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Abstract We consider the n-component |ϕ|4 lattice spin model (n ≥ 1) and the weakly self-
avoiding walk (n = 0) on Z

d , in dimensions d = 1, 2, 3. We study long-range models based
on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying
with distance r as r−(d+α) with α ∈ (0, 2). The upper critical dimension is dc = 2α. For
ε > 0, and α = 1

2 (d + ε), the dimension d = dc − ε is below the upper critical dimension.
For small ε, weak coupling, and all integers n ≥ 0, we prove that the two-point function at the
critical point decays with distance as r−(d−α). This “sticking” of the critical exponent at its
mean-field value was first predicted in the physics literature in 1972. Our proof is based on a
rigorous renormalisation groupmethod. The treatment of observables differs from that used in
recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.

Keywords Renormalisation group · Critical phenomena · Two-point function · Spin
systems · Self-avoiding walk

1 Introduction and Main Result

Broadly speaking, the mathematical understanding of critical phenomena for spin systems
has progressed in dimension d = 2, where exact solutions and SLE are important tools; in
dimensions d > 4, where infrared bounds and the lace expansion are useful; and in dimension
d = 4, where renormalisation group (RG) methods have been applied. The physically most
important case of d = 3 is more difficult, and mathematical methods are scarce.
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In the physics literature, the ε-expansion was introduced to study non-integer dimensions
slightly below d = 4. An alternate approach is to consider long-range models, which change
the upper critical dimension from dc = 4 to a lower value dc = 2α with α ∈ (0, 2).
By choosing d = 1, 2, 3 and α = 1

2 (d + ε) with small ε, it is possible to study integer
dimension d which is slightly below the upper critical dimension 2α = d + ε. In this paper,
we consider n-component spins and the weakly self-avoiding walk in this long-range context,
and prove that the critical two-point function has mean-field decay r−(d−α) also below the
upper critical dimension. Ourmethod involves a RG analysis in the vicinity of a non-Gaussian
fixed point.

1.1 Introduction

We consider long-range O(n) models on Z
d for integers n ≥ 0 and dimensions d = 1, 2, 3.

The case n = 0 is the continuous-time weakly self-avoiding walk, and the case n ≥ 1 is the
n-component |ϕ|4 lattice spin model. For n = 0 the underlying random walk model takes
steps of length r with probabilities decaying as r−(d+α) with α ∈ (0, 2), and for n ≥ 1 the
spin-spin interaction in the Hamiltonian has that same decay. More precisely, the models are
based on the fractional Laplacian (−Δ)α/2, whose kernel decays at large distance as r−(d+α).

The upper critical dimension is predicted to be dc = 2α for all n ≥ 0. Thus, for α < d
2 ,

mean-field behaviour is predicted; this has been proved for self-avoiding walk, for the Ising
model, for the 1-component ϕ4 model, and for other models [3,17,22,23]. In the physics
literature, it is observed that below the upper critical dimension the critical two-point function
continues to exhibit the mean-field decay r−(d−α) for α ∈ ( d2 , 2− η), and then crosses over
to r−(d−2+η) decay for α ∈ (2 − η, 2). Here η is the exponent for the nearest-neighbour
model; for n = 1 this is η = 1

4 for d = 2 [35], and a recent estimate for d = 3 is
η = 0.03631(3) [18]. The earliest paper to elucidate the critical behaviour of long-range
models is [20], with [33] roughly contemporaneous and [29] providing further development.
A very recent paper which analyses the crossover for the two-point function in detail for
n = 1 is [8]. At the crossover, when α = α∗ = 2− η, a logarithmic correction is predicted,
with overall decay 1

rd−α∗
1

log r [8,11]. The relationship with conformal invariance is explained
in [28].

Let n = 0, 1, 2, . . .; d = 1, 2, 3; and α = 1
2 (d + ε). We use a rigorous RG argu-

ment to prove that for small ε > 0, the critical two-point function has decay r−(d−α).
This proves the “sticking” of the critical exponent at its mean-field value, for α slightly
above d

2 , or equivalently, for d slightly below the upper critical dimension dc = 2α.
Our proof extends recent results and methods used to study the ε-expansion for the crit-
ical exponents for the susceptibility and specific heat of the long-range models [31].
It also relies on results and techniques developed to study related problems for the 4-
dimensional nearest-neighbour models [5,16,32]. However, our treatment of observables
differs from that used in the 4-dimensional case, via our application of a cluster expan-
sion.

Earlier mathematical work which applies RG methods to long-range models includes the
construction of global RG trajectories for n = 0 and d = 3 [27], and for a continuum
version of the n = 1 model in [1,12]. These references do not study critical exponents. The
exponents for critical correlations in a certain hierarchical version of themodel, for d = 3 and
n = 1, are computed in [2]. For a closely related continuummodel with n = 1 in dimensions
d = 2, 3, a proof of the “sticking” of the critical exponent for the critical two-point function
was announced in a 2013 lecture [24].
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1.2 Fractional Laplacian

The models we study are defined in terms of the fractional Laplacian. We now define the
fractional Laplacian and list some of its properties. Further details can be found in [31,
Sects. 2–3].

Let d ≥ 1 and α ∈ (0, 2). We write |x | for the Euclidean norm of x ∈ Z
d . Let J be the

Z
d×Z

d matrix with Jxy = 1 if |x− y| = 1, and otherwise Jxy = 0. Let I denote the identity
matrix. The lattice Laplacian on Z

d is Δ = J − 2d I . For k = (k1, . . . , kd) ∈ [−π, π]d , let

λ(k) = 4
d∑

j=1
sin2(k j/2) = 2

d∑

j=1

(
1− cos k j

)
. (1.1)

The matrix element −Δx,y can be written as the Fourier integral

−Δx,y = 1

(2π)d

∫

[−π,π ]d
λ(k)eik·(x−y)dk. (1.2)

The fractional Laplacian is the matrix (−Δ)α/2 defined by

(−Δ)
α/2
x,y = 1

(2π)d

∫

[−π,π ]d
λ(k)α/2eik·(x−y)dk. (1.3)

For |x − y| → ∞, the fractional Laplacian decays as

− (−Δ)
α/2
x,y � |x − y|−(d+α) (1.4)

(see [31, Lemma 2.1], or [10, Theorem 5.3] for a more precise and more general statement).
Here, and in the following, we write a � b to denote the existence of c > 0 such that
c−1b ≤ a ≤ cb. For d ≥ 1, α ∈ (0, 2 ∧ d), m̄2 > 0, m2 ∈ [0, m̄2], and x 
= 0, the resolvent
obeys

(
(−Δ)α/2 + m2)−1

0,x ≤ c
1

|x |d−α

1

1+ m4|x |2α , (1.5)

with c depending on d, α, m̄2 (see [31, Lemma 3.2]). For m2 = 0, an asymptotic formula

(
(−Δ)α/2)−1

0,x ∼ cd,α

1

|x |d−α
(1.6)

is proven in [9, Theorem 2.4], with precise constant cd,α .
Given integers L , N > 1, let Λ = ΛN = Z

d/LN
Z
d denote the d-dimensional discrete

torus of side length LN . The torus fractional Laplacian is defined by
(−ΔΛN

)α/2
x,y =

∑

z∈Zd

(−Δ)
α/2
x,y+zLN (x, y ∈ ΛN ). (1.7)

The sum on the right-hand side of (1.7) converges, by (1.4).

1.3 The |ϕ|4 Model

We first define the model on the torus Λ = ΛN , as usual for spin systems. Let d ≥ 1 and
α ∈ (0, 2). Let n ≥ 1. The spin field ϕ is a function ϕ : Λ → R

n , denoted x �→ ϕx , which
we may regard as an element ϕ ∈ (Rn)Λ. The Euclidean norm of v = (v1, . . . , vn) ∈ R

n

is |v| = [∑n
i=1(vi )2]1/2, with inner product v · w = ∑n

i=1 viwi . We extend the action of
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the fractional Laplacian to act on the spin field component-wise, namely ((−ΔΛ)α/2ϕ)ix =∑
y∈Λ(−ΔΛ)

α/2
x,y ϕi

y .

Given g > 0 and ν ∈ R, we define the interaction V : (Rn)Λ → R by

V (ϕ) =
∑

x∈Λ

( 1
4g|ϕx |4 + 1

2ν|ϕx |2 + 1
2ϕx · ((−ΔΛ)α/2ϕ)x

)
. (1.8)

The partition function is defined by

Zg,ν,N =
∫

(Rn)Λ
e−V (ϕ)dϕ, (1.9)

where dϕ is the Lebesgue measure on (Rn)Λ. The expectation of a random variable F :
(Rn)Λ → R is

〈F〉g,ν,N = 1

Zg,ν,N

∫

(Rn)Λ
F(ϕ)e−V (ϕ)dϕ. (1.10)

Given lattice points a, b, we define the finite- and infinite-volume two-point function by

Ga,b,N (g, ν; n) = 〈ϕ1
aϕ

1
b〉g,ν,N = 1

n
〈ϕa · ϕb〉g,ν,N , (1.11)

Ga,b(g, ν; n) = lim
N→∞Ga,b,N (g, ν; n). (1.12)

On the left-hand side of (1.12) we have a, b ∈ Z
d , and on the right-hand side we identify

these points with elements of ΛN for large N , by regarding the vertices of ΛN as a cube in
Z
d (without boundaries identified) approximately centred at the origin. The susceptibility is

defined by
χ(g, ν; n) = lim

N→∞
∑

b∈ΛN

Ga,b,N (g, ν; n) (1.13)

and can be used to identify the critical point of the model. By translation invariance, χ is
independent of a. Existence of the infinite volume limits in (1.12)–(1.13), in our context, is
discussed below.

1.4 Weakly Self-Avoiding Walk

Let d ≥ 1 andα ∈ (0, 2). Let X denote the continuous-timeMarkov chainwith state spaceZ
d

and infinitesimal generator Q = −(−ΔZd )α/2. Verification that Q has the attributes required
of a generator is given in [31, Lemma 2.4]. Let P be the probability measure associated with
X , and E the corresponding expectation; a subscript a specifies X (0) = a. The transition
probabilities are given by

Pa(X (t) = b) = Ea(1X (t)=b) = (etQ)a,b. (1.14)

The local time of X at x up to time T is the random variable Lx
T = ∫ T

0 1X (t)=x dt . The
self-intersection local time up to time T is the random variable

IT =
∑

x∈Zd

(
Lx
T

)2 =
∫ T

0

∫ T

0
1X (t1)=X (t2) dt1 dt2. (1.15)
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1136 M. Lohmann, et al.

