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Abstract A theory (Esler and Ashbee in J Fluid Mech 779:275–308, 2015) describing
the statistics of N freely-evolving point vortices in a bounded two-dimensional domain
is extended. First, the case of a non-neutral vortex gas is addressed, and it is shown that
the density of states function can be identified with the probability density function of an
infinite sum of independent non-central chi-squared random variables, the details of which
depend only on the shape of the domain. Equations for the equilibrium energy spectrum and
other statistical quantities follow, the validity of which are verified against direct numerical
simulations of the equations of motion. Second, domains with additional conserved quan-
tities associated with a symmetry (e.g., circle, periodic channel) are investigated, and it is
shown that the treatment of the non-neutral case can be modified to account for the additional
constraint.

Keywords Point vortices · Energy spectrum · Statistical mechanics

1 Introduction

Interest in the classical statistical mechanics of point vortices, as developed by Onsager [18],
Joyce andMontgomery [15], Pointin and Lundgren [19] and others, has been recently revived
by experimental developments in quantum fluids, e.g., [17]. In quantum fluids (e.g., Bose–
Einstein condensates), vortices have quantised circulations, and in experiments where the
‘healing length’ of these vortices is much less than the mean free path between them, the
point vortex model can be expected accurately capture their essential dynamics [20]. Point
vortex statistical mechanics has been used to interpret phenomena such as energy spectrum
evolution [2] and condensate formation [21,22] observed in numerical simulations. This
research, as well as the continued relevance of vortex models of classical 2D turbulence [10],
motivate the current study.
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1046 J. G. Esler

In a recent work, Esler and Ashbee [12] (EA15 hereafter) developed a quantitative
approach to the statistical mechanics of N point vortices of arbitrary1 circulations in a general
simply-connected bounded domain D ⊂ R

2, in the limit N → ∞. The case of the doubly-
periodic domain has also been addressed in [11]. EA15 was concerned with the neutral case,
for which the vortex circulations (Γ1, . . . , ΓN ) are constrained to satisfy

N∑

i=1

Γi = 0. (1)

The main results of EA15 can be summarised:

1. A systematicmethod for calculating the density of states functionW (ε), in the limit N →
∞, for an arbitrary domain and general distribution of vortices was found. The density
of states is a measure of the number of vortex arrangements (microstates) consistent with
a fixed (and appropriately scaled) Hamiltonian energy level ε. The resulting formula for
W (ε) is independent of the details of the vortex circulations, a result consistent with the
statistical sampling study of Campbell and O’Neil [4].

2. It was shown that the energy spectrum of the point vortex flow, which depends only on
the energy level ε, is wholly determined by W (ε). Specifically,

〈E j 〉 = 1

2W (ε)

∫ ε

−∞
W (ε̄) eβ j (ε−ε̄) dε̄. (2)

Here E j (t) is the energy contained in the j th ‘hydrodynamic’ eigenmode of the domain
D (see Appendix A for definitions), and 〈E j 〉 is its expected long-time average under
the dynamics. To obtain (2), an ergodic hypothesis is assumed to hold, under which
the dynamical time-average is equivalent to the microcanonical ensemble average. The
negative constant β j is the (scaled) eigenvalue of the j th eigenmode, which can be related
to the eigenmode wavenumber k j by k j = (−β j/A)1/2 where A = |D| is the domain
area.

3. The validity of the new statistical theorywas demonstrated by comparisonwith numerical
simulations of the point vortex equations with N = 100. Consistent with the use of
the central limit theorem (CLT) in its derivation, the theory is accurate provided that
|ε/σε| � N 1/2, where σε is the standard deviation of the density of states W (ε).

4. The connection with the mean field theory of Joyce and Montgomery [15], was made
explicit. The EA15 theory (see also [19]) is recovered under ‘thermodynamic scaling’,
which for vortices of equal circulation means that ε is the Hamiltonian energy per vortex.
The mean-field theory is obtained under ‘hydrodynamic scaling’ in which the relevant
energy E is proportional to the Hamiltonian energy divided by N 2. (Equivalently, in the
notation of the current paper, the mean-field theory is formally valid for 0 < ε/σε ∼ N .)
That the two theories are consistent can be demonstrated by asymptotic matching: the
ε → ∞ limit of EA15 reveals the emergence of a condensate (or mean-field) into which
all excess energy is concentrated. The structure of this condensate turns out to be exactly
identical to the solution of the mean-field equation (sinh-Poisson) equation in the low
energy limit E → 0 of the mean-field theory.

The aim of the present work is to extend the results of EA15 to:

(A) Non-neutral distributions of vortices in which the constraint (1) no longer holds. In
this case there is a non-zero circulation inD which requires significant modifications
to the analysis of EA15.

1 Under some mild restrictions, see EA15.
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(B) Domains with a geometric symmetry associated with an additional conserved quan-
tity. Important examples include the circle and the annulus, in which angular
momentum is conserved, and the periodic channel with sidewalls, which conserves
linear (x)-momentum. Other examples are possible if the extension to general two-
dimensional surfaces is considered [8].

It will be shown below that it is natural to treat (A) and (B) in a similar fashion.
The plan of the work is as follows. In Sect. 2 the extended theory is set out for the non-

neutral case, and theoretical predictions are compared with both direct numerical simulations
(DNS) of the point vortex dynamics with N = 100 vortices, and statistical sampling of the
microcanonical ensemble. In Sect. 3 the theory is extended to domains with additional con-
served quantities, and the specific example of the unit circle is chosen for detailed examination
and comparison with DNS. In Sect. 4 conclusions are drawn.

