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Abstract In dynamical systems, some of the most important questions are related to phase
transitions and convergence time. We consider a one-dimensional probabilistic cellular
automaton where their components assume two possible states, zero and one, and inter-
act with their two nearest neighbors at each time step. Under the local interaction, if the
component is in the same state as its two neighbors, it does not change its state. In the other
cases, a component in state zero turns into a one with probability α, and a component in state
one turns into a zero with probability 1− β. For certain values of α and β, we show that the
process will always converge weakly to δ0, the measure concentrated on the configuration
where all the components are zeros. Moreover, the mean time of this convergence is finite,
and we describe an upper bound in this case, which is a linear function of the initial distri-
bution. We also demonstrate an application of our results to the percolation PCA. Finally,
we use mean-field approximation and Monte Carlo simulations to show coexistence of three
distinct behaviours for some values of parameters α and β.

Keywords Particle random process · One-dimensional local interaction · Mean time of
convergence

1 Introduction

In the study of dynamical systems the key questions are those of stability, convergence time,
and existence of phase transition. In simple terms, probabilistic cellular automata (PCA) are
discrete dynamical systems, which means that these same investigations can be applied to
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them. According to what we know so far, there are few general results [1–9] that aim to
answer some of these questions.

The study of PCA is linked with several research areas, among them: statistical physics
and theoretical computer science, each with a different viewpoint. The study of PCA is
rendered difficult by the existence of various algorithmically unsolvable problems [8,10–
12]. One form to bypass unsolvability is to assume monotonicity of our processes; however,
assuming the monotonicity is often not enough to counter the unsolvability, as Toom and
Mityushin have shown [12]. In our study, we consider a PCA, which is a generalization of
the process described computationally in [13] and analytically in [14]. In this particular case,
we are studying the elementary cellular automata 178, with α-asynchronous dynamics [15]
for which only few results are known in particular. Regnault [14] shows that under certain
conditions the process will never reach the measure concentrated in the configuration made
of all zeros.

In our PCA, components are placed on a one-dimensional. Each component assumes
the state 0(zero) or 1(one), and they interact with their two closest neighbors. Informally
speaking, whenever a component in state 1 has at least one neighbor in state 0, it becomes
0 with probability 1 − β independently of what happen at all the other places. On the other
hand, whenever a component in state 0 has at least one neighbor in state 1, it becomes 1 with
probability α independently of what happen at all the other places. The measure concentrated
on the bi-infinite sequence whose components are all zeros (or all ones, δ1), δ0, is invariant
under our process.

The main challenge of the presented study was the fact that the considered PCA is non-
monotonic, meaning that many of the existing techniques could not be used. While our study
concerns a specific PCA, we consider it a first step towards development of more general
results in the future, in a similar manner that many general results originated from studies of
the contact process [16,17] and the Stavskaya process [6,18].

In this paper, we prove that the considered PCA converges to δ0 in the finite mean time;
for certain values of β and any initial distribution belonging to a class of uniform measures
on a set of bi-infinite sequences, in which for each sequence there is only a finite number
of components in state 1. Moreover, we show that the upper bound for this mean time is as
a linear function of the length of the regions of ones in the initial distribution. Additionally,
using our result, we show that the same is true for the percolation PCA, i.e., we show that its
upper bound for the mean time of convergence is a linear function of the length of the islands
of ones in the initial distribution.

Finally, we performed the mean-field approximation and Monte Carlo simulation of our
process. The numerical studies show qualitatively existence of phase transition phenomena.
We observed three regions in the parameter space: in the first one, it goes to δ0; in the second
one, it goes to δ1 (measure concentrated on the bi-infinite sequence of ones); and in the third
one, the density of ones in our process remains strictly between 0 and 1 all the time.

2 Definitions and Main Result

We study an operator whose configuration space is� = {0, 1}Z,whereZ is the set of integer
numbers, and 0 and 1 are two possible states. A configuration is a bi-infinite sequence of
zeros or ones. A configuration x ∈ � is determined by its components xi for all i ∈ Z. The
configuration where all components are zeros or ones are called “all zeros” and “all ones”
respectively. The normalized measures concentrated in the configuration “all zeros” and “all
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ones” are denoted by δ0 and δ1, respectively. Also, given a configuration x, we denote the
normalized measure concentrated in x by δx .

