.2.
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Fig. 3 Fraction of giant component P∞ as a function of p for ER networks with size N = 106 and λ = 4
under different FPR α = 0, 0.2, and 0.5. a is for q = 0.8 and b is for q = 1. Theoretical predictions (solid
lines) and simulations (symbols) for RA, LA, and TA (with δ = 1), respectively, agree well with each other

the attacker but remain functional due to FPR, generally do not contribute to the integrity
of the remaining network, which is hence more vulnerable than that under RA.4 Finally, all
these attack strategies, in terms of pc, turn out to be sensitive with respect to the change of
α; for example, RA with α = 0 is actually more powerful than TA with α = 0.5 for, say, all
q > 0.4, highlighting the risk of ignoring FPR in understanding attack robustness.

We display in Fig. 3 the fraction of giant component P∞ as a function of p under RA, LA,
and TA for a variety of values of α and q . First, note that there are second-order percolation
transition behaviors and the critical threshold at P∞ = 0 (if exits) coincides with the critical
probability pc in Fig. 2 for all attack strategies and all α and q considered. When q = 1 and
α = 0.5, for example, P∞(RA), P∞(RA), and P∞(RA), are always positive (Fig. 3b). This
means that even all “functional” nodes are attacked, the networkmaintains a giant component.
This is in line with the results in Fig. 2, where pc(RA) = pc(LA) = pc(TA) = 0 for
α = 0.5 at q = 1. Second, when α = 0 (see Fig. 3a) or q = 1 (see Fig. 3b), we observe that
P∞(RA) = P∞(LA) for all p ∈ [0, 1] again due to the fact that in either case the attacker
confronts an ER network generalizing the results of [18] along two directions. Third, for a
given p we observe from Fig. 3a that P∞(RA) > P∞(LA) > P∞(TA(δ = 1)) when q < 1
and α > 0. In general, similarly as commented above, the inequality P∞(LA) > P∞(TA(δ))

holds for a sufficiently large δ depending on λ.
In Fig. 4 we plot the behavior of PCR as a function of p for various combinations of α

and β. We observe that PRC is quantitatively similar for all attack strategies considered; it
grows steadily all the way to p ≈ 0.9, and then jumps dramatically when p gets to approach
1.5 This is due to the fact that only a few nodes are attacked in the short beginning period
but single nodes start to be peeled off pushing to a high PCR; when the attack continues, the
giant component size does not shrinks as fast as the linear increase of the number of attacked
nodes, reducing the PCR. This is the case even without FPR or FNR [7,26]; and the similarity
between the three attack strategies may find its origin in the structural homogeneity of ER
networks.

4 For a given q < 1, the difference between pc(LA) and pc(RA) becomes more and more prominent when
α increases from 0 to α∗,1 := minpc(RA)=0{α}; it then decreases and reaches zero at the point α = α∗,2 :=
minpc(LA)=0{α}.
5 This is remarkably reminiscent of the celebrated law of diminishing marginal returns in economy. Here, the
marginal attack efficiency in terms of PCR decreases rapidly as the attack progresses, namely, as p decreases.
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Fig. 4 Main panels: Performance-cost ratio PCR as a function of p for ER networks with size N = 106 and
λ = 4 under RA, LA, and TA (with δ = 1). a is for q = 0.8, β = 0.2; and b is for q = 0.8, α = 0.2. Insets:
Zoom-in view of the main panels

Despite the similarity, we note that for a given attack strategy, PCR is typically higher for
larger α (Fig. 4a) but lower for larger β (Fig. 4b). The first observation is nontrivial as a larger
α leads to a larger P∞ (c.f. Fig. 3) but a smaller attack cost c (c.f. Eq.(24)). We performed
extensive numerical calculationswith different parameter combinations to confirm this. It can
be understood as the effect of “protection” of α is not as marked as that of reducing the cost
of the attacker. This also indicates that ignoring FPR would underestimate the harmfulness
of a range of attacks including RA, LA, and TA. On the other hand, the influence of β is clear
according to (25) since it does not affect P∞. In real situations, increasing β could exhaust
the attacker and reduce the harm.