Given g > 0, ν ∈ R, and a, b ∈ Z
d , the continuous-timeweakly self-avoidingwalk two-point

function is defined by the integral

Ga,b(g, ν; 0) =
∫ ∞

0
Ea

(
e−gIT 1X (T )=b

)
e−νT dT, (1.16)

and the susceptibility is defined by

χ(g, ν; 0) =
∑

b∈Zd

Ga,b(g, ν; 0) =
∫ ∞

0
Ea(e

−gIT )e−νT dT . (1.17)

The labels 0 on the left-hand sides of (1.16)–(1.17) reflect the fact that the weakly self-
avoiding walk corresponds to the formal n = 0 case of the n-component |ϕ|4 model. As
in earlier work on the 4-dimensional case, e.g., [31,32], we treat both cases n ≥ 1 (spins)
and n = 0 (self-avoiding walk) simultaneously and rigorously, via a supersymmetric spin
representation for the weakly self-avoiding walk.

1.5 Susceptibility and Critical Point

Let d = 1, 2, 3; n ≥ 0; L be sufficiently large; ε > 0 be sufficiently small; and α = 1
2 (d+ε).

Let τ (α) denote the diagonal element of the Green function, i.e., τ (α) = ((−Δ)α/2)−10,0. One

of the main results of [31] is that there exists s̄ � ε such that, for g ∈ [ 6364 s̄, 65
64 s̄], there exist

νc = νc(g; n) = −(n + 2)τ (α)g(1+ O(g)) and C > 0 such that for ν = νc + t with t ↓ 0,

C−1t−(1+ n+2
n+8

ε
α
−Cε2) ≤ χ(g, ν; n) ≤ Ct−(1+ n+2

n+8
ε
α
+Cε2). (1.18)

This is a statement that there is a critical point at ν = νc, and that the critical exponent γ

exists to order ε, with

γ = 1+ n + 2

n + 8

ε

α
+ O(ε2) (n ≥ 0). (1.19)

It is part of the statement that for n ≥ 1 the susceptibility is given by the infinite-volume
limit (1.13), under the above hypotheses. The critical exponent for the specific heat is also
computed to order ε in [31], for n ≥ 1.

1.6 Main Result

Our main result is the following theorem, which shows that just below the upper critical
dimension, the exponent for the critical two-point function “sticks” at its mean-field value
(see (1.6)), as predicted by [20]. The theorem applies for all n ≥ 0, including the case n = 0
of the weakly self-avoiding walk. The critical value νc = νc(g; n) is the one mentioned in
Sect. 1.5. As part of the proof of the theorem, it is shown that for n ≥ 1 the infinite-volume
limit (1.12) exists for ν = νc.

Theorem 1.1 Let d = 1, 2, 3; n ≥ 0; L be sufficiently large; ε > 0 be sufficiently small;
and α = 1

2 (d+ε). For g ∈ [ 6364 s̄, 65
64 s̄] the critical two-point function obeys, as |a−b| → ∞,

Ga,b(g, νc; n) = (1+ O(ε))((−Δ)α/2)−1a,b �
1

|a − b|d−α
. (1.20)

Note that Theorem 1.1 identifies the constant in the decay of the interacting two-point
function only up to an error of order ε. However, the error is uniformly bounded in a, b, so
the power in the decay rate takes its mean-field value, and this is true to all orders in ε.
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1.7 Strategy of Proof

The proof is based on a rigorous RGmethod developed in a series of papers by Bauerschmidt,
Brydges and Slade, where the focus is on the nearest-neighbour models in dimension 4. The
method is adapted to the long-range setting in [31].

Fix g as in the statement of Theorem 1.1. In [31], given small m2 > 0, a criti-
cal value νc0(m

2) is constructed, with the property that the critical point νc is given by
νc = limm2↓0 νc0(m

2). Let

U0 =
∑

x∈Λ

( 1
4g|ϕx |4 + 1

2ν
c
0 |ϕx |2

)− σaϕ
1
a − σbϕ

1
b . (1.21)

For x = a, b, let Dσx = ∂
∂σx

|σa=σb=0. For n ≥ 1, the two-point function obeys

Ga,b,N (g, νc0(m
2)+ m2; n) = Dσa Dσb logECe

−U0 , (1.22)

where EC denotes Gaussian expectation with covariance C = ((−ΔΛ)
α
2 + m2)−1 (m2 > 0

ensures existence of the inverse). Thus the two-point function is interpreted as a perturbation
of a Gaussian expectation. A similar representation is valid for the weakly self-avoidingwalk,
using a Gaussian superexpectation.

Perturbation theory is performed inductively in a multi-scale fashion, using a finite-range
decomposition C = C1 + · · · + CN , with C j of range ∼ L j . This is implemented via the
Gaussian convolution identity ECθ = ECN θ ◦ · · · ◦ EC1θ , where ECθ denotes Gaussian
convolution. At every step in the induction, we get a representation

EC j θ ◦ · · · ◦ EC1θe
−U0 ≈ e−Uj , (1.23)

where the polynomial

Uj = u j |Λ| +
∑

x∈Λ

( 1
4g j |ϕx |4 + 1

2ν j |ϕx |2
)− λa, jσaϕ

1
a − λb, jσbϕ

1
b −

1

2
(qa, j + qb, j )σaσb

(1.24)

includes all Euclidean- and O(n)-invariant monomials that are relevant and marginal accord-
ing to the RG philosophy. The error in this approximation is irrelevant in the RG sense and
is controlled uniformly in the volume by parametrising it as a polymer gas. According to
(1.23), after the final step of the induction has been performed, we obtain

Ga,b,N (g, νc0 + m2; n) = Dσa Dσb logECe
−U0 ≈ −Dσa DσbUN |ϕ=0 = 1

2
(qa,N + qb,N ).

(1.25)

To control qx,N (x = a, b), we need to study the RG dynamical system

(g j , ν j , u j , λx, j , qx, j ) → (g j+1, ν j+1, u j+1, λx, j+1, qx, j+1), (1.26)

and its non-perturbative corrections. The initial condition is (g0, ν0, u0, λx,0, qx,0) =
(g, νc0, 0, 1, 1, 0, 0). (In fact, the coupling constant u j does not play an important role for the
two-point function.) For d = 4, the dynamical system has a Gaussian fixed point. We use the
adaptation of the RGmethod, as developed in [31], to the long-range setting below the upper
critical dimension, where the fixed point is instead non-Gaussian. In [31] only the flow of
g j , ν j , u j was studied and λ j , q j did not appear, but the flow of g j , ν j , u j remains identical
when these additional coupling constants do appear. For the nearest-neighbour model on
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Z
4, the RG method was applied in [5,32] to prove |a − b|−2 decay of the critical two-point

function for all n ≥ 0. We mainly follow the approach of [5,32]. In particular, our treatment
of the flow of qx, j remains the same and yields

qx, j ≈ λa, jabλb, jabw j;a,b, (1.27)

where w j = ∑ j
k=1 Ck , and where jab = �logL(2|a − b|)� is the coalescence scale defined

to ensure that Ck;a,b = 0 when k ≤ jab. By definition of jab, the right-hand side of (1.27)
is zero for j below the coalescence scale, and this remains true non-perturbatively as well:
qx, j = 0 for scales j ≤ jab.

The flow of λ j was analysed recursively for the Gaussian RG fixed point in [5,32], but for
the non-Gaussian fixed point in our current setting the recursive analysis cannot be applied
due to the non-summability of remainder terms, and a different approach is needed. Let

D̄ = ∑
x∈Λ

∂
∂ϕ1

x
|ϕ=0 and D̄2 = ∑

x,y∈Λ
∂2

∂ϕ1
x ∂ϕ1

y
|ϕ=0. According to (1.23),

λa, j = eu j |Λ| D̄Dσa e
−Uj ≈ eu j |Λ| D̄DσaEw j θe

−U0 . (1.28)

Let w
(1)
j = ∑

x∈Λ w j;a,x , which is independent of a. Using Gaussian integration by parts
and translation invariance, we show in (4.7) that

D̄DσaEw j θe
−U0 = Ew j e

−U0|σ=0 + 1

|Λ|w
(1)
j D̄2

Ew j θe
−U0|σ=0 . (1.29)

By using (1.23) to evaluate the two terms in the above right-hand side approximately, we
thus obtain

λa, j ≈ 1+ w
(1)
j ν j . (1.30)

This relates λ j to the bulk coupling constants g j , ν j whose flow is known from [31]. In

particular, it is shown in [31] that w(1)
j ν j = O(ε). All of the above is carried out uniformly

in m2, which permits the limit m2 ↓ 0 to be taken after the infinite-volume limit. Since
limm2↓0 limN→∞ wN :a,b = ((−ΔZd )α/2)−1a,b � |a − b|−(d−α), all this, together with the
rigorous versions of (1.27) and (1.25), implies our main result (1.20). The non-perturbative
corrections to (1.30) due to the irrelevant error coordinate are controlled using a cluster
expansion. This is the main innovation in the proof of Theorem 1.1.

The remainder of the paper is organised as follows. In Sect. 2,we provide somebackground
and definitions needed for the RG method. In Sect. 3, we formulate the RG map and state
the main theorem which provides estimates on the RG map; this is an adaptation of the main
result of [16] as applied to the long-range model in [31]. The main difference, compared to
[31], is the inclusion of observables in the RG map. The flow of the observable coupling
constant λ j is analysed in Sect. 4. The flow of the observable coupling constant q j is then
analysed in Sect. 5, where the proof of Theorem 1.1 is completed.

2 Set-Up for RG Method

In this section, we summarise some notation and background for the RG method, needed for
the proof of Theorem 1.1. Additional details can be found in [31].

2.1 Formula for Two-Point Function

We begin with a formula for the two-point function that serves as our starting point.
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2.1.1 The Case n ≥ 1

For n ≥ 1, we define

τx = 1

2
|ϕx |2 (n ≥ 1). (2.1)

Given g > 0, ν ∈ R, m2 > 0, we set

g0 = g, ν0 = ν − m2. (2.2)

Given a, b ∈ Λ, we introduce observable fields σa, σb ∈ R, and define V0 and Z0 by

V0(ϕx ) = g0τ
2
x + ν0τx − σaϕ

1
a1x=a − σbϕ

1
b1x=b, Z0(ϕ) = e−V0(Λ), (2.3)

with V0(Λ) = ∑
x∈Λ V0(ϕx ).

Given a Λ×Λ covariance matrix w, let Ew denote the Gaussian expectation with covari-
ancew. LetC = ((−ΔΛN )α/2+m2)−1. By shifting part of the |ϕ|2 term into the covariance,
the expectation (1.10) can be rewritten as

〈F〉g,ν,N = EC Fe−V∅

0 (Λ)

ECe−V∅

0 (Λ)
, (2.4)

where V∅

0 (Λ) denotes the evaluation of V0(Λ) at σa = σb = 0. When F is a monomial,
it is standard to write this ratio of expectations as a derivative of a logarithmic generating
function. Let Dσa denote the operator

∂
∂σa

|σa=σb=0, and similarly for higher derivatives. Then
the two-point function is given, for n ≥ 1, by

Ga,b,N (g, ν; n) = 〈ϕ1
aϕ

1
b〉g,ν,N = D2

σaσb
logECe

−V0(Λ). (2.5)

2.1.2 The Case n = 0

For n = 0, as in several previous papers (e.g., [5,6,32])we formulate theweakly self-avoiding
walk model as the infinite-volume limit of a supersymmetric version of the |ϕ|4 model. The
supersymmetric model involves a complex boson field (φx , φ̄x )x∈Λ and a fermion field given
by the 1-forms ψx = 1√

2π i
dφx , ψ̄x = 1√

2π i
dφ̄x . For n = 0, in place of (2.1), we set

τx = φx φ̄x + ψx ∧ ψ̄x (n = 0), (2.6)

and we replace ϕ1
a , ϕ

1
b in (2.3) by φ̄a, φb.