Two configurations x and y are called close to each other if the set {i ∈ Z : xi �= yi } is
finite. A configuration is called an island of ones if it is close to “all zeros”, and we denote
the set of island of ones by �1. If x ∈ �1 and x is not all zeros, there are two unique integers
i, j such that i < j, xi+1 = x j−1 = 1 and xk = 0 if k ≤ i or j ≤ k. For these unique
positions, we define the length of the island x by j − i − 1, and we denote this quantity by
length(x). Let us denote all zeros by 0Z. We define length({0}Z) = 0.

We define cylinders in � in the usual manner. By a thin cylinder we denote any set

{x ∈ � : xi1 = a1, . . . , xin = an},
where a1, . . . , an ∈ {0, 1} are parameters and i1, . . . , in are integer values. We denote byM
the set of normalized measures uniform on the σ -algebra generated by cylinders in �. By
convergence in M, we mean convergence on all thin cylinders.

Any map P : M → M is called an operator. Given an operator P and an initial measure
ν ∈ M, the resulting random process is the sequence of measures ν, νP, νP2, . . . We say
that a measure ν is invariant under P if νP = ν.

For any finite set K ⊂ Z we define U(K ) = ⋃
i∈K U(i), where U(i) = {i − 1, i, i + 1}.

For any measure δx the measure δxP is a product measure. Let us call the distribution of
the i−th component according to this measure the transitional distribution and denote it by
θi (· | x). In our study, the transition probability does not depend on the position i. Thus,
in our text we will use θ(· | ·) instead of θi (· | ·). In fact, the i−th transitional distribution
depends only on components of x in U(i), so we can write it also as θ(· | xU(i)), where xU(i)

is the restriction of x to U(i). By θ(y | x) we denote the value of θ(· | x) on y ∈ {0, 1}. This
probability is called transition probability.

The following equations give values of νP for any ν ∈ M on all cylinders. Thus a general
operator P is defined. Lets x = (xn) and y = (yn) with n ∈ Z two configurations.

∀ K ⊂ Z, j ∈ K , ∀a j ∈ {0, 1} : νP (yn = bn, n ∈ K ) =
∑

a j , j∈U(K )

ν (xn = an, n ∈ U(K ))
∏

n∈K
θ(bn |an−1, an, an+1). (1)

The operator that we study is denoted by F, and for each position i, its transition probabilities
are given by

θ(1|001) = α; θ(1|011) = β; θ(1|000) = 0;
θ(1|101) = α; θ(1|010) = β; θ(1|111) = 1.
θ(1|100) = α; θ(1|110) = β;

(2)

The particular case of our operator F, taking β = 1 − α, is the operator studied in [13,14].
Note that δ0 and δ1 are invariant under F. Therefore, any convex combination, (1−λ)δ0 +

λδ1 for λ ∈ [0, 1], is invariant under F, too.
We denote byA1 the set of normalized measures uniform on the σ−algebra generated by

cylinders in �1. A measure belonging to A1 is called an archipelago of ones, and we will
denote this measure by μ throughout the text.

Given μ, we define the random variable

τμ = inf{t ≥ 0 : μFt = δ0}.
The infimum of the empty set is ∞. The random variable τμ denotes the time to attain the
configuration “all zeros” having F started on measure μ.
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We denote the natural numbers by N and by N∗ the natural numbers without zero. Given
μ there are islands of ones xi for i ∈ N

∗ belonging to �1 such that μ = ∑∞
i=1 kiδxi , where

k1 > 0, k2 > 0, . . . and k1 + k2 + · · · = 1. We define giant of μ as

giant(μ) = max

{

length(xi ) : μ =
∞∑

i=1

kiδxi

}

,

where length(xi ) is the length of the island of ones xi . If there is no such length, we say that
giant(μ)= ∞. To get a feeling for giant’s definition, note that giant(δx ) for x ∈ �1 is the
length(x).

Let IE denote the expectation. We say that our operator F is an eroder of archipelagoes of
ones in mean linear time if given α and β there is constant k such that

IE(τμ) ≤ k(1 + giant(μ)),

for all μ whose giant(μ) is finite. Note that the inequality IE(τν) does not say anything if
ν ∈ M \ A1, i.e., ν is not an archipelago of ones, in which case we have giant(ν) = ∞.

In all our text, φ(α) will be referring to the expression:

φ(α) = −1 + 2α + α2

−1 + α2 , (3)

where 0 ≤ α ≤ −1 + √
2.

