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Abstract Loosely speaking, the Shannon entropy rate is used to gauge a stochastic pro-
cess’ intrinsic randomness; the statistical complexity gives the cost of predicting the process.
We calculate, for the first time, the entropy rate and statistical complexity of stochastic pro-
cesses generated by finite unifilar hidden semi-Markovmodels—memoryful, state-dependent
versions of renewal processes. Calculating these quantities requires introducing novel
mathematical objects (ε-machines of hidden semi-Markov processes) and new information-
theoretic methods to stochastic processes.

Keywords Epsilon-machines · Causal states · Entropy rate · Statistical complexity · Hidden
Markov processes

1 Introduction

Claude Shannon’s seminal 1948 article “A Mathematical Theory of Communication” intro-
duced a definition for entropy as a well-motivated measure of randomness [1]. He further
identified entropy rate hμ as a measure of the minimal coding cost of a series of potentially
correlated symbols in his celebrated first theorem. In 1989, Young and Crutchfield identified
statistical complexity Cμ as the entropy of causal states [2], which are the minimal sufficient
statistics of prediction [3]. Said simply, hμ is a measure of a process’ intrinsic random-

B James P. Crutchfield
chaos@ucdavis.edu

Sarah E. Marzen
semarzen@mit.edu

1 Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2 Department of Physics, University of California, Berkeley, Berkeley, CA 94720-5800, USA

3 Complexity Sciences Center, Department of Physics, University of California, Davis, One Shields
Avenue, Davis, CA 95616, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-017-1859-y&domain=pdf


304 S. E. Marzen, J. P. Crutchfield

ness and Cμ a measure of process structure. Both entropy rate and statistical complexity
have given insight into many disparate complex systems, from chaotic crystallography [4],
biomolecule dynamics [5–7], neural spike trains [8], and animal behavior [9] to stochas-
tic resonance [10], geomagnetic volatility [11], hydrodynamic flows [12,13], and fluid and
atmospheric turbulence [14,15].

These two measures of complexity are unified by the Kolmogorov–Chaitin complexity
of a discrete object, which is the size of the minimal Universal Turing Machine program
that produces the object [16,17]. Specifically, the expected Kolmogorov–Chaitin complexity
〈K (x�)〉 of a (discrete-time, discrete-symbol) time series x� of length � grows at the Shannon
entropy rate and has an offset determined by the statistical complexity: log〈K (x�)〉 ∝�→∞
Cμ + �hμ, when these quantities exist [18].

Perhaps somewhat surprisingly, estimators of the entropy rate and statistical complexity
of continuous-time, discrete-symbol processes are lacking. This is unfortunate since these
processes are encountered very often in the physical, chemical, biological, and social sci-
ences as sequences of discrete events consisting of an event type and an event duration or
magnitude. An example critical to infrastructure design occurs in the geophysics of crustal
plate tectonics, where the event types are major earthquakes tagged with duration time,
time between their occurrence, and an approximate or continuous Richter magnitude [19].
Understanding these process’ randomness and structure bears directly on averting human
suffering. Another example is revealed in the history of reversals of the earth’s geomag-
netic field [11], which shields the planet’s life from exposure to damaging radiation. An
example from physical chemistry is found in single-molecule spectroscopy which reveals
molecular dynamics as hops between conformational states that persist for randomly dis-
tributed durations [6,7]. The structure of these conformational transitions is implicated in
biomolecular functioning and so key to life processes. A common example from neuro-
science is found in the spike trains generated by neurons that consist of spike-no-spike
event types separated by continuous interspike intervals. The structure and randomness
of spike trains are key to delineating how tissues support essential information process-
ing in nervous systems and brains [8]. Finally, a growing set of these processes appear in
the newly revitalized quantitative social sciences, in which human communication events
and their durations are monitored as signals of emergent coordination or competition
[20].

Here, we provide new closed-form expressions for the entropy rate and statistical com-
plexity of continuous-time, discrete-symbol processes by first identifying the causal states
of stochastic processes generated by continuous-time unifilar hidden semi-Markov mod-
els, a restricted class of the models described in Ref. [21]. In these processes successive
dwell times for the symbols (or events) are drawn based on the process’ current “hid-
den” state. Transitions from hidden state to hidden state then follow a rule that mimics
transitions in discrete-time unifilar hidden Markov models. The resulting output process
consists of the symbols emitted during the dwell time. Identifying the process causal states
leads to new expressions for entropy rate, generalizing one of the results given in Sect.
7.4 of Ref. [22], and for statistical complexity. The hidden semi-Markov process class
we analyze here is sufficiently general we conjecture that our results yield universal esti-
mators of the entropy rate and statistical complexity of continuous-time, discrete-event
processes.

