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Abstract We develop a framework for stress response in two dimensional granular media,
with and without friction, that respects vector force balance at the microscopic level. We
introduce local gauge degrees of freedom that determine the response of contact forces
between constituent grains on a given, disordered, contact network, to external perturbations.
By mapping this response to the spectral properties of the graph Laplacian corresponding to
the underlying contact network, we show that this naturally leads to spatial localization of
forces. We present numerical evidence for localization using exact diagonalization studies of
networkLaplacians of soft disk packings. Finally,wediscuss the role of other constraints, such
as torque balance, in determining the stability of a granular packing to external perturbations.
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1 Introduction

Force transmission in granular materials is a well-studied problem with wide ranging appli-
cations [1–8] and several properties of stress transmission in granular media continue to
be the subject of active research. Several recent studies have addressed the question of the
stress response of granular packings [9–18], showing that the usual elasticity theories for
homogeneous materials do not apply to materials with granular constituents, and therefore
new frameworks need to be developed to deal with such systems. One of the most impor-
tant characteristics that has emerged from these studies is the inhomogeneous nature of this
stress propagation [19,20]. A striking aspect of granular systems is that forces are primarily
carried by a sparse, tenuous network of contacts that have become known as “force chains”.
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Experiments using photoelastic beads provide clear evidence of this phenomenon [7], and
force chains have emerged as the defining characteristic of granular solids. Yet, at present
we do not have a theory of how forces are localized in space and the role played by network
disorder on the character of this spatial localization [7].

Static granular media is controlled by the constraints of mechanical equilibrium, which
is the main ingredient in models of such systems. Several theoretical frameworks have been
proposed to explain how granular materials respond to external forces [21]. These include
lattice-based models such as the q-model [2,3], and its extensions [22,23], and continuum
models that posit some history-dependent relation between the components of the stress
tensor [24,25]. These frameworks lead to Partial Differential Equations (PDEs) that are
elliptic, hyperbolic or parabolic depending on these closure relations [6]. The q-model,
which incorporates scalar force balance in a model of granular piles in a gravitational field
[2,3], successfully accounts for the distribution of contact forces in the large force limit.
In the continuum limit, the model reduces to the diffusion equation, predicting a horizontal
spread of force-bearing contacts that grows as the square-root of the depth in the granular
pile. Such a spread is observed in experiments under certain conditions of preparation [7].
Models with hyperbolic PDEs and disorder predict a wave-like propagation, which is similar
to experimental observations in ordered arrays of grains [7]. Thus, the relationship between
the stress response of granular materials and the underlying disorder of the contact network
remains to be understood.

One of the important open questions in the field of granular systems is, how does one
account for vector force balance on a disordered network of contacts? In this paper we
address this problem by studying the response of a two dimensional granular material to
an externally applied force. We show that the inhomogeneous propagation of stress at the
grain level can be linked to the inherent randomness in the underlying fabric of contacts. We
connect the problem of stress transmission in this system to that of diffusion on the disordered
planar graph formed by the contacts between the constituent grains. This allows us to develop
a theoretical framework to describe the response of such a granular system to an imposed
body force, and thereby probe the origin of the force localization properties in such systems.
In this work, we do not address the question of what the proper continuum level description
is of stress propagation in granular media, rather, we demonstrate that the response at the
granular scale is controlled by the spectral properties of the graph Laplacian describing the
disordered contact network.

The constraints ofmechanical equilibrium, that are necessarily satisfied in a static granular
packing, lead to a gauge potential formulation of forces and stresses [26,27].We show that the
response of the internal forces to an applied body force can be described by an additional set
of gauge potentials, which satisfy equations involving the Laplacian of the contact network.
By introducing these auxiliary fields we can account for the change in the local stress tensor
induced by an external perturbation. In addition to introducing the formalism, we present
results of exact diagonalization studies of network Laplacians produced using numerical
simulations of soft disk packings. These clearly illustrate the localization properties of force
transmission in such materials. Although our formulation is valid for a general frictional
granular packing, in our simulations we focus specifically on linear spring potentials of
fricitionless soft disks. Finally we discuss the role of additional constraints such as torque
balance in determining the stability of granular packings to external perturbations.
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Stress Response of Granular Systems 3

Fig. 1 Left A jammed packing of bidispersed frictionless disks with periodic boundary conditions. The
contacts between the grains are idealized as points (red dots), and display a spatially disordered structure.
Right The same configuration with the associated grain polygons (white) and void polygons (blue). The grain
polygons are formed by connecting the contact points within each grain in a cyclic manner. The void polygons
are formed by cyclically connecting the contacts associated with each void. The grain and the void polygons
together tessellate the entire space. The adjacency graphs formed by the two networks (grains and voids) are
dual to each other (Color figure online)

2 Local Constraints and Gauge Potentials

In this section we discuss the constraints that need to be satisfied at the local level in a static
granular packing. The local nature of these constraints allows a description of the system in
terms of gauge potentials. Local constraints are also crucial in determining the response of
jammed packings to external perturbations, and give rise to deviations from linear elasticity.