For n = 0, a formula closely related to (2.5) is given, e.g., in [32, (6.5)], with EC in (2.5)
replaced by the Gaussian superexpectation. As in [32], our formalism applies to the super-
symmetric model with only notational changes, with n interpreted as n = 0 in formulas such
as (1.19), and with the Gaussian expectation replaced by a superexpectation. For notational
simplicity, we concentrate throughout the paper on the case n ≥ 1.

2.2 Progressive Integration

In our version of the RG method, the expectation ECe−V0(Λ) of (2.5) is evaluated in
a multi-scale fashion, via a finite-range decomposition of the covariance C . We use the
same finite-range decomposition C = C1 + C2 + · · · + CN−1 + CN ,N of the covariance
C = ((−ΔΛN )α/2 +m2)−1 that is described and analysed in [31, Sect. 3]. A closely related
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1140 M. Lohmann, et al.

decomposition was first introduced in [25] and subsequently developed in [26]. The covari-
ances C j are translation invariant, and have the finite-range property

C j;x,y = 0 if |x − y| ≥ 1

2
L j . (2.7)

Thus, we may regard C j either as a covariance on Z
d or on ΛN , as long as N > j . Viewing

theC j as covariances onZ
d , we also have a decomposition of the infinite-volume covariance

given by ((−Δ)α/2+m2)−1 = ∑∞
j=1 C j .We leave implicit the dependence of the covariance

C j onm2. According to [31, (3.11)], form2 bounded, the covariancesC j satisfy the estimates

|C j;x,y | ≤ cL−(d−α)( j−1)(1+ m4L2α( j−1))−1. (2.8)

For n ≥ 1, and for an integrable F : (Rn)Λ → R, we define the convolution ECθF by

(ECθF)(ϕ) = EC F(ϕ + ζ ), (2.9)

where the expectation EC on the right-hand side acts on ζ and leaves ϕ fixed. A similar
construction is used for n = 0 (see, e.g., [6, Sect. 4.1]). By [13, Proposition 2.6], the Gaussian
convolution can be evaluated as

ECθF = (
ECN θ ◦ ECN−1θ ◦ · · · ◦ EC1θ

)
F, (2.10)

with an abuse of notation where CN means CN ,N . To compute the expectation ECe−V0(Λ) in
(2.5), we use (2.10) to evaluate ECθe−V0(Λ) progressively, as follows. We write E j = EC j

and let
Z j+1 = E j+1θ Z j (0 ≤ j < N ), (2.11)

with Z0 = e−V0(Λ) as in (2.3). By (2.10), EC Z0 is obtained by setting ϕ = 0 in

ZN = ECθ Z0. (2.12)

This leads us to study the recursion Z j �→ Z j+1.

2.3 Function Space

The observable fields σa, σb are needed only for the purpose of evaluating the second deriva-
tive in (2.5). Therefore, dependence on the observable fields which is higher order than
quadratic plays no role. We make use of this by defining the function space N as explained
below. We also define the Tϕ seminorm on N . These definitions are as in, e.g., [14,32]. We
focus on the case n ≥ 1; the modifications needed for n = 0 are as in, e.g., [15].

2.3.1 The Space N

Given pN > 0, let
N∅ = C pN ((Rn)Λ). (2.13)

As in [31, Sect. 6.2.1], we fix any pN ≥ 10. For n = 0, N∅ is instead a space of even
differential forms with pN -times differentiable coefficients.

In order to treat functions of the observable fields σa, σb, we define an extension N of
N∅ exactly as in [32, Sect. 2.4.1]. Namely, let N ′ be the space of real-valued functions of
ϕ, σa, σb which areC pN in ϕ andC∞ in σa, σb. An ideal I inN ′ is formed by those elements
of N ′ whose formal power series expansion in the observable fields to order 1, σa, σb, σaσb
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is equal to zero. We define N as the quotient algebra N = N ′/I. Then N has a direct sum
decomposition

N = N ′/I = N∅ ⊕N a ⊕N b ⊕N ab, (2.14)

where elements of N a,N b,N ab are given by elements of N∅ multiplied by σa , by σb, and
by σaσb respectively. Thus, elements of N can be identified with polynomials over N∅ in
the observable fields with terms only of order 1, σa, σb, σaσb, i.e. F ∈ N can be written as

F = F∅ + σa Fa + σbFb + σaσbFab (2.15)

with Fc ∈ N∅ for each c ∈ {∅, a, b, ab}. There are natural projections πc : N → N c

defined for such F by π∅F = F∅, πa F = σa Fa , πbF = σbFb, and πabF = σaσbFab.
We set π∗ = 1 − π∅. The expectation EC acts term-by-term on F ∈ N , namely EC F =
EC F∅ + σaEC Fa + σbEC Fb + σaσbEC Fab for F as in (2.15).

2.3.2 Seminorms

A family of seminorms is used to control the size of elements ofN . Let Λ∗ denote the set of
sequences of any finite length (including length 0), composed of elements ofΛ×{1, . . . , n}.
Let ϕ ∈ (Rn)Λ be a field, and let F ∈ N∅. Given �x = ((x1, i1), . . . , (xp, i p)) ∈ Λ∗, we
write |�x | = p and let

F�x (ϕ) = ∂ pF(ϕ)

∂ϕ
i1
x1 . . . ∂ϕ

i p
x p

. (2.16)

A test function g is a mapping g : Λ∗ → R, written �x �→ g�x . We define the ϕ-pairing of F
with a test function g by

〈F, g〉ϕ =
∑

|�x |≤pN

1

|�x |! F�x (ϕ)g�x . (2.17)

Given a parameter h j > 0, a scale-dependent norm ‖g‖� = ‖g‖� j (h j ) is defined on test
functions in [31, (6.8)]. The � = � j (h j ) norm controls the size of a test function and its
discrete gradients up to order p� = 4, but its precise definition is immaterial for the present
discussion. With B�(1) the unit ball in �, we define the Tϕ = Tϕ, j (h j ) seminorm on N∅

by
‖F‖Tϕ = sup

g∈B�(1)
|〈F, g〉ϕ |. (2.18)

Given an additional parameter hσ = hσ, j , we extend this definition to all of N exactly as in
[14], i.e., the seminorm of F of the form (2.15) is defined to be

‖F‖Tϕ = ‖F∅‖Tϕ + hσ (‖Fa‖Tϕ + ‖Fb‖Tϕ )+ h2σ ‖Fab‖Tϕ . (2.19)

2.4 Blocks, Polymers and Scales

2.4.1 Blocks and Polymers

Thefinite-range covariance decomposition iswell-suited to a blockdecompositionof the torus
ΛN of period LN into disjoint blocks of side L j , for scales 0 ≤ j ≤ N . This decomposition
is an important ingredient in our choice of the coordinates in which we represent the RG
map. We now describe it in detail, along with a number of useful related definitions, as in
[16].
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We partition the torusΛN , which has period LN , into disjoint j -blocks of side L j ( j ≤ N ).
Each j-block is a translate of the block {x ∈ Λ : 0 ≤ xi < L j , i = 1, . . . , d}. We denote
the collection of j-blocks by B j .

A j -polymer is any (possibly empty) union of j-blocks, and P j denotes the set of j-
polymers. Given X ∈ P j , we denote by B j (X) the set of j-blocks in X , and denote by
P j (X) the set of j-polymers in X . A nonempty polymer X is connected if for any x, x ′ ∈ X ,
there is a sequence x = x0, . . . , xn = x ′ ∈ X with ‖xi+1 − xi‖∞ = 1 for i = 0, . . . , n − 1.
Let C j denote the set of connected j-polymers and, for any X ∈ P j , let Comp j (X) ⊂ C j (X)

be the set of connected components of X . The empty set ∅ is not in C j .
We say that two polymers X, Y do not touch if min {‖x − y‖∞ : x ∈ X, y ∈ Y } > 1. We

call a connected polymer X ∈ C j a small set if it consists of at most 2d j-blocks, and write
S j for the collection of small sets in C j . The small-set neighbourhood of a polymer X ∈ P j

is X� = ∪Y∈S j (X):X∩Y 
=∅Y .
For F1, F2 : P j → N , we define the scale- j circle product F1 ◦ F2 : P j → N by

(F1 ◦ F2)(Y ) =
∑

X∈P j (Y )

F1(Y\X)F2(X) (Y ∈ P j ). (2.20)

We only consider maps F : P j → N with the property that F(∅) = 1. The identity element
for the circle product is the map 1∅ : P j → N defined by 1∅(∅) = 1, 1∅(X) = 0 if
X 
= ∅.

2.4.2 Mass and Coalescence Scales

Two scales play an important role for the nature of the RG recursion (2.11). We define the
mass scale jm by

jm = � fm�, fm = 1+ 1

α
logL m

−2. (2.21)

By definition, jm is the smallest scale for whichm2Lα( jm−1) ≥ 1. The mass scale is the scale
beyond which the mass m2 plays a significant helpful role in the decay of the covariance C j .
Indeed, by (2.8) and the elementary inequality (with notation x+ = max{x, 0})

(1+ m4L2α( j−1))−1 ≤ L−2α( j− jm )+ , (2.22)

we have
|C j;x,y | ≤ cL−(d−α)( j−1)−2α( j− jm )+ . (2.23)

We also define the coalescence scale jab by

jab =
⌊
logL(2|a − b|)⌋. (2.24)

By definition, jab is the unique integer such that

1
2 L

jab ≤ |a − b| < 1
2 L

jab+1. (2.25)

By (2.7), C j;a,b = 0 for all j ≤ jab, and hence

((−Δ)α/2 + m2)−1a,b =
∞∑

j=1
C j;a,b =

∞∑

j= jab+1
C j;a,b. (2.26)

Ultimately, we take the limit m2 ↓ 0 before considering large |a − b|, so we can and do
assume that jm > jab.
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2.5 Localisation Operator Loc

We use the operator Loc defined and analysed in [14], to extract a local polynomial from an
element F ∈ N . For appropriate X ⊂ Λ, the local polynomial LocX F extracts the parts of
F that are relevant and marginal in the RG sense.

2.5.1 Local Polynomials

The range of the operator LocX is a certain vector space U(X) of local polynomials in the
field. We now define this vector space, taking into account that the elements F ∈ N to which
LocX will be applied obey Euclidean covariance and O(n) invariance on N∅.

