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Abstract We consider Gibbs measures on the configuration space SZ
d
, where mostly d ≥ 2

and S is a finite set. We start by a short review on concentration inequalities for Gibbs
measures. In the Dobrushin uniqueness regime, we have a Gaussian concentration bound,
whereas in the Ising model (and related models) at sufficiently low temperature, we control
all moments and have a stretched-exponential concentration bound. We then give several
applications of these inequalities whereby we obtain various new results. Amongst these
applications, we get bounds on the speed of convergence of the empirical measure in the sense
of Kantorovich distance, fluctuation bounds in the Shannon–McMillan–Breiman theorem,
fluctuation bounds for the first occurrence of a pattern, as well as almost-sure central limit
theorems.

Keywords Gaussian concentration bound ·Moment concentration bound ·Low-temperature
Ising model · Dobrushin uniqueness · d̄-Distance · Empirical measure · Relative entropy ·
Kantorovich distance · Almost-sure central limit theorem

1 Introduction

Concentration inequalities play by now an important role in probability theory and statistics,
as well as in various areas such as geometry, functional analysis, discrete mathematics [4,12,
25]. Remarkably, the scope of these inequalities ranges from the more abstract to the explicit
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analysis of givenmodels.With a view towards our setting, the elementarymanifestation of the
concentration of measure phenomenon can be formulated as follows. Consider independent
random variables {ωx , x ∈ Cn} taking the values ± 1 with equal probability and indexed by
the sites of a large but finite discrete cube Cn of “side length” 2n + 1 in Zd . The partial sum∑

x∈Cn
ωx has expectation zero. Of course, this sum varies in an interval of sizeO(nd). But,

in fact, it sharply concentrates with very high probability in amuch narrower range, namely in
an interval of size O(nd/2). This statement is quantified by the following “Gaussian bound”
or Hoeffding inequality (see [4]):

P

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∑

x∈Cn

ωx

∣
∣
∣
∣
∣
∣
≥ u (2n + 1)d/2

⎫
⎬

⎭
≤ 2 exp

(

−u2

2

)

for all n ≥ 1 and for all u > 0. This is a finite-volume quantitative version of the strong law
of large numbers, giving the correct scale as in the central limit theorem. This phenomenon
is not tied to linear combinations of the ωx ’s, like the above sum, but in fact holds for a broad
class of nonlinear functions F of the ωx ’s. Thus, we can get tight bounds for the probability
that a complicated or implicitly defined function of the ωx ’s deviates from its expected value.
Let us stress that concentration inequalities are valid in every finite volume, and not just
asymptotically.

Now, what happens if the ωx ’s are no longer independent? One can expect to still have a
Gaussian bound of the same flavour as above provided correlations are weak enough amongst
the ωx ’s (see e.g. [8] about Markov chains, and [21] for a survey focused on the martingale
method). In the present paper, we are interested in Gibbs measures on a configuration space
of the form � = SZ

d
where S is a finite set. In the above elementary example, we have

S = {−1, 1} (spins) and the previously considered product measure can be thought as a
Gibbs measure at infinite temperature. The first work in this setting is [23] in which it was
proved that a Gaussian concentration bound holds in Dobrushin’s uniqueness regime (see
below for a precise statement). The constant appearing in the bound is directly related to the
“Dobrushin contraction coefficient”. For instance, any finite-range potential at sufficiently
high temperature satisfies Dobrushin’s condition, like the Ising model. One of the main
motivations of [9] was to figure out what happens for the Isingmodel at low temperature. One
cannot expect that aGaussian concentration boundholds (see details below), and itwas proved
in [9] that a stretched-exponential decay of the form exp(−cu�) holds, where 0 < � < 1
depends on the temperature. Notice that we deal with d ≥ 2. For d = 1, the situation is
as follows. Finite-range potentials give rise to finite-state Markov chains and thus one has a
Gaussian concentration bound. For potentials which are summable in certains sense, one has
also aGausian concentration bound, but the known results are formulated in terms of chains of
infinite order (or g-measures) rather thanGibbsmeasures, see [16]. For long-range potentials,
like Dyson models, nothing is known regarding concentration bounds. In that context, let us
mention that g-measures can be different fromGibbsmeasures, see [2] and references therein.

The purpose of the present work is to apply these concentration bounds to various types
of functions F of the ωx ’s, both in Dobrushin’s uniqueness regime and in the Ising model
at sufficiently low temperature. For example, we obtain quantitative estimates for the speed
of convergence of the empirical measure to the underlying Gibbs measure in Kantorovich
distance. In the Ising model, this speed depends in particular on the temperature regime.
Here the estimation of the expected distance raises an extra problem which requires to adapt
methods used to estimate suprema of empirical processes. The problem comes from the
fact that our configuration space is topologically a Cantor set. Another application concerns
“fattening” finite configurations in the sense of Hamming distance: take, e.g., S = {−1, 1}
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and consider the set �n = {ηx : x ∈ Cn}. Now, take a subsetBn ⊂ �n of, say, measure 1/2,
and look at the setBn,ε of all configurations in�n obtained from those inBn by flipping, say,
ε = 5% of the spins. It turns out that, for large but finite n, the set Bn,ε has probability very
close to 1. Besides fluctuation bounds, we also obtain an almost-sure central limit theorem,
thereby showing how concentration inequalities can also lead to substantial reinforcements
of weak limit theorems in great generality.

Concentration inequalities may look weaker than a “large deviation principle” [11]. On
one hand, this is true because getting a large deviation principle means that one gets a rate
function which gives the correct asymptotic exponential decay to zero of the probability that,
e.g., (2n + 1)−d ∑

x∈Cn
ωx deviates from its expectation (the magnetization of the system).

But, on the other hand, it is hopeless to get a large deviation principle for functions of theωx ’s
which do not have some (approximate) additivity property. This rules out many interesting
functions of theωx ’s. Besides, even in the situation when concentration inequalities and large
deviation principles coexist, the former provides simple and useful bounds which are valid
in every finite volume.

We also emphasize that concentration inequalities provide upper-bounds which are “per-
mutation invariant”. In particular, for averages of the form |�|−1∑

x∈� f (Txω) one obtains
bounds in which the dependence on � is only through its cardinality, and thus insensitive to
its shape. In the case of the Gaussian concentration bound, one obtains an upper bound for
the logarithm of the exponential moment of

∑
x∈� f (Txω) which is of the order |�|. This

provides an order of growth as would be provided by large deviation theory in contexts where
the latter is not necessarily available. Indeed, in order to have a large deviation principle, it is
necessary that the sets � grow as a van Hove sequence, see e.g. [15]. An illustrative example
is when � is a subset of Zd which is contained in a hyperplane of lower dimension (e.g., a
subset of one of the coordinate planes). Indeed, there is a priori no large deviation principle
available for projections of Gibbs measures on lower dimensional sets (they might fail to
satisfy the variational principle), whereas concentration bounds are still possible.

Before giving the outline of this paper, let us mention the papers [10], [5,6], and [30,31],
which deal with concentration inequalities for spin models from statistical mechanics. In
[10], the author establishes, among other things, a Gaussian concentration bound for partial
sums of a random field satisfying a “weak mixing” condition. This includes the Ising model
above its critical temperature. In [5,6], the authors obtain concentration inequalities formean-
field models, like the Curie–Weiss model. These results follow from a method introduced by
Chatterjee in [5] (a version of Stein’s method).

The rest of our paper is organized as follows. After some generalities on concentration
bounds given in Sect. 3 and tailored for our needs, we gather a number of facts on Gibbs
measures which we will use in our applications (Sect. 4). We then review the known concen-
tration properties of Gibbs measures, i.e., the Gaussian concentration bound which is valid in
Dobrushin’s uniqueness regime (Sect. 5), and the moment inequalities, as well as a stretched-
exponential concentration bound, which hold for the Ising model at sufficiently low tempera-
ture (Sect. 6). Thenwe derive various applications of the concentration bounds in Sects. 7–13.

2 Setting

2.1 Configurations and Shift Action

We work with the configuration space � = SZ
d
, where S is a finite set, and d an integer

greater than or equal to 2.We endow�with the product topology that is generated by cylinder
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sets. We denote byB the Borel σ -algebra which coincides with the σ -algebra generated by
these sets.

An element x of Zd (hereby called a site) can be written as a vector (x1, . . . , xd) in
the canonical base of the lattice Z

d . Let ‖x‖∞ = max1≤i≤d |xi |, and denote by ‖x‖1 the
Manhattan norm, that is, ‖x‖1 = |x1| + · · · + |xd |. More generally, given an integer p ≥ 1,
let ‖x‖p = (|x1|p + · · · + |xd |p)1/p . If � is a finite subset of Zd , denote by diam(�) =
max{‖x‖∞ : x ∈ �} its diameter, and by |�| its cardinality. The collection of finite subsets
of Zd will be denoted by P .

We consider the following distance on � : for ω,ω′ ∈ �, let

d(ω, ω′) = 2−k where k = min
{‖x‖∞ : ωx 	= ω′

x

}
. (1)

This distance induces the product topology, and one can prove that (�, d) is a compact metric
space. Note that � is a Cantor set, so it is totally disconnected.

For � ⊂ Z
d , we denote by �� the projection of � onto S�. Accordingly, an element of

�� is denoted by ω� and is viewed as a configuration ω ∈ � restricted to �. Another useful
notation is the following. For σ, η ∈ � we denote by σ�η�c the configuration which agrees
with σ on � and with η on �c. Finally, we denote by B� the σ -algebra generated by the
coordinate maps fx : ω 
→ ωx , x ∈ �.

Subsets of particular interest are cubes centered about the origin of Zd : for every n ∈ N,
define

Cn = {
x ∈ Z

d : −n ≤ xi ≤ n, i = 1, 2, . . . , d
}
.

For ω ∈ � and n ∈ N, define the cylinder set

Cn(ω) = {
η ∈ � : ηCn = ωCn

}
.

We simply write �n for �Cn which is the set of partial configurations supported on Cn .
Finally, the shift action (Tx , x ∈ Z

d) is defined as usual: for each x ∈ Z
d , Tx : � → �

and (Txω)y = ωy−x , for all y ∈ Z
d . This corresponds to translating ω forward by x .

2.2 Functions

Let F : � → R be a continuous function and x ∈ Z
d . We denote by

δx (F) = sup
{|F(ω) − F(ω′)| : ω,ω′ ∈ � differ only at site x

}

the oscillation of F at x . It is a natural object because, given a finite subset � ⊂ Z
d and two

configurations ω, η ∈ � such that ω�c = η�c , one has

|F(ω) − F(η)| ≤
∑

x∈�

δx (F).

We shall say that F : � → R is a local function if there exists a finite subset �F of Zd (the
dependence set of F) such that for all ω, ω̃, ω̂, F(ω�F ω̃�c

F
) = F(ω�F ω̂�c

F
). Equivalently,

δx (F) = 0 for all x /∈ �F . It is understood that �F is the smallest such set. When �F = Cn

for some n, F is said to be “cylindrical”.
Let C0(�) be the Banach space of continuous functions F : � → R equipped with

supremumnorm‖F‖∞ = supω∈� |F(ω)|. Every local function is continuous and the uniform
closure of the set of all local functions is C0(�). Given F , we write δ(F) for the infinite
array (δx (F), x ∈ Z

d). For every p ∈ N, we introduce the semi-norm
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‖δ(F)‖p := ‖δ(F)‖
p(Zd ) =
⎛

⎝
∑

x∈Zd

(δx (F))p

⎞

⎠

1/p

.

Finally, we define the following spaces of functions:

�p(�) = C0(�) ∩ {
F : � → R : F ∈ ‖δ(F)‖p < ∞}

, p ∈ N. (2)

Each of these spaces obviously contains local functions, and �p(�) ⊂ �q(�) if 1 ≤ p <

q ≤ +∞. Notice that the space of functions such that ‖δ(F)‖p < ∞ for a given p ∈ N is
neither contained in nor contains C0(�).

Define the oscillation of a function F : � → R as

δ(F) = sup F − inf F = sup
ω,ω′∈�

|F(ω) − F(ω′)|.

If F ∈ C0(�), one has

‖δ(F)‖1 =
∑

x∈Zd

δx (F) ≥ δ(F).

For p ∈ N, the semi-norm ‖δ(·)‖p becomes a norm if one considers the quotient space where
two functions in�p(�) are declared to be equivalent if their difference is a constant function.
Moreover, this quotient space equipped with the norm ‖δ(·)‖p is a Banach space.

3 Concentration Bounds for Random Fields: Abstract Definitions and
Consequences

We state some abstract definitions and their general consequences that we will use repeatedly
in the sequel.

3.1 Gaussian Concentration Bound

Definition 3.1 Let ν be a probabilitymeasure on (�,B).We say that it satisfies theGaussian
concentration boundwith constant D = D(ν) > 0 (abbreviatedGCB(D)) if, for all functions
F ∈ �2(�), we have

Eν

[
exp (F − Eν[F]) ] ≤ exp

(
D‖δ(F)‖22

)
. (3)

A key point in this definition is that D is independent of F . Inequality (3) easily implies
Gaussian concentration inequalities thatwegather in the followingproposition in a convenient
form for later use.