2.1 Grains and Voids in Jammed Configurations

Granular systems are inherently porous with voids interspersed between grains in contact,
and are inhomogeneous on the granular scale. This non-isotropic fabric of the underlying
material leads to interesting properties of stress transmission between the grains in the system.
A challenge in granular mechanics is to understand how this “graininess” [28] affects the
bulk behavior of granular solids. In order to associate local quantities to granular packings
with complex internal structures such as non-convex voids (see Fig. 1), it becomes necessary
to associate well defined regions of space to specific parts of the packing. In two dimensional
granular packings, the plane can be decomposed into polygonal regions belonging to grains as
well as to voids (see Fig. 1). The grain polygons are formed by connecting the contact points
on the boundaries of each grain in a cyclic manner. The void polygons are formed in a similar
manner by cyclically connecting the contacts associated with each void. The grain and void
polygons together tessellate the entire space. This construction allows a decomposition of the
space into well defined polygonal regions and provides a way of probing the spatial structure
of granular materials [29,30]. The two graphs formed by adjacent grains and adjacent voids
are dual to each other. As we show in the next sections, this construction allows one to
construct local gauge fields associated with these polygons which encodes the local force
balance conditions.
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Fig. 2 The height fields {h} are associated with the void polygons {v} (shaded light blue). The grain polygons
{g} are shown in white. The forces between the grains are represented by (bidirectional) arrows with fg,c =
−fg′,c at each contact c. The forces at each contact are given by the difference of heights on the two voids
associated with each contact (with a cyclic convention, i.e. fg0,c1 = hv1 − hv2 ). The vectors eg,v define the
vectors connecting the two contacts on grain g that form an edge of the void polygon v (Color figure online)

2.2 Force Balance

The stability of granular materials stems from the fact that each individual configuration is in
mechanical equilibrium. The internal stresses in jammed packings are mediated via contact
forces between the constituent grains which are pairwise within the system. The mechanical
equilibrium condition translates to the fact that the forces acting on every grain sum to zero.
For packings with only contact forces within the system, this condition can be represented
by the equation ∑

c

fg,c = 0, (2.1)

where fg,c represents the force acting on the grain g, through the contact c, including both
normal and tangential, frictional forces. The sum is taken over all the contacts {c} for a given
grain g. Next, Newton’s third law dictates that

fg,c = −fg′,c, (2.2)

at each contact c between the grains g and g′. These two equations [Eqs. (2.1) and (2.2)] can
be used to construct an alternative representation of the forces in a two dimensional granular
packing in terms of vector height fields which we discuss in the next section.

2.3 Height Fields

The force balance condition combined with Newton’s third law naturally leads to an alter-
native representation of the forces in the system, parametrized by a vector height field that
lives on the edges, or the faces of the void polygons [26,27,31–33]. In this work we choose
to place these fields on the faces of the void polygons (see Fig. 2). As seen from Fig. 2, each
contact in a two dimensional granular packing is shared by two void polygons. We define a
set of height vectors on the voids {hv}, where v indexes the voids in the system. The force
at each contact c is given by the difference of heights on the two voids associated with each
contact

123



Stress Response of Granular Systems 5

fg,c = hv′ − hv, (2.3)

with v and v′ ordered cyclically around the centre of the grain g. This naturally leads to Eq.
(2.2), as the force on grain g′ through the contact c is simply fg′,c = hv −hv′ . It is interesting
to note that although the contact forces are associated with the network of contacts between
grains, the height vectors are associated with the dual lattice of the contact network i.e. the
network of voids {v}. The cyclic convention allows one to visualize the heights as vector cur-
rents circulating in the counterclockwise direction on the edges of a void polygon [27]. Given
a set of contact forces, the definition of {hv} is unique, modulo a choice of origin: they are
gauge potentials for the stress tensor. This uniqueness of the height representation is ensured
by the force balance condition (Eq. 2.1). Traversing a path around any non-trivial loop within
the system returns to the same value of the height field. This can be easily seen by circulating
around each grain, which form the basic loops in the system. As an example we consider a
grain g0 which has four neighbours g1,2,3,4 in contact through contacts c1,2,3,4 (see Fig. 2).
Using the definition of the heights in Eq. (2.3), the forces acting on the grain g0 are given by

fg0,c1 = hv1 − hv2 ,
fg0,c2 = hv2 − hv3 ,
fg0,c3 = hv3 − hv4 ,
fg0,c4︸ ︷︷ ︸∑
c fg0,c=0