To start, we define unifilar hidden semi-Markov processes and their generators, determine
their causal states, and use the causal states to calculate their entropy rate and statistical
complexity. We conclude by describing a method for using the expressions given here to
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estimate the entropy rate and statistical complexity of continuous-time, discrete-event time
series.

2 Hidden Semi-Markov Processes and Their Unifilar Generators

The continuous-time, discrete-symbol process . . . , (X−1, T−1), (X0, T0), (X1, T1), . . . has
realizations . . . (x−1, τ−1), (x0, τ0), (x1, τ1) . . .. Events are symbol-duration pairs (xi , τi )
that occur sequentially in a process. For symbols, we demand that xi �= xi+1 to enforce
a unique description of the process. In other words, the discrete event symbol xi ∈ A
appears for a total time of τi . The present is located almost surely during the emis-
sion of x0, and we denote the time since last emission as τ0+ and the time to next
emission as τ0− . We also, for clarity, denote the last-appearing symbol as x0+ and the
next-appearing symbol as x0− ; though obviously x0+ = x0− almost surely. (It follows that
τ0+ + τ0− = τ0.) The past . . . , (X−1, T−1), (X0, T0+) is denoted

←−−−−
(X, T ) and the future

(X0, T0−), (X1, T1), . . . is denoted as
−−−−→
(X, T ), with realizations denoted

←−−−
(x, τ ) and

−−−→
(x, τ ),

respectively.
A continuous-time, discrete-symbol process’ causal states S are the equivalence classes

of pasts defined by the relation:

←−−−
(x, τ ) ∼ε

←−−−
(x, τ )′ ⇐⇒ Pr

(−−−−→
(X, T )

∣∣∣∣←−−−−
(X, T ) = ←−−−

(x, τ )

)
= Pr

(−−−−→
(X, T )

∣∣∣∣←−−−−
(X, T ) = ←−−−

(x, τ )′
)

. (1)

This mimics the relation for the causal states of discrete-time processes [3]. A process’
statistical complexity is the entropy of these causal states: Cμ = H[S]. A process’ pre-
scient states are any finer-grained partition of the causal-state classes, as for discrete-time
processes [3]. Thus, there is a fundamental distinction between a process’ observed or emit-
ted symbols and its internal states. In this way, we consider general processes as hidden
processes.

Causal states can be discrete random variables, continuous random variables, or mixed
random variables. For discrete-event, continuous-time processes, the last of these is the
likeliest. The entropy of discrete random variables and the differential entropy of continuous
random variables are both given in Ref. [23], while the entropy of mixed random variables
is described in Ref. [24]; all are represented as H[X ], where X is the random variable.
Conditional entropy H[X |Y ] is then defined as 〈H[X |Y = y]〉y . The mutual information
between random variables X and Y is given by I[X; Y ] = H[X ] − H[X |Y ], and numerous
other definitions are given in Ref. [23].

A hidden semi-Markov process (HSMP) is a continuous-time, discrete-symbol process
generated by a hidden semi-Markov model (HSMM). A HSMM is described via a hidden-
state random variable G with realization g, an emission probability T (x)

g , which is the
probability of emitting x when in hidden state g, and a dwell-time distribution φg(τ ).

In other words, in hidden state g, symbol x is emitted with probability T (x)
g for time τ

drawn from φg(τ ). For reasons that will become clear, we focus on a restricted form—the
unifilar HSMM (uHSMM). For these, the present hidden state g0 is uniquely determined
by the past emitted symbols x−∞:0 = . . . , x−2, x−1. See Fig. 1. In an abuse of nota-
tion, Eq. (1) determines a function ε(x−∞:0) that takes the past emitted symbol sequence
x−∞:0 to the underlying hidden state g0. (The abuse comes from suppressing the depen-
dence on durations.) This is the analog appropriate to this setting of the familiar definition
of unifilarity in discrete-time models [3]—that symbol and state uniquely determine next
state.
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Fig. 1 Generative model for a
unifilar hidden semi-Markov
process. The notation
p(x)|x, τ ∼ φg means that x is
emitted with probability p(x)
from hidden state g with
emission time drawn from φg

A

B C

1|2, τ φA

1
2 |0, τ φB,0

1
2 |1, τ φB,1

1|3, τ φC

3 Causal Architecture

The challenge now is to identify a given HSMP’s causal states. With the causal states in
hand, we can calculate their statistical complexity and entropy rate rather straightforwardly.
Theorem 1 makes the identification.