Proposition 3.1 If a probability measure ν on (�,B) satisfies GCB(D) then, for all func-
tions F ∈ �2(�) and for all u > 0, one has

ν {ω ∈ � : F(ω) − Eν[F] ≥ u} ≤ exp

(

− u2

4D‖δ(F)‖22

)

, (4)

ν {ω ∈ � : |F(ω) − Eν[F]| ≥ u} ≤ 2 exp

(

− u2

4D‖δ(F)‖22

)

. (5)
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Proof If F ∈ �2(�), then λF ∈ �2(�) for any λ ∈ R+. We apply Markov’s inequality and
(3) to get

ν {ω ∈ � : F(ω) − Eν[F] ≥ u} ≤ exp (−λu) Eν[exp (λ(F − Eν[F]))]
≤ exp

(−λu + D‖δ(F)‖22 λ2
)
.

We now optimize over λ to get (4). Applying this inequality to −F gives the same inequality
if ‘≥ u’ is replaced by ‘≤ −u’, whence

ν {ω ∈ � : |F(ω) − Eν[F]| ≥ u}
≤ ν {ω ∈ � : F(ω) − Eν[F] ≥ u}+ ν {ω ∈ � : F(ω) − Eν[F] ≤ −u}

≤ 2 exp

(

− u2

4D‖δ(F)‖22

)

,

which is (5). �
3.2 Moment Concentration Bounds

Definition 3.2 Given p ∈ N, we say that a probability measure ν on (�,B) satisfies the
moment concentration bound of order 2p with constant C2p = C2p(ν) > 0 [abbreviated
MCB(2p,C2p)] if, for all functions F ∈ �2(�), we have

Eν

[
(F − Eν[F])2p] ≤ C2p ‖δ(F)‖2p2 . (6)

Again, as for the Gaussian concentration bound, the point is that the involved constant,
namely C2p , is required to be independent of F . An application of Markov’s inequality
immediately gives the following polynomial concentration inequality:

ν {ω ∈ � : |F(ω) − Eν[F]| > u} ≤ C2p ‖δ(F)‖2p2
u2p

(7)

for all u > 0.

3.3 Gaussian Tails and Growth of Moments

Let Z be a real-valued random variable with E[Z ] = 0. If for some positive constant K

E[Z2p] ≤ p!K p, ∀p ∈ N,

then E[eλZ ] ≤ e2Kλ2 for all λ ∈ R. Applied to Z = F − Eν[F] for a probability measure ν

satisfying GCB(D) for all p ∈ N, this gives a road to establishing that Z satisfies a Gaussian
concentration bound.

Conversely, if there exists a constant K > 0 such that for all u > 0

max{P(Z ≥ u),P(−Z ≥ u)} ≤ exp

(

− u2

2K

)

,

then for every integer p ≥ 1,

E[Z2p] ≤ p! (4K )p.

Applied to Z = F −Eν[F] for a probability measure ν satisfying GCB(D), we have (4) and
(5) with K = 2D‖δ(F)‖22, thus we get (6) with C2p = p!(8D)p . We refer to [4, Theorem
2.1, p. 25] for a proof of these two general statements.
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4 Gibbs Measures

For the sake of convenience, we briefly recall some facts about Gibbs measures which will
be used later on. We refer to [17] for details. The largest class of potentials we consider is
that of shift-invariant “uniformly summable” potentials.

4.1 Potentials

A potential is a function � : P × � → R. (Recall that P is the collection of finite subsets of
Z
d .)Wewill assume thatω 
→ �(�,ω) isB�-measurable for every� ∈ P . Shift-invariance

is the requirement that �(�+ x, Txω) = �(�,ω) for all � ∈ P , ω ∈ � and x ∈ Z
d (where

� + x = {y + x : y ∈ �}). Uniform summability is the property that

|||�||| :=
∑

�∈P
��0

‖�(�, ·)‖∞ < ∞. (8)

Weshall denote byBT the spaceof uniformly summable shift-invariant continuouspotentials.
Equipped with the norm |||·|||, it is a Banach space.

The most important subclass of uniformly summable shift-invariant potentials is the class
of finite-range potentials. A finite-range potential is such that there exists R > 0 such that
�(�,ω) = 0 if diam(�) > R. The smallest such R is called the range of the potential. More
formally, R = R(�) = max�:�(�,·)	≡0 diam(�). Nearest-neighbor potentials correspond to
the case R = 1. The set of potentials with finite range is dense in BT .

Now define the continuous function

f�(ω) =
∑

��0

�(�,ω)

|�| . (9)

The quantity f�(ω) can be interpreted as the mean energy per site in the configuration ω.

4.2 Gibbs Measures

Given� ∈ BT and� ∈ P , the associated Hamiltonian in the finite volume�with boundary
condition η ∈ � is given by

H�(ω|η) =
∑

�′∈P
�′∩�	=∅

�(�′, ω�ηZd\�) .

The corresponding specification is then defined as

γ �
�(ω|η) = exp (−H�(ω|η))

Z�(η)
(10)

where Z�(η) is the partition function in � (normalizing factor). We say that μ is a Gibbs
measure for the potential� if γ �

�(ω|·) is a version of the conditional probabilityμ(ω�|B�c ).
Equivalently, this means that for all A ∈ B, � ∈ P , one has the so-called “DLR equations”

μ(A) =
∫

dμ(η)
∑

ω′∈�

γ �
�(ω′|η)1A(ω′

�η�c ). (11)
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A consequence of (8) is that for all � ⊃ �′ such that � ∈ P , for all ω, ω̃ such that ωx = ω̃x

∀x /∈ �′, we have

sup
η∈�

∣
∣H�(ω|η) − H�(ω̃|η)

∣
∣ ≤ 2

∑

A∩�′ 	=∅
‖�(A, ·)‖∞ ≤ 2 |�′| |||�|||.

As a further consequence we get

γ �
�(ω|η)

γ �
�(ω̃|η)

≤ exp(2|�′| |||�|||). (12)

The set of Gibbs measures for a given potential is never empty but it may be not reduced
to a singleton. This set necessarily contains at least one Gibbs measure that is shift invariant.

Finally, let

P(�) = lim
n→∞

1

(2n + 1)d
log ZCn (η

(n)) (13)

which exists for any sequence (η(n))n≥1 and depends only on �. At certain places in the
sequel, we will need a good control on the measure of cylinders in terms of the ergodic sum
of f�. To ensure this we will have to assume additionally that � satisfies

∑

n≥1

nd−1
∑

��0
�∩(Zd\Cn)	=∅

‖�(�, ·)‖∞
|�| < ∞. (14)

This condition is obviously satisfied by any finite-range potential, but also by a class of spin
pair potentials (see below). This condition implies

∑

n≥1

nd−1 varn( f�) < ∞

where varn( f�) := sup{| f�(ω) − f�(ω′)| : ωCn = ω′
Cn

}. From [19, Theorem 5.2.4, p. 100]
it follows that there exists C� > 0 such that for all ω ∈ � and for all n ∈ N, one has

e−C�(2n+1)d−1 ≤ μ�(Cn(ω))

e−(2n+1)d P(�)−∑
x∈Cn f�(Txω)

≤ eC�(2n+1)d−1
. (15)

The point, which we will need later, is that, under (14), we have surface-order terms in the
exponentials on both sides.

4.3 Entropy, Relative Entropy and the Variational Principle

The entropy (per site) of a shift-invariant probability measure ν is defined as

h(ν) = lim
n→∞ − 1

(2n + 1)d
∑

ω∈�n

νn(ω) log νn(ω) (∈ [0, log |S|])

where νn is the probability measure induced on �n by projection, i.e., νn(ω) = ν(Cn(ω)).
Given two probability measures μ and ν on �, let

Hn(νn |μn) =
∑

ω∈�n

νn(ω) log
νn(ω)

μn(ω)
.
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It can be proven [17, Chap. 15] that if ν is a shift-invariant probability measure andμ a Gibbs
measure, we can define the relative entropy density of ν with respect to μ as

h(ν|μ) = lim
n→∞

Hn(νn |μn)

(2n + 1)d
. (16)

One has h(ν|μ) ∈ [0,+∞). Moreover, if� ∈ BT andμ� is a shift-invariant Gibbs measure
for � then

h(ν|μ�) = P(�) + Eν[ f�] − h(ν). (17)

Finally, the variational principle ( [17, Chap. 15]) states that h(ν|μ�) = 0 if and only if
ν is a Gibbs measure for �. In particular, for such a ν, one has

P(�) = h(ν) − Eν[ f�]. (18)

4.4 Examples

In order to make things more tangible, we will repeatedly illustrate our results with the
following concrete examples.

(Ising) A fundamental example is the (nearest-neighbor) Ising model for which we take
S = {−1,+1} and that we define via the nearest-neighbor potential

�(�,ω) =

⎧
⎪⎨

⎪⎩

−hωx if � = {x}
−Jωxωy if � = {x, y} and ‖x − y‖1 = 1

0 otherwise

(19)

where the parameters J, h ∈ R are respectively the coupling strength and the external
magnetic field (uniform with strength |h|). When J > 0, this is called the ferromagnetic
case, when J < 0 it is called the antiferromagnetic case. We shall consider the potential
β�, where β ∈ R+ is the inverse temperature.
(Long-range Ising) Sticking to the case S = {−1,+1}, one can define the so-called spin
pair potentials that can be of infinite range. Let J : Zd → R be an even function such
that J (0) = 0 and 0 <

∑
x∈Zd |J (x)| < +∞. Then define

�(�,ω) =
{

−J (x − y) ωxωy if � = {x, y}
0 otherwise.

(20)

When J is positive-valued, we have a ferromagnetic spin pair potential, while when J
is negative-valued, we have an anti-ferromagnetic spin pair potential. For this class of
potentials, the following facts are known [13] in the ferromagnetic case. Let J0 :=∑

x∈Zd J (x) (which is finite by assumption). Then J −1
0 ≤ βc := sup{β > 0 :

Eμβ� [s0] = 0}, where s0(ω) = ω0. Moreover, if there exist two linearly independent
unit vectors z, z′ in Zd such that J (z) and J (z′) are positive, then βc is finite. Of course,
this class contains the nearest-neighbor Ising model with zero external magnetic field.
(The Potts antiferromagnet) Another example of a nearest-neighbor potential is the Potts
antiferromagnet for which S = {1, 2, . . . , q} where q is an integer greater than or equal
to 2. The elements of S are traditionally viewed as ‘colors’. The potential is defined as

�(�,ω) =
{
J1{ωx=ωy } if � = {x, y} and ‖x − y‖1 = 1

0 otherwise
(21)
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where J > 0 is the coupling strength. (For q = 2, this potential is physically equivalent
to the Ising potential.) One can add an external magnetic field as in the Ising model.

5 Gaussian Concentration Bound for Gibbs Measures

The Gaussian concentration property holds under the Dobrushin uniqueness condition. In
view of the applications to come, we give concrete examples of potentials satisfying this
condition.

5.1 Dobrushin Uniqueness Regime

Let� ∈ BT and γ � be the corresponding specification. TheDobrushin uniqueness condition
is based upon the matrix

Cx,y(γ
�) = sup

ω,ω′∈�: ω
Zd \y=ω′

Zd \y

‖γ �{x}(·|ω) − γ �{x}(·|ω′)‖∞.

Because we consider shift-invariant potentials, Cx,y(γ
�) depends only on x − y. One says

that γ � satisfies the Dobrushin uniqueness condition if

c(γ �) :=
∑

x∈Zd

C0,x (γ
�) < 1. (22)

It is well known (see e.g. [17, Chap. 8]) that if this condition holds, there is a unique Gibbs
measure for � which we denote by μ�. Moreover it is automatically shift invariant.

5.2 Examples

The following list of examples is not exhaustive. All details can be found in [17, Chap. 8].
Let � ∈ BT . One has the bound

c(γ �) ≤ 1

2

∑

��0
(|�| − 1) δ(�(�, ·))

where

δ(�(�, ·)) = sup
ω,ω′∈�

|�(�,ω) − �(�,ω′)|.

Hence a sufficient condition for (22) to hold is that
∑

��0
(|�| − 1) δ(�(�, ·)) < 2. (23)

Let us come back to the examples introduced above. As a first example, take a potential
β�where β > 0 and� is a finite-range potential. It is obvious that (23) holds for all β small
enough. In this case it is customary to say that we are in the “high-temperature regime” of
this potential. A second scenario is when we have a sufficiently large external magnetic field.
By this we mean that we take any potential � such that �({x}, ω) = −h ωx for all x ∈ Z

d

and some h ∈ R. The condition implying (22) reads

e|h| > exp

⎛

⎝1

2

∑

��0:|�|>1

δ(�(�, ·))
⎞

⎠
∑

��0
(|�| − 1) δ(�(�, ·)).

123



514 J.-R. Chazottes et al.

A third scenario occurs at low temperatures for potentials with unique ground state, e.g., the
Ising model with h 	= 0 and for sufficiently large β, or any β and |h| sufficiently large.

(Ising) For instance, in the Ising model in two dimensions, (22) holds if |h| > 4β|J | +
log(8β|J |). Without external magnetic field (h = 0) and with J = 1, (22) holds if
β < 1

2 ln(
5
3 ) ≈ 0.255.

(Long-range Ising) For a spin pair potential β� one has

c(γ β�) ≤
∑

x∈Zd

tanh(β|J (x)|),

hence (22) holds if
∑

x∈Zd

tanh(β|J (x)|) < 1. (24)

This holds in particular if
∑

x∈Zd β|J (x)| ≤ 1.
(Potts antiferromagnet) Potts antiferromagnet (21) satisfies Dobrushin’s uniqueness con-
dition as soon as q > 4d , regardless of the value of J . Indeed, one can check that
c(γ �) ≤ 2d

q−2d . We refer to [33] for this result which improves the one described in [17].
Moreover, in that regime, for the unique Gibbs μ� it holds that Eμ� [1{ω0=i}] = 1/q for
i ∈ {1, . . . , q}.