2 General Domain: The Non-neutral Case

2.1 Set-up and Definitions

Consider the general situation of N point vortices, with circulations (Γ1, . . . , ΓN ) and posi-
tions (x1(t), . . . , xN (t)) evolving in a bounded and simply-connected domain D ⊂ R

2

of area A. (Results are straightforward to adapt to the non-conformal domains mentioned
above, namely the annulus and periodic channel.) Denoting the domain average over D of
any function f (x) by

[ f ] = 1

A

∫

D
f (x) dx, (3)

it is evident that the vorticity distribution

ω(x, t) =
N∑

i=1

Γiδ (x − xi (t)) , (4)

has a constant domain average

[ω] = 1

A

N∑

i=1

Γi . (5)

Introducing the r.m.s. circulation

Γ0 =
(
1

N

N∑

i=1

Γ 2
i

)1/2

, (6)

it turns out that all the behavior of interest can be captured by concentrating on the regimewith
[ω] ∼ Γ0N 1/2. In this ‘weakly non-neutral’ regime the energy in the mean flow, associated
with the domain-averaged vorticity [ω], is comparable to the energy in the fluctuations. In
strongly non-neutral flows (i.e., [ω] ∼ Γ0N ), by contrast, the energy is almost entirely in
the mean flow, as can be seen by taking the limit Ω0 → ∞ within the weakly non-neutral
theory.

Following EA15, the next step is to expand the vorticity field in a Fourier series based
on the hydrodynamic basis [14] {Φ j (x), j ≥ 0} of D, which is introduced in detail in
Appendix A. A key property of the hydrodynamic basis is that its leading eigenfunction is
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Φ0(x) = 1 and that all subsequent eigenfunctions are orthogonal toΦ0.As a consequence, the
hydrodynamic basis is well-suited to represent functions with a conserved domain average,
such as the vorticity field ω under consideration here. It is helpful to introduce the vorticity
scale ω0 = N 1/2Γ0/A and to use completeness to expand

ω(x, t)

ω0
= Ω0 +

∞∑

j=1

Ω j (t)Φ j (x). (7)

It follows, from orthogonality, that Ω j = [ωΦ j ]/ω0. In particular, Ω0 = [ω]/ω0 is an order
unity constant for a weakly non-neutral distribution of vortex circulations, with the strongly
non-neutral case accessible in the limit Ω0 → ±∞.

In the procedure of EA15, the expansion for ω is inserted into the equation for the point
vortex Hamiltonian [16],

H(x1, . . . , xN ) = −1

2

N∑

i=1

N∑

j=1, j 	=i

ΓiΓ j G(xi , x j ) − 1

2

N∑

i=1

Γ 2
i r(xi ). (8)

Here G(x, x′) is the (Dirichlet) Green’s function for D and r(x) is the Robin function

r(x) = lim
x′→x

(
G(x, x′) − 1

2π
log

∣∣x − x′∣∣
)

. (9)

To facilitate inserting the expansion for ω, (8) is first rewritten as

H = −1

2

∫

D2

(
ω(x)ω(x′) − R(x, x′)

)
G(x, x′) dx dx′ − 1

2

∫

D
S(x)r(x) dx. (10)

where R(x, x′) and S(x) are the distributions

R(x, x′) =
N∑

i=1

Γ 2
i δ(x − xi ) δ(x′ − xi ), S(x) =

N∑

i=1

Γ 2
i δ(x − xi ). (11)

To proceed, the Dirichlet Green’s function G(x, x′) is expanded in the hydrodynamic
basis, as described2 in detail inAppendixA.FollowingEA15,where further detail is provided,
the expansions (7) and (44) are inserted into (10), along with analogous expansions for R and
S. Eigenfunction orthogonality is then used to evaluate the resulting integrals. Finally, the
limit N → ∞ is taken, and terms of relative magnitude O(1/N ) are neglected. The result is

H̄ ≡ H

NΓ 2
0

= ε0(Ω0) +
∞∑

j=1

(Ω j + μ jΩ0)
2 − μ2

jΩ
2
0 − 1

−2β j
. (12)

Notice that in (12) the classical point vortex Hamiltonian H has been rescaled by a factor
NΓ 2

0 . The scaled Hamiltonian H̄ is convenient to work with, as it remains invariant under a
rescaling of the vortex circulations, and is also independent of N in the limit N → ∞. The
function ε0(Ω0) and sequences of constants {β j } and {μ j } appearing in (12) are

ε0(Ω0) = G00(1 − Ω2
0 ) − r0

2
, β j = 1

G j j
, μ j = G0 j

G j j
, (13)

2 In fact, there is an error in the corresponding expansion in EA15, their Eq. 3.9a should be Eq. (44) here. The
error is inconsequential for the results in EA15, however the use of the correct form (44) is essential here.
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where
G jk = [[

Φ j (x)G(x, x′)Φk(x′)
]]′ and r j = [

Φ j (x)r(x)
]
, (14)

where [[·]]′ denotes the double domain average over both the x and x′ coordinates. Conformal
mapping techniques can be used to show that the {G jk} depend only on the shape of D (i.e.,
they are independent of its area A). For the case of domains which are not simply-connected,
such as the annulus, the same result can be recovered by using the Schottky–Klein prime
function [7] to obtain the Green’s function. It follows that the only area-dependence in (12)
is through the constant r0, which under a rescaling of the domain area A → α2A transforms
according to r0 → r0 − (1/2π) logα. It follows that the domain area, as opposed to the
domain shape, does not affect the vortex statistics except for a (trivial) change in the value of
the constant ε0. For a domainD with a known or calculable conformal map to the unit circle,
the constants {β j }, {μ j } and r0 can obtained to high accuracy, up to some finite j = J , using
spectral methods [24]. For the rectangle and circle (see below) analytical results are available
[6,23].

The terms in the summation (12) have a useful interpretation in terms of the energetics of
the point vortex flow. Defining

E j = − (Ω j + μ j Ω0)
2

2β j
and E0 j = −1 + μ2

jΩ
2
0

2β j
, (15)

E j is the (scaled) fluid dynamical energy in the j th mode (see Appendix A.1 for discussion).
Consistent with the fact that the fluid dynamical energy of a single point vortex is singular,
the sum

∑
j E j is divergent. However the energy spectrum, as defined by the {E j }, remains

well-defined [9]. The constants E0 j are easily shown to be equal to the expected energy in
the j th mode, had the vortices been distributed randomly in D under uniform measure. The
difference E ′

j = E j − E0 j is the anomalous energy in the j th mode, and from (12) it is

evident that the Hamiltonian H̄ is equal to the sum of anomalous energies over all modes
(up to a constant).