Furthermore, we observe interestingly that the PCR curves display small peaks or turning
points, where the first derivatives are discontinuous. By comparing Fig. 4 with Figs. 2 and 3,
we find that the peaks occur exactly at the corresponding percolation thresholds pc. For
example, when q = 0.8 and α = 0.2, the peaks for TA (see the three green curves in Fig. 4b)
appear at around 0.38, which is in consistent with the corresponding pc. This phenomenon
can be explained as follows. At pc the giant component collapses into small components con-
tributing substantially to PCR. We performed extensive numerical calculations for different
combinations of q, α, β and λ, which produce quantitatively similar phenomena.

3.2 Random Regular Networks

A RR network has a degenerated degree distribution with each node linking to k0 neighbors.
Accordingly, G0(x) = xG1(x) = xk0 . For RA, it follows from (4) and (5) that

pc(RA) = min

{

max

{

0,
1 − αq(k0 − 1)

(1 − α)q(k0 − 1)

}

, 1

}

, (31)

and
P∞(RA) = [αq + p(1 − α)q][1 − H1(1)

k0 ], (32)

where H1(1) satisfies H1(1) = 1−αq − p(1−α)q +[αq + p(1−α)q]H1(1)k0−1. For LA,

we calculate that G̃0(x) =
{

1 + [p + αq(1 − p)]
k0−2
k0 (x − 1)

}k0
and G̃1(x) = G̃0(x)

k0−1
k0 .
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Fig. 5 Percolation threshold pc
as a function of initial functional
probability q for RR networks
with size N = 106 and k0 = 4
under different FPR α = 0, 0.2,
and 0.5. Theoretical predictions
(solid lines) and simulations
(symbols) for RA, LA, and TA
(with δ = 1), respectively, agree
well with each other
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Employing (12) and (14), we obtain

pc(LA) = min

⎧
⎨

⎩
max

⎧
⎨

⎩
0,

[q(k0 − 1)]−
k0

k0−2 − αq

1 − αq

⎫
⎬

⎭
, 1

⎫
⎬

⎭
, (33)

and

P∞(LA) = [p + αq(1 − p)]q

·
{

1 −
{

1 + [p + αq(1 − p)]
k0−2
k0 [H̃1(1) − 1]

}k0
}

, (34)

where H̃1(1) satisfies the transcendental equation H̃1(1) = 1 − q + q·
{

1 + [p + αq(1 − p)]
k0−2
k0 [H̃1(1) − 1]

}k0−1

. For TA with δ = 1, using (18) and the fact

that Ḡ0(x) = (1 − q + qx)k0 and Ḡ1(x) = Ḡ0(x)
k0−1
k0 we obtain q̂ = g(1 − q + qg)k0−1.

Hence, pc(TA) is given by (22), where tc is determined by 1 = g2q(k0 −1)(1−q +qg)k0−2

and t = (1 − q + qg)k0 via (21). It follows from (23) that

P∞(TA) = [p + α(1 − p)]q

·
{

1 − (1 − q + qg)k0 [1 + qg2(1 − q + qg)k0−2(u − 1)]k0
p + α(1 − p)

}

, (35)

where u satisfies u = [1 + qg2(u − 1)(1 − q + qg)k0−2]k0−1 and g is determined by
p + α(1 − p) = (1 − q + qg)k0 .

It can be easily checked that pc(RA) = pc(TA) and P∞(RA) = P∞(TA) for all α when
q = 1 (c.f. Figs. 5 and 6b). This is because RA and TA have the same difference for RR
networks when all nodes are functional at the beginning. However, this is not the case when
q < 1 since the remaining network is no longer regular after an initial fraction 1−q of nodes
fail randomly.

In Fig. 5 we plot the behavior of the critical value pc under RA, LA, and TA (with δ = 1)
for different values of α. First, similarly as in Fig. 2, an increase in the initial functional
probability q systematically yields an decrease in pc for all attack strategies and values of
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Fig. 6 Fraction of giant component P∞ as a function of p for RR networks with size N = 106 and k0 = 4
under different FPR α = 0, 0.2, and 0.5. a is for q = 0.8 and b is for q = 1. Theoretical predictions (solid
lines) and simulations (symbols) for RA, LA, and TA (with δ = 1), respectively, agree well with each other