= hv4 − hv1 .︸ ︷︷ ︸∑
(v,v′) hv−hv′=0

(2.4)

The left hand side represents the force on every contact of the grain g0 which sums to zero,
while the right hand side represents the difference in the heights at each contact. The sum is
taken over all adjacent pairs of voids (v, v′) surrounding the grain g0. Starting with a value
hv1 on the first void, the values of the heights around the grain g0 can be cyclically constructed
using the contact forces. The force balance condition thus necessitates that the heights around
the loop return to the same value hv1 . The non-trivial nature of the loops that can occur in
higher dimensions is the main obstacle in extending this simple height construction beyond
two dimensions.

Given the forces within the system, the stress tensor for a given packing is then defined
as

σ̂ = 1

V

∑

g

σ̂g,

σ̂g =
∑

c

rg,c ⊗ fg,c =
∑

v

eg,v ⊗ hv . (2.5)

Here rg,c = rc − rg , with rc being the position of the contact c, and rg being the position
of the centre of the grain g. V represents the volume of the entire system. The vectors eg,v
define the vectors connecting the two contacts on grain g (cyclically) that form an edge of the
void polygon v (illustrated in Fig. 1). Using the representation of σ̂g in terms of the height
vectors, it is easy to show that the total force moment tensor reduces to a boundary term [31],
which is the discrete version of Stokes’ theorem. From a continuum perspective, the height
fields can therefore be viewed as the gauge potential that enforces ∇ · σ̂ = 0 [27].

Finally it is important to note that a well defined height field at the local level can only
be constructed in situations where pairwise forces are the only forces present in the system,
since both Eqs. (2.1) and (2.2) are essential to the construction. Therefore several cases of
interest are excluded from this framework, most notably systems where body forces, such as
gravity, act on the grains. Similarly granular systems that are perturbed by an external force
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are also not amenable to a height description. It is therefore important to extend the gauge
field treatment to such cases. In Sect. 3we extend this height construction to such cases, which
allows us to study the transmission of stress within two dimensional granular materials.

2.4 Additional Constraints

In addition to local force balance, amechanically stable configurationmust also satisfy torque
balance at the grain level. These are represented by the set of equations

∑

c

rg,c × fg,c = 0, (2.6)

where the sum is taken over all the contacts {c} for a given grain g. In continuum, the torque
balance constraint translates to the symmetric property of the stress tensor. Finally, in order
for the packing to be valid, it must also satisfy additional constraints in real space. For
example, the vector sum of inter particle distances taken over every closed trajectory in the
system, must sum to zero. For the planar contact network in two dimensional packings, these
constraints can be parameterized by the set of basic loops that enclose each void. These can
then be represented by the set of equations

∑

(g,g′)
rg,g′ = 0, (2.7)

where rg,g′ = rg′ −rg is the interparticle distance vector between two adjacent grains located
at rg′ and rg respectively. The sum is taken over all adjacent pairs (g, g′) surrounding each
void v. This illustrates the fact that for systemswhere the forces are related to the inter particle
distances through a force law, the distrbution of stress in the system is intimately linked to
the underlying real space network and its constraints.

3 Response to a Perturbation

In this section, we use the gauge potential formalism to analyse the response of granular pack-
ings to external perturbations such as an imposed body force while respecting the local force
balance constraint. In the presence of body forces, the continuum equation of mechanical
equilibrium is ∇ · σ̂ = −fbody. We generalize the height field construction, which imposes
mechanical equilibrium at the discrete grain level, to this situation. At the granular level, the
mechanical equilibrium condition with an imposed body force fbodyg on each grain g now
becomes ∑

c

fg,c = −fbodyg . (3.1)

with the sum taken over all the contacts {c} of the grain g.