Given bulk coupling constants g, ν, u ∈ R; a, b ∈ Λ; observable fields σa, σb ∈ R; and
the observable coupling constants λa, λb, qa, qb ∈ R; let

U∅(ϕx ) = gτ 2x + ντx + u, (2.27)

U (ϕx ) = U∅(ϕx )− σaλaϕ
1
a1x=a − σbλbϕ

1
b1x=b − 1

2 (qa1x=a + qb1x=b)σaσb. (2.28)

The symbol∅ denotes the bulk. (For n = 0, we can take u = 0 inU∅ due to supersymmetry;
see [7].) For U as in (2.28) and X ⊂ Λ, we write

U (X) =
∑

x∈X
U (ϕx ). (2.29)

Let U(X) denote the space of polynomials of the form (2.29). Let V(X) ⊂ U(X) be the
subspace for which u = qa = qb = 0. Note that V0 of (2.3) obeys V0(X) ∈ V(X) with
λa = λb = 1.

2.5.2 Definition of Loc

To define Loc, we must first define a set of polynomial test functions, as in [14, Sect. 1.3].
Let p > 0, let a = (a1, . . . , ap) with each ar ∈ N

d
0 , and let k = (k1, . . . , kp) with each

kr ∈ {1, . . . , n}. Let Λ′ ⊂ Λ be a coordinate patch as defined in [14, Sect. 1.3] (e.g., Λ′ can
be any small set as defined in Sect. 2.4). Recall the setΛ∗ of sequences, defined in Sect. 2.3.2.
We define a test function qa,k , supported on sequences �x = ((x1, i1), . . . , (xp, i p)) ∈ Λ∗
with each xr ∈ Λ′, by

qa,k
�x =

p∏

r=1
δir ,kr x

ar
r =

p∏

r=1
δir ,kr

d∏

l=1
x
ar,l
r,l . (2.30)

We include the case p = 0 by interpreting (2.30) as the constant number 1 in this case. The
role of the coordinate patch, which cannot “wrap around” the torus, is to permit polynomial
test functions such as (2.30) to be well-defined. We define the field dimension [ϕ] = d−α

2 .

The dimension of the test function qa,k is defined to equal p[ϕ] + ∑p
r=1

∑d
l=1 ar,l . Given

d+ ≥ 0, we let � = �d+[Λ′] ⊂ � denote the span of all test functions qa,k of dimension at
most d+.

Let N∅(Λ′) denote the space of functionals of the field that only depend on field values
at points in Λ′. By [14, Proposition 1.5], for X ⊂ Λ′, there is a unique operator locX :
N∅(Λ′) → V(X) (independent of the choice of Λ′) such that

〈F, g〉0 = 〈locX F, g〉0 for all g ∈ �, (2.31)
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with the pairing given by (2.17) with ϕ = 0. To extend loc from N∅ to N , suppose we are
given dc+ for c = ∅, a, b, ab. We let loccX denote the operator locX with d+ = dc+ and, for
F as in (2.15), define

LocY F = loc∅

X F∅ + σa loc
a
X Fa + σbloc

b
X Fb + σaσbloc

ab
X Fab. (2.32)

It remains to specify the dc+.
In [31], for scales below the mass scale the range of the restriction of Loc to N∅ is

specified as the span of {1, τ, τ 2}. This corresponds to the choice d∅

+ = d (using symmetry
considerations to disregard non-symmetric monomials). Above the mass scale, a different
range for Loc is used, namely d∅

+ = d − α, due to the enhanced decay of the covariance
decomposition (see [31, Sect. 4.2]).

As in [7, Sect. 3.2], we set da+ = db+ = [ϕ] when Loc acts at scales strictly less than jab,
and set da+ = db+ = 0 for larger scales. We always take dab+ = 0.

The following elementary lemma will be useful. Let 11 denote the constant test function
supported on sequences of length 1 and defined by 11

(x,i) = δi,1. Likewise, let 12 denote the

constant test function supported on sequences of length 2 and defined by 12
((x1,i1),(x2,i2))

=
δi1,1δi2,1. Note that 1

1,12 are each of the form (2.30), with respective dimensions [ϕ] and
2[ϕ].
Lemma 2.1 Given x ∈ Λ and a coordinate patch Λ′ � x, suppose that F ∈ N∅(Λ′). For
j < N and m = 1, 2,

〈(1− Locx )F,1m〉0 = 0. (2.33)

Moreover, if j < jab, then for c = a, b,

〈(1− loccx )F,11〉0 = 0. (2.34)

Proof The first statement is an immediate consequence of the definition of Loc together with
the fact that the test function 1m has dimension m[ϕ] ≤ d − α ≤ d∅

+ for m = 1, 2. The
second statement follows similarly using the fact that the dimension [ϕ] of 11 is equal to
da+ = db+ if j < jab. � 

3 RG Map

In the absence of observables, i.e., with σa = σb = 0, the RGmap for the long-range models
is constructed and bounded in [31] using the main theorem of [16]. The result is given in [31,
Theorem 6.4]. The extension of this construction to the case of nonzero observable fields
σa, σb follows a similar route as in the 4-dimensional nearest neighbour case in [5,32], as we
now explain. The coordinates for the RGmap are discussed in Sect. 3.1, the domain of the RG
map is discussed in Sect. 3.2, and themain estimates for theRGmap are given in Theorem3.3.
These estimates, combined with a new estimate derived from a cluster expansion, are used
in Sects. 4–5 to control the flow generated by the RG map.

3.1 RG Coordinates

The RG map will be defined so as to express the sequence Z j defined by (2.11) as

Z j = eζ j (I j ◦ K j )(Λ), (3.1)

123



Critical Two-Point Function for Long-Range O(n) Models… 1145

for a real sequence ζ j and sequences of maps I j : P j → N and K j : P j → N . The
perturbative coordinate I j is an explicit function of Vj ∈ V , and

ζ j = −u j |Λ| + 1
2 (qa, j + qb, j )σaσb. (3.2)

The nonperturbative coordinate K j is discussed in detail below. By (2.3), (3.1) holds at scale
j = 0 with u0 = qx,0 = 0, I0 = e−V0 , and K0 = 1∅. We sometimes write an element of U
as U = (ζ, V ) with V ∈ V , where ζ encodes u, qa, qb.

We express the map Z j �→ Z j+1 of (2.11) via a map (Vj , K j ) �→ (δζ j+1, Vj+1, K j+1),
the renormalisation group (RG) map, in such a manner that

E j+1θ(I j ◦ K j )(Λ) = eδζ j+1(I j+1 ◦ K j+1)(Λ) (3.3)

with I j+1 = I j+1(Vj+1) and δζ j+1 = ζ j+1 − ζ j . This ensures that Z j+1 has the form (3.1)
with ζ j+1 = ζ j + δζ j+1.

3.1.1 Perturbative Coordinate

The form of the perturbative coordinate I j is as follows. Given a Λ × Λ matrix w, we
define the operator Lw = 1

2

∑
u,v∈Λ wu,v

∑n
i=1 ∂

∂ϕi
u

∂
∂ϕi

v
. Recall the projections defined in

Sect. 2.3.1. Given V ′, V ′′ ∈ V , we also define
Fw(V ′, V ′′) = eLw

(
e−LwV ′)(e−LwV ′′)− V ′V ′′, (3.4)

Fπ,w(V ′, V ′′) = Fw(V ′, π∅V ′′)+ Fw(π∗V ′, V ′′). (3.5)

For j ≥ 0, we write the partial sums of the covariance decomposition as

w j =
j∑

i=1
Ci , w0 = 0. (3.6)

As in [7, (3.21)], for B ∈ B j we define

Wj (V, x) = 1

2
(1− Locx )Fπ,w j (Vx , V (Λ)), Wj (V, B) =

∑

x∈B
Wj (V, x). (3.7)

ThepolynomialWj (V, B) in thefields is thus an explicit quadratic functionofV . In particular,
W∅

j is an even polynomial in the fields, and Wj is quadratic in the coupling constants and is
irrelevant in the RG sense. Finally, for V ∈ V , we define I j = I j (V, · ) : P j → N by

I j (V, X) = e−V (X)
∏

B∈B j (X)

(1+Wj (V, B)). (3.8)

As in (2.5), we write Dσa = ∂
∂σa

|σa=σb=0. We also write D̄ = ∑
x∈Λ

∂
∂ϕ1

x
|ϕ=0 and D̄2 =

∑
x,y∈Λ

∂2

∂ϕ1
x ∂ϕ1

y
|ϕ=0. We will later make use of the following corollary of Lemma 2.1.

Corollary 3.1 For V ∈ V and x ∈ Λ, and with W j = Wj (V, x),

D̄W∅

j = D̄2W∅

j = 0. (3.9)

Moreover, if j < jab, then
D̄DσaW j = 0. (3.10)
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Proof The fact that D̄W∅

j = 0 is immediate since W∅

j is even in the fields. Also,

since D̄2W∅

j = 〈W∅

j ,12〉0, it follows from Lemma 2.1 that D̄2W∅

j = 0. To see

that D̄DσaW j = 0, note that DσaW j = 1
2 (1 − locax )Fa , with Fa ∈ N∅ the coeffi-

cient of σa in Fπ,w j (Vx , V (Λ)). Thus, by definition (2.17) of the pairing, D̄DσaW j =
1
2 〈(1 − locax )Fa,1

1〉0, which vanishes by Lemma 2.1 when j < jab. This completes the
proof. � 

3.1.2 Nonperturbative Coordinate

We now define the space K j of maps K : P j → N which contains the nonperturbative RG
coordinate. With N replaced by N∅, such a space is defined in [31, Definition 6.2], and,
as in [16], we extend it here to include observables. The symmetries (Euclidean covariance,
gauge invariance, supersymmetry, and O(n)-invariance) used in Definition 3.2 are defined
in [16, Sect. 1.6] and [4, Sect. 2.3]. For n ≥ 1, as a replacement for the gauge invariance
which holds for n = 0 we also introduce sign invariance, which is invariance under the map
(σ, ϕ) �→ (−σ,−ϕ). Note that V0 of (2.3) is sign invariant. It can be verified that the property
of sign invariance is preserved by the map K �→ K+ of [16].

Definition 3.2 For j < N , let CK j = CK j (Λ) denote the real vector space of functions
K : C j → N with the following properties:

– Field Locality: For all X ∈ P j (Λ), K (X) ∈ N (X�). Also, (i) πaK (X) = 0 unless
a ∈ X , (ii) πbK (X) = 0 unless b ∈ X , and (iii) πabK (X) = 0 unless a ∈ X and
b ∈ X� or vice versa, and πabK (X) = 0 if X ∈ S j and j < jab.

– Symmetry: (i) π∅K is Euclidean covariant, (ii) if n = 0, π∅K is supersymmetric and
K is gauge invariant and has no constant part; if n ≥ 1, π∅K is O(n)-invariant and K
is sign invariant.

Let K j = K j (Λ) be the real vector space of functions K : P j → N which have the above
field locality and symmetry properties, and, in addition:

– Component Factorisation: for all polymers X , K (X) = ∏
Y∈Comp(X) K (Y ).