α. Here, the shared transition point of pc = 1 at q = 1/G ′
1(1) = 1/(k0 − 1) marks the

percolation threshold of the initial network. Moreover, for any given attack strategy and
value of q , the threshold pc decreases as α increases because more functional nodes are
prevented from being attacked when α becomes larger. Second, we have pc(RA) > pc(LA)

for the whole spectrum of α and q (unless both are equal to zero when the network cannot
be disintegrated by attacking even all “functional” nodes). This can be explained as follows.
Since a fraction 1 − q of node are dysfunctional at random initially, the remaining network
is still relatively homogeneous. Thus, the factor of localization in LA is more dominant
and the underlying network becomes more robust against LA than against RA.6 The similar
phenomenon in the special case of q = 1 and α = 0 was observed in [18]. Obviously, TA
(with δ > 0) is the most powerful attack as expected. Finally, as in the ER case, all attack
strategies considered seem to be responsive with respect to the change of α.

We next turn to the relative size of giant component P∞ shown in Fig. 6. Note that, as in
the case of ER networks, the critical threshold at P∞ = 0 (if exits) coincides with the critical
probability pc in Fig. 5 for all attack strategies and all α and q considered. Moreover, when
q = 1 we observe from Fig. 6b that P∞(TA) = P∞(RA) for all α and p as predicted by the
mathematical analysis. Obviously, LA is the least powerful attack strategy since P∞(LA)

is the highest curve for all α and p (see Fig. 6b) in line with the observation in Fig. 5.
However, it is remarkable to note that P∞(LA) < P∞(TA) < P∞(RA) for α = 0.5 and
p > 0.4 in Fig. 6a. It is somewhat unexpected as LA is the least powerful attack in terms
of the percolation threshold pc (c.f. Fig. 5). This phenomenon can be explained as follows.
When q < 1 and α > 0, the network facing the attacker is no longer regular, the factor of
localization in LA does not always play the leading role as compared to that of heterogeneity
in LA. It is especially so during the early period of attack (namely, when p is large) because
high degree nodes are prone to be attacked accelerating the fragmentation process. The factor
of heterogeneity in LA even exceeds that in TA with δ = 1 for p > 0.4 herein. This further
highlights the subtlety of the competition between the two factors behind LA, which is not
observed before.

6 However, such dominance is not universal. In terms of the giant component size, we may have P∞(RA) >

P∞(TA) in some circumstances (c.f. Fig. 6a).
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Fig. 7 Main panels: Performance-cost ratio PCR as a function of p for RR networks with size N = 106 and
k0 = 4 under RA, LA, and TA (with δ = 1). a is for q = 0.8, β = 0.2; and b is for q = 0.8, α = 0.2. Insets:
Zoom-in view of the main panels

Fig. 8 Percolation threshold pc
as a function of initial functional
probability q for SF networks
with size N = 106, γ = 2.47,
kmin = 2, and 〈k〉 = 4.01 under
different FPR α = 0, 0.2, and
0.5. Theoretical predictions (solid
lines) and simulations (symbols)
for RA, LA, and TA (with δ = 1),
respectively, agree well with each
other
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Figure 7 illustrates the behavior of PCR for various combinations of α and β. As in
the case of ER networks, the PRC curves are quantitatively similar for all attack strategies
considered. For a given attack strategy, PCR is typically higher for larger α (Fig. 7a) but lower
for larger β (Fig. 7b). Similar comments for ER networks in Sect. 3.1 can also be applied
here. Moreover, we observe that the PCR curves display turning points at the corresponding
percolation thresholds pc (c.f. Fig. 5). They are caused by the disintegration of the giant
component. As in the case of ER networks, we performed extensive numerical calculations
for different values of q, α, β and k0 to verify these phenomena. Finally, comparing Fig. 7
with Fig. 4, we observe that the peak values for RR networks at around p = 1 are slightly
lower than those for ER networks. This is reasonable because RR networks often have a
lattice-like architecture, which makes the attacks less effective [3,18].