3.1 Auxiliary Fields

In order to account for the general case where contact forces and body forces are present
within the system, we introduce an additional auxiliary vector field {φg} associated with the
grain polygons. This serves to generalize the height construction of Eq. (2.3). Since each
contact has two associated grains and two associated voids, the contact forces are now given
by the difference of height variables on the voids (as before) in addition to a difference of
auxiliary fields on the grains as
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Stress Response of Granular Systems 7

Fig. 3 The configuration of Fig.
2, with external forces on the
grains. To deal with the general

case where body forces {fbodyg }
act on each grain (represented
with purple arrows), we
introduce auxiliary fields {φ} that
are associated with the grains g.
The contact forces are now given
by the difference in height
variables and a difference of
auxiliary fields. For example
fg0,c1 = hv1 − hv2 + φg1 − φg0
(Color figure online)

hv3

fg0,c3

fg0,c1

hv4

hv1 fbodyg0
φg0

fg0,c4

φg4

φg3

hv2
φg1

φg2fg0,c2

fg,c = hv′ − hv + φg′ − φg. (3.2)

Here the contact c is shared between the grains g and g′ and v and v′ are once again ordered
cyclically around the centre of the grain g. It is easy to see that this definition satisfies
Newton’s third law (Eq. 2.2). In the absence of body forces, the φ field is identically zero and
the above definition reduces to Eq. (2.3). As an illustrative example we consider the previous
configuration (Fig. 2) with grain g0 which is in contact with four neighbours g1,2,3,4 through

the contacts c1,2,3,4, with additional body forces {fbodyg } acting on each grain (see Fig. 3).
The forces acting on the grain g0 are given by

fg0,c1 = hv1 − hv2 +φg1 − φg0 ,
fg0,c2 = hv2 − hv3 +φg2 − φg0 ,
fg0,c3 = hv3 − hv4 +φg3 − φg0 ,
fg0,c4︸ ︷︷ ︸

∑
c fg0,c=−fbodyg0

= hv4 − hv1︸ ︷︷ ︸∑
(v,v′) hv−hv′=0

+φg4 − φg0 .︸ ︷︷ ︸
∑

g′ φg′−φg0=�2φ0

(3.3)

The sum of the forces on the grain g0 sum to the negative of the body force fbodyg0 on the
grain due to the mechanical equilibrium condition [Eq. (3.1)]. The difference of height fields
around the grain g0 sum to zero as before. The summation on the right involving the φ fields
on the grains g′ is simply the network Laplacian defined, on grain g0 as

�2φ0 = φg1 + φg2 + φg3 + φg4 − 4φg0 . (3.4)

It is straightforward to show that this Laplacian equation is valid for every grain. It is important
to note that both the body forces and the auxiliary fields in the above equation are associated
with the grains. In general, one can write the relationship between {fbody} and {φ} in a
vectorial notation as

�2|φ〉 = −|fbody〉, (3.5)

where |φ〉 represents the vector (φg1 ,φg2 , ...φgNG
) and |fbody〉 is the vector of body forces

(fbodyg1 , fbodyg2 , ...fbodygNG
). Here NG is the total number of grains in the system. The Laplacian

operator �2 is now a matrix acting on these states. Eq. (3.5) represents our main result, and
we can use it to analyse the response of a mechanically stable configuration to imposed body
forces. Given a set of body forces and the contact network, we can invert this equation to
obtain the auxiliary fields {φ}. The changes in the contact forces that develop as a response
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8 K. Ramola, B. Chakraborty

to an applied body force is then simply given by the difference of the φ field at each contact
[Eq. (3.3)].

Once we have determined the φ field, we have local fields that incorporate the effect of
the body forces at each contact. We can subtract the difference of these φ fields, from the
original contact forces to obtain “effective” contact forces f̃g,c which satisfy the constraints
of local force balance [Eq. (2.1)] and Newton’s third law [Eq. (2.2)] with

f̃g,c = fg,c − �φ. (3.6)

Here �φ = φg′ − φg represents the gradient of the φ field on the network. These effective
forces can then be used to determine the height fields on the voids, using the construction
described in the Sect. 2.3.

In the case where a body force is imposed on a granular packing already in mechanical
equilibrium, the difference between the effective contact forces and the original ones rep-
resents the response of the granular packing to this perturbation. In the most general case,
these new effective forces would induce changes in the real space network to satisfy the other
constraints of mechanical equilibrium: torque balance and, in the case of frictional grains,
the Coulomb condition of static friction. In many existing treatments of stress transmission
and response in granular materials [3,21], structural changes are not allowed. The argument
being that for rough, rigid grains, there is an indeterminacy at the contact level that allows
for multiple force configurations to be consistent with a given real-space contact network.
Experiments have also analyzed responses to external forces that occur without any changes
in the network [7]. It should be remarked that allowing for network reorganization in response
to external perturbations has been shown to have a significant effect on the coarse-grained
description of stress transmission [10].