Theorem 1 A unifilar hidden semi-Markov process’ causal states are the triple (g0, x0+ ,

τ0+), under weak assumptions specified below.

Proof To identify causal states, we need to simplify the conditional probability distribution:

p

(−−−→
(x, τ )

∣∣∣∣←−−−
(x, τ )

)
= Pr

(−−−−→
(X, T ) = −−−→

(x, τ )

∣∣∣∣←−−−−
(X, T ) = ←−−−

(x, τ )

)
.

When the process is generated by a unifilar hidden semi-Markov model, this conditional
probability distribution simplifies to:

p

(−−−→
(x, τ )

∣∣∣∣←−−−
(x, τ )

)
= p

(
(x0− , τ0−), (x1, τ1), . . .

∣∣ . . . , (x−1, τ−1), (x0+ , τ0+)
)

= p
(
(x1, τ1), . . .

∣∣ . . . , (x0, τ0))p(τ0−
∣∣ . . . , (x−1, τ−1), (x0+ , τ0+), x0−

)
× p

(
x0−

∣∣ . . . , (x−1, τ−1), (x0+ , τ0+)
)
, (2)

where we have τ0 = τ0+ + τ0− . Almost surely, we have:

p
(
x0−

∣∣ . . . , (x−1, τ−1), (x0+ , τ0+)
) = δx0+ ,x0− (3)

and, due to the unifilarity constraint:

p
(
τ0−

∣∣ . . . , (x−1, τ−1), (x0+ , τ0+), x0−
) = p

(
τ0−

∣∣τ0+ , g0 = ε+(x:0)
)
. (4)

Together Eqs. (2)–(4) imply that the triple (g0, x0+ , τ0+) are prescient statistics.
These states are causal (minimal and prescient) when three things happen: first, when the

number of hidden states g is the smallest possible; second, when φg(τ ) does not take either
the “eventually Poisson” or “eventually �-Poisson” form described in Ref. [25]; and third,
when two of the “conveyor belts” as shown in Fig. 3 do not merge.

Each of these conditions is worth spelling out.
The first condition states that of all such unifilar hidden semi-Markov models which

generate the given process, we choose the model with the smallest number of hidden states.
Two hidden states can be considered equivalent when they have identical future morphs,
p(

−−−→
(x, τ )|g, x+, τ+). Here, Eqs. (2)–(4) aid in detecting such identical hidden states.
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As for the second condition, to avoid an eventually Poisson-like dwell time distribution,
we demand that φg(τ ) cannot be written as φg(T )e−λ(t−T ), for all t ≥ T and some λ > 0
and T ≥ 0. To avoid an eventually �-Poisson-like dwell time distribution, we demand that
φg(τ ) cannot be written as:

φg(t) = φg
(
T + (t − T ) mod �

)
e−λ�(t−T )/��,

for any 0 < �, λ, T < ∞. Almost all naturally occurring dwell-time distributions take nei-
ther of these forms, though a Poisson neuron with a refractory period generates an eventually
Poisson renewal process.

Alternatively, and this is the third condition, it is possible that ε(g0, x0) = ε(g′
0, x0) and

p(τ0−|g0, τ0+) = p(τ0−|g′
0, τ

′
0+) for all τ0− . Here, the notation is overloaded: ε(g0, x0) is the

hidden state towhichwe transition given that we are in hidden state g0 and observe symbol x0.
In this case, the conditional probability distributions in Eq. (2) are equal, despite the different
hidden states and potentially different times since last event. Such an equalitywould engender
merging of the renewal process-like conveyor belts in Fig. 3. And so, we stipulate that there
does not exist a pair g0 �= g′

0 and τ0+ and τ ′
0+ such that p(τ0−|g0, τ0+) = p(τ0−|g′

0, τ
′
0+)

for all τ0− . This condition, described in more detail below, is shown in Fig. 2 and is almost
always met for the applications cited earlier. Thus, we say that the typical unifilar hidden
semi-Markov process’ causal states are given by the triple (g0, x0+ , τ0+).