3.3 Scale-Free Networks

A SF network follows a power-law degree distribution P(k) ∼ k−γ (kmin ≤ k ≤ kmax),
where γ > 0 is the scaling exponent, kmin and kmax represent the minimum and maximum
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Fig. 9 Fraction of giant component P∞ as a function of p for SF networks with size N = 106, γ = 2.47,
kmin = 2, and 〈k〉 = 4.01 under different FPR α = 0, 0.2, and 0.5. a is for q = 0.8 and b is for q = 1.
Theoretical predictions (solid lines) and simulations (symbols) for RA, LA, and TA (with δ = 1), respectively,
agree well with each other

degrees, respectively. We show in Fig. 8 the behavior of the critical value pc for SF networks
under RA, LA, and TA (with δ = 1) with different values of α. Note that we use networks
with approximately the same average degree, i.e., 〈k〉 ≈ 4, in all simulations. Comparing
Fig. 8 with the results reported in Figs. 2 and 5, we are led to several interesting conclusions.

First, an increase in the initial functional probability q systematically yields an decrease
in pc for all attack strategies and values of α. The shared transition point of pc = 1 at
q = 1/G ′

1(1) ≈ 0.08 marks the percolation threshold of the initial network. Again, for any
given attack strategy and value of q , the threshold pc decreases as α increases. Second, for
any given α and q , we observe that pc(RA) is much smaller than pc(LA) in sharp contrast
to the cases of ER and RR networks. This phenomenon is due to the fact that SF networks
are highly heterogeneous. The factor of heterogeneity in LA turns dominant; hubs are more
likely to be attacked, which accelerate the fragmentation.7 Moreover, as in ER networks, the
strategies LA and TA are generally comparable. For given α, q and a SF network, we may
determine a critical value δ∗ ≥ 0 so that pc(LA) = pc(TA(δ = δ∗)) holds. For example,
we observe from Fig. 8 that pc(LA) < pc(TA(δ = 1)) at q = 1 for all α considered, which
indicates that the corresponding δ∗ in questionmust be smaller than 1. Third, as in the ER and
RR cases, all attack strategies considered are quite sensitive with respect to the change of α

and q . For example, the curve pc(RA) with α = 0 intersects the curve pc(LA) with α = 0.5
(see Fig. 8), which implies that the attack robustness of the SF network against RA and LA
may switch as α and q change.8 These phenomena are noteworthy in attack robustness of
real-world networked systems when FPR are uncertain or unknown.

In Fig. 9, we display the fraction of giant component P∞ as a function of p for a range of
values of α and q . As in ER and RR cases, we observe that there are second-order percolation

7 Since a SF network becomes less heterogenous when the scaling exponent γ gets larger [3], we may
determine, as in [18], a critical γc = γc(α, q) with which pc(RA) = pc(LA) holds. When γ > γc , the SF
networks, similar to RR networks, become more robust against LA compared to RA. However, note that γc is
no longer unique in our situation due to the existence of α and q. For example, when α = 0.5 and q = 0.98,
we know from Fig. 8 that γ = 2.47 is a candidate for γc(0.5, 0.98), but values sufficiently close to 2.47 are
candidates as well.
8 Note that there is another switch of attack power between RA and LA in terms of the power-law exponent
γ . SF networks behave similarly as RR networks when γ is large (c.f. Fig. 11b and Ref. [18])
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Fig. 10 Main panels: Performance-cost ratio PCR as a function of p for RR networks with size N = 106,
γ = 2.47, kmin = 2, and 〈k〉 = 4.01 under RA, LA, and TA (with δ = 1). a is for q = 0.8, β = 0.2; and b is
for q = 0.8, α = 0.2. Insets: Zoom-in view of the main panels

transition behaviors and the critical threshold at P∞ = 0 (if exits) coincides with the critical
probability pc shown in Fig. 8 for all attack strategies and all α and q considered. Moreover,
for a given p we observe that P∞(RA) > P∞(LA) and P∞(RA) > P∞(TA) for all q and
α considered. This agrees with the results reported in Fig. 8 (in terms of pc), indicating that
the SF network is universally and strictly more resilient against RA than against LA and TA
(with δ > 0), namely, RA is the least powerful attack strategy.9 Recall that this is not true
for either ER networks (c.f. Fig. 3) or RR networks (c.f. Fig. 6).