2.2 Density of States Function and Caloric Curves

The density of states function is ameasure of the number ofmicrostates (vortex arrangements)
associated with the hypersurface in phase-space defined by H̄ = ε. Next, a method for
calculating it will be presented, which will extend the results of EA15 to non-neutral vortex
distributions. Following normalisation, the density of states can be identified with the pdf of
H̄ under the uniform ensemble, in which all vortices are distributed randomly in D under
uniform measure. From (12), it follows that for a non-neutral vortex gas, the density of
states W (ε,Ω0) will depend only on ε and Ω0, and not on any other details of the vortex
circulations. The normalisation for W (ε,Ω0) to be a pdf is

∫ ∞

−∞
W (ε,Ω0) dε = 1. (16)

Following [12], under the uniform ensemble the coefficients {Ω j } in the vorticity expan-
sion (7) can be considered to be random variables. In the limit N → ∞ the CLT can be
applied to obtain the distribution of the {Ω j }. The result, which follows due to the choice of
scalings made in Sect. 2.1, is that under the uniform ensemble

Ω j ∼ N (0, 1) ( j ≥ 1), (17)
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The {Ω j } are independent identically distributed (i.i.d.) Gaussian random variables. (Inde-
pendence follows from the orthogonality of the hydrodynamic modes.) Further, under the
uniform ensemble, H̄ is also a random variable, which by definition has the density of states
functionW (ε,Ω0) as its pdf. By inspection of (12), in fact, H̄ is a weighted sum of indepen-
dent non-central chi-squared random variables.Weighted sums of this type have been studied
in the statistics literature [5] and a brief guide to how they can be accurately evaluated in
practice is given in Appendix B.

Using notation introduced in Appendix B for the result of the relevant random sum, the
density of states is given by

W (ε,Ω0) = F (β,Ω2
0μ) (ε − ε0(Ω0)) (18)

where the function described by the notation F (w,λ)(·) is defined by (62). Here β =
−(β1, β2, . . .)

T is (minus) the vector of hydrodynamic eigenvalues {β j }, and μ =
(μ2

1, μ
2
2, . . .)

T . Most of our results below are built on (18).
A natural idea, for the case of strongly non-neutral flowswithΩ0 = [ω]/Γ0N 1/2 � 1 is to

simplify (18) by neglecting the quadratic terms (i.e., terms involving Ω2
j ) in (12). Under this

approximationW (ε,Ω0) becomes a sumofGaussian randomvariables andwill consequently
have a normal distribution. In fact, the most uniformly accurate Gaussian approximation of
W (ε,Ω0) is most easily obtained by replacing each non-central chi-squared random variable
in (12) by aGaussian random variable with zeromean and identical variance. Standard results
for sums of Gaussian random variables then lead to

W (ε,Ω0) ≈ 1√
2πΛ

exp

(
− (ε − ε0(Ω0))

2

2Λ2

)
, Λ =

⎛

⎝
∞∑

j=1

1 + 2μ2
jΩ

2
0

2β2
j

⎞

⎠
1/2

(19)

The constant Λ, which gives the standard deviation of W (ε,Ω0) depends only on the
domain constants and Ω0. Note that Λ ≈ Ω0(

∑
j G

2
0 j )

1/2 to leading order in Ω0. The
advantage of the approximation (19) is that the formula for the energy spectrum etc. below
can be evaluated exactly. The usefulness of the Gaussian approximation will be considered
shortly.

In the upper panels of Fig. 1 the density of statesW (ε,Ω0), calculated from (18), is plotted
(grey curves) for the Neumann oval domain illustrated in Fig. 2 (domain A). Details of the
conformal map used to generate the Neumann oval domain are given in Refs. [13] and [12]
(it is ‘domain B’ in the latter reference). The spectral methods described in [12,13] are used
to obtain the coefficients used to evaluate (18) numerically. The three panels show Ω0 = 0
(neutral case) Ω0 = 5 and Ω0 = 10. To verify the calculation in each case, also plotted
are histogram approximations (solid points) to pdfs of H̄ under the uniform ensemble, for
N = 100 vortices with circulations ±1, with the number of positive vortices N+ = 50, 75
and 100 vortices respectively. The histograms are based on 106 random samples of H̄ , with
direct sampling used (as opposed to theMarkov chainMonte-Carlo sampling method used in
EA15). The lower panels of Fig. 1 show the inverse temperature β = W ′/W , where the prime
denotes differentiation with respect to ε. In the neutral case, β approaches a critical value
βc = β1 ≈ −42.61, where β1 is the leading eigenvalue of the hydrodynamic eigenvalue
problem (38). The critical value βc is the inverse temperature at which Onsager-Kraichnan
condensation occurs, i.e., a mean circulation emerges. At high energies, the mean circulation
can be obtained by solving the sinh-Poisson (Boltzmann–Poisson) Eq. [15], which is derived
using mean-field theory. The high ε limit of the current theory, and the low energy limit of
the mean-field theory can be reconciled by asymptotic matching, following [12]. In Fig. 1 it
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Fig. 1 Upper panels: density of states W (ε, Ω0) for domain A, for Ω0 = 0, 5, 10. Curves are theoretical
predictions calculated from (18), and points are calculated from a histogram of H̄ under the uniform ensemble
(N = 100 vortices randomly placed in D under uniform measure). The sample size for H̄ is 106. Lower
panels: Inverse temperature β(ε, Ω0) for domain A, for Ω = 0, 5, 10. The dotted curves show the Gaussian
approximation (20)

can be seen that in the non-neutral case the convergence β → βc is much slower, which can
be explained because the emergence of the condensate from the existing mean flow, which
is present due to the mean vorticity field is rather gradual.

A shortcoming of the Gaussian approximation is apparent in the caloric curves plotted in
Fig. 1. Under the Gaussian approximation the inverse temperature is linear

β(ε) ≈ −ε − ε0(Ω0)

Λ2 (20)

which is evidently a poor approximation to the exact curves (plotted). In particular, the
Gaussian approximation does not capture limε→∞ β = βc, which means that the Gaussian
approximation cannot describe any aspect of condensation. For this reason it is not considered
further below.