The nonperturbative coordinate K j appearing in (3.1) is an element of K j . An element
of K j determines an element of CK j by restriction to X ∈ C j . Also, an element of CK j

determines an element ofK j by the factorisation property. The same symbol is used for both
elements related by this correspondence. Since the empty set is not a connected set,1∅ ∈ K j

becomes 0 ∈ CK j under this correspondence.

3.2 Norms and RG Domain

We now specify the domain of the RG map, which requires specification of norms on the
spacesV andCK.Without the observables fields, the norms are discussed in [31, Sect. 6.2]. For
the nearest-neighbour 4-dimensional case, the adaptation of the norms to include observables
is discussed, e.g., in [32, Sect. 5.1]. For our current long-range setting, we need only adjust
some norm parameters, compared to [32, Sect. 5.1].

As in [31, (5.49)], the small number s̄ in Theorem 1.1 is given by

s̄ = 1

a
(1− L−ε) = O(ε), (3.11)
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with the constant a specified in [31, Lemma 5.3] (not to be confused with the point a ∈ Z
d

used for the two-point function). Recall the mass scale jm defined in (2.21). Following [31,
(3.19)–(3.20), (6.24)], we fix

α′ ∈ (0, 1
2α), (3.12)

and define the bulk parameters

� j = �0L
− 1

2 (d−α) j L−
1
2 (α+α′)( j− jm )+ =

{
�0L−

1
2 (d−α) j ( j ≤ jm)

�0L−
1
2 (d−α) jm L− 1

2 (d+α′)( j− jm ) ( j > jm),

(3.13)

h j = 1

s̄1/4
k0L

− 1
2 (d−α) j = 1

s̄1/4
k0
�0

� j ( j ≤ jm). (3.14)

Here �0 can be chosen large (depending on L) and k0 is a fixed (small) constant. We use h j

to refer to either of the bulk parameters � j , h j .
Now that observables are present, the pair of parameters h j is supplemented by the pair

hσ, j = �−1j∧ jab
2( j− jab)+ ×

{
s̄ (h = �)

s̄1/4 (h = h).
(3.15)

We only use hσ, j for j ≤ jm . Recall that we assume that the coalescence scale jab is smaller
than the mass scale jm , since the limit m2 ↓ 0 will be taken before considering arbitrarily
large |a − b|.

For U ∈ U " R
7, we define the scale-dependent norm

‖U‖U = max
{
|g|Lε( j∧ jm ), |ν|Lα( j∧ jm ), |u|L jd , � j�σ, j (|λa | ∨ |λb|), �2σ, j (|qa | ∨ |qb|)

}
.

(3.16)
We denote the restriction of ‖ · ‖U to V by the same symbol. Given CD > 0, we define the
domain

D j = {V ∈ V : ‖V ‖U ≤ CD s̄, g > C−1
D s̄ L−ε( j∧ jm )} ⊂ V. (3.17)

Note that D j is a domain in V , and as such, does not involve the coupling constants u or q .
A sequence W∅

j of Banach spaces is defined in terms of the Tϕ(h j ) seminorms in [31]

(they are denoted W j there). We extend W∅

j to a space W j ⊂ CK j whose definition is the
same with the exception that the Tϕ seminorms are defined on the extended space N . As in
[31, Remark 6.3], we define a sequence

ϑ j = L−
1
4α( j− jm )+ . (3.18)

Given a parameter t > 0, the domain of the RG map is defined by

D j = D j × BW j (tϑ
3
j s̄

3), (3.19)

where BW j (r) is the open ball of radius r in the Banach space W j .

3.3 Estimates on RG Map

We now specify the RG map (Vj , K j ) �→ (Uj+1, K j+1) = (δζ j+1, Vj+1, K j+1) and state
our bounds on it. To shorten notation,we condense indices andwrite, e.g., (V, K ) for (Vj , K j )

and (U+, K+) for (Uj+1, K j+1). The definition of the mapsU+, K+ is described in a general
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setup in [7,16], and is adapted to the long-range model with σa = σb = 0 in [31]. The same
definitions extend to include observables.

In particular, the map (V, K ) �→ U+ = (δζ+, V+) = PT(V ) + R+(V, K ) is explicit
and consists of a perturbative part PT, incorporating second-order perturbation theory, and
a nonperturbative, third-order error R+. The explicit map PT is the one defined in [7] for
n = 0, extended in [4] to n ≥ 1, and used in [32] for general n ≥ 0. Let λ denote λa or λb,
and let q denote qa or qb. We denote the λ, q components of the map PT by λpt, δqpt. For
j < N , and with w j given by (3.6), let

w
(1)
j =

∑

y∈Zd

w j;x,y . (3.20)

By [31, (5.10) and Lemma 5.2],
w

(1)
j = O(Lα j ). (3.21)

Let
δ[νw(1)] = (ν + (n + 2)gC+;0,0)w(1)

+ − νw(1). (3.22)

Recall the definition of the coalescence scale jab in (2.24). Then, as in [32, Proposition 3.2],
for general n ≥ 0 the observable part of the map PT is the map V �→ (λpt, δqpt) given by

λpt =
{

(1− δ[νw(1)])λ ( j + 1 < jab)

λ ( j + 1 ≥ jab),
(3.23)

δqpt = λaλb C j+1;a,b. (3.24)

Note that λpt = λ for all scales j ≥ jab − 1, i.e., the flow of λ stops evolving after scale
jab − 1. Conversely, since C j+1;a,b = 0 for j + 1 ≤ jab, nonzero δqpt can occur only at
scales j ≥ jab. The map (V, K ) �→ U+ is now defined by

U+ = PT(V̂ ) with V̂ = V −
∑

Y∈S(Λ):Y⊃B

LocY,B I
−Y K (Y ). (3.25)

The localisation operator LocY,B is defined in [14, Definition 1.17]. The higher-order cor-
rection R+ : V → U to the perturbative calculation is then defined by

R+(V, K ) = PT(V̂ )− PT(V ), (3.26)

so that U+ = PT(V )+ R+(V, K ). We do not need the explicit form of R+ and only use the
bounds of Theorem 3.3 below.

The map (V, K ) �→ K+ is also given explicitly in [16], but it is complicated to write
down. Like R+, this nonperturbative part of the RG map is of order O(s̄3). It is part of the
statement of Theorem 3.3 below that the formula for K+ constructed in [16] is well-defined
on the domain specified in Theorem 3.3. We do not need to know more here about K+ than
the estimates provided by Theorem 3.3.

The RG map depends on the mass m2 through its dependence on the covariance C+.
We require continuity in the mass in the limit m2 ↓ 0, which can only be taken after the
infinite-volume limit N → ∞. Given small δ > 0, we define the mass domain for the RG
map by

I j =
{
[0, δ] ( j < N )

[δL−α(N−1), δ] ( j = N ).
(3.27)

The special attention to j = N is due to the fact that the final covarianceCN ,N is only defined
for m2 > 0, and it obeys good estimates for m2 ∈ IN .
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The following extends [31, Theorem 6.4] to allow for the presence of observables. Its
estimates appear identical to [31, Theorem 6.4], but it is in fact an extension since the domain
and range of the RG map now include observables in (V, K ) ∈ D, as well as in R+ and
K+. Note that the map R+, which acts on (V, K ) with V ∈ V , produces a polynomial in
U which in particular contains the nonperturbative contributions to δζ . The bound (3.29) on
R+ controls these nonperturbative contributions to δζ . Note that the estimates (3.29) hold
for m2 ∈ I+, but the continuity is in the smaller interval m2 ∈ [0, L−α j ]. A restriction like
this on the continuity interval is essential, because larger m2 will put j above the mass scale,
at which point the spaces themselves become dependent on m2 through their dependence on
� j and a continuity statement becomes meaningless.

Theorem 3.3 Let d = 1, 2, 3; n ≥ 0; α = 1
2 (d+ε) and j < N. Let CD and L be sufficiently

large, and let ε be sufficiently small. There exist c > 0, CRG > 0, δ > 0, such that, with the
domain D defined using t = 4CRG, the maps

R+ : D× I+ → U, K+ : D× I+ → W+ (3.28)

are analytic in (V, K ), provide a solution to (3.3), and satisfy the estimates

‖R+‖U+ ≤ cϑ+s̄3, ‖K+‖W+ ≤ CRGϑ3+s̄3. (3.29)

The coordinate in R+ corresponding to δqa, j , δqb, j is identically zero for j ≤ jab, and the
coordinate corresponding to λa, j , λb, j is identically zero for j ≥ jab. In addition, R+, K+
are jointly continuous in m2 ∈ [0, L−α j ], V, K.

Proof The theorem is a consequence of the main result of [16], which focusses on the 4-
dimensional nearest-neighbour case. For the long-rangemodel, the appropriatemodifications
for the bulk part of the RG map are discussed in [31], and we assume familiarity with both
the methodology and the modifications. In order to include observables, only minor further
modifications are required, compared to [15,16].

One requirement is to verify that, for V ∈ D, the basic small parameters εV and ε̄ obey
appropriate estimates when observables are present, as in [15, Sects. 3.2–3.3]. We verify this
here; this verification validates our choice (3.15) for the norm parameters. (In fact, somewhat
larger domains are used in [15, Sects. 3.2–3.3]; the main ideas are present for V ∈ D, which
we consider here, and the extension to the larger domains is a matter of bookkeeping.) A
second requirement is to verify that the “crucial contraction” is maintained in the presence
of observables, and we also verify this here.

Bound on εV . Let V ∈ D. For εV , it suffices to observe that for |λa | ≤ CD s̄�−1�−1σ ,

‖λaσaϕ1
a‖T0(h) = |λa |hσh ≤ CD s̄

hσ

�σ

h

�
=

{
CD s̄ (h = �)

CDk0�
−1
0 (h = h),

(3.30)

which implies stability on the domainD of (3.17), and complements the arguments of [16,31].
Bound on ε̄. We must also verify the analogue of [15, Lemma 3.4]. To state the desired

estimate, as in [31, (6.56)] we define the norm parameter

�̂ j = �̂0� j L
− 1

2 (α−α′)( j− jm )+ , (3.31)

and as in [31, (6.25)] we define the small parameter

ε̄ = ε̄ j (h) =
{
s̄ϑ j (h = �)

s̄1/4 (h = h, j ≤ jm).
(3.32)
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We write Upt = PT(V ) and let δV = θV −Upt. Our goal then is to show that, for V ∈ D,

max
B∈B ‖δV (B)‖T0(h �̂)

≤ CδV ε̄ (3.33)

where CδV is an L-dependent constant.
It is argued in [31, Sect .6.4.4] that (3.33) holds with δV replaced by δV∅ = π∅δV .