The PCR curves shown in Fig. 10 share some common patterns as compared to ER
networks (Fig. 4) and RR networks (Fig. 7). Namely, (i) PCR grows steadily all the way to
p around 0.9, and then increases rapidly when p is close to 1; (ii) PCR is higher for larger
α but lower for larger β; (iii) PCR curves display peaks/turning points at the corresponding
percolation thresholds pc for all attack strategies. However, from the insets of Fig. 10 we
discern a major difference between TA(LA) and RA. We observe from Fig. 10b that PCRs
for LA and TA (with δ = 1) are obviously higher than PCR for RA; the height, for example,
of the turning point for TA(β = 0) is about 3.5, which is larger than the counterparts in
ER networks (around 2.5) and RR networks (around 2.2). This is due to the heterogeneity
of SF networks, rendering TA the most powerful attack among these attack strategies. We
have performed extensive simulations for various values of δ, which shows that the height
of PCR curves increases with δ as expected. Moreover, the theoretical framework provided
here allows us to identify the detailed level of attack power (in terms of PCR) of LA ranging
from RA, i.e., TA with δ = 0, to TA with any large δ. For instance, Fig. 10b indicates that the
attack power of LA is between RA and TA with δ = 1 for all α, β, and q considered. These
information can be instrumental for both attackers and defenders in choosing appropriate
attack and defense strategies.

4 Applications

In this section we investigate the attack robustness of two real-world large-scale networks
under RA, LA, and TA with false positives. The first network is an e-mail network (E-mail)

9 Again, this is true only for small γ . When γ is large, SF networks behave similarly as RR networks.
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Fig. 11 Fraction of giant component P∞ as a function of p for a E-mail network and b Road network under
RA, LA, TA(δ = 1), and TA(δ = 2) with different FPR α = 0.1 and α = 0.3. Each data point is obtained by
an ensemble averaging of 100 realizations

which contains N = 56969 nodes and average degree 2.96 [37,38]. The nodes of the e-mail
network corresponds to e-mail addresses and a link between two addresses is established if an
e-mail is exchanged between them. This network is collected at Kiel University in Germany
over a period of 113 days, which is shown to be a scale-free network with scaling exponent
γ = 1.81. The second network is a road network (Road) of Pennsylvania in USA, which
contains N = 1.087×106 nodes [39]. The nodes of the network are the intersections between
roads and the edges are road segments between intersections. This network has a power-law
exponent 8.99 with average degree 2.83, whichmeans that it is no longer a scale-free network
but falls in some class of random planar network [40,41].

In Fig. 11, we plot the behavior of relative size of giant component P∞ as a function
of p under various attack strategies and false positives. Comparing Fig. 11a with Fig. 9a,
we observe that E-mail has the signature of a typical scale-free network, in which P∞(RA)

is evidently higher than P∞(TA) and P∞(LA) for all α considered indicating that E-mail
network is more robust against RA than against TA an LA. LA is seen to be comparable with
TA with δ = 1. Moreover, E-mail network becomes more vulnerable when we increase δ

from 1 to 2, as onewould expect, due to the heterogeneity nature of the network. For example,
when α = 0.1 and p = 0.8, i.e., when 20 percent of “functional” nodes are attacked, the
network almost collapses under TAwith δ = 2 but maintains one-half of the giant component
under TA with δ = 1. On the other hand, Fig. 11b shows that Road network is more robust
against LA than against RA and TA regardless of α, which is quantitatively similar to the
behavior of RR networks (c.f. Fig. 6). In addition, we observe interestingly that the curve
P∞(RA) with α = 0.3 is nearly overlapped with P∞(LA) with α = 0.1. This means that
LA launched on the Road network may be mimicked perfectly by RA with appropriate
false positives. A sophisticated attacker could take advantage of this “bug” for disrupting
infrastructure systems such as the one considered here.

5 Discussion

We have presented a general framework for coping with attack robustness in the presence of
false positives and false negatives, within which three important classes of attacks, namely,
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Fig. 12 Transformed
performance-cost ratio PCR2 as a
function of p for ER networks
with size N = 106 and λ = 4
under RA, LA, and TA (with
δ = 1). We set q = 0.8 and
β = 0.2
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RA, LA, and TA are studied. We show how false positives and false negatives can influence
the network robustness in terms of percolation thresholds, giant component sizes, as well
as the performance-cost ratios. In general, ER, RR, and SF networks have their respective
features in response to these attacks, showing a good sensitivitywith respect to false positives.