In this paper, we focus on the solutions for the effective contact forces and their local-
ization properties in the absence of rearrangements of the contact network. For frictionless
grains, which obey a given force law, a change in the forces in a given packing is neces-
sarily accompanied by a structural change. For disks interacting via one-sided linear spring
potentials, these real-space displacements can be obtained in closed form. In this case, the
change in φ fields directly represents the change in displacements of the particles, satisfying
the required additional constraints of Sect. 2.4.

3.2 Inverting the Body Forces

The network Laplacian is the adjacency matrix of the graph representing the contact network
with an added diagonal matrix whose entries are the number of contacts of the grain corre-
sponding to that row, and has several well known properties. In our case the network is a
disordered planar graph. �2 has the eigenfunction expansion

�2 =
NG∑

i=1

λi |λi 〉〈λi |, (3.7)

with NG being the dimensionality, i.e. the number of grains in the system. �2 has one zero
eigenvalue, with eigenvector

λ1 = 0, |λ1〉 = (111...1). (3.8)

This trivial zero mode is a consequence of the “conservation” law:
∑

j �2
i, j = 0 for every

row i of the matrix representing the network Laplacian. The rest of the eigenvalues are all
negative.We can next use the above eigenvalue expansion to invert the body forces and obtain
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Stress Response of Granular Systems 9

the φ fields in Eq. (3.5). We define a restricted inverse (�2)−1 of the Laplacian operator by
projecting out the zero mode. We then have

(
∑

i>1

1

λi
|λi 〉〈λi |

)

︸ ︷︷ ︸
(�2)−1

�2 = I − |λ1〉〈λ1|. (3.9)

Next, using Eq. (3.9) in Eq. (3.5), we obtain the inversion

− (�2)−1|fbody〉 = |φ〉 − |λ1〉〈λ1|φ〉

= |φ − 1

N

N∑

i=1

φ 〉. (3.10)

3.3 Centre of Mass Frame

The inversion of the above equations is more natural when one considers the center of mass
frame of reference. We can define

|F body〉 = |fbody〉 − |λ1〉〈λ1|fbody〉

= |fbody − 1

N

N∑

i=1

fbody〉. (3.11)

Here |F body〉 represents the vector of body forces in the center of mass frame. This then
leads to a more symmetric formulation of Eq. (3.5)

|F body〉 = −�2|φ〉, (3.12)

along with the inversion equation

|φ〉 = −(�2)−1|F body〉. (3.13)

The above equations provide a unique solution to |φ〉 for a given network and a given set of
body forces. If this solution fails to satisfy the other constraints of mechanical equilibrium
such as torque balance, the network has to necessarily rearrange and indicates an instability of
the network to this perturbation. Our current treatment, which focuses only on force balance,
cannot address these questions of instability. In the figures illustrating the inhomogeneous
response (Figs. 4, 5), we have used body forces that are much smaller than the average force
(and therefore the overlaps) between the grains, leading to very small changes in the contact
forces, keeping the connectivity of the network unperturbed in the process.

As an illustrative example of the stress response within this framework, in Fig. 4 we plot
the changes in contact forces that develop as a response to localized body forces in a jammed
packing of soft frictionless disks. The body forces (represented by red arrows) act at the
centers (i.e. centers of mass) of three grains separated by a small distance. This illustrates the
effect of a localized stress perturbation to the packing. The reason for perturbing three grains
is to create a non-trivial local perturbation that leaves the entire system in force balance. The
changes in the contact forces in response to these body forces are obtained by solving Eq.
(3.5) for a given initial jammed packing. The inhomogeneous nature of the stress response is
clearly illustrated. As a more dramatic example, we plot this response for a sheared packing
of soft frictional disks (Vinutha H, Private communication, the configuration in Fig. 3.3 was
produced using the LAMMPS software) in Fig. (5). The response provides characteristic
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Fig. 4 The response of a system of soft disks to applied body forces (represented by red arrows). The system
is prepared with periodic boundary conditions and uniform global compression. The magnitude of the change
in contact forces are respresented by the thickness of the lines (in log scale) connecting the disks. The imposed
body forces at the center of the system are 10−6 times smaller than the average contact force in the system.
The sum of body forces on the system is zero. The inhomogeneous nature of the stress response is clearly
illustrated (Color figure online)

signatures of the emergence of “force chains” in this case. To construct these responses,
numerically simulated packings of frictionless and frictional grains were used to construct
the network Laplacian. The above set of equations were then used to calculate |φ〉 for a
network, which was then used to calculate the changes in the contact forces resulting from
the imposed |F body〉. Below, we consider the relation of the response of an ensemble of
packings to the spectral properties of an ensemble of graph Laplacians.