Thus, it suffices to establish (3.33) with δV replaced by δV ∗ = π∗δV . This can be done by
writing

‖δV ∗(B)‖T0(h �̂)
≤ ‖θV ∗(B)− V ∗(B)‖T0(h �̂)

+ ‖V ∗(B)−U∗
pt(B)‖T0(h �̂)

(3.34)

and applying the triangle inequality to estimate each of the two terms on the right-hand side.
For instance, if a ∈ B, then the σa term of θV ∗(B)− V ∗(B) is λaσaζ

1
a . By definition of

the norm, by (3.31), (3.15), (3.32), (3.18), and by the fact that α′ < 1
2α,

‖λaσaζ 1
a ‖T0(h �̂)

= |λa |hσ �̂ ≤ CD s̄�̂0L
− 1

2 (α−α′)( j− jm )+ hσ

�σ

≤ CD �̂0ε̄(h). (3.35)

The σa term of V ∗(B)−U∗
pt(B) is zero above the coalescence scale, whereas if j + 1 < jab

then it is δ[νw(1)]λaσaϕ1
a , by (3.23). Thus, by (3.30), it is sufficient to show that

|δ[νw(1)]| ≤ s̄1/4ϑ. (3.36)

By its definition in (3.22),

δ[νw(1)] = ν
∑

x

C+:0,x + (n + 2)gC+;00w(1)
+ . (3.37)

By (3.17) and (2.23), and the finite-range property (2.7), the first term is bounded by

O(s̄)L−α( j∧ jm )L jd L−(d−α) j−2α( j− jm )+ = O(s̄)L−α( j− jm )+ , (3.38)

and the second term is bounded by

O(s̄)L−ε( j∧ jm )L−(d−α) j−2α( j− jm )+Lα j = O(s̄)L−d( j− jm )+ . (3.39)

These bounds do better than what is required by (3.36).
For the σaσb term, we can take j ≥ jab. The σaσb term of θV ∗ − V ∗ is always 0 and the

coefficient of σaσb in V ∗(B)−U∗
pt(B) is at most |C+;a,bλaλb|. By (3.17), (2.23), and (3.13)

and the fact that α′ < 1
2α,

‖C+;a,bλaλbσaσb‖T0(h �̂)
≤ O(s̄2)

|C+;a,b|
�2

h2σ
�2σ

≤ O(s̄2)ϑ2 h
2
σ

�2σ
. (3.40)

When h = h (hence j < jm) this is O(ε̄(h)2), and when h = � it is O(ε̄(�)2). This is better
than what is required for (3.33).

Crucial contraction The adaptation of the crucial contraction to the long-range model is
provided for the bulk in [31, Sect. 6.4.5–6.4.6]. We now extend the adaptation to include
observables.

Below the mass scale, the least irrelevant of the sign invariant monomials involving the
observable fields each have two additional spin fields compared to theirmarginal counterparts
σaϕ

1
a and σaσb (the latter occurs only above the coalescence scale), so have dimension which

is larger by 2[ϕ] = d − α. Compared to [31, (6.64)], this gives rise to γ = L−(d−α), and
there is no factor Ld for observables, so the gain here is proportional to L−(d−α). The worst
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γ occurs for d = 1, where we have γ = L− d
2+ ε

2 = L− 1
2+ ε

2 . This is consistent with the
values of Ldγ reported for the bulk in [31, (6.64)].

Above the mass scale, we extend the discussion in [31, Sect. 6.4.6], as follows. For the
perturbative contribution to K , we have already verified that we can continue to use the
ε̄ given by (3.32) when observables are present, and there is therefore no change to [31]
concerning this issue. It remains to consider the crucial contraction.

We recall and invoke our assumption that jab < jm . Now da+ = 0, so the least irrelevant
monomial in N a is σaϕ. This scales as

�σ, j� j = � j

� jab
2 j− jab s̄ = L− 1

2 (d−α) j L−(α+α′)( j− jm )

L− 1
2 (d−α) jab

2 j− jab s̄

≤ L−
1
2 (d+α′)( j− jm )2 j− jm s̄. (3.41)

A change from scale j to scale j + 1 in the above right-hand side gives rise to a factor

2L− 1
2 (d+α′). As in [31, (6.68)–(6.69)], the essential condition here is that the product of this

factor with ϑ−3 = L
3
4α should be bounded above by an inverse power of L . This condition

is indeed satisfied, since

1
2 (d + α′)− 3

4α = 1
2

(
d + α′ − 3

4 (d + ε)
) = 1

2

( 1
4d + α′ − 3

4ε)
)

> 1
8d. (3.42)

Similarly, the least irrelevant monomial in N ab that is sign invariant is of the form σaσbϕϕ,
and has scaling dimension twice that considered in the previous paragraph, so twice as good.
Thus the crucial contraction is not harmed by the presence of observables.

Estimate for R+ above the mass scale Finally, we consider the extension of [31,
Sect. 6.4.7] to include observables. The observable terms have the same T0 and U norms:
‖σaϕ1

a‖T0 = �σ � = ‖σaϕ1
a‖U and ‖σaσb‖T0 = �2σ = ‖σaσb‖U . This leads to an extension to

[31, Lemma 6.6], as follows. Let

F1 = ντ + u +−σaϕ
1
a1x=a − σbϕ

1
b1x=b − 1

2 (qa1x=a + qb1x=b)σaσb, (3.43)

F2 = gτ 2 + ντ + u +−σaϕ
1
a1x=a − σbϕ

1
b1x=b. (3.44)

The estimates of [31, Lemma 6.6] now become

‖F1‖U ≤ cL L
α′( j− jm )+‖F1(B)‖T0 , ‖F2(B)‖T0 ≤ c‖F2‖U , (3.45)

i.e., the bound remains the same for F1 but loses a helpful factor L−α′( j− jm )+ for F2. The
bound on F1 then implies, as in [31, (6.74)], that

‖R+‖U ≤ O(Lα′( j− jm )+)‖R+(B)‖T0 , (3.46)

and the bound (3.29) follows from this as in [31, Sect. 6.4.7].
The introduction of observables does lead to a change in the bounds on F,W, P in [31,

Lemma6.7], due to theweakened estimate for F2 in (3.45). The change is to replace the factors
L−(α+α′)( j− jm )+ and (c/L)−(α+α′)( j− jm )+ in the three upper bounds of [31, Lemma 6.7] by

the worse factor ϑ2 = L− 1
2α( j− jm )+ . Since we seek an upper bound which includes the factor

ϑ2 in ε̄2, the weakened bounds remain more than good enough.
For general reasons, πabW = 0 [15, Proposition 4.10], so there can be no such term

in W . Thus, in the proof of [31, Lemma 6.7], only one factor L−α′( j− jm )+ can be lost by
application of (3.45), not two. Also, by direct calculation, the relevant contribution to F is
FC (λaσaϕ

1
a , λbσbϕ

1
b) = 1

2λaλbCa,bσaσb, whose T0(�) norm is given as in the first inequality
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of (3.40) to be at most L−(α−α′)( j− jm ), which is better than the required ϑ2. The bound on
P follows from the bounds on F,W as in [15, Proposition 4.1]. � 

In the absence of observables, Theorem 3.3 is used in [31] to construct a global RG flow
(g j , ν j , K

∅

j ) that remains in the RG domain for all j . This requires tuning the initial ν to a

mass-dependent critical value νc0(m
2); this value converges to the critical point νc(g; n) as

m2 ↓ 0 (see [31, (8.93)–(8.94)]). Throughout the remainder of the present paper, we always
take (g j , ν j ) to be this global flow of coupling constants. For general reasons this flow is the
same in the presence of observables as in their absence: see [16, (1.68)–(1.69)]. The main
task for the proof of Theorem 1.1 is to apply the estimates of Theorem 3.3 to control, in
addition, the flow of the observable coupling constants λ and δq , and the observable part of
the coordinate K . The flow of δq and K is analysed as in the 4-dimensional nearest-neighbour
case [5,32].

The flow of λ is marginal, for the same reasons as in the 4-dimensional case. In [5,32],
the perturbative approximation (3.23) to the recursion for λ is solved along the lines of the
rough computation

λ j =
j−1∏

k=1
(1− δ[νw(1)]) = exp

⎡

⎣
j−1∑

k=1
log(1− δ[νw(1)])

⎤

⎦

≈ exp

⎡

⎣−
j−1∑

k=1
δ[νw(1)]

⎤

⎦ = exp
[
−ν jw

(1)
j

]
≈ 1− ν jw

(1)
j . (3.47)

In [5,32], the errors introduced by the map R+ into (3.23) were summable over all scales
because of the decay of the marginal coupling constant g j with the scale (Gaussian fixed
point), and the above computation survives the introduction of these errors.

For the long-range model, the fixed point is non-Gaussian, and the corrections due to R+
are not summable. Instead of trying to follow the route laid out in [5,32], we derive an exact
relation between λa, j and the known bulk coupling constants, similar to (3.47), which gives
better control of its flow than the recursion. This is done in Sect. 4.

4 Flow of λ

According to (3.23) and Theorem 3.3, the flow of λa, j under the RG map is nontrivial only
until scale jab−1, and stops beyond this scale. Conversely, qa, j = 0 for j < jab, and the flow
of qa, j is nontrivial only for scales j ≥ jab. Our goal now is to determine the form of the flow
until scale jab. Since we later take the limitm2 ↓ 0 before studying large jab ∼ logL |a−b|,
we can and do assume that jab < jm . We will prove the following proposition.

Proposition 4.1 Let n ≥ 0, let L be sufficiently large, let ΛN be the torus of period LN ,
and let ε be sufficiently small. Let g ∈ [ 6364 s̄, 65

64 s̄], and let m2 ∈ [L−α(N−1), δ] with δ > 0
sufficiently small. Let jab < jm < N. Let g0 = g, let ν0 be the critical value νc0(m

2)

constructed in [31], and let λa,0 = λb,0 = 1. Then the RG map can be iterated to scale
jab, i.e., it produces a sequence (Vj , K j ) ∈ D j with initial condition (V0, 0), such that (3.1)

holds for all j ≤ jab with I j = I j (Vj ) and ζ j = ∑ j
k=1 δζ j . Moreover, qx, j = 0, and for the

component λx, j of this flow we have the stronger statement

λx, j = 1− ν jw
(1)
j + O(s̄2) ( j < jab, x = a, b). (4.1)
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The proof of Proposition 4.1 is given in Sect. 4.1 below. Its statement holds trivially at
j = 0, and will be established inductively for higher scales. The induction for the bulk
quantities U∅

j , K∅

j is the result of [31], and is unaffected by the presence of observables.
The main additional ingredient for the induction of the observable parts is to establish the

flow (4.1) ofλa, j . To achieve this, in Lemma4.2we use integration by parts to obtain a relation
between λa, j , quantities of the bulk flow, and the observable parts of the coordinate K j . This
is achieved by taking suitable derivatives of the identity Z j = Ew j θ Z0. The contribution due
to K j is bounded uniformly in the volume using a cluster expansion, in Sect. 4.2.

The formula (4.1) for λx, j has a natural counterpart for the nearest-neighbour 4-

dimensional case, with error term O(g2j ) instead of O(s̄2). In that context, −ν jw
(1)
j +

O(g2j ) → 0 as j → ∞. This provides insight into the fact that lim j→∞ λx, j = 1 in [5,
Lemma 4.6] and [32, Corollary 6.4]. For the long-range model considered in Proposition 4.1,
the non-Gaussian fixed point leads to a limit which is not equal to 1.