5.3 Gaussian Concentration Bound

Theorem 5.1 ([9,23]) Let� ∈ BT and assume that the associated specification γ � satisfies

Dobrushin’s uniqueness condition (22). Then μ� satisfies GCB
(

1
2(1−c(γ �))2

)
.

Take for instance a spin pair potential satisfying (24). Then, (5) gives

μβ�

{
ω ∈ � : |F(ω) − Eμβ� [F]| ≥ u

}

≤ 2 exp

(

−
(
1 − ∑

x∈Zd tanh(β|J (x)|))2u2
2‖δ(F)‖22

)

for all functions F ∈ �2(�) and for all u > 0. Observe that when β goes to 0, μβ� goes
(in weak topology) to a product measure (namely the product of the measures giving equal

mass to each element of S), and one gets − u2

2‖δ(F)‖22
in the exponential.

Remark 5.1 Theorem 5.1 was first proved in [23] in a more general setting (in particular,
without assuming that potentials are shift invariant). Using a different approach, this theorem
was also proved in [9, Sect. 3.1] for shift-invariant potentials, although it was not explicitly
stated therein. In particular, the constant is not explicit. Moreover, it was proved for local
functions. But it is not difficult to show that, if GCB(D) holds for all local functions, then it
holds for all functions in �2(�) with the same constant D, as shown in the lemma below.

Lemma 5.1 If (3) holds with constant D, then it holds for all F ∈ �2(�) with the same
constant D. If (6) holds for some p ≥ 1 with a constant C2p, then it extends to this class of
functions, with the same constant.

Proof We treat the case of the Gaussian concentration bound. The case of moment bounds
is very similar. Let F : � → R be a continuous function such that ‖δ(F)‖2 < +∞. Since �
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is compact, F is bounded, thus Eν[exp(F)] < +∞. We now construct a sequence of local
functions (Fn)n defined in the natural way: We fix once for all η ∈ � and for each n ≥ 1 we
let

Fn(ω) = F(ωCnηZd\Cn
),

that obviously coincides with F inside the cube Cn . We now prove that ‖δ(F − Fn)‖2 → 0

as n → +∞. We first prove that, for each x ∈ Z
d , δx (Fn − F)

n→∞−−−→ 0. Since x is fixed
and n gets arbitrarily large, we can assume that x ∈ Cn . We have

δx (Fn − F) = sup{|Fn(ω) − F(ω′)| : ωy = ω′
y, ∀y 	= x}.

By compactness, there exists two configurations ω = ωCn\{x}sxωCc
n
and ω′ = ωCn\{x}s′

xωCc
n

such that this supremum is attained. (The notation should be clear: givenω ∈ �,ωCn\{x}sxωCc
n

is the configuration coinciding with ω except at site x ∈ Cn where ωx is replaced by s ∈ S
at site x .) Therefore

δx (Fn − F) ≤ |F(ωCn\{x}sxηCc
n
) − F(ωCn\{x}sxωCc

n
)|

+ |F(ωCn\{x}s′
xωCc

n
) − F(ωCn\{x}s′

xηCc
n
)|.

By continuity, the two terms go to zero as n goes to infinity. Then we obviously have that
(δx (Fn − F))2 ≤ 4(δx (F))2. Since

∑
x∈Zd (δx (F))2 < ∞, we can apply the dominated

convergence theorem for sums to get the desired conclusion.
Now (3) follows for F with the same constant, because ‖F − Fn‖∞ → 0 and

Eν

[
exp (F − Eν[F]) ]

≤ Eν

[
exp (Fn − Eν[Fn])

]
exp (2‖F − Fn‖∞)

≤ exp
(
D‖δ(Fn)‖22

)
exp (2‖F − Fn‖∞)

≤ exp
(
D‖δ(F)‖22

)

× exp
(
2‖F − Fn‖∞ + 2‖δ(F)‖2‖δ(Fn − F)‖2 + ‖δ(Fn − F)‖22

)
.

This result now follows by taking the limit n → ∞ in the right-hand side. �

6 Concentration Bounds for the Ising Ferromagnet at Low Temperature

6.1 The Ising Ferromagnet

We consider the low-temperature plus-phase of the Ising model on Zd , d ≥ 2, corresponding
to the potential (19) with h = 0, J > 0 (ferromagnetic case) and the boundary condition
ηx = + 1 for all x ∈ Z

d .Without loss of generality, we can take J = 1. This is the probability
measure μ+

β on � defined as the weak limit as � ↑ Z
d of the finite-volume measures

μ+
�,β(ω�) = 1

Z�,β(+Zd
)
exp

(
− βH�

(
ω | +Z

d ))
(25)

where

H�

(
ω| +Z

d ) = −
∑

x,y∈�
‖x−y‖1=1

ωxωy −
∑

x∈∂�, y /∈�
‖x−y‖1=1

ωx
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and where β ∈ R
+. We write +Z

d
for the configuration η such that ηx = + 1 for all x ∈ Z

d ,
and ∂� denotes the inner boundary of the set�, i.e., the set of those x ∈ � having at least one
neighbor y /∈ �. The existence of the limit � ↑ Z

d ofμ+
�,β is by a standard and well-known

monotonicity argument, see e.g. [17]. In a similar fashion one can define μ−
β . Both μ+

β and

μ−
β are shift-invariant and ergodic. It is well known that there exists βc > 0 such that for all

β > βc, μ+
β 	= μ−

β .

6.2 Moment Concentration Bounds of All Orders

It should not be a surprise that, for the Ising model in the phase coexistence region, a Gaus-
sian concentration bound cannot hold. Indeed, this would contradict the surface-order large
deviations for the magnetization in that regime (see below for more details). Nevertheless,
one can control all moments, as was shown in [9].

Theorem 6.1 ([9]) Let μ+
β be the plus phase of the low-temperature Ising model defined

above. There exists β̄ > βc, such that for each β > β̄, there exists a positive sequence
(C2p(β))p∈N such that the measure μ+

β satifiesMCB
(
2p,C2p(β)

)
for all p ∈ N. In partic-

ular one has for each p ∈ N

μ+
β

{
ω ∈ � : |F(ω) − Eμ+

β
[F]| ≥ u

}
≤ C2p(β) ‖δ(F)‖2p2

u2p

for all functions F ∈ �2(�) and for all u > 0.

Remark 6.1 In view of Sect. 3.3, one can ask whether the previous theorem implies in fact
a stronger statement, namely a Gaussian concentration bound. The answer turns out to be
negative. Indeed, looking at the proof of Theorem 3 in [9], one sees that C2p is of the form
p2pK p for some constant K > 0 (depending on F but independent of p). Therefore, one
cannot infer a Gaussian bound from these moment bounds.

6.3 Stretched-Exponential Concentration Bound

One can deduce from the previous theorem that the measure μ+
β satisfies a ‘stretched-

exponential’ concentration bound. This was shown in [9]. In order to state it, we need some
notations and definitions. For 0 < � < 1, let M� : R → R

+ be the Young function defined

by M�(x) = e(|x |+h�)� − eh
�
� where h� = (

1−�
�

)1/�. Then, the Luxemburg norm with respect
to M� of a real-valued random variable Z is defined by

‖Z‖M� = inf

{

λ > 0 : E
[

M�

(
Z

λ

)]

≤ 1

}

.

(Note that the choice Mp(x) = |x |p would give the usual L p norm).

Theorem 6.2 ([9]) Let μ+
β be the plus-phase of the low-temperature Ising model and β̄ as

in the previous theorem. Then, for each β > β̄, there exist � = �(β) ∈ (0, 1) and a constant
K� > 0 such that, for all functions F ∈ �2(�), one has

‖F − Eμ+
β
[F]‖M� ≤ K� ‖δ(F)‖2, (26)

Moreover there exists c� > 0 such that for all u > 0

μ+
β

{
ω ∈ � : |F(ω) − Eμ+

β
[F]| ≥ u

}
≤ 4 exp

(

− c� u�

‖δ(F)‖�

2

)

. (27)
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All the constants appearing in the previous statement may depend on d .
Theorems 6.1 and 6.2 were proved in [9] for local functions, but Lemma 5.1 shows that

their extension to functions in �2(�) is ensured.

Remark 6.2 For any random variable Z and for any 0 < � < 1, there is a real number
B� > 1 such that, if ‖Z‖M� < ∞, then

B−1
� sup

q∈2N
‖Z‖Lq

q1/�
≤ ‖Z‖M� ≤ B� sup

q∈2N
‖Z‖Lq

q1/�
. (28)

These estimates are proved in [14, p. 86] where the suprema are taken over all the integers
greater than 2. Restricting the supremum to even integers gives the same inequalities with
slightly different constants.

Remark 6.3 An essential ingredient in the proofs of Theorems 6.1 and 6.2 is a non-trvial
coupling constructed in [27]. In fact, this construction was made for Markov random fields
for which the Pirogov–Sinai theory applies, such as the low-temperature pure phases of the
ferro- and anti-ferromagnetic Potts model. For the sake of simplicity, only the ferromagnetic
Ising model was considered in [9]. Therefore we also restrict ourselves to this case in the
present work.

7 Application 1: Ergodic Sums and Empirical Pair Correlations

7.1 General Results

Given a nonempty finite subset� ofZd (i.e., ∅ 	= � ∈ P), a continuous function f : � → R

and ω ∈ �, define

S� f (ω) =
∑

x∈�

f (Txω).

A sequence (�n)n of nonempty finite subsets of Zd is said to tend to infinity in the sense of
van Hove if, for each x ∈ Z

d , one has

lim
n→+∞ |�n | = +∞ and lim

n→+∞
|(�n + x)\�n |

|�n | = 0.

In the language of countable discrete amenable groups, (�n)n is a Følner sequence. A special
case of interest is when �n = Cn :

Sn f (ω) :=
∑

x∈Cn

f (Txω), n ∈ N.

By convention we set S0 f (ω) = f (ω). Given an ergodic measure ν, we are interested in the
fluctuations of

S� f (ω)

|�| .

When one considers

S�n f (ω)

|�n |
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where (�n)n tends to infinity in the sense of van Hove, it is well-known that this average
converges ν-almost surely to Eν[ f ] as n → +∞. This is the so-called multidimensional
ergodic theorem, see e.g. [35].

We first state a simple lemma that will be repeatedly used in this section and later.

Lemma 7.1 Let f ∈ �1(�) and � ∈ P . Then

‖δ(S� f )‖22 ≤ |�| ‖δ( f )‖21.
Proof We observe that δz(S� f ) ≤ ∑

x∈� δz−x ( f ). We now use Young’s inequality: if u =
(ux )x∈Zd ∈ 
p(Zd) and v = (vx )x∈Zd ∈ 
q(Zd), where p, q ≥ 1, then u∗v ∈ 
r (Zd)where
r ≥ 1 is such that 1 + r−1 = p−1 + q−1, and

‖u ∗ v‖
r (Zd ) ≤ ‖u‖
p(Zd )‖v‖
q (Zd ).

We apply this inequality with r = 2, p = 2, q = 1, ux = 1�(x), and vx = δx ( f ) to get the
desired estimate. �

We get immediately the following general result.

Theorem 7.1 Let ν be a shift-invariant probability measure satisfying GCB(D). Then for
all � ∈ P and for all f ∈ �1(�) we have, for all u > 0,

ν

{

ω ∈ � :
∣
∣
∣
∣
S� f (ω)

|�| − Eν[ f ]
∣
∣
∣
∣ ≥ u

}

≤ 2 exp

(

− |�| u2
4D ‖δ( f )‖21

)

. (29)

Two functions are of particular interest in the context of Gibbs measures:

(a) Magnetization: For S = {−1,+1} let f = s0 where s0(ω) = ω0. Then, for a given
� ∈ P , define

M�(ω) =
∑

x∈�

s0(Txω) ,

which is the empirical (total) magnetization in �. We have

‖δ(s0)‖1 = 2.

(b) Mean energy per site: Take f = f� where � ∈ BT . From (9) we get

δx ( f�) ≤ 2
∑

��0
��x

‖�(�, ·)‖∞
|�|

As a consequence we have

‖δ( f�)‖1 ≤ 2 |||�|||.
7.2 Empirical Magnetization and Energy in Dobrushin’s Uniqueness Regime

Applying Theorem 7.1 to the previous two functions gives the following two results.

Theorem 7.2 Let γ � be the specification of a potential � ∈ BT satisfying Dobrushin’s
uniqueness condition (22). Then, for all � ∈ P , we have
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(a) the concentration bound

μ�

{

ω ∈ � :
∣
∣
∣
∣
M�(ω)

|�| − Eμ� [s0]
∣
∣
∣
∣ ≥ u

}

≤ 2 exp
(−c |�| u2)

for all u > 0, where

c = (1 − c(γ �))2

8
,

(b) and for all � ∈ BT , the concentration bound

μ�

{

ω ∈ � :
∣
∣
∣
∣
S� f�(ω)

|�| − Eμ� [ f� ]
∣
∣
∣
∣ ≥ u

}

≤ 2 exp
(−c |�| u2)

for all u > 0, where

c = (1 − c(γ �))2

8 |||�|||2 .

We refer back to Sect. 4.4 (which contains our three main examples) if the reader wants
to make the previous bounds even more explicit.