Now, we shall declare our main result.
Main result.

(M.1) Ifα = 0 and 0 ≤ β < 1 then limt→∞ μFt = δ0 andF is an eroder of archipelagoes
of ones in mean linear time.
(M.2) For 0 < α ≤ −1 + √

2, if β ≤ φ(α) then

lim
t→∞ μFt = δ0;

(M.3) For 0 < α ≤ −1+ √
2, if β < φ(α) then F is an eroder of archipelagoes of ones

in mean linear time.

Now we summarize the steps used to prove the main result: in Sect. 4, we define another
operator G in such a way that if limt→∞ μGt → δ0 then, limt→∞ μFt → δ0. The operator
G is still hard to manage. Thus in Sect. 5, we associate operator G with a discrete time
Markov chain, X, with the set of states N, for which zero is the unique absorbing state, and
we prove (M.1.). The study of process X is hard, so in Sect. 6 we define a coupling with
another discrete time Markov chain, Y, which we treat analytically. Finally, in Sect. 7 we
prove (M.2) and (M.3).

3 Order and an Application

Before we apply the main result to a particular probabilistic cellular automata, we need to
describe the concept of order.
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3.1 Order

To establish an order on the states, as per our usual pratice, let us consider 0 < 1. Now, let
us introduce a partial order on � by saying that configuration x precedes configuration y or,
what is the same, y succeeds x and writing x ≺ y or y 
 x if xi ≤ yi for all i ∈ Z.

Let us say that a measurable set S ⊂ � is upper if

∀ x, y ∈ �, (x ∈ S and x ≺ y) ⇒ y ∈ S.

Analogously, a set S is lower if

∀ x, y ∈ �, (y ∈ S and x ≺ y) ⇒ x ∈ S.

It is easy to check that a complementary set to an upper set is lower and vice versa. Let us
denote by y the configuration 1Z, so y ∈ S. Let us take xk ∈ � such that xk = 0 and xi = 1
for all i �= k, so we get an upper set S = ∪∞

k=−∞{xk} ∪ {y}.
We introduce a partial order onM by saying that a normalized measure ν precedes π (or

π succeeds ν) if ν(S) ≤ π(S) for any upper S (or ν(S) ≥ π(S) for any lower S, which is
equivalent).

We call an operator P : M → M monotonic if ν ≺ π implies νP ≺ πP.
Lemmas 1, 2 and 3 can be found in [19].

Lemma 1 For all configurations x and y, an operatorP on�with transition of probabilities
θ(·|·) is monotonic if and only if

x ≺ y �⇒ θ(1|xk−1xkxk+1) ≤ θ(1|yk−1yk yk+1). (4)

Let us take P, Q two operators fromM toM. We say that operator P precedes operator
Q, if for all ν ∈ M follows νP ≺ νQ. We denote this relationship P ≺ Q.

Lemma 2 Given two operators P and Q on � having transition of probability θP(·|·) and
θQ(·|·), respectively. Then P ≺ Q if and only if

θP(1|ai−1aiai+1) ≤ θQ(1|ai−1aiai+1), for (ai−1aiai+1) ∈ {0, 1}3.

Lemma 3 Let us take P and Q monotonic operators on �. If P ≺ Q and at least one of P
and Q is monotonic then Pt ≺ Qt for each natural value t.

Note that Lemma 1 gives us a means to conclude that our operator F is not monotonic.

3.2 Percolation PCA

Here we consider a class of PCA that has a relationship with percolation. These models are
refereed to as percolation operators in [19] and as percolation PCA in [20] and the second
one is the way we will refer to them.

We now apply our results to a percolation PCA. We will denote this operator by P. It is
a superposition of two operators, the first one deterministic, denoted by D, and the second
one random, denoted by R1−α [6,19,21].

Thus, P = R1−αD. For x ∈ �, the D operator transforms any configuration x into
a configuration xD, whose k−th component is (xD)k = max(xk−1, xk, xk+1). According
to the classical decimal code introduced by Wolfram, this rule is the Elementary Cellular
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Automaton 254. R1−α transforms 1 into 0 with probability 1 − α independently of what
happens to the other components. Thus, its transitions probability are given by

θ(1|ak−1akak+1) =
{
0 if ak−1 = ak = ak+1 = 0;
α in other cases.