4.1 Integration by Parts

For notational convenience we restrict attention to n ≥ 1; small modifications apply for
n = 0. Recall that D̄ and Dσa are defined above Corollary 3.1, and that Z j = Ew j θ Z0. Let

z j = z j (Λ) = e−ζ j
Z j (Λ)

I j (Λ)
, L j = L j (Λ) = log z j (Λ). (4.2)

Then we have
Z j = eζ j I j (Λ)z j (Λ) = eζ j I j (Λ)eL j (Λ). (4.3)

The existence of the logarithm L j is discussed in Sect. 4.2, where it is constructed as an
element of a Banach space T0(� j ) which only examines derivatives at zero field, using a
cluster expansion. Bounds onL j and its derivatives at zero field are proved in Proposition 4.4
below.

Lemma 4.2 The functions I j and L j are related by the identity

D̄Dσa I j (Λ)+ D̄DσaL j (Λ) = 1+ 1

|Λ|w
(1)
j

[
D̄2 I∅

j (Λ)+ D̄2L∅

j (Λ)
]
. (4.4)

Proof By definition, followed by Gaussian integration by parts,

DσaEw j θ Z0 = Ew j (ϕ
1
a + ζ 1

a )Z∅

0 (ϕ + ζ )

= ϕ1
aEw j Z

∅

0 (ϕ + ζ )+
∑

y∈Λ

w j;a,yEw j

∂

∂ζ 1
y
Z∅

0 (ϕ + ζ ). (4.5)

On the right-hand side, ∂
∂ζ 1y

can be replaced by ∂
∂ϕ1

y
, and the latter commutes with the expec-

tation. Then application of D̄ = ∑
x∈Λ

∂
∂ϕ1

x
|ϕ=0 gives

D̄DσaEw j θ Z0 = Ew j Z
∅

0 +
∑

y∈Λ

w j;a,y

∑

x∈Λ

∂2

∂ϕ1
y∂ϕ1

x

∣∣∣
ϕ=0Ew j Z

∅

0 (ϕ + ζ ), (4.6)

which by translation invariance and by definition of Z j is the same as

D̄Dσa Z j = Z∅

j |ϕ=0 + w
(1)
j

1

|Λ| D̄
2Z∅

j . (4.7)
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Now we divide both sides of (4.7) by Z∅

j |ϕ=0 and use (4.3). Since I j |ϕ=0 = 1, and since

D̄Z∅

j = D̄ I j |σa=σb=0 = Dσa I j |ϕ=0 = 0 by symmetry, the result is (4.4). � 
Note that the right-hand side of (4.4) involves only bulk quantities, while the left-hand

side depends on λa, j through I j (Λ) and DσaL j (Λ), and also on the observable part of the
irrelevant coordinate K j (through DσaL j (Λ)). For the explicit terms, we have the following
identities.

Lemma 4.3 For j ≤ N and V ∈ V ,
D̄2 I∅

j (Λ) = −ν j |Λ|, (4.8)

and if j < jab then
D̄Dσa I j (Λ) = λa, j . (4.9)

Proof We differentiate the formula I j (Λ) = e−Vj (Λ)
∏

B∈B j (Λ)(1 + Wj (Vj , B)), which is

(3.8). We apply the product rule, Corollary 3.1, and the facts that D̄V∅

j = 0 and I j |ϕ=0 = 1,
to obtain

D̄2 I∅

j (Λ) = −ν j |Λ| +
∑

B∈B j (Λ)

D̄2W∅

j (Vj , B) = −ν j |Λ|. (4.10)

Similarly, for j < jab, we also use Dσa Vj (Λ) = −λa, jϕ
1
a to obtain

D̄Dσa I j (Λ) = λa, j +
∑

B∈B j (Λ)

D̄DσaW j (Vj , B) = λa, j , (4.11)

and the proof is complete. � 
Wenowstate our bounds for the terms in (4.4) involvingL j . The hypothesis (Vj , K j ) ∈ D j

of Proposition 4.4 will be established inductively.

Proposition 4.4 Let j ≤ jab, letL j be defined as in (4.2), and assume that Z j = eζ j (I j ◦K j )

with I j = I j (Vj ) and (Vj , K j ) ∈ D j . Then there is a constant c1 > 0 such that

|D̄DσaL j (Λ)| ≤ c1s̄
2, |D̄2L∅

j (Λ)| ≤ c1|Λ|L−α j s̄3. (4.12)

We defer the proof of Proposition 4.4 to Sect. 4.2.

Proof of Proposition 4.1 The proof is by induction on j . The statement of Proposition 4.1
for j = 0 is trivial. Without loss of generality, we consider the case x = a. We assume that
we have (3.1) for Zk with (Vk, Kk) constructed inductively using the RG map for k ≤ j , and
we make the constant in the hypothesis (4.1) explicit by assuming that, with c1 from (4.12),

|λa, j − 1+ ν jw
(1)
j | ≤ 2c1s̄

2. (4.13)

Then we have (3.1) with a pair of RG coordinates (Vj , K j ) ∈ D j , satisfying in addition
(4.13). Theorem 3.3 guarantees the existence of RG coordinates (Uj+1, K j+1) = (δζ j+1 =
δu j+1, Vj+1, K j+1) at scale j + 1 such that Z j+1 obeys (3.1), with Uj+1 = PT j (Vj ) +
R j+1(Vj , K j ), and bounds on R j+1(Vj , K j ) and K j+1 as in (3.29).

It has been proved in [31] that the bulk part of Vj+1 lies in D j+1. The second bound in
(3.29) is sufficient to guarantee that K j+1 also lies in D j+1. Therefore, to complete the proof
that (Vj+1, K j+1) ∈ D j+1, we only need to show that |λ j+1| < CD , where CD > 1 is the
constant in (3.17). By (3.23), and by the first bound of (3.29) together with the definition
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of the norm in (3.16), we have λ j+1 = (1+ O(s̄))λ j + O(s̄2). It now follows immediately
from (4.13) that 0 < λ j+1 = 1 + O(s̄) < CD , since s̄ can be chosen small enough. This
proves that (Vj+1, K j+1) ∈ D j+1.

To complete the induction,wemust prove (4.13)with j replacedby j+1. Since (4.1) is only
required for scales below the coalescence scale, we may assume here that j + 1 < jab. The
bounds of Proposition 4.4 at scale j+1 can be applied, since the hypothesis (Vj+1, K j+1) ∈
D j+1 has now been verified. Also, the hypothesis j + 1 < jab of Lemma 4.3 is satisfied. We
use Lemma 4.3 in conjunction with (4.4), and apply Proposition 4.4. This gives

∣∣λa, j+1 − 1+ ν j+1w(1)
j+1

∣∣ ≤ c1s̄
2 + c1w

(1)
j+1L

−α( j+1)s̄3 ≤ 2c1s̄
2, (4.14)

by (3.21) and by taking s̄ sufficiently small. This advances (4.13) to scale j+1, and completes
the proof. � 
4.2 Cluster Expansion

In this section, we use a cluster expansion to construct a formula for L j = log z j and prove
Proposition 4.4. Let p(X) = K j (X)/I j (X). By (3.1), (4.2), and by definition of the circle
product,

z j = I j (Λ)−1(I j ◦ K j )(Λ) =
∑

X∈P j (Λ)

p(X), (4.15)

where the term in the sumwith X = ∅ is interpreted as 1. In the sum, we decompose X ∈ P j

into its connected components X1, . . . , Xn ∈ C j , which may be labelled in n! different ways.
For X, X ′ ∈ C j , we set g(X, X ′) = −1 if X and X ′ touch, and otherwise set g(X, X ′) = 0.
Using the component factorisation property of K j , we obtain

z j =
∞∑

n=0

1

n!
∑

X1,...,Xn∈C j

p(X1) · · · p(Xn)
∏

1≤i< j≤n
(1+ g(Xi , X j )), (4.16)

where the n = 0 term is again interpreted as 1. This has the form of the partition function of
a polymer system, as defined, e.g., in [34, (1)]. It is a standard result, e.g., [19,34], that log z j
can be written as a cluster expansion and accurately bounded, provided the polymer activities
p(X) obey suitable estimates. In the following proof, we discuss this in detail and invoke a
convergence criterion from [34]; see also [21,30] for pedagogical introductions to the cluster
expansion. The verification of the criterion from [34] is an almost immediate consequence
of the norm estimates in the definition of the domain D j .

Since we are interested only in the derivatives ofL j at zero external and observable fields,
we do not construct L j as a function of these fields (even though this would also be possible
for suitably small fields), but rather as a Taylor polynomial (jet) of order pN in the fields
around zero. In other words, we work on the quotient ofN by the ideal of elements of F ∈ N
with ‖F‖T0(� j ) = 0. On this quotient, the T0(� j ) seminorm becomes a norm, and the quotient
becomes a finite-dimensional Banach algebra. This is discussed in detail in [16, Sect. 1.7.3,
Appendix A]. We adopt the point of view in the following that we work in this normed space,
and write simply ‖·‖ for ‖·‖T0(� j ). Although the results of [34] are stated for complex-valued
p(X), the proofs hold verbatim for values in any Banach algebra. The completeness of the
Banach algebra is important for the existence of L j = log z j , which is defined in terms of
an infinite sum.

The estimates we use, for (Vj , K j ) ∈ D j and X ∈ C j , are:

‖1/I j (X)‖ ≤ 2|X |, ‖K j (X)‖ ≤ Ms̄3+a(|X |−2d )+ , (4.17)
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where a > 0 is small; here, |X | = |X | j denotes the number of j-blocks in X . The bound on
I−X
j is a small adaptation of [15, Proposition 2.2] to our long-range setting, and the bound

on K j follows from the definition of the W j norm and (3.19). Absorbing the factor 2|X | by
replacing M by M ′ > M , replacing a by a′ ∈ (0, a), and using the fact that s̄ is sufficiently
small, we conclude that the polymer activity obeys the bound

‖p(X)‖ ≤ M ′s̄3+a′(|X |−2d )+ . (4.18)

The following lemma uses this bound and will be employed to verify the hypothesis of [34,
Theorem 1].

Lemma 4.5 If B ∈ B j , then for s̄ sufficiently small (depending only on d)

∑

Y∈C j

|g(B, Y )|‖p(Y )‖e|Y | ≤ O(s̄3), (4.19)

where the constant depends on d.