7.3 Empirical Magnetization and Energy in the Low-Temperature Ising Model

For the plus-phase of the low-temperature Ising model we can apply Theorem 6.2 to obtain
the following analogue of Theorem 7.2.

Theorem 7.3 Letμ+
β be the plus phase of the low-temperature Isingmodel. Then there exists

β̄ > βc such that, for each β > β̄, there exist � = �(β) ∈ (0, 1) and a constant c� > 0 such
that, for all � ∈ P , we have

(a) the concentration bound

μ+
β

{

ω ∈ � :
∣
∣
∣
∣
M�(ω)

|�| − Eμ+
β
[s0]

∣
∣
∣
∣ ≥ u

}

≤ 4 exp
(
− c�

2�
|�| �

2 u�
)

,

for all u > 0,
(b) and, for all � ∈ BT , the concentration bound

μ+
β

{

ω ∈ � :
∣
∣
∣
∣
S� f�(ω)

|�| − Eμ+
β
[ f� ]

∣
∣
∣
∣ ≥ u

}

≤ 4 exp

(

− c�

(2|||�|||)� |�| �
2 u�

)

,

for all u > 0

It is known that when d = 1, one has Eμ+
β
[s0] = 0, whereas for d = 2 (see e.g. [26]) one

has

Eμ+
β
[s0] =

(
1 − (

sinh(2β)
)−4

) 1
8

for all β ≥ βc = 1
2 ln(1 + √

2). When d ≥ 3 no explicit formula is known.

Remark 7.1 Probabilities of large deviations for the magnetization are well known for the
Ising model. At low temperature, one has “surface-order” large deviations, see [34] for
instance. In particular one has the following estimate. Let a, b such that −mμ+

β
< a < b <
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mμ+
β
. Then, the probability (under μ+

β ) that Mn falls into [a, b] is exponentially small in

(2n+1)d−1, as n goes to infinity. Comparing with Theorem 7.3, we see that we get a weaker
result (since �d/2 < d − 1 for all d ≥ 2) which, however, is valid in any finite volume.
Moreover, we get a bound not only for cubes but for all finite volumes.

7.4 Empirical Pair Correlations

Let f ∈ C0(�). For ω ∈ �, x ∈ Z
d and n ∈ N, define

�n,x (ω) = 1

(2n + 1)d
∑

y∈Cn

f (Tyω) f (Ty+xω).

It follows from the multidimensional ergodic theorem (see, e.g. [17, p. 302]) that, given an
ergodic probability measure ν, for each x ∈ Z

d ,

�n,x (ω)
n→+∞−−−−→ Eν[ f · f ◦ Tx ]

for ν-almost every ω. Notice that E[�n,x ] = Eν[ f · f ◦ Tx ] for all n ∈ N and for all x ∈ Z
d .

We state a lemma whose proof follows the lines of Lemma 7.1.

Lemma 7.2 Let f ∈ �1(�), x ∈ Z
d and n ∈ N. We have

∥
∥
∥δ
( ∑

y∈Cn

f ◦ Ty(·) f ◦ Ty+x (·)
)∥
∥
∥
2

2
≤ 2(2n + 1)d ‖ f ‖2∞ ‖δ( f )‖21.

Proof For any z ∈ Z
d we have

δz

⎛

⎝
∑

y∈Cn

f ◦ Ty(·) f ◦ Ty+x (·)
⎞

⎠

= sup
ω,ω′

differing only at z

∣
∣
∣
∣
∣
∣

∑

y∈Cn

(
f ◦ Ty(ω) − f ◦ Ty(ω

′)
)
f ◦ Ty+x (ω)

+
∑

y∈Cn

(
f ◦ Ty+x (ω) − f ◦ Ty+x (ω

′)
)
f ◦ Ty(ω

′)

∣
∣
∣
∣
∣
∣

≤ ‖ f ‖∞
∑

y∈Cn

δz
(
f ◦ Ty

) + ‖ f ‖∞
∑

y∈Cn

δz
(
f ◦ Ty+x

)
.

To finish the proof we use Young’s inequality as in the proof of Lemma 7.1. �

We have the following results.

Theorem 7.4 Let γ � be the specification of a potential � ∈ BT satisfying Dobrushin’s
uniqueness condition (22). Let f ∈ �1(�). Then
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μ�

{

ω ∈ � :
∣
∣
∣
∣

�n,x (ω)

(2n + 1)d
− Eμ� [ f · f ◦ Tx ]

∣
∣
∣
∣ ≥ u

}

≤ 2 exp

(

− (1 − c(γ �))2

4‖ f ‖2∞‖δ( f )‖21
(2n + 1)d u2

)

for all u > 0, for all n ∈ N and for all x ∈ Z
d .

Proof We apply Theorem 5.1 and Lemma 7.2 and replace u by (2n + 1)du. �
We can apply the previous theorem to s0(ω) = ω0 to get

μ�

{

ω ∈ � :
∣
∣
∣
∣

�n,x (ω)

(2n + 1)d
− Eμ� [s0 · s0 ◦ Tx ]

∣
∣
∣
∣ ≥ u

}

≤ 2 exp

(

− (1 − c(γ �))2

16
(2n + 1)d u2

)

for all u > 0, for all n ∈ N and for all x ∈ Z
d .

For the low-temperature Ising model, we have the following estimate.

Theorem 7.5 Let μ+
β be the plus phase of the low-temperature ferromagnetic Ising model.

Let f ∈ �1(�). Then there exists β̄ > 0 such that, for each β > β̄, there exist � = �(β) ∈
(0, 1) such that

μ+
β

{

ω ∈ � :
∣
∣
∣
∣

�n,x (ω)

(2n + 1)d
− Eμ� [ f · f ◦ Tx ]

∣
∣
∣
∣ ≥ u

}

≤ 4 exp

(

− c�

(
√
2‖ f ‖∞‖δ( f )‖1)�

(2n + 1)
�d
2 u�

)

,

for all u > 0, for all n ∈ N and for all x ∈ Z
d , where c� > 0 is as in Theorem 6.2.

Proof We apply Theorem 6.2 and Lemma 7.2. �

8 Application 2: Speed of Convergence of the Empirical Measure

8.1 Generalities

For � ∈ P and ω ∈ �, let

E�(ω) = 1

|�|
∑

x∈�

δTxω.

Let ν be an ergodic measure on (�,B). It is a consequence of the multidimensional ergodic
theorem that, for any van Hove sequence (�n)n , we have

E�n (ω)
n→∞−−−−→
weakly

ν

for ν-almost every ω ∈ � (see [35]). To quantify the speed of this convergence, we endow
the set of probability measures on � with the Kantorovich distance dK defined by

dK (μ1, μ2) = sup
G:�→R

G 1−Lipshitz

(
Eμ1 [G] − Eμ2 [G]) . (30)
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A function G : � → R is 1-Lipschitz if |G(ω)−G(η)| ≤ d(ω, η) where the distance d(·, ·)
is defined in (1). The distance dK metrizes the weak topology on the space of probability
measures on �.

We are interested in bounding the fluctuations of dK (E�(ω), μ) where μ will be a Gibbs
measure. We start with a lemma.

Lemma 8.1 Let ν be a probability measure. For each � ∈ P , consider the function

F(ω) = sup
G: �→R

G 1−Lipshitz

(
∑

x∈�

G(Txω) − Eν[G]
)

.

Then, we have

‖δ(F)‖22 ≤ cd |�|, (31)

where cd > 0 is a constant only depending on d (the dimension of the lattice).

Proof Let ω,ω′ ∈ � and G : � → R be a 1-Lipschitz function. Without loss of generality,
we can assume that Eν[G] = 0. We have

∑

x∈�

G(Txω) ≤
∑

x∈�

G(Txω
′) +

∑

x∈�

d(Txω, Txω
′).

Taking the supremum over 1-Lipschitz functions thus gives

F(ω) − F(ω′) ≤
∑

x∈�

d(Txω, Txω
′).

We can interchange ω and ω′ in this inequality, whence

|F(ω) − F(ω′)| ≤
∑

x∈�

d(Txω, Txω
′).

Now we assume that there exists z ∈ Z
d such that ωy = ω′

y for all y 	= z. This means that

d(Txω, Txω′) ≤ 2−‖z−x‖∞ for all x ∈ Z
d , whence

δz(F) ≤
∑

x∈�

2−‖z−x‖∞ .

Therefore, using Young’s inequality as in the proof of Lemma 7.1,

‖δ(F)‖22 ≤
∑

z∈Zd

⎛

⎝
∑

x∈Zd

1�(x) 2−‖z−x‖∞

⎞

⎠

2

≤
∑

x∈Zd

1�(x) ×
⎛

⎝
∑

z∈Zd

2−‖z‖∞

⎞

⎠

2

.

We thus obtain the desired estimate with cd =
(∑

z∈Zd 2−‖z‖∞
)2
. �
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8.2 Concentration of the Kantorovich Distance

We can now formulate two results.

Theorem 8.1 Let � ∈ BT and assume that the associated specification γ � satisfies
Dobrushin’s uniqueness condition (22). Denote by μ� the corresponding Gibbs measure.
Then

μ�

{
ω ∈ � :

∣
∣
∣dK (E�(ω), μ�) − Eμ�

[
dK (E�(·), μ�)

]∣∣
∣ ≥ u

}

≤ 2 exp
( − c |�|u2)

for all � ∈ P and for all u > 0, where

c = (1 − c(γ �))2

2cd

and cd is the constant appearing in Lemma 8.1.

Proof We apply Theorem 5.1 and the estimate (31) to get the announced inequality. �
For the plus-phase of the low temperature Ising model we can apply Theorem 6.2 to get

immediately the following inequality.

Theorem 8.2 Let μ+
β be the plus phase of the low-temperature Ising model. There exists β̄

such that, for each β > β̄, there exist � = �(β) ∈ (0, 1) and a constant c� > 0 such that

μ+
β

{
ω ∈ � :

∣
∣
∣dK (E�(ω), μ+

β ) − Eμ+
β

[
dK (E�(·), μ+

β )
]∣∣
∣ ≥ u

}

≤ 4 exp
(
−c�|�| �

2 u�
)

for all � ∈ P and for all u > 0.

Proof It is a direct application of Theorem 6.2 and estimate (31). �
8.3 Expectation of Kantorovich Distance

At this stage we can only control dK (E�(ω), μ�) minus its expected value. So we still need
to obtain an upper bound forEμ�

[
dK (E�(·), μ�)

]
. For the sake of simplicity, we will provide

an asymptotic upper bound in the cardinality of �. The reader can infer from the proofs that
giving a non-asymptotic upper bound for all � is possible but tedious.

Let ν be a probability measure on (�,B), f : � → R a continuous function and � a
finite subset of Zd . Define

X�
f = 1

|�|
∑

x∈�

( f ◦ Tx − Eν[ f ]) (32)

We have

sup
f ∈F

X�
f = dK (E�(·), ν)

whereF is the collection of all Lipschitz functions f : � → R with Lipschitz constant less
than or equal to one. We want to estimate the expected distance

Eν [dK (E�(·), ν)] = Eν

[

sup
f ∈F

X�
f

]

.
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Notice that we can subtract a constant from f without influencing X�
f , therefore, using that f

is Lipschitz and the maximal distance between two configurations in � is equal to 1, we can
assume, without loss of generality, that the functions in F take values in [0, 1]. Estimating
such a supremum is a classical problem. We adapt the line of thought of [36] to our context
where we have to do some extra, non-trivial, work, see Remark 8.1 below for more details.

8.3.1 Case 1: Gaussian Concentration Bound Case

Let ε > 0 be given.Wewant to find a finite collection of functionsFε such that the following
two properties are satisfied:

1. ε-net property For all f ∈ F there exists g ∈ Fε which is uniformly ε close to f , i.e.,
such that ‖ f − g‖∞ ≤ ε.

2. Uniform ε-Gaussian upper bound property There exists D′ > 0 (possibly depending on
�) such that for all f ∈ Fε and all λ ∈ R we have

Eν

[
exp

(
λX�

f

)] ≤ exp
(
λε
)
exp

(
D′λ2

)
. (33)

Such a collectionFε is called a good ε-net forF . Let us now assume that such aFε is given.
Then we have

Lemma 8.2 For all Fε good we have the upper bound

Eν

[

sup
f ∈F

X�
f

]

≤ 2
(
ε + √

D′ log |Fε |
)

. (34)

Proof For any λ > 0, we have, using Jensen’s inequality and (33),

Eν

[

sup
f ∈F ε

X�
f

]

= 1

λ
Eν

[

log exp

(

λ sup
f ∈F ε

X�
f

)]

≤ 1

λ
logEν

[

exp

(

λ sup
f ∈F ε

X�
f

)]

≤ 1

λ
logEν

⎡

⎣
∑

f ∈F ε

exp
(
λX�

f

)
⎤

⎦

≤ 1

λ

(
log |Fε | + λ2D′ + λε

)
.

Optimizing w.r.t. λ gives

Eν

[

sup
f ∈F ε

X�
f

]

≤ 2
√
D′ log |Fε | + ε.

The statement of the lemma now follows from the ε-net property of Fε , i.e.,

Eν

[

sup
f ∈F

X�
f

]

≤ ε + Eν

[

sup
f ∈F ε

X�
f

]

.