2.3 Microcanonical Statistics and the Energy Spectrum

Useful statisticalmechanical predictions, which under the ergodic hypothesis will correspond
to the long-time means of the dynamics, are obtained from the microcanonical ensemble. In
domains without additional symmetries, the microcanonical ensemble consists of all states
in phase-space lying on the hypersurface of constant energy H̄ = ε.

For example, the microcanonical pdf of the projection Ω j of the vorticity field onto the
hydrodynamic mode Φ j (x) can be obtained using Bayes’ theorem. Using the subscript ε to
denote microcanonical pdfs, for Ω j we have
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1052 J. G. Esler

Fig. 2 Hydrodynamic modes Φ1, Φ2 and Φ3 for domains A, B and C

pε(ω j ) = W ( j)
(
ε − ē j (ω j ),Ω0

)

W (ε,Ω0)

exp
(
−ω2

j/2
)

√
2π

,

where ē j (ω j ) = (ω j + Ω0μ j )
2 − 1 − Ω2

0μ2
j

−2β j
. (21)

Here W ( j)(ε,Ω0) = F (β,Ω2
0μ)( j)(ε − ε0(Ω0)) denotes the density of states function (18)

modified so that it is calculatedwith the j thmode omitted (for a description of the notation see
Appendix B). The use of Bayes’ theorem is apparent if one considers pε(ω j ) as a conditional
pdf in the uniform ensemble, i.e., the pdf of Ω j conditioned on H̄ = ε. Then, the various
factors on the right-hand side of (21) can be identified as the pdf of H̄ conditioned onΩ j = ω j

(W ( j) term), the pdf of H̄ in the uniform ensemble (W term) and the pdf ofΩ j in the uniform
ensemble (Gaussian term).

Similarly, the corresponding expression for the pdf of the energy E j in the j th mode is

pε(e j ) = W ( j)(ε − (e j − E0 j ),Ω0)

W (ε,Ω0)
p̄ j

(
e j

)
, (22)
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where p̄ j (·) is the pdf of the non-central chi-squared random variable defined by Eq. (57),
and the constant E0 j is given by (15). The equilibrium energy spectrum can be obtained
from pε(e j ), by definition, as the expected energy in each mode under the microcanonical
ensemble

〈E j 〉 =
∫ ∞

0
e j pε(e j ) de j . (23)

The integral (23) can be expressed purely in terms of the density of states function, using the
convolution result (59), together with the fact that

(W ( j) ∗ p j )(ε,Ω0) = W (ε,Ω0).

These results lead directly to ourmain result for the equilibriumenergy spectrum, generalising
the result (2) for the neutral case, which is that at energy ε,

〈E j 〉 = 1

2W (ε,Ω0)

∫ ε

−∞
W (ε̄,Ω0)

(
1 − Ω2

0 μ2
jβ j (ε − ε̄)

)
eβ j (ε−ε̄) dε̄. (24)

Equation (24) shows that the energy spectrum is completely determined by the density of
states function W (ε,Ω0), and the energy in each mode can be obtained by a convolution of
W (ε,Ω0) with an elementary function. The significance of this is that the energy spectrum
at all energies ε can be obtained following a single calculation of W (ε,Ω0). Recall also
that W (ε,Ω0) depends only on the shape of the domain D and not on any detail of the
vortex circulations (Γ1, . . . , ΓN ) apart from Ω0. Finally, it is interesting to note that 〈E j 〉 is
determined by the structure of W at energies below that of the energy ε of interest only.

2.4 Comparison with Direct Numerical Simulations

Direct numerical simulations (DNS) can be used to assess the accuracy of the predictions
made in Sect. 2.3. Details of the adaptive numerical scheme used to solve the equations of
motion

Γi
dxi
dt

= −∂H

∂yi
, Γi

dyi
dt

= ∂H

∂xi
, i = 1, . . . , N (25)

are given in [1]. Here, very long integrations with N = 100 vortices are performed (length
105Γ −1

0 ), and vortex positions recorded at intervalΓ −1
0 in order to obtain converged statistics.

Non-neutrality is introduced by varying the respective numbers of positive and negative
vortices, with (N+, N−) = (50, 50), (52, 48) and (55, 45) respectively, corresponding to
Ω0 = 0, 0.4 and 1 as in Figs. 3 and 4. Integrations are performed for both domains B and C,
and for high (ε = 0.3) and low (ε = − 0.075) energies respectively, giving 12 integrations
in total.

The main statistic to be tested is the microcanonical pdf pε(ω1) of the vorticity projection

Ω1(t) = [ωΦ1]
ω0

= 1

Γ0N 1/2

N∑

i=1

ΓiΦ1(xi (t)).

Recall that, were the vortices distributed randomly inD (under the uniform ensemble), the pdf
of Ω1 would be normally distributed ∼ N (0, 1). In practice, the projection Ω1 is calculated
from the DNS results by cubic interpolation of the (gridded) spectral solution for Φ1 onto
the vortex positions, with the interpolation performed in the conformal (circle) domain.

Figure 5 shows histograms (points) generated from the 12 DNS integrations, versus the
corresponding predictions (curves) obtained from (21). Excellent agreement is obtained for
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Fig. 3 For domain B, the microcanonical pdf pε(ω j ) of Ω j at interaction energy ε, contoured as a function
of (ω j , ε), as predicted by (21). Upper panels: pε(ω1) for Ω0 = 0, 0.4, 1. Lower panels: pε(ω2) for Ω0 =
0, 0.4, 1
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Fig. 4 As Fig. 3 but for domain C

all 12 simulations, demonstrating that the theory correctly describes the influence of non-
neutrality across a range of energies. The two domains also exhibit different behaviours when
non-neutrality is introduced, exactly as predicted in Figs. 3 and 4.
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B (left panels) and Domain C (right panels) and at ε = 0.3 (upper panels) and at ε = − 0.075 (lower panels)
are shown. Results are for the neutral case (Ω0 = 0, N+ = 50, N− = 50, black curves), a weakly non-neutral
case (Ω0 = 0.4, N+ = 52, N− = 48, dark grey curves), and a more strongly non-neutral case (Ω0 = 1,
N+ = 55, N− = 45, light grey curves)