The statistics described in Theorem 1 are still prescient statistics—i.e., sufficient statistics
of prediction—even when the weak assumptions are not met. In discrete-time applications,
this would imply that the entropy of those prescient states upper-bounds the statistical com-
plexity. In continuous-time applications, prescient states and causal states are often mixed
random variables and, so, no such upper bound can be stated generally.

As a result, it is well worth spelling out the least intuitive of these weak assumptions. The
third weak assumption stipulated above is best illustrated by an example. To recapitulate,
“typically” causal states are the triple (g0, x0, τ0+): hidden state, observed symbol, and time
since last symbol. Usually, (g0, x0, τ0+) and (g′

0, x
′
0, τ

′
0+) are not predictively equivalent

when g0 �= g′
0 and the uHSMM has the minimal number of states possible (the first weak

assumption). However, to engineer such an equivalence without violating this first weak
assumption, one first needs the two observed symbols to be identical, x0 = x ′

0. Next, one
needs the hidden state to which we transition to be identical, so that:

p((x1, τ1)|g0, x0, τ0) = p(x1|ε(g0, x0))φε(g0,x0)(τ1).

And, finally, one needs:

p(τ0−|g0, τ0+) = φg0(τ0+ + τ0−)

	g0(τ0+)

to be equal to p(τ0−|g′
0, τ

′
0+), for all τ0+ ≥ 0. This last equality can be obtained in myriad

ways. For instance, in the example of Fig. 2, we choose:

φC (t) =
{(∫ T

0 φA(t ′)dt ′
)

δ
(
t − T

2

)
t ≤ T

φA(t) t > T
. (5)

Then, the triple (A, 0, t) is predictively equivalent to (C, 0, t) for t > T and the originally
distinct conveyor belts corresponding to t “merge”.

Calculating informationmeasures of a time series exactly often requires finding the proba-
bility distribution p(g0, x0+ , τ0+) over causal states. For instance, to find a process’ statistical
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A B C

1|0, τ φA

1
2 |1, τ φB

1
2 |2, τ φB

1|0, τ φC

Fig. 2 With φC (t) given by Eq. (5), the triple (A, 0, t) is predictively equivalent to (C, 0, t) for t > T

complexity Cμ, we must determine H[S] which, in turn, entails finding the probability dis-
tribution p(g0, x0+ , τ0+). Implicitly, we are deriving labeled transition operators as in Ref.
[25]. We start by decomposing:

p(g0, x0+ , τ0+) = p(g0)p(x0+|g0)p(τ0+|g0, x0+).

Since the dwell-time distribution depends only on the hidden state g0 and not on the emitted
symbol x0+ , we find that:

p(τ0+|g0, x0+) = p(τ0+|g0).
As in Ref. [25] in Sect. IVA, having a dwell time of at least τ0+ implies that:

p(τ0+|g0) =
∫ ∞

τ0+
p(τ0|g0)dτ0

= μg0	g0(τ0+), (6)

where 	g0(τ0+) := ∫ ∞
τ0+

φg0(t)dt will be called the survival distribution, and:

μg0 = 1
/∫ ∞

0
tφg0(t)dt

is the inverse mean interevent interval from hidden state g0. From the setup, we also have:

p(x0+|g0) = T
(x0+ )
g0 .

Finally, to calculate p(g0), we consider all ways in which probability can flow from
(g′, x ′, τ ′) to (g, x, 0):

p(g, x, 0) =
∑
g′,x ′

∫ ∞

0
p(g′, x ′, τ ′)p((g′, x ′, τ ′) → (g, x, 0))dτ ′. (7)

The transition probability p((g′, x ′, τ ′) → (g, x, 0)) is:

p((g′, x ′, τ ′) → (g, x, 0)) = δg,ε(g′,x ′)T
(x)
g

φg′(τ ′)
	g′(τ ′)

. (8)

The term δg,ε(g′,x ′) implies that one can only transition to g from g′ if the emitted symbol

x ′ allows. Then, T (x)
g implies that there is a probability of emitting symbol x from newly-

transitioned-to hidden state g. And, φg′(τ ′)/	g′(τ ′) is the probability of emitting x ′ for total
time τ ′, given that x ′ has already been emitted for total time at least τ ′. Combining Eq. (8)
with Eq. (7) gives:
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p(g)T (x)
g μg =

∑
g′,x ′

∫ ∞

0
p(g′)T (x ′)

g′ μg′	g′(τ ′)δg,ε(g′,x ′)T
(x)
g

φg′(τ ′)
	g′(τ ′)

p(g) = 1

μg

∑
g′,x ′

μg′ p(g′)T (x ′)
g′ δg,ε(g′,x ′)

=
∑
g′

μg′

μg

(∑
x ′

T (x ′)
g′ δg,ε(g′,x ′)

)
p(g′).