Proof The number of connected polymers Y ∈ C j that touch a block Y and have size |Y | = n
is at most An for some d-dependent constant A. Thus,

∑

Y∈C j

|g(B, Y )|‖p(Y )‖e|Y | ≤ M ′s̄3
|Λ|∑

n=1
(Ae)n s̄a

′(n−2d )+ . (4.20)

We split the sum on the right-hand side into sums with n ≤ 2d and n > 2d . The first of these
is a constant that depends only on d . Taking s̄ small so that Aes̄a

′
< 1, the second sum is

bounded as

s̄−a′2d
|Λ|∑

n=2d+1
(Aes̄a

′
)n = O(s̄a

′
) (4.21)

with a d-dependent constant, which suffices. � 
Proof of Proposition 4.4 By Lemma 4.5, if s̄ is sufficiently small, then

∑

Y∈C j

|g(X, Y )|‖p(Y )‖e|Y | ≤
∑

B∈B j (X)

∑

Y∈C j

|g(B, Y )|‖p(Y )‖e|Y | ≤ |X |, (4.22)

which verifies the hypothesis [34, (3)] with a(A) = |A|. Also by Lemma 4.5,
∑

Y∈C j

‖p(Y )‖e|Y | ≤
∑

B∈B j

∑

Y∈C j

|g(B, Y )|‖p(Y )‖e|Y | ≤ O(L(N− j)d s̄3) < ∞, (4.23)

which verifies the other hypothesis of [34, Theorem 1].
Let u(X1, . . . , Xn) denote the Ursell function, defined in [34, (2)] (with g written as ζ ).

We conclude from [34, Theorem 1] that L j is given by the absolutely convergent sum

L j =
∞∑

n=1

∑

X1,...,Xn∈C j (Λ)

p(X1) · · · p(Xn)u(X1, . . . , Xn), (4.24)

and that for all X1 ∈ C j we have

∞∑

n=1
n

∑

X2,...,Xn∈C j

‖p(X2)‖ · · · ‖p(Xn)‖|u(X1, . . . , Xn)| ≤ e|X1|, (4.25)
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with the n = 1 term in (4.25) interpreted as 1.
By (4.24)–(4.25) (the factor n in (4.25) is not needed) and (4.23),

‖L∅

j ‖ ≤
∑

X1∈C j

‖p(X1)‖e|X1| = O(L(N− j)d s̄3). (4.26)

Similarly, for ‖DσaL j‖, we use the product rule for differentiation, this time using the factor
n (due to the product rule) in (4.25). With the definition of the T0 seminorm in (2.19) and of
�σ, j in (3.15) for j ≤ jab, we obtain

‖DσaL j‖ ≤
∑

X∈C j :X�a
‖Dσa p(X)‖e|X | =

∑

X∈C j :X�a
�−1σ, j‖p(X)‖e|X | = O(� j s̄

2). (4.27)

For F ∈ N , D̄F = 〈F,11〉0 and D̄2F = 〈F,12〉0, with the test functions 11,12 of
Lemma 2.1. These two test functions have � j -norms (as defined, e.g., in [31, (6.8)])

‖11‖� j = �−1j , ‖12‖� j = �−2j . (4.28)

Therefore, for m = 1, 2,
|D̄m F | ≤ ‖F‖�−mj . (4.29)

In particular, since LNd = |Λ|,
|D̄DσaL j | ≤ ‖DσaL j‖�−1j = O(s̄2), (4.30)

|D̄2L∅

j | ≤ ‖L∅

j ‖�−2j = O(|Λ|L−α j s̄3), (4.31)

and the proof is complete. � 

5 Full RG Flow and Proof of Theorem 1.1

In Proposition 4.1, the RG flow (ζ j , Vj , K j ) is constructed for scales j ≤ jab. The sequence
ζ j of (3.2) contains in particular the coupling constants qa, j , qb, j ; recall that qx, j = 0 for
j ≤ jab. In Sect. 5.1, we apply Theorem 3.3 inductively to continue the RG flow (ζ j , Vj , K j )

to scales jab < j ≤ N . Using the extended flow, we prove Theorem 1.1 in Sect. 5.2. The
analysis proceeds as in [5,32].

Once the RG flow has been extended to all scales, the combination of (2.12) and (3.1)
gives, at the final scale j = N , the representation

ECe
−V0(Λ) = ZN

∣∣
ϕ=0 = eζN (IN (Λ)+ KN (Λ))

∣∣
ϕ=0. (5.1)

From this, we apply (2.5) to to calculate the two-point function as

Ga,b,N (g, ν; n) = D2
σaσb

logECe
−V0(Λ) = 1

2
(qa,N + qb,N )+ AN , (5.2)

with

AN = D2
σaσb

KN

1+ K∅

N

∣∣∣
ϕ=0 −

(
Dσa KN

) (
Dσb KN

)

(1+ K∅

N )2

∣∣∣
ϕ=0. (5.3)
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5.1 Flow of q

The next proposition states that the RG flow exists for scales jab ≤ j ≤ N , and in particular
analyses the flow of q and establishes control on the terms of the right-hand side of (5.2),
which is needed to prove Theorem 1.1.

Proposition 5.1 Let n ≥ 0, let L be sufficiently large, let ΛN be the torus of period LN , and
let ε be sufficiently small. Let g ∈ [ 6364 s̄, 65

64 s̄], and let m2 ∈ [L−α(N−1), δ] with δ > 0 suffi-
ciently small. Suppose that jab < jm. Starting with (Vjab , K jab ) produced by Proposition 4.1,
the RG map can be iterated to scale N, i.e., it produces a sequence (Vj , K j ) ∈ D j such that

(3.1) holds for all j ≤ N with I j = I j (Vj ) and ζ j = ∑ j
k=1 δζ j . The qx, j component of ζ j

is given by

qx, j = λa, jabλb, jabw j;a,b +
j−1∑

i= jab

rx,i (x = a, b) (5.4)

with

|rx,i | ≤ O(s̄)
1

|a − b|d−α
4−(i− jab)+ . (5.5)

Moreover,

lim
N→∞ AN = 0. (5.6)

Proof For j = jab, we have (Vjab , K jab ) ∈ D jab by Proposition 4.1. Also, (5.4)–(5.5) hold
trivially, since rx, jab = 0 by Theorem 3.3 and hence qx, jab = λa, jabλb, jabw j;a,b by (3.24).

We fix j ≥ jab and assume inductively that (3.1) holds with a pair of RG coordinates
(Vj , K j ) ∈ D j and that (5.4)–(5.5) hold. As in the proof of Proposition 4.1, Theorem 3.3
guarantees the existence of RG coordinates (Vj+1, K j+1) at scale j + 1, with Vj+1 =
PT j+1(Vj )+ R j+1(Vj , K j ), and bounds on R j+1(Vj , K j ) and K j+1 as in (3.29).

As before, it has been proved in [31] that the bulk part of Vj+1 lies inD j+1. The coordinate
λa, j = λa, jab remains constant for j > jab, and thus still lies in D j+1. As before, the second
bound in (3.29) is sufficient to guarantee that K j+1 also lies in D j+1. This shows that
(Vj+1, K j+1) ∈ D j+1.

We now show that qa, j+1 satisfies (5.4) at scale j+1 and that (5.5) holds. Using (5.4) and
(3.24), and denoting by ra, j the component of R j+1(Uj , K j ) corresponding to the component
qa , we see that

qa, j+1 = qa, j + λa, jabλb, jabC j+1;a,b + ra, j = λa, jabλb, jabw j+1;a,b +
j∑

i= jab

rx,i ,

verifying (5.4) at scale j + 1. By definition of the norm in (3.16) and by our assumption that
jab < jm , Theorem 3.3 gives the bound

rx, j ≤ �−2σ, j+1‖R j+1‖ ≤ 1 j≥ jab�
−2
σ, j+1O(s̄3) = 1 j≥ jab L

− jab(d−α)4−( j− jab)+O(s̄), (5.7)

which proves (5.5) since L− jab(d−α) = O(|a − b|−(d−α)) by (2.25).
Finally, wewrite Dk

σ tomean no derivative for k = 0, the derivativewith respect to σa or σb
for k = 1, and the second derivative with respect to σa, σb for k = 2. Since (VN , KN ) ∈ DN ,
it follows from (3.29), with the fact that the WN norm bounds the T0(�N ) norm, that

|Dl
σ KN (Λ)|ϕ=0| ≤ �−lσ,NCRGϑ3

N s̄
3 ≤ O(s̄3−l)ϑ3

N

(
2−(N− jab)+L−

1
2 jab(d−α)

)l
. (5.8)
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Since ϑN → 0 as N →∞, this implies (5.6) and completes the proof. � 
5.2 Proof of Theorem 1.1

With (5.2) and Proposition 5.1, it is now straightforward to complete the proof of our main
result. In the proof, we write Ca,b for the massless free two-point function ((−Δ)α/2)−1a,b on

Z
d . According to (1.6), Ca,b � |a − b|−(d−α). The proof uses the following lemma.

Lemma 5.2 Let ν0 = νc0(m
2). Then for any j < N the map m2 �→ (Vj , K j ) is continuous

for m2 ∈ [0, L−α j ]. Moreover, the sequence Vj is independent of N . In particular, for any
j < ∞, the maps Vj , K j , R+, j depend continuously on m2 at m2 = 0.

Proof We show by induction that (Vj , K j ) depends continuously on m2 ∈ [0, L−α j ]. The
case j = 0 follows from [31, (7.14)] and [31, Corollary 7.5]. Now suppose the inductive
hypothesis holds for some j ≥ 0. Then the case j + 1 follows from (3.23), [31, Lemma 5.2],
and Theorem 3.3. The fact that Vj is independent of N is [16, Proposition 1.18]. � 

Proof of Theorem 1.1 We first take the limit N →∞, then take the limitm2 ↓ 0, and finally
consider large |a − b|. By (5.4) with j = N ,

qx,N = λa, jabλb, jabwN ;a,b +
N−1∑

i= jab

rx,i . (5.9)

By Proposition 5.1, the remainder term is bounded uniformly in N and inm2 ∈ [L−α(N−1), δ]
by

∣∣∣
N−1∑

i= jab

rx,i
∣∣∣ ≤ O(s̄)

1

|a − b|d−α
≤ O(s̄)Ca,b. (5.10)

By dominated convergence, and by the continuity of rx,i (a component of Ri+1) at m2 = 0
guaranteed by Lemma 5.2, limm2↓0 limN→∞

∑N−1
i= jab

rx,i exists and is bounded by O(s̄)Ca,b.
For the main term, since λ jab = 1+ O(s̄) by Proposition 4.1, it follows from the definition
of wN in (3.6) (together with the fact that that the covariance appearing in (3.24) is always
the infinite-volume one), that

lim
m2↓0

lim
N→∞ λ2jabwN ,a,b = (1+ O(s̄))Ca,b. (5.11)

The existence of the above limit as m2 ↓ 0 is a consequence of the fact that w∞,a,b =
((−Λ)α/2 + m2)−1ab → Ca,b, together with the mass continuity of λ jab , which follows from
Lemma 5.2. We apply (5.6) in (5.2), and find that the critical two-point function obeys

Ga,b = lim
N→∞Ga,b,N = 1

2
(qa,∞+qb,∞) = (1+O(s̄))Ca,b+O(s̄)Ca,b = (1+O(s̄))Ca,b.

(5.12)
This completes the proof. � 
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