�
We now first show that ifFε is a finite collection of functions which are all uniformly close
to a 1-Lipschitz function f , then (33) holds.
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Lemma 8.3 If g is such that there exist a 1-Lipschitz function f such that ‖ f − g‖∞ ≤ ε,
and if ν satisfies GCB(D), then, for all λ ∈ R, one has

Eν

[
exp

(
λX�

g

)] ≤ exp(λε) exp
(
D′λ2

)
.

Proof It suffices to show that for all f 1-Lipschitz we have

Eν

[
exp

(
λX�

f

)] ≤ exp
(
D′λ2

)
,

where D′ does not depend on f . This is the consequence of the Gaussian concentration bound
and the proof of Lemma 8.1. �

From what precedes, we are left to find a good ε-net Fε in our setting. The first step is
to find a ε-net for the configuration space �. This is defined as a finite set of configurations
�ε ⊂ � such that for all η ∈ � there exists ζ ∈ �ε with d(η, ζ ) ≤ ε. The following lemma
gives such a net.

Lemma 8.4 Let η be a fixed configuration in �. We define for n ∈ N the set

�η
n = {η ∈ � : ηCc

n
= ηCc

n
}.

Then �
η
n is a 2−n net of cardinality |S||Cn |.

Proof This follows immediately from the definition of the distance in �. �
If f is a 1-Lipschitz function, then we have that if ηCn = ζCn , | f (η) − f (ζ )| ≤ 2−n .

Notice that we can view �
η
n in (8.4) as a copy of SCn via the map

ψ : SCn → �η
n : α 
→ αCnηCc

n
.

This means that ordering the elements of �
η
n is the same as ordering the elements of SCn .

The aim now is to order the elements of the net �η
n in such a way that the distances between

successive elements in the ordering are as small as possible. Because � is a totally dis-
connected space, we will not be able to avoid that in this order there are distances of
2−(n−1), 2−(n−2), . . . , 2−1. The following lemma explains the hierarchical structure of the
ordering.

Lemma 8.5 There exists an ordering of SCn of the following type

α0

α1,1, . . . , α1,P(n,1) (first list)

α2,1, . . . , α2,P(n,2) (second list)

...

αn,1, . . . , αn,P(n,n) (nth list)

such that for all k, 
 ∈ {0, . . . , n}, i ∈ 1, . . . , P(n, k), j ∈ 1, . . . , P(n, 
), we have

d(ψ(αk,i ), ψ(α
, j )) = 2−(n−k∨
),

where d is the distance defined in (1). Here P(n, 1) = |S||Cn\Cn−1|, P(n, 2) =
S|Cn\Cn−1|+|Cn−1\Cn−2|, etc.
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Proof We choose an arbitrary first element α0 in SCn . The next elements form an arbitrary
enumeration of the configurations which are equal to α0 in Cn−1, but different in at least one
site x ∈ Cn \ Cn−1. There are at most P(n, 1) = |S||Cn\Cn−1| such configurations. They are
all at distance 2−n from α0 and from each other. Next are the elements at distance 2−(n−1)

from α. These are at most |S||Cn−1\Cn−2| configurations associated to each configuration in the
previous list, hence in total this gives P(n, 2) = S|Cn\Cn−1|+|Cn−1\Cn−2| configurations in the
second list. And so on and so forth.We go on like this, “peeling” off the cubeCn by successive
boundary layers Cn \ Cn−1,Cn−1 \ Cn−2, . . . , {0}, and end up with the configurations at
distance 1/2 from α0, of which there are P(n, n) = S|Cn |−1. �

Now we want to make our ε net Fε . We choose n such that 2−n ≤ ε ≤ 2−(n−1). We will
give a function value to each ψ(α), α ∈ SCn , which will only depend on α, so we identify it

with a function f : SCn → R. Because the functionswill take values in
{
0, 1

2n , . . . , 2n−1
2n , 1

}
,

we have 2n+1 possibilities for the function value of α0. Becausewewill choose the functions
inFε to be 1-Lipschitz, this restricts the possible values of the functions at α1. Indeed, given
the function value of α0, for the function values of the first list, which contains configurations
which are at distance 2−n ≤ ε, we have at most three possibilities, namely f (α0) + s with
s ∈ {−2−n, 0, 2−n}. Given the function values in the first list, all the elements of the second
list are at distance 2−(n−2) ≤ 2ε from α0 and from any element of the first list, so we have
now 22 + 1 possible function values, associated to any configuration of the second “layer”,
i.e., |S||Cn−1\Cn−2| configurations, and so on and so forth. The number of functions we thus
obtain is upper bounded by

|Fε | = (2n + 1)(2 + 1)P(n,1)(22 + 1)P(n,2) · · · (2n + 1)P(n,n).

Taking the logarithm of this expression gives, using the (crude) upperbound log(2n + 1) ≤
n + 1

log |Fε | ≤ n + 1 + P(n, 1)2 + P(n, 2)3 + · · · + (n + 1)P(n, n) =: Kε .

It is clear that the asymptotic behavior of this expression is dominated by the last term, i.e,
we have

Kε ∼ |S|(2 log(1/ε)+1)d (log( 1
ε
) + 1),

where aε ∼ bε means that aε/bε → 1 as ε goes to 0.

Remark 8.1 Let us stress that we cannot obtain the previous estimate by a direct application
of the standard results on ε-entropy. To be more specific, our estimate does not follow from
Theorem XV in [22] for the totally disconnected metric space �. The problem stems from
the fact that we cannot metrically embed � into a finite-dimensional parallelepiped, except
in dimension d = 1.

We now analyse how the bound (34) behaves. By Lemma 8.1 we have that the constant
D in this bound is of the form D′ = D1/|�|, where D1 is independent of |�|. Our aim now
is to extract the leading order behavior in |�| of the optimal found in (34), where we replace
log |Fε | by Kε , i.e., we compute

B(|�|) = 2 inf
ε>0

(

ε +
√

D1Kε

|�|

)

. (35)
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Let us abbreviate log(1/ε) = v(ε). The optimal ε = ε∗ is the solution of

1

2
log |�| + 1

2
log(1/D1) = v(ε) + 1

2
log(|S|)(2v(ε))d + χ(ε),

where χ(ε) is of lower order as ε goes to 0. In order to collect the leading order behavior of
B(|�|) in |�| on the logarithmic scale, we will therefore omit χ(ε) in this equation, which
will lead to lower order factors in the asymptotic behavior of B(|�|). We will also omit the
term 1

2 log(1/D1) for the same reason.
Let us now introduce two notions of asymptotic comparison. For two strictly positive

sequences (an) and (bn), we write an � bn if log an
log bn

→ 1 as n → ∞, and an � bn if

lim supn
log an
log bn

≤ 1. For instance we have 4n−1/2 log(n) log(log(n)) � n−1/2, and n2nen �
n3n . Similarly, for two sequences (a�) and (b�) indexed by finite subsets of Zd we denote
a� � b� if, for every sequence (�n) such that |�n | → +∞ as n → +∞, we have
log a�n
log b�n

→ 1. Analogously, we define a� � b�.
As a consequence, for ε = ε∗ we find that both terms in the rhs of (35) are of the same

order, and hence on this level of roughness, the behavior of B(|�|) is the same as that of ε∗.
Proceeding like this, we find the following leading order behavior of B(|�|) as a function

of the dimension.

1. Dimension d = 1.

ε∗ � |�|− 1
2 (1+log |S|)−1

.

2. Dimension d ≥ 2.

ε∗ � exp

(

−1

2

(
log |�|
log |S|

)1/d
)

.

Notice that this does not give the previous boundwhenweplug ind = 1because (only) for
d = 1 the additional tern v(ε) is of the same order as the second term 1

2 (log |S|)(2v(ε)+
1)d .

As a conclusion we obtain the following asymptotic estimates.

Theorem 8.3 Let ν be a probability measure on � satisfying GCB(D). Then

Eν [dK (E�(·), ν)] �
⎧
⎨

⎩

|�|− 1
2 (1+log |S|)−1

if d = 1

exp

(

− 1
2

(
log |�|
log |S|

)1/d
)

if d ≥ 2.

8.3.2 Case 2: Moment Concentration Bound Case

Let us now see what can be done when exponential moments do not exist, i.e., if we do not
have GCB. We call then an ε-net Fε good if we have

1. The ε-net property For all g ∈ F there exists f ∈ Fε such that ‖ f − g‖∞ ≤ ε.
2. The ε-Moment bound For all f ∈ Fε

‖X�
f ‖L2p(ν) ≤ ε + C1/2p

2p√|�| . (36)
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Then going through the same reasoning, as before (but with the function x 
→ eλx replaced
by x 
→ |x |2p) we obtain the estimate

Eν

[

sup
f ∈F

X�
f

]

≤ ε + |Fε |1/2p
(

ε + C1/2p
2p√|�|

)

. (37)

As in the previous subsection, we have |Fε | � exp(exp(α(log(1/ε)d))), with α = 2d log |S|.
Let us furthermore assume that we have the bound

C2p ≤ pκ2p (38)

for some κ ≥ 1/2. In particular, for the low-temperature Ising model, we have κ = 1 (see
Remark 6.1), whereas we have κ = 1/2 in the case of a Gaussian concentration bound. Then
we analyse as before, i.e., on the level of logarithmic equivalence, the bounds we obtain from
(37).

1. Dimension d = 1. Then we have |Fε | � exp(ε−α). We find the upperbound

B(|�|) � |�|− 1
2(ακ+1)

2. Dimension d ≥ 2 we find

B(|�|) � exp

(

−
(
log |�|
2ακ

)1/d
)

As a conclusion we obtain the following asymptotic estimates.

Theorem 8.4 Let ν be a probability measure on (�,B) satisfying MCB
(
2p,C2p

)
for all

p ∈ N. Moreover assume that (38) holds. Then

Eν [dK (E�(·), ν)] �

⎧
⎪⎨

⎪⎩

|�|− 1
2(ακ+1) if d = 1

exp

(

−
(
log |�|
2ακ

)1/d
)

if d ≥ 2.

Notice that when κ = 1/2, this theorem is exactly the bound we obtained in Theorem 8.3.

9 Application 3: Fluctuations in the Shannon–McMillan–Breiman
Theorem and Its Analog for Relative Entropy

If ν is an ergodic probability measure, the following holds:

lim
n→∞ − log ν(Cn(ω))

(2n + 1)d
= h(ν) for ν-a.e. ω.

This is usually referred to as the Shannon–Millan–Breiman theorem for random fields and
was proved in [20]. If � ∈ BT then we have

lim
n→∞ − 1

(2n + 1)d
log

ν(Cn(ω))

μ�(Cn(ω))
= h(ν|μ�) for ν-a.e. ω

where μ� is any shift-invariant Gibbs measure associated with �, and where h(ν|μ�) is the
relative entropy (per site) of ν with respect to μ� [cf. (16), (17)]. This result can be deduced
using the Shannon–Millan–Breiman theorem (15), and themultidimensional ergodic theorem
[35] applied to the measure ν. Our goal is to control the fluctuations of both quantities around
their respective limits when ν is a Gibbs measure. We have the following results.
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Theorem 9.1 Let � ∈ BT be a potential whose specification γ � satisfies Dobrushin’s
uniqueness condition (22). Then there exists u0 > 0 such that

μ�

{

ω ∈ � :
∣
∣
∣
∣
− logμ�(Cn(ω))

(2n + 1)d
− Eμ�

[− logμ�(Cn(·))
(2n + 1)d

]∣
∣
∣
∣ ≥ u

(2n + 1)
d−1
2

}

≤ 2 exp

(

− (1 − c(γ �))2

8|||�|||2 (2n + 1) u2
)

for all n ∈ N and for all u ≥ u0. Suppose, in addition to Dobrushin’s uniqueness condition,
that (14) holds, then there exists u0 > 0 such that

μ�

{

ω ∈ � :
∣
∣
∣
− logμ�(Cn(ω))

(2n + 1)d
− h(μ�)

∣
∣
∣ ≥ u

(2n + 1)p(d)

}

≤ 2 exp

(

− (1 − c(γ �))2

32|||�|||2 (2n + 1) u2
)

for all n ∈ N and for all u ≥ u0, where

p(d) =
{

1
2 if d = 2

1 if d ≥ 3.

Proof For each n ∈ N, the function ω 
→ F(ω) = − logμ�(Cn(ω)) is a local function (with
dependence set Cn). We apply (11) with A = Cn(ω) and � = Cn which gives

μ�(Cn(ω)) =
∫

dμ�(η) γ �
Cn

(ω|η). (39)

Let x ∈ Cn , and ω, ω̃ ∈ � such that ωy = ω̃y for all y 	= x . We want to control

log
μ�(Cn(ω))

μ�(Cn(ω̃))

Using (39), (10) and (12) we obtain

μ�(Cn(ω))

μ�(Cn(ω̃))
=

∫

dμ�(η)
γ �
Cn

(ω|η)

γ �
Cn

(ω̃|η)
γ �
Cn

(ω̃|η)

∫

dμ�(η) γ �
Cn

(ω̃|η)

≤ exp(2|||�|||).

Hence
∣
∣
∣
∣log

μ�(Cn(ω))

μ�(Cn(ω̃))

∣
∣
∣
∣ ≤ 2|||�|||

which immediately implies that

δx (F) ≤ 2|||�|||
for all x ∈ Cn (δx (F) = 0 for all x ∈ Z

d\Cn). The first statement then follows at once by
applying Theorem 5.1 and rescaling u. If one can control the measure of cylinders as in (15),
we can obtain a good estimate for the expectation of − logμ�(Cn(ω)) and get the second
statement. Since � satisfies (14) we have (15), hence we obtain

∣
∣
∣
∣

1

(2n + 1)d
Eμ� [− logμ�(Cn(ω))] − h(μ�)

∣
∣
∣
∣ ≤ C�

n
(40)
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where we used the variational principle (18). Notice that the bound is independent of d . The
announced inequalities follow with u0 = C�. �

Following the same train of thought as in the previous theorem, we obtain the companion
result for relative entropy.