2.5 Saturation Energy Spectrum

One of the main results of EA15 was to show that, in the neutral case, for large ε the energy
spectrum becomes saturated for all modes with j ≥ 2. Following this saturation, as ε is
increased further, all of the additional energy must enter the j = 1 (Onsager-Kraichnan)
condensate mode. The main results can be extended to the non-neutral case by noting that as
ε → ∞, β(ε) → β1 and W (ε) ∼ exp (β1ε). Inserting this form into (23), gives, for j ≥ 2

〈E j 〉 → β1 − β j (1 + Ω2
0μ2

j )

2(β1 − β j )2
( j ≥ 2). (26)

The energy in the condensate mode ( j = 1) can then be obtained from the ensemble average
of (12),

ε = ε0(Ω0) +
∞∑

j=1

〈E j 〉 − E0 j , (27)

from which

〈E1〉 ∼ ε − ε∗, where ε∗ = ε0(Ω0) +
∞∑

j=2

β1(1 + Ω2
0μ2

j )

2β j (β1 − β j )
. (28)

The main point to note from (26–28) is that for |Ω0| � 1 the non-neutral energy spectrum
saturates at a considerably higher energy compared to the neutral case.
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3 Domains with Translational and Rotational Symmetries

3.1 General Considerations

A domain D with an additional symmetry will have a conserved integral of the form

I = 1

A

∫

D
F(x)ω(x) dx, (29)

in addition to the integral of the vorticity itself. Themicrocanonical ensemble for point vortex
motion inD then consists of those states in phase-space on the hypersurface defined by H̄ = ε

and I =constant. An explicit example is when D is chosen to be the unit circle, as will be
explored in detail below. For the circle, F(x) = |x|2/2, and I is the familiar angular impulse,
which is also conserved whenD is annular. The general methodology applies equally to other
domains, for example whenD is a (ei -)periodic channel bounded by sidewalls, in which case
F(x) = (e3× x) · ei and I is the linear impulse in the direction ei (i = 1, 2). Other examples
are possible if the class of domains is extended to include general two-dimensional surfaces,
following [8].

The key to dealing with the additional conserved quantity is to introduce a generalised
hydrodynamic basis as defined in Appendix A. The expansion of the normalised vorticity
field in this basis is

ω(x, t)

ω0
= Ω0 + Ω1Φ1(x) +

∞∑

j=2

Ω j (t)Φ j (x). (30)

The expansion is similar to (7), except that the first two coefficients Ω0 and Ω1 are now
time-independent, reflecting the fact that there are now two conserved quantities. (Explicitly
Ω0 = [ω]/ω0,Φ1 = (F−[F])/[(F−[F])2]1/2 andΩ1 = [ωΦ1]/ω0.) TheDirichletGreen’s
function can then also be expanded in the generalised basis according to (53). Following the
method of Sect. 2.1, using the properties of the generalised basis established in Appendix A,
it follows that (10) becomes

H̄ = ε0(Ω0,Ω1) +
∞∑

j=1

(Ω j + μ jΩ0 + ν jΩ1)
2 − (μ jΩ0 + ν jΩ1)

2 − 1

−2β j
, (31)

with sequences of constants {β j }, {μ j } and {ν j } as defined in Appendix A. Here

ε0(Ω0,Ω1) = −1

2

(
r0 + G00

(
Ω2

0 − 1
) + 2G01Ω0Ω1 + G11

(
Ω2

1 − 1
))

.

In the uniform ensemble, Eq. (31) can be treated exactly as (12), as a sum of non-central
chi-squared random variables. It follows that the formula for the density of states is

W (ε,Ω0,Ω1) = F (β,v)(ε − ε0) (32)

where, as in Sect. 2, the function described by the notation F (w,λ)(·) is defined by (62). In
this case β = −(β2, β3, . . .)

T is (minus) the vector of generalised hydrodynamic eigenvalues
{β j }, and v(Ω0,Ω1) = ((Ω0μ2+Ω1ν2)

2, (Ω0μ3+Ω1ν3)
2, . . .)T . Using (32) further results

corresponding to those in Sect. 2 follow straightforwardly.
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3.2 Circular Domains

The circle is the simplest example of a domain with a rotational symmetry. The associated
conserved quantity is the angular impulse (29) with F(x) = 1

2 |x|2. The circle of unit radius,
which may be used here without loss of generality, has a well-known [3] Dirichlet Green’s
function

G(x, x′) = 1

2π
log |x − x′| − 1

4π
log

(
1 − 2x · x′ + |x|2|x′|2), (33)

from which all of the constants necessary to evaluate (32) can be calculated explicitly.
In terms of the usual polar coordinates (r, θ), the first two hydrodynamic eigenmodes are

Φ0 = 1, Φ1 = 2
√
3

(
r2 − 1

2

)
. (34)

The remaining eigenmodes {Φ j , j ≥ 2} consist of the union of the set of eigenmodes
Sθ = {φmn±, m, n ≥ 1} with azimuthal dependence,

φmn±(r, θ) =
√
2Jm( jmnr)

Jm+1( jmn)

{
cos (mθ)

sin (mθ)

}
, βmn = −π j2mn, (35)

with the θ -independent set S0 = {φ0n, n ≥ 1}

φ0n(r) = j3nJ0( j3nr) − 2J1( j3n)

j3nJ2( j3n)
, β0n = −π j23n . (36)

Here Jm(·) is the Bessel function of the first kind of index m, and jmn denotes its zeroes
(n ≥ 1). The axisymmetric eigenmodes in S0 are most easily obtained by solving (51). The
union of these sets of eigenmodes {Φ j , j ≥ 2} = S0 ∪ Sθ are then ordered according to
their eigenvalues {β j , j ≥ 2}. It is straightforward to verify the orthogonality condition
[Φ jΦk] = δ jk for all j, k ≥ 0 by direct calculation using Bessel function identities.