4 Spectrum of the Laplacian

We note that our formulation is closely related to the diffusion equation for stresses obtained
bygoing to the continuum limit of theq-model describing stress transmission in a granular pile
created under gravity [21]. In that formalism, the disorder is represented by the distribution
of the qi, j s that specify how the weight of a grain is split between different contacts. This
disorder renormalizes the diffusion constant in the equation for the Greens function for stress
propagation. Stresses transmit essentially vertically downwards with a small spread [21].
The network Laplacian formulation is able to take care of the underlying randomness in the
system through the disorder in the contact network. This framework also demonstrates that
the qi, j s cannot be considered as independent, random stochastic variables. Instead, these
variables that specify the redistribution of body forces are determined by the underlying
network with its associated randomness.

4.1 Stress Localization

The connection to the problem of diffusion in the gauge potential formulation is immediately
obvious as diffusion on the random planar graph is described precisely by Eq. (3.5). In
addition, the discrete Laplacian matrix is important in many physical situations and several
physicalmodels on graphs rely heavily on it. For example, the kinetic energy term for hopping
models, the dynamics of random vibrational networks, ferromagnetic O(n)models as well as
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Fig. 5 The response of a sheared system of soft frictional disks to applied body forces (represented by red
arrows). The magnitude of the change in contact forces are respresented by the thickness of the lines (in log
scale) connecting the disks. The imposed body forces at the center of the system are 10−6 times smaller than
the average contact force in the system. The sum of body forces on the system is zero. The system is prepared
with Lees–Edwards boundary conditions with a global shear of γ = 0.43 (Vinutha H, Private communication,
the configuration in Fig. 3.3 was produced using the LAMMPS software). The response provides characteristic
signatures of the emergence of “force chains” along the compressive direction (Color figure online)

Fig. 6 The response of the system shown in Fig 4, left using only the largest negative eigenvector of the
Laplacian matrix, illustrating a localized response, and right using only the smallest negative eigenvector of
the Laplacian matrix, illustrating a delocalized response. The black arrows represent the changes in the contact
force vectors in response to the imposed body forces (red arrows) (Color figure online)

models of non-interacting bosons on graphs invoke the network Laplacian [34,35]. Several
intriguing connections to the problem of localization follow immediately. We can therefore
use the already sophisticated machinery developed in the field of localization to study the
phenomenon of force localization in granular systems.

A natural question to consider is then the contribution of the different eigenvectors of the
Laplacian [Eq. (3.7)] to the stress response of the system. Fig. 4 provided an illustration of the
total change in contact forces as a response to imposed body forces for a single configuration
of jammed frictionless disks. In Fig. 6, we plot the response of the contact forces for the
same configuration using just the largest negative and the smallest negative eigenvalues of
the network Laplacian. We find clear signatures of localization in the higher end of the
spectrum. To better understand these localization properties, we study packings of soft disks
numerically.
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Fig. 7 The density of states ρ(λ)

of the eigenvalues λ of the
Laplacian matrix, for NG = 1024
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(EG ). The data is averaged over
5000 configurations
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4.2 Matrix Ensemble

It is clear from the formulation in Sect. 3, that the spatial localization, or lack thereof, of
the φ fields is determined by the nature of the eigenfunctions of the network Laplacian.
The eigenvectors that possess a large overlap with |F body〉 will contribute overwhelmingly
to this response, and therefore it is important to understand how localized the eigenvectors
of the Laplacian matrix are. In usual two dimensional localization problems, the disorder
is manifest in the system as a quenched randomness, either explicitly in the interactions or
in the spatial motion, which is then averaged over. In the case of granular packings, the
disorder in the network of a given configuration plays the role of such a quenched variable.
The ensemble of adjacency matrices can be thought of as an ensemble of random matrices
with the randomness entering through the connectivities of the particles. The extent of stress
localization is thus controlled by the ensemble of randommatrices that represent the network
Laplacians of disordered granular packings created through some protocol, and the nature of
the perturbation.