Theorem 9.2 Let � ∈ BT be a potential whose specification γ � satisfies Dobrushin’s
uniqueness condition (22), and let � ∈ BT satisfying (14). Let μ� be any shift-invariant
Gibbs measure associated with �. Then there exists u0 > 0 such that

μ�

{

ω ∈ � :
∣
∣
∣
∣

1

(2n + 1)d
log

μ�(Cn(ω))

μ�(Cn(ω))
− Eμ�

[
1

(2n + 1)d
log

μ�(Cn(ω))

μ�(Cn(ω))

]∣
∣
∣
∣

≥ u

(2n + 1)
d−1
2

}

≤ 2 exp

(

− (1 − c(γ �))2

8
(|||�||| + |||�|||)2

(2n + 1) u2
)

for all n ∈ N and for all u ≥ u0. Suppose, in addition to Dobrushin’s uniqueness condition,
that (14) holds for �. Then there exists u0 > 0 such that

μ�

{

ω ∈ � :
∣
∣
∣
∣

1

(2n + 1)d
log

μ�(Cn(ω))

μ�(Cn(ω))
− h(μ�|μ�)

∣
∣
∣
∣ ≥ u

(2n + 1)p(d)

}

≤ 2 exp

(

− (1 − c(γ �))2

32
(|||�||| + |||�|||)2

(2n + 1) u2
)

for all n ∈ N and for all u ≥ u0, where p(d) is defined as in the previous theorem.

We now formulate a companion result on the Ising ferromagnet at low temperature. It is
a simple consequence of Theorem 6.2 and inequality (40).

Theorem 9.3 Let μ+
β be the plus phase of the low-temperature Ising model on the lattice

Z
d , d ≥ 2. There exist two constants, u0 = u0(d) > 0 and β̄ = β̄(d) > 0 such that, for each

β > β̄, there exist � = �(β) ∈ (0, 1) and c̃� > 0 such that the following two estimates hold:

(a) If d = 2 we have

μ+
β

{

ω ∈ � :
∣
∣
∣
∣
∣

− logμ+
β (Cn(ω))

(2n + 1)2
− h(μ+

β )

∣
∣
∣
∣
∣
≥ u

nτ

}

≤ 4 exp
(
−c̃�(2n + 1)�(1−τ)u�

)

for all n ∈ N, for all u ≥ u0 and for any τ ∈ (0, 1), where c̃� = c� 2− 5
2 �β− �

2 .
(b) If d ≥ 3, we have

μ+
β

{

ω ∈ � :
∣
∣
∣
∣
∣

− logμ+
β (Cn(ω))

(2n + 1)d
− h(μ+

β )

∣
∣
∣
∣
∣
≥ u

n

}

≤ 4 exp
(
−c̃�(2n + 1)�( d2 −τ)u�

)

for all n ∈ N, for all u ≥ u0 and for any 1 < τ < d
2 , where c̃� = c� 2−2�(dβ)−

�
2 .
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In both cases, c� = c�(d) is the constant appearing in Theorem 6.2.

The reader can now infer the counterpart of Theorem 9.2 for the low-temperature Ising
model.

10 Application 4: First Occurrence of a Pattern of a Configuration in
Another Configuration

For a subset� ofZd , we refer to an element a = (ax , x ∈ �) ∈ S� as a pattern supported by
�. Given x ∈ Z

d , we say that the patterns a ∈ S� and b ∈ S�+x are congruent if ay = by+x

for every y ∈ �. Now, let η, ω ∈ �. For each n ∈ N, we look for the smallest hypercube
Ck such that “ηCn appears in ωCk ”. This means that there is a pattern a whose support lies
inside Ck such that ηCn and a are congruent, and that, if we take k′ < k, there is no pattern
whose support lies inside Ck′ which is congruent to ηCn . This event can be seen as the first
occurrence of the pattern ηCn in the configuration ω: imagine that we are increasing at a
constant rate the ‘window’ Ck in ω until we observe the pattern ηCn for the first time.

We denote byWn(η, ω) the cardinality of the random hypercube Ck we have just defined.
It turns out that the natural random variable to consider is logWn(η, ω). Indeed, one can
prove (see [1]) that if � of finite range and γ � satisfies Dobrushin’s uniqueness condition
and ν is any ergodic measure, then

lim
n→∞

1

(2n + 1)d
logWn(η, ω) = h(ν) + h(ν|μ�), ν ⊗ μ� − a.e..

Now, fix n and η. It is quite obvious that no a priori controlwill be possible on | logWn(η, ω)−
logWn(η, ω′)| for all configurations ω,ω′ which differ only at a site x . Indeed, changing ω

in a single site can cause an arbitrary increase of the size of the hypercube in which we will
see ηCn . This is because we have to consider the worst case changes, not only typical changes
for which things would go well. Nevertheless, we will obtain concentration inequalities by
making a detour.

Theorem 10.1 Assume that� is of finite range and the associated specification γ � satisfies
Dobrushin’s uniqueness condition (22). Let � be a potential satisfying (14) and such that its
specification satisfies Dobrushin’s uniqueness condition. When � 	= �, let

c�,� = (1 − c(γ �))2

128
(|||�||| + |||�|||)2

,

and

c�,� = c� = (1 − c(γ �))2

128 |||�|||2 .

Finally, let p(d) defined as in Theorem 9.1. Then there exist positive constants C, u0 such
that, for all n ∈ N and for all u ≥ u0,

(μ� ⊗μ�)

{

(η, ω) ∈ � × � : logWn(η, ω)

(2n + 1)d
> h(μ�) + h(μ� |μ�) + u

(2n + 1)p(d)

}

≤ C exp
(−c�,� (2n + 1) u2

)
.
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Moreover, we have

(μ� ⊗μ�)

{

(η, ω) ∈ � × � : logWn(η, ω)

(2n + 1)d
< h(μ�) + h(μ� |μ�) − u

(2n + 1)p(d)

}

≤ C max
{
exp

(−c�,� (2n + 1) u2
)
, exp

(
−(2n + 1)d−p(d) u

2

)}

for all n ∈ N and for all u ≥ u0.

Let us make a few comments on this result. The constant u0 is the same as in Theorem
9.1. Notice the dissymmetry between the two bounds when n is fixed: the second bound then
becomes exponentially small in u, not in u2 as in the first bound. The second bound is of
course useful only if u

(2n+1)p(d) < h(μ�)+h(μ� |μ�). Given u ≥ u0, this is always the case
if n is large enough.

Proof We treat the case � = �. The other case follows the same lines of proof using
Theorem 9.2 instead Theorem 9.1. The idea is to write

logWn(η, ω) = log
[
Wn(η, ω)μ�(Cn(η))

] − logμ�(Cn(η)).

Then we have the following obvious inequality.

(μ� ⊗ μ�)

{

(η, ω) ∈ � × � : logWn(η, ω)

(2n + 1)d
> h(μ�) + u

}

(41)

≤ (μ� ⊗ μ�)

{

(η, ω) ∈ � × � : log
[
Wn(η, ω)μ�(Cn(η))

]

(2n + 1)d
>

u

2

}

+ μ�

{

η ∈ � : − logμ�(Cn(η))

(2n + 1)d
> h(μ�) + u

2

}

.

We now control each term separately. To control the first one, we use Theorem 2.2. in [1]
which we formulate here with our notations and under a form suitable for our purposes. Let
an be any pattern supported onCn . Define Tan (ω) as the volume of the smallest hypercubeCk

which contains the support of a pattern congruent to an . Then there exist positive constants
c1, c2, λan , λ1, λ2 such that λan ∈ [λ1, λ2] and such that, for any t > 0, one has

μ�

{

ω ∈ � : Tan (ω) >
t

λanμ�([an])
}

≤ c1 e
−c2t . (42)

By [an] we mean the cylinder set made of all configurations ξ such that ξCn = an . The first
term in the r.h.s. of (41) is equal to

∑

an∈�n

μ�([an])μ�

{
ω ∈ � : Tan (ω)μ�([an]) > e(2n+1)d u

2

}

≤ c1 exp
( − c2λ1e

(2n+1)d u
2
)
. (43)

where the inequality follows by (42). The second term in the r.h.s. of (41) is estimated using
Theorem 9.1 from which it follows easily that this term is bounded above by

exp

(

− (1 − c(γ �))2

128|||�|||2 (2n + 1)1+2p(d) u2
)

(44)

for all n ∈ N and for all u ≥ u0, where p(d) = 1/2 if d = 2 and p(d) = 1 if d ≥ 3.
The bound (44) is much bigger than the bound (43), hence the first inequality of the theorem
follows after rescaling u.
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We now prove the other inequality of the theorem. We now have

(μ� ⊗ μ�)

{

(η, ω) ∈ � × � : 1

(2n + 1)d
logWn(η, ω) < h(μ�) − u

}

≤ (μ� ⊗ μ�)

{

(η, ω) ∈ � × � : 1

(2n + 1)d
log

[
Wn(η, ω)μ�(Cn(η))

]
<

u

2

}

+ μ�

{

η ∈ � : − 1

(2n + 1)d
logμ�(Cn(η)) < h(μ�) − u

2

}

. (45)

The second term in the r.h.s. is also bounded by (44). To get an upper bound for the first term
in the r.h.s., we need to use the following result proved in [1, Lemma 4.3]:

λ1 ≤ − logμ�

{
ω ∈ � : Tan (ω) > t

}

tμ�([an]) ≤ λ2

provided that tμ�([an]) ≤ 1
2 , and where λ1, λ2 are defined as above in this proof. We get

the upper bound

λ2 exp
(
−(2n + 1)d

u

2

)
.

This ends the proof. �

Combining the results in [7] and Theorem 6.2, one could get the analog of Theorem 10.1
for the low-temperature Ising ferromagnet. But an extra work is needed to make some of the
constants involved in the estimates in [7] more explicit and we will not do this.

11 Application 5: Bounding d̄-Distance by Relative Entropy

Given n ∈ N, define the (non normalized) Hamming distance between ω and η that belong
to �n by

d̄n(ω, η) =
∑

x∈Cn

1{ωx 	=ηx }. (46)

Given two shift-invariant probability measures μ, ν on �, denote by μn and νn their projec-
tions on �n . Next define the d̄-distance between μn and νn by

d̄n(μn, νn) = inf
Pn∈C(μn ,νn)

∫

�n

∫

�n

d̄n(ω, η) dPn(ω, η)

where C(μn, νn) denotes the set of all shift-invariant couplings of μn and νn , that is, the set
of jointly shift-invariant probability measures on �n × �n with marginals μn and νn . One
can prove (see e.g. [32]) that d̄n(μn, νn) normalized by (2n + 1)d converges to a limit that
we denote by d̄(μ, ν):

d̄(μ, ν) = lim
n→∞

d̄n(μn, νn)

(2n + 1)d
.

This defines a distance on the set of shift-invariant probability measures on �. We have the
following result.
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Theorem 11.1 Let � ∈ BT and assume that the associated specification γ � satisfies
Dobrushin’s uniqueness condition (22). Then, for every shift-invariant probability measure
ν

d̄(μ�, ν) ≤
√
2

1 − c(γ �)

√
h(ν|μ�)

where h(ν|μ�) is the relative entropy of ν with respect to μ� (see (16)).
Moreover, if ν = μ� is also a Gibbs measure for a potential � ∈ BT , then

d̄(μ�,μ�) ≤ 2
√
2

1 − c(γ �)

√|||� − �|||. (47)

Take for instance a finite-range potential � and β1, β2 such that β1 < β2 with β2 small
enough to be in Dobrushin’s uniqueness regime. Then the previous inequality reads

d̄(μβ1�,μβ2�) ≤ 2
√
2
√|||�|||

1 − c(γ β1�)

√
β2 − β1.

Before proving the previous theorem, let us introduce a certain set of Lipschitz functions.
Given n ∈ N and let F : � → R be a cylindrical function with dependence set Cn . We have

|F(ω) − F(ω′)| ≤
∑

x∈Cn

1{ωx 	=ω′
x }δx (F).

Assume that δx (F) = 1 for all x ∈ Cn . In particular ‖δ(F)‖22 ≤ (2n + 1)d . We can identify
this function with a 1-Lipschitz function on �n with respect to the distance (46). Denote
by Lip1,μ�,n

(�) the set of functions F which are 1-Lipschitz and such that Eμ�,n [F] = 0
(Recall that μ�,n is the Gibbs measure associated to � induced on �n by projection).

Proof We now use a general theorem (see [3, p. 5] or [4, p. 101]). In the present setting, it
states that the property that there exists a constant b > 0 such that

Eμ�,n [exp(uF)] ≤ exp(bu2), ∀u ∈ R, ∀F ∈ Lip1,μ�,n
(�) (48)

is equivalent to the property that, for all probability measures νn on �n , we have

d̄n(μ�,n, νn) ≤ 2
√
bHn(νn |μ�,n). (49)

By Theorem 5.1 we know that μ�,n satisfies (48) with

b = ‖δ(F)‖22
2(1 − c(γ �))2

≤ (2n + 1)d

2(1 − c(γ �))2

Hence (49) reads

d̄n(μ�,n, νn) ≤ 2
√
D(2n + 1)d Hn(νn |μ�,n) .