As shown in Figs. 4, 7, and 10, the PCR value reaches local maximum when the giant
connected component vanishes at pc and fails to clearly differentiate varieties of attacks in
the initial stage of the attack (i.e., in the regime of p close to 1). An intuitive quantification
of the benefit-cost ratio is that it should be maximized at pc in the whole range of p ∈ [0, 1].
By applying a linear operator on PCR, we may define a new measure as

PCR2 = d

dp

(
P∞
1 − c

)

, (36)

which quantifies the change rate of the ratio of the giant component size to the number
of unattacked nodes with respect to p. Although the physical meaning of PCR2 is not as
straightforward as PCR, a higher value of PCR2 intuitively implies a more harmful attack.
The PCR2 values for ER networks are shown in Fig. 12, which very well agree with our
above intuition of benefit-cost ratio; PCR2 is maximized when the network is broken down
into pieces at the critical threshold pc. However, from (36) and (24), we see that a weakness
of this new measure is that it is not sensitive to the FNR, i.e., β, when q is close to 1 (in fact,
the curves for other values of β are very close to those shown in Fig. 12). But this is the most
interesting regime in practice. It would be highly desirable to construct other viable options.

Our work is a first step towards the systematic study of false positive and false negative
effects, which assumes that the attack strategy is set once and for all. It remains an open
problem to determine the FPR/FNR effect when adaptive attacks or combined attacks are
launched. Such sophisticated tactics, which are extremely harmful to the network architec-
tures, have recently been identified in a number of computer networks [42]. Furthermore,
from the perspective of network theory, generalizations to interdependent networks as well
as correlations within the networks (such as assortativity) are appealing because such cor-
relations are known to affect the dynamics and percolation thresholds prominently; see e.g.
[43–45]. In particular, the understanding of the interplay between FPR/FNR and the inter-
layer dependence could shed light on a wealthy of attack robustness phenomena in the real
world.
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Appendix: Equivalence of RA and TA when δ = 0

Fix δ = 0. It follows from (18) that q̂ = g. Therefore, Eq. (21) reduces to
{∑∞

k=0 P̄(k)k = g
∑∞

k=2 P̄(k)k(k − 1),
g = G−1

δ=0(t) = t,
(37)

which implies tc = 1/[qG ′
1(1)]. Comparing (4) with (22) we obtain pc(RA) = pc(TA).

From (16), (19) and (23) we obtain

P∞(TA) = tqS(TA) = tq

{

1 −
∞∑

k=0

P̄(k)[1 + g(u − 1)]k
}

= tq[1 − G0(1 + qg(u − 1))], (38)

where u is determined by

u = Ĝ1(u) = Ḡ1(1 + g(u − 1)) = G1(1 + qg(u − 1)). (39)

Note that (39) can be recast as 1 + qg(u − 1) = 1 − qg + qgG1(1 + qg(u − 1)) and
g = t = p + α(1 − p) = α + p(1 − α). Hence, comparing (5) with (38) we conclude
P∞(RA) = P∞(TA).
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43. D’Agostino, G., Scala, A., Zlatić, V., Caldarelli, G.: Robustness and assortativity for diffusion-like pro-

cesses in scale-free networks. EPL 97, 68006 (2011)
44. Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdepen-

dent networks. Phys. Rev. E 86, 066103 (2012)
45. Tyra,A., Li, J., Shang,Y., Jiang, S., Zhao,Y.,Xu, S.: Robustness of non-interdependent and interdependent

networks against dependent and adaptive attacks. Phys. A 482, 713–727 (2017)

123


	False Positive and False Negative Effects on Network Attacks
	Abstract
	1 Introduction
	1.1 Related Work on Attack Robustness of Complex Networks
	1.2 Contributions

	2 Theoretical Framework on Attacks Involving False Positives and False Negatives
	2.1 Random Attack
	2.2 Localized Attack
	2.3 Targeted Attack
	2.4 Cost of Attack

	3 Results
	3.1 Erdős-Rényi Networks
	3.2 Random Regular Networks
	3.3 Scale-Free Networks

	4 Applications
	5 Discussion
	Acknowledgements
	Appendix: Equivalence of RA and TA when δ=0
	References