We therefore see that p(g) is the eigenvector (appropriately normalized,
∑

g p(g) = 1)
associated with eigenvalue 1 of a transition matrix given by:

Tg′→g := μg′

μg

(∑
x ′

T (x ′)
g′ δg,ε(g′,x ′)

)
. (9)

Recalling computation theory [26], we see that the ε-machine of such a process takes on
the form of connected counters, albeit in continuous time. See Fig. 3.

A process’ statistical complexity is defined as the entropy of its causal states. To calculate
this, we need to find the probability distribution over the triple (g0, x0+ , τ0+), from which
we can compute the statistical complexity as stated in Proposition 1. In the proposition, we
overloaded notation: H[p(g)] = −∑

g p(g) log p(g).

Proposition 1 The statistical complexity of a unifilar hidden semi-Markov process, under
weak assumptions, is given by:

Cμ = H[p(g)] −
∑
g

p(g)

(∑
x

T (x)
g log T (x)

g

)
−

∑
g

p(g)
∫ ∞

0

(
μg	g(τ )

)
log

(
μg	g(τ )

)
dτ,

where, as above, p(g) is the normalized right eigenvector of eigenvalue 1 of the matrix of
Eq. (9).

Proof Altogether, we find that the statistical complexity is:

Cμ = H[G, X,T ]
= H[G] + H[X |G] + H[T |G, X ]

= H[p(g)] −
∑
g

p(g)

(∑
x

T (x)
g log T (x)

g

)
−

∑
g

p(g)
∫ ∞

0

(
μg	g(τ )

)
log

(
μg	g(τ )

)
dτ,

where p(g) is given above.

As with continuous-time renewal processes, this is the statistical complexity of a mixed
random variable and, hence, is not always an upper bound on the excess entropy E :=
I

[←−−−−
(X, T );−−−−→

(X, T )

]
.
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2
A

2
AS+B,0 S+C

S+A

S+B,1

0
B,0

1
B,1

3
C0 3

2

1

Fig. 3 Continuous-time ε-machine for the hidden semi-Markov process generated by the uHSMM of Fig. 1,
as determined by Theorem 1. Continuous-time causal states S+

A , S
+
B , and S+

C track the times τ0 or τ1 since
last event—the times obeying distributions φA , φB,0, φB,1, and φC associated with uHMM states A, B, and
C , respectively. Each renewal subprocess is depicted as a semi-infinite vertical line and is isomorphic with the
positive real line. If no event is seen, probability flows towards increasing time since last event, as described
in Eq. (9). Otherwise, the surfaces leaving S+

A , S
+
B , and S+

C indicate allowed transitions back to the next reset
state or 0 node located at the nonarrow end of the associatedS+, denoting that a new event occurred associated
with the next state A, B, and C , as appropriate. Note that when leaving state B there are two distinct diffusion
processes onS+

B associated with emitting either 0 and 1. The domains of these diffusions are depicted with two

separate semi-infinite lines, denoted S+
B,0 and S+

B,1, respectively. Figure 1’s generative HSMM is displayed
underneath for reference

4 Informational Architecture

Finally, we use the causal-state identification to calculate a uHSMP’s entropy rate. Entropy
rates are defined via:

hμ = lim
T→∞

H
[−−−−→
(X, T )T

]
T

,

but can be calculated using:

hμ = lim
δ→0

H
[−−−−→
(X, T )δ

∣∣←−−−−
(X, T )

]
δ

.

Starting there and recalling the definition of causal states, we immediately have:

hμ = lim
δ→0

H
[−−−−→
(X, T )δ

∣∣S]
δ

. (10)
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We find that entropy rate is as stated in Theorem 2.We could have just as well conditioned on
prescient states [3], and so the weak assumptions of Theorem 1 are irrelevant to Theorem 2.
The form of the expression appears as a weighted sum of differential entropies of dwell times
from the hidden states.