The remaining constants in (31) can also be evaluated straightforwardly for the circle.
They are

μ j = G0 jβ j = 0, ν j = G1 jβ j =

⎧
⎪⎪⎨

⎪⎪⎩

1√
3
, Φ j ∈ S0

0, Φ j ∈ Sθ

( j ≥ 2) (37)

and

G00 = − 1

8π
, G01 = 1

8
√
3π

, G11 = − 1

16π
, r0 = 1

2π
.

The results (35–37) allow the all of the statistical quantities introduced in Sect. 2 to be
calculated explicitly for the circle, with the only approximations being in the (necessary)
truncation of summations, as described in Appendix B. To test the accuracy of (32) Fig. 6
shows the following calculation. On the left, the joint pdf p0(ε, ω1) of (H̄ ,Ω1), for a neutral
vortex gas under the uniform distribution, is contoured. The theoretical prediction is obtained
using p0(ε, ω1) = W (ε; 0, ω1) p0(ω1) where p0(ω1) ∼ N (0, 1), and with W calculated
from (32). A two-dimensional histogram of (H̄ ,Ω1), generated from 106 random distribu-
tions of N = 100 vortices (for plotting purposes shifted by ε → ε + 0.2), is contoured on
the right. Note that a similar histogram (without a corresponding theoretical description) has
been calculated by [3]. Excellent agreement between the theoretical and sampled histograms
is evident.
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Fig. 6 The joint pdf p0(ε, ω1) of (H̄ ,Ω1), for a neutral vortex gas in the unit circle, under the uniform
distribution. Left: Theoretical calculation from (32) (see text). Right: (shifted ε → ε + 0.2) Histogram
generated from 106 random distributions of N = 100 vortices

The resulting statistical predictions can be compared with dynamical integrations of
(25). Three calculations of length 105Γ −1

0 have been performed in the circular geom-
etry with N = 100 vortices (50 positive, 50 negative, so that Ω0 = 0), each with
ε = 0.3, and with Ω1 = 0, 2.5 and 5 respectively (note that angular impulse I =
Ω1

√
N/48).

In Fig. 7 predicted versus calculated energy spectra are compared for all three calcula-
tions. Following standard practice, the energy density E(k) is calculated for each integer
wavenumber k by summing the energies E j in all modes satisfying k − 1

2 < k j ≤ k + 1
2 ,

where k j = (−β j/A)1/2. The energies E j (t) are themselves calculated directly from the
vortex positions, using the definitions of Ω j , and Φ j taken from (35, 36). The theoretical
predictions for 〈E j 〉 follow from adapting Eq. (24), using the substitution μ jΩ0 → ν jΩ1,
and by using the relevant density of states (32). Good agreement is evident between theory
and DNS. In particular, the theory captures the emergence of the spectral signature of the
axisymmetric modes (i.e., those in S0, of which the first three are indicated) as Ω1 increases.
It is notable that the increase in the energy of the axisymmetricmodes is largely at the expense
of the gravest modes in the system.

At larger values of ε the energy of the flow becomes concentrated in an emergent conden-
sate associated with these gravest modes, as can also be established using mean-field theory,
following [15]. The structure and selection of the condensate in the circle has been studied
in Section 5 of [6], where a detailed description is given.
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Fig. 7 Energy spectrum E(k) in the circle. Points show time-averages from three long (100,000Γ −1
0 ) DNS of

(25) with N = 100 vortices, ε = 0.3 and Ω1 = 0, 2.5 and 5 respectively. Solid lines show the corresponding
theoretical predictions from (24). For clarity, the results for Ω1 = 2.5 and 5 have been shifted upwards in the
plot, by taking E(k) → 5E(k) and E(k) → 25E(k) respectively

4 Conclusions

In this work, the statistical theory of [12] has been extended to cover the cases of both
non-neutral vortex distributions and domains with additional symmetry-induced conserved
quantities. In particular, we have shown that:

1. The density of states function for an arbitrary distribution of vortices, in an arbitrary
domain D ⊂ R

2, can be calculated using (18).
2. A range of statistical quantities, such as the pdf pε(ω j ) of the vorticity projectionsΩ j can

be evaluated under themicrocanonical ensemble. Under the ergodic hypothesis these pdfs
are realised by the dynamics. Long numerical integrations with N = 100 show excellent
agreement with the predictions for both neutral and non-neutral vortex distributions.

3. A simple expression (24) for the microcanonical energy spectrum is obtained. Numerical
integrations in the circle, againwith N = 100, show that the theory captures the variations
in the energy spectrum as the vortex interaction energy ε, and angular momentum I are
varied.

4. The theory is naturally extended to domains with conserved quantities. Numerical inte-
grations with N = 100 in the unit circle have been used to verify the results.

The results above will be of particular use to researchers interested in two-dimensional
quantum turbulence [2,22] for two reasons. First, a number of experiments with Bose–
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Einstein condensates have been undertaken in an annular trapping potential [17], which
requires consideration of the angular momentum constraint. Second, quantised vortices
modelled by the Gross–Pitaevskii equation undergo like-signed annihilation, which in a
double-periodic domain preserves neutrality. In a bounded domain, however, annihilation can
also occur with the ‘image’ vortex at the boundary, meaning that non-neutral configurations
can emerge spontaneously from the dynamics [21]. The results here allow the equilibrium
statistics to be determined in each of the above situations.

Acknowledgements Tom Ashbee is thanked for helpful comments. Supported by the Leverhulme Trust
RF-2016-158 and Kavli Institute NSF PHY11-25915.