5 Numerical Simulations of Frictionless Grains

In this section, we probe the spatial localization properties of the stress response in friction-
less granular media using numerically simulated packings.We emphasize that our framework
is not restricted to frictionless packings, we use frictionless packings as a model system to
illustrate the application of our theoretical framework. To do this, we consider the paradig-
matic example of a system of frictionless soft disks interacting via one sided linear spring
potentials. To study the stress response of this system, we create a jammed packing of soft
frictionless disks and perturb this with spatially localized body forces [36]. We then measure
the statistics of the forces that develop as a consequence of the imposed body forces using
the formulation developed in Sect. 3.
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Fig. 8 The inverse participation
ratio (IPR) of the Laplacian
eigenvectors, for NG = 1024
grains at different global energies
(EG ). The low modes are
delocalized whereas a large part
of the spectrum is localized. The
data is averaged over 5000
configurations
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5.1 Jammed Packings of Soft Disks

We simulate a system of soft disks interacting via linear spring potentials of the form

V (rg,g′) = 1

2

(
1 − |rg,g′ |

σg,g′

)2

�

(
1 − |rg,g′ |

σg,g′

)
, (5.1)

where � is the Heaviside function and σg,g′ = σg + σg′ is the sum of the undistorted radii
of disks g and g′. The total energy per grain of the system is given by

EG = 1

NG

∑

(g,g′)
V (rg,g′), (5.2)

where the sum is taken over all pairs (g, g′), with g �= g′. NG is the total number of grains
in the packing. We create jammed packings in mechanical equilibrium using a conjugate
gradient minimization of Eq. (5.2). The number of grains that are part of the rigid structure of
the contact network varies between different configurations, i.e. NG ≡ NG−NR , where NR is
the number of “rattlers”, particles that are not in contact with any of the others. This crucially
decreases the dimensionality of theLaplacianmatrix,making it singular, and therefore rattlers
need to be removed from the system before any numerical procedure is implemented. We
simulate systems of particles with a 50 : 50 mixture of disks with diameter ratios 1 : 1.4, at
varying global energies between EG = 10−15 and 10−5 [29]. The number of grains in our
simulations vary between NG = 512 and 2048.

5.2 Exact Diagonalization

We next exactly diagonalize the Laplacianmatrix associated with the contact network of each
configuration and measure the statistics of their eigenvalues and eigenvectors. We measure
two characteristic signatures of localization in our system, namely, the density of states
of the eigenvalues, and the inverse participation ratio [37,38]. The network Laplacian is
a NG × NG real symmetric matrix with eigenvalues λi , i = 1, ..., NG and corresponding
normalized eigenvectors |λ〉 ≡ (e1,λ, e2,λ, ..., eNG ,λ). We measure the density of states ρ(λ)

of the eigenvalues of the Laplacian at different global energies. The density of states for an
ensemble of NG = 1024 grains at different global energies is illustrated in Fig. 7. We find
single isolated states within the lower spectrum of eigenvalues and a continuum of states
with higher eigenvalues.
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Fig. 9 Left Force polygon associated with a single grain g1. The forces associated with the contacts of the
grain, ordered cyclically, are arranged in a “vector sum” (head to tail) forming a closed polygon. For frictionless
systems, the normality of the forces ensures the convexity of these polygons. Right Two force polygons line up
along the equal and opposite contact forces fg1,c2 = −fg2,c2 . Iterating this procedure leads to the construction
of a force tiling for the forces of the entire system

We next compute the inverse participation ratios of the eigenvalues for different energies.
The Inverse Participation Ratio (IPR) corresponding to an eigenvector is defined as

q−1(λ) =
∑

j

e4j,λ (5.3)

For a localized mode the IPR would be of O(1) and for a delocalized mode this quantity
would be of O(1/NG). The IPR for an ensemble of NG = 1024 grains at different global
energies is illustrated in Fig. 8. We find that a large part of the spectrum is in fact localized,
with a small number of delocalized modes. This is similar to what one would expect in
two dimensional disordered models [39], where states are in general localized. However, the
nature of the disorder in granular systems still remains to be elucidated. This would require
a detailed study of the properties of the random networks that arise in frictional granular
packings, and is a fruitful direction for future research.