Theorem 2 The entropy rate of a unifilar hidden semi-Markov process is given by:

hμ = −
∑
g

p(g)
∫ ∞

0
μgφg(τ ) logφg(τ )dτ,

where p(g) is the normalized right eigenvector associated with eigenvalue 1 of the matrix in
Eq. (9).

Proof As just noted, the entropy rate can be calculated via:

hμ = lim
δ→0

H
[−−−−→
(X, T )δ

∣∣S]
δ

,

where
−−−−→
(X, T )δ are trajectories of time length δ. Following Ref. [25], we consider the random

variable Xδ to be 0 when the emitted symbol is constant throughout the trajectory of length
δ, 1 when there is one switch from one emitted symbol to another in this trajectory of length
δ, and so on. Basic information formulae give:

H
[−−−−→
(X, T )δ

∣∣S] = H[Xδ|S] + H
[−−−−→
(X, T )δ

∣∣Xδ,S
]
. (11)

The key reason that we condition on Xδ is that two switches are highly unlikely to happen rel-
ative to one switch. Furthermore, if no switches in emitted symbols occur, then the trajectory
is entirely predictable and does not contribute to the entropy rate. In particular:

Pr(Xδ = 1|S = (g, x, τ )) =
∫ δ

0

φg(τ + s)

	g(τ + s)
ds

≈ φg(τ )

	g(τ )
δ + O(δ2) and

Pr(Xδ = k|S = (g, x, τ )) = O(δk)

and so:

Pr(Xδ = 0|S = (g, x, τ )) = 1 − Pr(Xδ ≥ 1|S = (g, x, τ ))

= 1 − φg(τ )

	g(τ )
δ + O(δ2).

In a straightforward way, it follows that:

H[Xδ|S = (g, x, τ )] = −
(
1 − φg(τ )

	g(τ )
δ

)
log

(
1 − φg(τ )

	g(τ )
δ

)

−
(

φg(τ )

	g(τ )
δ

)
log

(
φg(τ )

	g(τ )
δ

)
+ O(δ2 log δ)

= φg(τ )

	g(τ )
δ −

(
φg(τ )

	g(τ )
log

φg(τ )

	g(τ )

)
δ − φg(τ )

	g(τ )
δ log δ + O(δ2 log δ),

(12)

after several Taylor approximations; e.g., log(1 + x) = x + O(x2).
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Now, consider the second term in Eq. (11):

H
[−−−−→
(X, T )δ

∣∣Xδ,S = (g, x, τ )
]

= Pr(Xδ = 0|S = (g, x, τ ))H
[−−−−→
(X, T )δ

∣∣Xδ = 0,S = (g, x, τ )
]

+ Pr(Xδ = 1|S = (g, x, τ ))H
[−−−−→
(X, T )δ

∣∣Xδ = 1,S = (g, x, τ )
]

+
∞∑
k=2

P(Xδ = k|S = (g, x, τ ))H
[−−−−→
(X, T )δ

∣∣Xδ = k,S = (g, x, τ )
]
.

If Xδ = 0, the trajectory is completely determined by S = (g, x, τ ), and hence:

H
[−−−−→
(X, T )δ

∣∣Xδ = 0,S = (g, x, τ )
] = 0.

If Xδ = 1, then the trajectory is completely determined by one time—that at which emitted
symbols switch. As in Ref. [25], the distribution of switching time is roughly uniform over
the interval, and so:

H
[−−−−→
(X, T )δ

∣∣Xδ = 1,S = (g, x, τ )
] = log δ + O(δ).

Finally, from maximum entropy arguments:

P(Xδ = k|S = (g, x, τ ))H
[−−−−→
(X, T )δ

∣∣Xδ = k,S = (g, x, τ )
]

is at most of δk(log δ)k . In particular, we noted earlier that P(Xδ = k|S = (g, x, τ )) was
O(δk) and that k emissions over a time interval of no more than δ yields differential entropy
of no more than (log δ)k . In addition, we have:

H
[−−−−→
(X, T )δ

∣∣Xδ = k
] ≥ H

[−−−−→
(X, T )δ

∣∣Xδ = 1
]
.