Dividing both sides by (2n+1)d and taking the limit n → ∞ gives the announced inequality.
To prove inequality (47), we use (17) and (18) (applied to �) to get

h(μ� |μ�) = P(�) + Eμ� [ f�] − h(μ�) = P(�) − P(�) + Eμ� [ f�] − Eμ� [ f� ].
The desired inequality follows from the following facts:

|P(�) − P(�)| ≤ |||� − �|||
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and

|Eμ� [ f�] − Eμ� [ f� ]| ≤ ‖ f� − f�‖∞ ≤ |||� − �|||.
The theorem is proved. �

12 Application 6: Fattening Patterns

We can naturally generalize the Hamming distance defined in (46) as follows. Let � ∈ P
(finite subset of Zd ) and define

d̄�(ω, η) =
∑

x∈�

1{ωx 	=ηx }.

Given a subset B� ⊂ �� define

d̄�(ω,B�) = inf
ω′∈B�

d̄n(ω, ω′).

Given ε > 0, define the “ε-fattening” of B� as

B�,ε = {
ω ∈ �� : d̄�(ω,Bn) ≤ ε|�|}.

We have the following abstract result.

Theorem 12.1 Let � ∈ P . Suppose that ν is a probability measure which satisfiesGCB(D)

and such that ν(B�) = 1
2 . Then, we have

ν
(
B�,ε

) ≥ 1 − exp

⎡

⎣−|�|
4D

(

ε − 2
√
D ln 2√|�|

)2
⎤

⎦ (50)

whenever ε > 2
√
D ln 2√|�| .

We take ν(B�) = 1
2 for the sake of definiteness. One can take ν(B�) = α ∈ (0, 1) and

replace ln 2 by ln α−1 in (50). The previous theorem can be loosely phrased as follows: For
a probability measure satisfying a Gaussian concentration bound, if we “fatten” a bit a set of
patterns which represents, say, half of the mass of ��, what is left has an extremely small
mass.

Proof Consider the local function F(ω) = d̄�(ω,B�). One easily checks that δx (F) ≤ 1
for all x ∈ �. Applying (4) gives

ν {ω ∈ � : F(ω) ≥ u + Eν[F]} ≤ exp

(

− u2

4D|�|
)

(51)

for all u > 0. We now estimate Eν[F]. Applying (3) to −λF (u ∈ R) we get

exp (λEν[F])Eν

[
exp (−λF)

] ≤ exp
(
Dλ2|�|) .

Observe that by definition of F we have

Eν

[
exp (−λF)

] ≥ Eν

[
1B�

exp (−λF)
] = ν(B�).
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Combining these two inequalities and taking the logarithm gives

Eν[F] ≤ inf
λ>0

{
Dλ|�| + 1

λ
ln
(
ν(B�)−1)

}
,

i.e.,

Eν[F] ≤ 2
√
D|�| ln (ν(B�)−1

) := E .

Therefore inequality (51) implies that

ν
{
ω ∈ � : F(ω) ≥ u′} ≤ exp

(

− (u′ − E)2

4D|�|
)

for all u′ > E . To finish the proof, take u′ = ε|�| and observe that ν {ω ∈ � : F(ω) ≥ u′} =
ν
(
Bc

�,ε

)
. �

Corollary 12.1 Let � ∈ BT and assume that the associated specification γ � satisfies
Dobrushin uniqueness condition (22). Then (50) holds with D = 1

2(1−c(γ �))2
.

Remark 12.1 Inequality (50) can also be deduced from (49) by an argument due to Marton
[29]. But this kind of argument does notworkwhen one has onlymoment inequalities because
there is no analog of (49), to the best of our knowledge.

We now turn to the situation when one has moment inequalities.

Theorem 12.2 Let � ∈ P . For ν satisfying MCB
(
2p,C2p

)
and such that ν(B�) = 1

2 , we
have

ν
(
B�,ε

) ≥ 1 − C2p

|�|p/d

⎛

⎝ε − (2C2p)
1
2p

√|�|

⎞

⎠

−2p

whenever ε > 0 and n ∈ N are such that ε >
(2C2p)

1
2p√|�| .

Proof As in the previous proof, consider the local function F(ω) = d̄�(ω,B�) which is
such that δx (F) ≤ 1 for all x ∈ �. Applying (7) we get

ν {ω ∈ � : F(ω) ≥ u + Eν[F]} ≤ C2p|�|p
u2p

for all u > 0.We easily obtain an upper bound forEν[F] by using (6) and the fact that F ≡ 0
on B� :

ν(B�)(Eν[F])2p = Eν

[
1B�

(F − Eν[F])2p] ≤ C2p|�|p .

whence

Eν[F] ≤ C
1
2p
2p

√|�|
ν(B�)

1
2p

.

We finish in the same way as in the previous proof to get the desired inequality. �

123



On Concentration Inequalities and Their Applications... 537

In view of Theorem 6.1, the previous theorem applies to the plus-phase of the Ising
model at sufficiently low temperature. Moreover, we can optimize over p. In fact, applying
the stretched-exponential concentration inequality that holds in this case, we have indeed a
stronger result.

Theorem 12.3 Let μ+
β be the plus-phase of the low-temperature Ising model. Take � ∈ P

such that μ+
β (B�) = 1

2 . Then there exists β̄ > βc such that, for each β > β̄, there exists
� = �(β) ∈ (0, 1) and two positive constants c� and c′

� such that

μ+
β

(
B�,ε

) ≥ 1 − 4 exp

[

−c� |�| �
2

(

ε − c′
�√|�|

)� ]

whenever ε > 0 and n ∈ N are such that ε >
c′
�√|�| .

Proof Consider the local function F(ω) = d̄�(ω,B�) which is such that δx (F) ≤ 1 for all
x ∈ �. We apply Theorem 6.2. Using (27) we get

μ+
β

{
ω ∈ � : F(ω) ≥ u + Eμ+

β
[F]

}
≤ 4 exp

(

− c�u�

|�| �
2

)

,

for all u > 0. We now estimate Eμ+
β
[F] from above by using (28), (26) and the fact that

F ≡ 0 on B� :

K�

√|�| ≥ ‖F − Eμ+
β
[F]‖M� ≥ B−1

� Eμ+
β
[F] sup

q∈2N
(2−1/qq−1/�). (52)

The function θ : R+\{0} → R
+ defined by θ(u) = 2−1/uu−1/� has a unique maximum at

u = � ln 2 < 2. Hence we take q = 2 in the right-hand side of (52), which gives

Eμ+
β
[F] ≤ 2

1
�
+ 1

2 K� B� (2n + 1)
d
2 .

The rest of the proof is the same as in the previous proofs and we obtain the announced

inequality with c′
� = 2

1
�
+ 1

2 K� B�. �

13 Application 7: Almost-Sure Central Limit Theorem

In this section we show how to use concentration inequalities to get a limit theorem. We con-
sider limits along cubes but we can generalize without further effort to van Hove sequences.

13.1 Some Preliminary Definitions

Definition 13.1 Let ν be a shift-invariant probability measure and let f : � → R be a
continuous function such that

∫
f dν = 0. We say that ( f, ν) satisfies the central limit

theorem with variance σ 2
f if there exists a number σ f ≥ 0 such that for all u ∈ R

lim
n→∞ ν

{

ω ∈ � :
∑

x∈Cn
f (Txω)

(2n + 1)
d
2

≤ u

}

= 1

σ f
√
2π

∫ u

−∞
exp

(

− v2

2σ2f

)

dv.
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As a convention, we define the right-hand side to be the Dirac mass at 0 if σ f = 0. There
is of course no loss of generality in considering continuous functions such that

∫
f dν = 0.

In the cases we are going to consider, one has

σ 2
f =

∑

x∈Zd

∫

f · f ◦ Tx dν < ∞. (53)

We need the following convenient definition.

Definition 13.2 (Summable decay of correlations) Given a shift-invariant probability mea-
sure ν and a continuous function f such that

∫
f dν = 0, we say that we have a summable

decay of correlations if
∑

x∈Zd

∫

| f · f ◦ Tx | dν < +∞. (54)

It follows from (54) that for all n ∈ N

∫ ( ∑

x∈Cn

f ◦ Tx
)2

dν ≤ C (2n + 1)d (55)

where C =
∑

x∈Zd

∫ | f · f ◦ Tx | dν.
The almost-sure central limit theorem is about replacing the convergence in law by the

almost-sure convergence (in weak topology) of the following empirical logarithmic average:

1

LN

N∑

n=1

1

n
δ∑

x∈Cn f (Txω)

(2n+1)d/2

(56)

where

LN =
N∑

n=1

1

n
= ln N + O(1).

For each N ∈ N and ω ∈ �, (56) defines a probability measure onR. Our goal is to prove
that it converges, for ν-almost every ω, to the Gaussian measure G0,σ 2

f
defined by

dG0,σ2f
(v) = 1

σ f
√
2π

exp
(

− v2

2σ2f

)
dv, v ∈ R.

When such a convergence takes place, one says that ( f, ν) satisfies the almost-sure central
limit theorem. We shall prove a stronger result: the convergence will be with respect to the
Kantorovich distance dK which is defined as follows. Let

L = {ρ : R → R : ρ is 1-Lipschitz}.
For two probability measures λ, λ′ on R, let

dK (λ, λ′) = sup
ρ∈L0

(∫

ρ dλ −
∫

ρ dλ′
)

whereL0 is the set of functions inL vanishing at the origin. We can replaceL byL0 in the
definition of the distance because we consider probability measures. This distance metrizes
the weak topology on the set of probability measures on R such that

∫
R
d(u0, u) dλ(u) < ∞

(where u0 ∈ R is an arbitrary chosen point).
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13.2 An Abstract Theorem and Some Applications

The following abstract theorem says that, if the central limit theorem holds and if we have
MCB(2,C2), then we have an almost-sure central limit theorem. In fact, the convergence
to the Gaussian measure is with respect to the Kantorovich distance, which is stronger than
weak convergence.

Theorem 13.1 Let f ∈ �1(�) and ν be a shift-invariant probability measure. Assume that
the following conditions hold:

1. ( f, ν) satisfies the central limit theorem with variance σ 2
f > 0 (in the sense of Definition

13.1);
2. ν satisfiesMCB(2,C2) (in the sense of Definition 3.2);
3. the decay of correlations is summable in the sense of (54).

Then, for ν-almost every ω ∈ �,

lim
N→∞ dK

(AN , ω,G0,σ 2
f

) = 0.

We now apply this theorem in two situations, namely under Dobrushin’s uniqueness
condition, and for the low-temperature Ising ferromagnet.

Theorem 13.2 Let � ∈ BT and assume that the associated specification γ � satisfies
Dobrushin’s uniqueness condition (22). Moreover, assume that

∑

x∈Zd

‖x‖d+δ∞ C0,x (γ
�) < +∞ (57)

for some δ > 0, and that f ∈ C0(�) satisfies
∑

x∈Zd

‖x‖d∞ δx ( f ) < +∞. (58)

Without loss of generality, assume that
∫

f dμ� = 0. Then, for μ�-almost every ω ∈ �,

lim
N→∞ dK

⎛

⎝ 1

LN

N∑

n=1

1

n
δ∑

x∈Cn f (Txω)

(2n+1)d/2

,G0,σ 2
f

⎞

⎠ = 0

where σ 2
f ∈ [0,∞[ is given by (53).

Proof The conditions (57) and (58) imply (54). The theorem is a direct consequence of
Theorem 13.1 and Theorem 4.1 in [24]. �

The assumptions of the previous theorem are for instance satisfied if � is a finite-range
potential with β small enough and for any local function f . Let us state a corollary for the
empirical magnetization Mn(ω) = ∑

x∈Cn
s0(Txω), where s0(ω) = ω0, in the case of spin

pair potentials (20).

Corollary 13.1 Consider a ferromagnetic spin pair potential β� such that
∑

x∈Zd tanh
(β J (x)) < 1. Assume that

β
∑

x∈Zd

‖x‖d+δ∞ J (x) < +∞ (59)
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for some δ > 0. Then, for μβ�-almost every ω ∈ �, we have

lim
N→∞ dK

⎛

⎝ 1

ln N

N∑

n=1

1

n
δ
Mn(ω)/(2n+1)

d
2
,G0,σ 2

β

⎞

⎠ = 0

where

σ 2
β =

∑

x∈Zd

∫

s0 · s0 ◦ Tx dμβ� ∈ ]0,∞[ .

Recall that in the regime considered in this corollary we haveEμβ� [s0] = 0. Observe that,
for sufficiently high temperature, condition (59) implies

∑
x∈Zd tanh(β J (x)) < 1. It is well

known (see [18]) that in Dobrushin’s uniqueness regime one has for each β
∣
∣
∣
∣

∫

s0 · s0 ◦ Tx dμβ�

∣
∣
∣
∣ ≤ C ‖x‖−(d+δ)∞ ,

where C > 0 is independent of x (Recall that
∫
s0 dμβ� = 0 for β < βc).

The next theorem is an almost-sure central limit theorem for the empirical magnetization
in the low-temperature Ising ferromagnet.