Appendix A: The Hydrodynamic Basis and Its Generalisation

A.1: TheHydrodynamic Basis and the Expansion of the Dirichlet Green’s Function

Ideal hydrodynamics in a simply-connected, bounded domain D conserves the integral of
the vorticity. Assuming that there are no other conserved quantities that are linear in the
vorticity, a natural basis in which to expand the residual vorticity field ω − [ω] will consist
of eigenmodes {Φ j } which carry no vorticity, i.e., which satisfy [Φ j ] = 0. It is known that
solutions of the eigenvalue problem

∇2Φ = β

A
Φ in D, (38)

subject to boundary conditions

Φ = cons. on ∂D,

∮

∂D
∇Φ · n ds = 0, (39)

satisfy this condition. The boundary conditions (39) are known as hydrodynamic boundary
conditions, and their role in 2D vorticity dynamics is long recognised [14,16]. Note if Φ j

is interpreted as a streamfunction, then the boundary integral in (39) can be interpreted as
enforcing a zero circulation condition on ∂D, which is consistent with the mode carrying no
vorticity (c.f. Kelvin’s circulation theorem). Each mode Φ j has an associated non-positive
eigenvalue β j . Here, use of the domain area A in (38) ensures that the {β j } depend only on
the shape and not the size ofD. The modes are orthogonal and can be normalised (as here) so
that [Φ jΦk] = δ jk where [·] denotes the domain average. Further Φ0 = 1, with eigenvalue
β0 = 0, and it follows that [Φ j ] = 0 for all j ≥ 1.

A different perspective on (38, 39) is provided by the closely related eigenvalue problem
[6]

∇2Ψ = β

A
(Ψ − [Ψ ]) , with Ψ = 0 on ∂D, (40)

which shares eigenvalues {β j } with (38, 39) for j ≥ 1, note that Φ j can be identified with
∇2Ψ j . A near-equivalent integral equation representation of (40) is

LΦ = β−1Φ

where L f (x) = 1

A

∫

D
GH (x, x′) f (x′) dx′

and GH (x, x′) = G(x, x′) − G0(x) − G0(x′) + G00. (41)
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Here G(x, x′) is the Dirichlet Green’s function and G0(x) = [G(x, x′)]′ and G00 =
[[G(x, x′)]]′ its domain averages over one and both variables respectively. The equivalence
between (40) and (41) can be seen by substituting the relation

Ψ (x) =
∫

D
G(x, x′)Φ(x′) dx′

into (40). Notice it follows from the symmetry of G that GH is symmetric, and therefore the
operator L is self-adjoint and has real eigenvalues and orthogonal eigenmodes.

An expansion of the Dirichlet Green’s function G(x, x′) in the complete set of modes
{Φ j } is used in Sect. 2. In general, the expansion has the form

G(x, x′) =
∞∑

j=0

∞∑

k=0

G jkΦ j (x)Φk(x′), (42)

with the {G jk} given by (14). However, (42) can be simplified, because, since the {Φ j } are
eigenfunctions of L and Φ0 = 1 is in the kernel of L,

GH (x, x′) =
∞∑

j=1

Φ j (x)Φ j (x′)
β j

. (43)

Inserting (42) and (43) into the definition of GH in (41) it follows that G jk = δ jk/β j for
j, k ≥ 1, and

G(x, x′) = G00 +
∞∑

j=1

Φ j (x)Φ j (x′) + μ jΦ j (x) + μ jΦ j (x′)
β j

, (44)

with the {β j } and the {μ j } the two infinite sequences of domain-shape dependent constants,
given by (13).

The definition (15) of the energy spectrum {E j } is justified as follows. The definition of
the fluid energy E in the case of a non-singular streamfunction ψ is

E = 1

2

∫

D
∇ψ · ∇ψ dx. (45)

Any streamfunction

ψ(x) =
∫

D
G(x, x′)ω(x′) dx′ + constant, (46)

can be expanded in the hydrodynamic eigenfunctions as ψ = ω2
0

∑∞
j=1 a jΦ j , omitting the

j = 0 term on account of the arbitrary constant and introducing a scaling factor ω0 for the
vorticity, such as that used in Sect. 2.1. Based on this expansion it is natural to define the
scaled energy spectrum {E j }, where E = ω2

0

∑∞
j=1 E j , to be

E j = a2j
2

∫

D
∇Φ j · ∇Φ j dx = − a2j

2β j
, (47)

using integration by parts with (38, 39). Returning to the point vortex system, inserting the
expansions (7) and (44) into (46) gives a j = Ω j + μ jΩ0, recovering (15).
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A.2: The Generalized Hydrodynamic Basis

The hydrodynamic basis defined above is the appropriate basis when D has no continuous
symmetries. If D has such a symmetry there will be an additional conserved quantity of the
form (29). In this case, a generalised hydrodynamic basis {Φ j } can be constructed by first
defining Φ0 = 1 and Φ1 = (F − [F])/[(F − [F])2]1/2.

Next consider the eigenvalue problem

LΦ = β−1Φ

where L f (x) = 1

A

∫

D
GH (x, x′) f (x′) dx′ (48)

where this time GH is obtained from the Dirichlet Green’s function G by

GH (x, x′) = G(x, x′) − G0(x) − G0(x′) − Φ1(x)G1(x′) − G1(x)Φ1(x′)
+G01Φ1(x′) + G01Φ1(x) + G11Φ1(x)Φ1(x′) + G00, (49)

where G jk is defined as in (14), G0(x) = [G(x, x′)]′ and G1(x) = [G(x, x′)Φ1(x′)]′.
The eigenvalue problem (48) has the following properties:

– It is straightforward to verify that the orthogonal functions Φ0 and Φ1 are in the kernel
of L, i.e LΦ0 = LΦ1 = 0 so that both Φ0 and Φ1 are eigenmodes of L with eigenvalue
β−1 = 0.

– The modified Green’s function GH (x, x′) is symmetric and as a consequence L is self-
adjoint. It follows that the remaining eigenmodes {Φ j , j ≥ 2} are orthogonal both to
each other and to {Φ0, Φ1}. Further, they can be normalised so that

[Φ jΦk] = δ jk j, k ≥ 0. (50)

– It follows, using the orthogonality property above, that the eigenmodes {Φ j , j ≥ 2} are
also solutions of

∇2Ψ = β

A
(Ψ − [Ψ ] − [Ψ Φ1]Φ1) , Ψ = 0on ∂D, whereΨ =

∫

D
G(x, x′)Φ(x′) dx′.

(51)
The eigenvalue problem in the form (51) has been previously identified as being key to
understanding ideal fluid equilibrium states in the unit circle [6].