That is, if given a trajectorywith a single transition, one can construct trajectories that approx-
imate it arbitrarily closely with more than one transition. And so,

∣∣H [−−−−→
(X, T )δ

∣∣Xδ = k
]∣∣ is

at least O(| log δ|) and at most O(| log δ|k). Hence:
∞∑
k=2

P(Xδ = k|S = (g, x, τ ))H
[−−−−→
(X, T )δ

∣∣Xδ = k,S = (g, x, τ )
] = O(δ2(log δ)2).

Altogether, we have:

H
[−−−−→
(X, T )δ

∣∣S = (g, x, τ )
] = φg(τ )

	g(τ )
δ −

(
φg(τ )

	g(τ )
log

φg(τ )

	g(τ )

)
δ − φg(τ )

	g(τ )
δ log δ

+ φg(τ )

	g(τ )
δ log δ + O(δ2(log δ)2)

= φg(τ )

	g(τ )
δ −

(
φg(τ )

	g(τ )
log

φg(τ )

	g(τ )

)
δ + O(δ2(log δ)2)

and, thus:

H
[−−−−→
(X, T )δ|S] = 〈

H
[−−−−→
(X, T )δ

∣∣S = (g, x, τ )
]〉
g,x,τ

=
〈
φg(τ )

	g(τ )
− φg(τ )

	g(τ )
log

φg(τ )

	g(τ )

〉
g,x,τ

δ + O(δ2(log δ)2).
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And so, from Eq. (10), we find the entropy rate:

hμ = lim
δ→∞

H
[−−−−→
(X, T )δ

∣∣S]
δ

=
〈

φg(τ )

	g(τ )
− φg(τ )

	g(τ )
log

φg(τ )

	g(τ )

〉
g,x,τ

=
∑
g,x

p(g)T (x)
g

∫ ∞

0
μg	g(τ )

φg(τ )

	g(τ )
dτ −

∑
g,x

p(g)T (x)
g

∫ ∞

0
μg	g(τ )

φg(τ )

	g(τ )
log

φg(τ )

	g(τ )

=
∑
g,x

p(g)T (x)
g

(∫ ∞

0
μgφg(τ )dτ −

∫ ∞

0
μgφg(τ ) log

φg(τ )

	g(τ )
dτ

)
.

We directly have: ∫ ∞

0
μgφg(τ )dτ = μg

and∫ ∞

0
μgφg(τ ) log

φg(τ )

	g(τ )
=

∫ ∞

0
μgφg(τ ) logφg(τ )dτ −

∫ ∞

0
μgφg(τ ) log	g(τ )dτ.

The second term simplifies substituting u = 	g(τ ):
∫ ∞

0
μgφg(τ ) log	g(τ )dτ = −

∫ 0

1
μg log udu

= μg (u log u − u) |10
= −μg.

Altogether, we find:

hμ = −
∑
g

p(g)
∫ ∞

0
μgφg(τ ) logφg(τ )dτ.

Theorem 2 generalizes a recent result about the entropy rate of semi-Markov processes
[22] to unifilar hidden semi-Markov processes. In this way, Theorem 2 demonstrates the
practical use of identifying causal states.

5 Conclusion

Proposition 1 and Theorem 2 provide new expressions for the statistical complexity and
entropy rate of continuous-time, discrete-event processes generated by a restricted class of
hidden semi-Markov models, what we called “unifilar hidden semi-Markov models”. Their
causal architecture reminds one of a discrete-time ε-machine crossed with the ε-machine
of a continuous-time renewal process [25]. Pursuing this, straightforward extensions of the
techniques in Ref. [25] allowed us to derive new expressions for statistical complexity and
entropy rate.

These expressions can be used as new plug-in estimators for the statistical complexity
and entropy rate of continuous-time, discrete-event processes. It might seem that using them
requires an accurate estimation of φg(τ ), which in turn might require unreasonable amounts
of data. However, a method first utilized by Kozachenko and Leonenko and popularized by
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Victor [27] utilizes the fact that we need only calculate scalar functions of φg(τ ) and not
φg(τ ) itself. A second concern arises from the super-exponential explosion of discrete-time,
discrete-alphabet ε-machines with the number of hidden states [28]. How do we know the
underlying topology? Here, as a first try, we suggest taking Ref. [29]’s approach, replacing
the hidden states in these general models with the last k symbols. Further research is required,
though, to determine when the chosen k is too small or too large. And, finally, we hope this
work stimulates new work on continuous-time, discrete-alphabet quantum machines such as
found in Ref. [30].
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