Theorem 13.3 Let μ+
β be the plus phase of the low-temperature Ising model. Then there

exists β̄ such that, for each β > β̄ and for μ+
β -almost every ω ∈ �, we have

lim
N→∞ dK

⎛

⎝ 1

ln N

N∑

n=1

1

n
δ

(Mn(ω)−E
μ

+
β

[s0])/(2n+1)
d
2
,G0,σ2β

⎞

⎠ = 0

where

σ2β =
∑

x∈Zd

∫

s0 · s0 ◦ Tx dμ+
β ∈ ]0,∞[ .

Proof The theorem follows at once from Theorem 6.1, [28] and Theorem 13.1. �
13.3 Proof of the Abstract Theorem

We now prove Theorem 13.1. Throughout the proof, we use the notations

Sn f =
∑

x∈Cn

f ◦ Tx and AN ,ω = 1

LN

N∑

n=1

1

n
δ Sn f (ω)

(2n+1)d/2
.

First step We are going to prove that

lim
N→∞Eν

[
dK

(AN ,·,G0,σ 2
f

)] = 0. (60)

Let B > 0. Since for any ρ ∈ L0 one has |ρ(v)| ≤ |v| for all v we have

dK

(AN ,ω,G0,σ 2
f

) ≤ sup
ρ ∈L0

∫ B

−B
ρ(v)

(
dAN ,ω(v) − dG0,σ 2

f
(v)

)

+
∫

{|v|>B}
|v| dAN ,ω(v) +

∫

{|v|>B}
|v| dG0,σ 2

f
(v). (61)
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The last integral is obviously bounded by c1/B where c1 > 0 depends only on f . (It is indeed
much smaller but this bound suffices.) We now bound the expectation of the second term in
the r.h.s., uniformly in N . Using (55) and the inequality

Eν

[
1(B,+∞)(Z) Z

] ≤ Eν[Z2]
B

,

which follows from Cauchy–Schwarz inequality and Bienaymé–Chebyshev inequality, we
get

Eν

[∫

{|v|>B}
|v| dAN ,·(v)

]

= 1

LN

N∑

n=1

1

n
Eν

[

1(B,+∞)

( |Sn f |
(2n + 1)d/2

) |Sn f |
(2n + 1)d/2

]

≤ c2
B

(62)

where c2 > 0 is independent of N and B. We turn to the first term in the r.h.s. of (61).
Since [−B, B] is compact, we can apply Arzelà–Ascoli theorem to conclude that L0 is
precompact in the uniform topology. As a consequence, given ε > 0, there exists a positive
integer r = r(ε) and functions ρ̃ j : [−B, B] → R in L0, j = 1, . . . , r , such that, for any
ρ ∈ L0, there is at least one integer 1 ≤ j ≤ r such that

sup
|v|≤B

|ρ(v) − ρ̃ j (v)| ≤ ε.

Therefore we have

sup
ρ∈L0

∫ B

−B
ρ(v)

(
dAN ,ω(v) − dG0,σ 2

f
(v)

)

≤ sup
1≤ j≤r

∫ B

−B
ρ̃ j (v)

(
dAN ,ω(v) − dG0,σ 2

f
(v)

) + 2ε. (63)

To proceed, we need to define, for each function ρ̃ j , a function ρ j ∈ L0 defined on R and
coinciding with ρ̃ j on [−B, B]. This is done by setting

ρ j (v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if v < −B − |ρ̃ j (−B)|
ρ̃ j (−B) + sign(ρ̃ j (−B))(v + B) if − B − |ρ̃ j (−B)| ≤ v < −B

ρ̃ j (v) if v ∈ [−B, B]
ρ̃ j (B) − sign(ρ̃ j (B))(v − B) if B < v ≤ B + |ρ̃ j (B)|
0 if v > B + |ρ̃ j (B)|.

Next, for each 1 ≤ j ≤ r and for each N ≥ 1, introduce the functions

F̃ ( j)
N (ω) =

∫ B

−B
ρ̃ j (v)

(
dAN ,ω(v) − dG0,σ 2

f
(v)

)

and

F ( j)
N (ω) =

∫

ρ j (v)
(
dAN ,ω(v) − dG0,σ 2

f
(v)

)

= 1

LN

N∑

n=1

1

n

[

ρ j

(
Sn f (ω)

(2n + 1)d/2

)

−
∫

ρ j dG0,σ 2
f

]

.
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We have

F̃ ( j)
N (ω) = F ( j)

N (ω) + R( j)
N (ω) (64)

where

Eν

(

sup
1≤ j≤r

|R( j)
N (ω)|

)

≤ c3
B

(65)

where c3 > 0 is independent of N , r and B. This estimate is proved as above [see (61) and
(62)]. We now estimate the variance of F ( j)

N . Given z ∈ Z
d we have

δz(F
( j)
N ) ≤ v(N )

z := 1

LN

N∑

n=1

1

n

1

(2n + 1)d/2

∑

x∈Cn

δz−x ( f ). (66)

The r.h.s. term can be rewritten as
∑

x∈Zd δz−x ( f ) u
(N )
x where

u(N )
x :=

N∑

n=1

1

n(2n + 1)d/2LN
1Cn (x)1CN (x).

We now apply Young’s inequality to get

‖δ(F ( j)
N )‖22 ≤ ‖δ( f )‖21 ‖u(N )‖22.

Since f ∈ �1(�) by assumption, ‖δ( f )‖21 < +∞, and it remains to estimate ‖u(N )‖22. We
have

‖u(N )‖22 = 1

L2
N

∑

x∈CN

N∑

n=1

N∑

m=1

1

n

1

m

1

(2n + 1)d/2

1

(2m + 1)d/2 1Cn (x)1Cm (x)

= 2

L2
N

∑

x∈CN

N∑

n=1

N∑

m=n

1

n

1

m

1

(2n + 1)d/2

1

(2m + 1)d/2 1Cn (x)1Cm (x)

= 2

L2
N

∑

x∈CN

N∑

n=1

N∑

m=n

1

n

1

m

1

(2n + 1)d/2

1

(2m + 1)d/2 1Cn (x)

= 2

L2
N

N∑

n=1

N∑

m=n

1

n

1

m

1

(2n + 1)d/2

1

(2m + 1)d/2

∑

x∈CN

1Cn (x)

= 2

L2
N

N∑

n=1

N∑

m=n

1

n

1

m

(2n + 1)d/2

(2m + 1)d/2

≤ c

L2
N

N∑

n=1

n
d
2 −1

N∑

m=n

1

m
d
2 +1

≤ c

L2
N

N∑

n=1

1

n
= c

LN
,

123



On Concentration Inequalities and Their Applications... 543

where c > 0 does not depend on N . Hence, for any 1 ≤ j ≤ r , we have

‖δ(F ( j)
N )‖22 ≤ c ‖δ( f )‖21

LN
.

Since we assumed that ν satisfies MCB(2,C2), we end up with the following estimate for
the variance of F ( j)

N :

Eν

[(
F ( j)
N − Eν

[
F ( j)
N

])2
]

≤ c C2‖δ( f )‖21
LN

. (67)

We now use (64), (65), Cauchy–Schwarz inequality and (67) to obtain

Eν

[

sup
1≤ j≤r

F̃ ( j)
N

]

≤ Eν

[

sup
1≤ j≤r

F ( j)
N

]

+ Eν

[

sup
1≤ j≤r

R( j)
N

]

≤ Eν

⎡

⎣
r∑

j=1

∣
∣F ( j)

N

∣
∣

⎤

⎦ + c3
B

≤
r∑

j=1

Eν

[∣
∣F ( j)

N − Eν

[
F ( j)
N

]∣
∣
]

+
r∑

j=1

∣
∣
∣Eν

[
F ( j)
N

]∣
∣
∣ + c3

B

≤
r∑

j=1

(

Eν

[(
F ( j)
N − Eν

[
F ( j)
N

])2
]) 1

2 +
r∑

j=1

∣
∣Eν

[
F ( j)
N

]∣
∣ + c3

B

≤ r
√
c C2 ‖δ( f )‖1√

LN
+

r∑

j=1

∣
∣Eν

[
F ( j)
N

]∣
∣ + c3

B
.

By assumption, we have, for each j = 1, . . . , r , limN→∞ Eν

[
F ( j)
N

] = 0 by the central limit
theorem. Therefore we obtain

lim sup
N→∞

Eν

[

sup
1≤ j≤r

∫ B

−B
ρ j (v)

(
dAN ,ω(v) − dG0,σ 2

f
(v)

)
]

≤ c3
B

.

It now follows from (61), (62) and (63) we have

0 ≤ lim sup
N→∞

Eν

[
dK

(AN ,·,G0,σ 2
f

)] ≤ 2ε + c1 + c2 + c3
B

.

We now let ε tend to zero, then B to infinity. Therefore we obtain (60).
Second stepWe are going to estimate the variance of dK

(AN ,·,G0,σ 2
f

)
. We want to apply

(6) with p = 1 to the following function :

FN (ω) = sup
ρ∈L0

1

LN

N∑

n=1

1

n

(

ρ

(
Sn f (ω)

(2n + 1)d/2

)

−
∫

ρ dG0,σ 2
f

)

,
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since dK

(AN ,ω,G0,σ 2
f

) = FN (ω). To this end, define for each ρ ∈ L0 the function

F (ρ)
N (ω) = 1

LN

N∑

n=1

1

n

(

ρ

(
Sn f (ω)

(2n + 1)d/2

)

−
∫

ρ dG0,σ 2
f

)

.

Let z ∈ Z
d and ω, ω̃ ∈ � such that ωy 	= ω̃y for all y 	= z. We have

F (ρ)
N (ω) ≤ v(N )

z + F (ρ)
N (ω̃)

where v
(N )
z is defined in (66). Now take the supremum over ρ on both sides to get

FN (ω) ≤ v(N )
z + FN (ω̃).

The same inequality holds upon interchanging ω and ω̃, hence

|FN (ω) − FN (ω̃)| ≤ v(N )
z ,

therefore

δz(FN ) ≤ v(N )
z .

Proceeding as above, we end up with

‖δ(FN )‖22 ≤ c‖δ( f )‖21
LN

where c′ > 0 does not depend on N . Since ν satisfies MCB(2,C2) we have

Eν

[(
dK

(AN ,·,G0,σ 2
f

) − Eν

[
dK

(AN ,·,G0,σ 2
f

)])2
]

≤ c′C2 ‖δ( f )‖21
LN

.

Fix 0 < δ < 1 and let Nk = ek
1+δ

. From the previous inequality we get at once

∑

k

Eν

[(
dK

(ANk ,·,G0,σ 2
f

) − Eν

[
dK

(ANk ,·,G0,σ 2
f

)])2
]

< ∞.

It follows from Beppo Levi’s theorem that for ν-almost every ω

lim
k→∞

(
dK

(ANk ,ω,G0,σ 2
f

) − Eν

[
dK

(ANk ,ω,G0,σ 2
f

)] ) = 0. (68)

By (60), the theorem will be proved if we can show that Nk < N ≤ Nk+1 implies that

∣
∣dK

(AN ,ω,G0,σ 2
f

) − dK

(ANk ,ω,G0,σ 2
f

)∣
∣ k→∞−−−→ 0 (69)

for ν-almost every ω. Indeed, if Nk < N ≤ Nk+1, one has
∣
∣dK

(AN ,ω,G0,σ 2
f

) − dK

(ANk ,ω,G0,σ 2
f

)∣
∣

≤ LN − LNk

LN
dK

(ANk ,ω,G0,σ 2
f

)

+ sup
ρ∈L0

1

LN

N∑

n=Nk+1

1

n

(

ρ

(
Sn f (ω)

(2n + 1)d/2

)

−
∫

ρ dG0,σ 2
f

)

.
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The first term in the r.h.s goes to zero by (68). We handle the second one. We have
∣
∣
∣
∣
∣
∣
sup

ρ∈L0

1

LN

N∑

n=Nk+1

1

n

(

ρ

(
Sn f (ω)

(2n + 1)d/2

)

−
∫

ρ dG0,σ 2
f

)
∣
∣
∣
∣
∣
∣

≤ 1

LN

N∑

n=Nk+1

1

n

( |Sn f (ω)|
(2n + 1)d/2 +

∫

|v| dG0,σ 2
f
(v)

)

≤ 1

LNk

Nk+1∑

n=Nk+1

1

n

( |Sn f (ω)|
(2n + 1)d/2 +

∫

|v| dG0,σ 2
f
(v)

)

.

It follows easily from our choice of (Nk) that

lim
k→∞

1

LNk

Nk+1∑

n=Nk+1

1

n

∫

|v| dG0,σ 2
f
(v) = 0.

It remains to prove the almost-sure convergence to zero of the sequence (Uk) defined by

Uk = 1

LNk

Nk+1∑

n=Nk+1

|Sn f (ω)|
n(2n + 1)d/2 .

For this purpose we estimate the expectation of the square of Uk . Using Cauchy–Schwarz
inequality and (55) we get

Eν[U 2
k ] ≤ 1

L2
Nk

Nk+1∑

n1,n2=Nk+1

(
Eν

[(
Sn1 f (ω)

)2
]) 1

2

n1(2n1 + 1)d/2

(
Eν

[(
Sn2 f (ω)

)2
]) 1

2

n2(2n2 + 1)d/2

≤ (ln Nk+1 − ln Nk + O(1))2

L2
Nk

≤ O(1)

k2
.

It follows that Eν[U 2
k ] is summable in k and by Beppo Levi’s theorem we have that Uk goes

to zero almost surely. Therefore we have proved (69), which finishes the proof the theorem.
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