6 Force Tiles with Body Forces

In this section we discuss another application of the gauge potential framework developed
in this paper, namely the construction of “force tiles” for systems with body forces. The
condition of mechanical equilibrium associated with a static granular system with purely
pairwise contact forces allows one to construct a useful representation of the forces in the
system known as a force tile. This is constructed as follows. Using Eq. (2.1), the “vector
sum” of the forces on each grain, i.e. the force vectors associated with the contacts of each
grain arranged head to tail (with a cyclic convention), form a closed polygon. This forms a
“force polygon” associated with this grain (see Fig. 9). Since the sum is taken cyclically over
the contacts for each grain, we obtain convex polygons for frictionless systems. In frictional
systems, the force polygons can be non convex and even self-intersecting making the graph
non planar. Next, Eq. (2.2) imposes the condition that every force vector in the system, has an
equal and opposite counterpart that belongs to its neighboring grain. This leads to the force
polygons being exactly edge-matching, and one can then use this fact to tile these polygons
next to each other (see Fig. 9). This construction produces a network known as the force tile
network, with the edges representing the forces in the system. The two representations: force
tilings and height fields defined in Sect. 2.3 are related. It is easy to see that the positions of the
vertices of the force tiles represent the height vectors starting from an arbitrary origin, since
the vector distance between these vertices provides the forces (in correspondence with the
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Fig. 10 The force tiling associated with a dense suspension of 2000 soft disks with pairwise hydrodynamic
interactions and high drag forces. The system is prepared with Lees-Edwards boundary conditions with a
controlled shear rate (Mari R, Private Communication). The viscous drag acts as a body force on each grain,
the procedure in Eq. (3.5) allows us to uniquely determine the positions of the vertices of the tiling (green
dots), up to a global translation. These positions correspond to the values of the height field {h ≡ (hx , hy)}
defined on the voids. The forces (purple arrows) are normalized by the average contact force in the system.
The extent of the tiling (orange box) represents the total amount of stress in the system. The blue regions
represent periodic copies of the system (Color figure online)

definition of the heights). Since each face of the force tiling graph is uniquely associated with
a grain, the adjacency of the faces is the adjacency of the grains in a packing. The adjacency
of the vertices are simply the adjacency of the voids (since the heights are associated with
the void polygons). The force tiling representation has several intriguing properties [40],
an important one being that the distances between the vertices represents a measure of the
amount of stress between two points in a packing. The extent of the tiling provides the total
amount of stress in the packing. Since force tilings provide information about the nature
of the stress distribution within a system, they provide sensitive measures with which to
characterize stress induced transitions in granular media [41,42]. In the presence of body
forces, however, the force tile construction fails [23]. This is because the force polygons no
longer close as the contact forces do not sum precisely to zero. This makes constructing force
tiles for granular piles and for systems with hydrodynamic drag impossible.

The Laplacian framework developed in this paper can be used to extend the construction
of force tiles for systems where contact forces are not the only forces in the system. Given
the contact and body forces in the system, by using the network of contacts one can construct
the φ field as detailed in Sect. 3. This then allows for a unique construction of the height
field {h} which are the vertices of the force tiling. As an illustrative example, in Fig. 10 we
show the force tiling associated with a dense suspension of 2000 soft disks with pairwise
hydrodynamic interactions and high drag forces (Mari R, Private Communication). In this
case, the viscous drag acts as a body force on each grain. The positions of the vertices were
computed by inverting Eq. (3.5).
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7 Discussion

In this paper we have discussed how stresses in granular packings are transmitted through the
network of contact forces in response to external perturbations. Our formalism allowed us to
construct force-balanced solutions on disordered networks that respect vector force balance
at the microscopic level. This new potential formulation opens several interesting avenues.
The Laplacian framework can be easily extended to systems where contact forces are not
the only forces present in the system. This occurs frequently in systems with hydrodynamic
forces, where viscous drag plays a major role, and granular piles in a gravitational field.

Our construction assumes that there is enough indeterminacy in the forces at the contact
level depending on how a packing is created. This is particularly true for systems with
frictional grains where an exact force law is not applicable. Even so, the constraints that are
left out of the analysis such as the Coulomb constraint and torque balance would change
the effect of the response. If we assume, as in the q-model, that roughness at the grain level
would lead to an indeterminacy in the actual position of the contacts, then one can find a
torque balanced solution as long as the perturbation is small enough, and the network does
not rearrange. Our construction therefore accurately describes systems near the infinitely
rigid limit for which there is a large separation scales between forces and displacements [43].
Generalizations of the framework presented in this work to account for the other constraints
of mechanical equilibrium, and allowing for network rearrangements would be an interesting
avenue for future research.
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