– The modified Green’s function GH (x, x′) can be expanded as

GH (x, x′) =
∞∑

j=2

Φ j (x)Φ j (x′)
β j

. (52)

It follows that the corresponding expansion of the Dirichlet Green’s function is

G(x, x′) = G00 + G01Φ1(x) + G01Φ1(x′) + G11Φ1(x)Φ1(x′)

+
∞∑

j=2

Φ j (x)Φ j (x′) + (
μ j + ν jΦ1(x)

)
Φ j (x′) + (

μ j + ν jΦ1(x′)
)
Φ j (x)

β j

(53)

where μ j = G0 j/G j j and ν j = G1 j/G j j ( j ≥ 2).

When the expansion (53) is inserted into the Hamiltonian (10), along with corresponding
expansions for the distributions ω, R and S, the result is Eq. (31).
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Appendix B: Weighted Sums of Non-central Chi-squared Random Vari-
ables

As in EA15, it is necessary to introduce some functional notation to specify our results.
Whereas in EA15 the results were expressed in terms of functions defined by weighted
sums of χ-squared random variables, here we need sums of non-central χ-squared random
variables. Such sums have been studied in the statistics literature [5], where it is shown that
the resulting pdfs can be written in terms of (rather complicated) series involving Laguerre
polynomials. Here, we present the simpler task of deriving the pdf as an inverse Fourier
transform, which we approximate using numerical quadrature for the results in the main text.

The non-central chi-squared random variable, usually denoted χ ′
1
2
(λ), is by definition

equivalent to the random variable Y = (X +√
λ)2 when X ∼ N (0, 1) is a Gaussian random

variable and λ > 0 a positive parameter. Explicitly, Y has pdf

p(y, λ) = H(y) exp (−(y + λ)/2) cosh
(√

λy
)

√
2πy

, (54)

where H(·) denotes the Heaviside step function. Note that E(Y ) = 1 + λ.
In the main text, the density of states function W (ε,Ω0) is found, up to a shift in the

independent variable, to be equal to the pdf of the random variable

SM =
M∑

j=1

Y j − 1 − λ j

2w j
, (55)

in the limit M → ∞. Here {Y j } are independent and distributed according to Y j ∼ χ ′
1
2
(λ j ),

i.e., with pdf (54), where the {λ j } are a sequence of non-negative constants. The {w j } are
an infinite set of monotonically increasing positive constants, which are assumed to increase
sufficiently rapidly so that (a) CLT results for weighted sums (e.g., Lyapunov CLT) do not
hold, and (b) S∞ = limM→∞ SM is well defined. It turns out that w j ∼ j at large j , which
captures the behaviour of the eigenvalues {β j } in (12), is sufficient for both (a) and (b).

Denoting the pdf of SM by F (w,λ)
M (s), where w = (w1, w2, . . . , wM )T and λ =

(λ1, λ2, . . . , λM )T , it is a standard result that it can be expressed as a convolution

F (w,λ)
M (s) = (p1 ∗ p2 ∗ p3 ∗ . . . ∗ pM )(s), (56)

where the {p j } are, in terms of (54), given by

p j (y) = 2w j p(2w j y + 1 + λ j , λ j ). (57)

It is helpful for the analysis in 2.3 to also introduce the pdf ofY j/2w j which is given explicitly
by

p̄ j (y) = 2w j p(2w j y, λ j ). (58)

which is also related to p j by p̄ j (y) = p j (y−(1+λ j )/2w j ). A useful property of p̄ j , which
is straightforward to verify by direct integration of the convolution integral, is the result

y p̄ j (y) = ( f ∗ p̄ j )(y), where f (y) = 1
2H(y)

(
1 + λ jw j y

)
exp (−w j y). (59)

Using the convolution theorem, the Fourier transform of F (w,λ)
M (s) is given by

F̂ (w,λ)
M (k) = (2π)(M−1)/2

M∏

j=1

p̂

(
k

2w j
; λ j

)
. (60)
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where

p̂(k; λ) = 1√
2π

(1 + 4k2)−1/4 exp

(
− 2λk2

1 + 4k2
+ 1

2
i

(
2k − tan−1 (2k) + 8λk3

1 + 4k2

))
.

(61)
is the Fourier transform of p(y). Taking the limit M → ∞, and dropping the subscript M ,
after some working it follows that

F (w,λ)(s) = 1

2π

∫ ∞

−∞
A(w,λ)(k) exp

(
iks + iφ(w,λ)(k)

)
dk, (62)

where the amplitude and phase functions A(w,λ) and φ(w,λ) are real-valued and defined by

A(w,λ)(k) = exp

⎛

⎝−1

2

∞∑

j=1

k2λ j

k2 + w2
j

⎞

⎠
∞∏

j=1

(
1 + k2

w2
j

)−1/4

, (63)

φ(w,λ)(k) = 1

2

∞∑

j=1

(
k

w j
− tan−1

(
k

w j

)
+ λ j k3

w j (k2 + w2
j )

)
. (64)

The function notation F (w,λ)(s) is used in the main text. A further notational device used in
the text is to write (w,λ)(i1, i2, i3) to denote the vectors w and λ with the terms at index
j = i1, i2, i3 omitted (e.g., (w,λ)(1) = (w2 w3 . . .)T and (λ2 λ3 . . .)T etc.).

There is no known analytical method for explicitly inverting the transform (62). While
Ref. [5] has shown that a series in Laguerre polynomials can be found for finite sums, this
method becomes impractical as the number of non-central chi-squared random variables
increases. As a consequence we use a direct numerical approach. Numerical quadrature of
(62) using the trapezium rule, with w and λ truncated at a few hundred terms converges
fairly rapidly with element size, provided that s � 2(

∑
j w

−2
j )1/2 (roughly four standard

deviations of the resulting distribution). Convergence is improved by using Weyl’s law to
approximate higher eigenvalues, and by using the Gaussian approximation (see main text)
to include all eigenvalues beyond the cut-off in the calculation. Nevertheless as |s| increases
past 2|σε| convergence rapidly becomes computationally expensive and then impossible.
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