(5)

Note that θ(1|000) = 0 sincemax(0, 0, 0) = 0 andR1−α does not change 0 to 1.Of course,
δ0P = δ0. It was proved in [6] that there is a constant α∗, which verifies 1/3 ≤ α∗ ≤ 53/54,
and such that: (i)if α < α∗, then limt→∞ νPt → δ0 for all ν ∈ M; (i i) if α > α∗, then
δ1Pt (1) > 0 for all t > 0. This means that the percolation operator shows a kind of phase
transition.

Proposition 1 describes themean time of convergencewhen the initial distribution belongs
to A1.

Proposition 1 If α < 0.3, then P is an eroder of archipelagoes of ones in mean linear time.

Proof Let us denote by Fα and τα
μ the operator F and τμ when β = α. Using Lemma 1, we

conclude that Fα is monotonic. It is clear that P is monotonic. Through Lemma 2, P ≺ Fα .
So, using Lemma 3, we obtain Pt ≺ Ft

α . So, if Fα is an eroder of archipelagoes of ones in
mean linear time, then P is an eroder of archipelagoes of ones in mean linear time, too. By
(M.3), if α < 0.3 then Fα is an eroder of archipelagoes of ones in mean linear time. ��

4 The Growth Operator G

Nowwewill describe growth operator,G,where if limt→∞ μGt → δ0 then, limt→∞ μFt →
δ0. We define the growth operator, G, in such way that it will be a Markov chain with a
countable set of states.

Given that x ∈ �1, we take i0 < j0 such that xi0+1 = x j0−1 = 1 and xk = 0 for all k ≤ i0
or k ≥ j0. Thus, we define the following configuration:

xk =
{
1 if i0 < k < j0;
0 otherwise.

We shall define �1 as the set of all x ∈ �1 such that x = x . Informally speaking, x is a
configuration with a finite “block” of ones in a background of zeros. Let A1 be the set of
normalized measures uniform on the σ -algebra generated by cylinders in �1. Note that �1

is countable, so any measure belonging to A1 is a convex combination of δ-measures; more
precisely, if μ ∈ A1 then

μ =
∑

x∈�1

kxδx , (6)

where kx ≥ 0 for all x ∈ �1 and
∑

x∈�1
kx = 1.

Discrete-time growth operator G : A1 ∪ {δ0} → A1 ∪ {δ0} is defined by its transition
probabilities depending on the state of its neighbourhood.

Remember that θ(·|·) is the transition probability of F, as we can see in (2). Now, let us
consider x ∈ �1 and the positions i0 < j0 such that xk = 1 if i0 < k < j0 and xk = 0
otherwise. The operator G acts only on the components xi0 , xi0+1, x j0−1 and x j0 ; all the
other components will remain in the same state. When G acts on xi0+1 and xi0 , we say that
G is acting on the left side. When G acts on x j0−1 and x j0 , we say that G is acting on the
right side. Now, let us define the following events:
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L1 = {xi0 remains 0 and xi0+1 becomes 0}; R1 = {x j0 remains 0 and x j0−1 becomes 0};
L2 = {xi0 remains 0 and xi0+1 remains 1}; R2 = {x j0 remains 0 and x j0−1 remains 1};
L3 = {xi0 becomes 1 and xi0+1 remains 1}; R3 = {x j0 becomes 1 and x j0−1 remains 1}.
If j0 − 1 > i0 + 1, i.e., length(x) > 1, the operator G acts in the following manner on the
left side: just one of the three events L1, L2 and L3 will occur. Similarly, when G acts on
the right side, just one of the three events R1, R2 and R3 will occur. Thus, after applying
the operator G, just one among the events Li ∩ R j for i, j ∈ {1, 2, 3} will occur (see Fig. 1)
and through the independence of Li and R j , we obtain P(Li ∩ R j ) = P(Li )P(R j ). We get
P(R1) = θ(0|110)θ(0|100), P(R2) = θ(1|110)θ(0|100) and P(R3) = θ(1|100). Note that
P(Ri ) = P(Li ) for i ∈ {1, 2, 3}.

We define the events E1 = {xi0 becomes 1} and E2 = {x j0 becomes 1}. Now, we define
the operator G for the case j0 − 1 = i0 + 1, i.e., when length(x) = 1. After applying
the operator G, just one of the following events can occur: L2 ∩ R2, R1 ∩ E1, L1 ∩ E2,

L1 ∩ R1, L2 ∩ R3, L3 ∩ R2, E1 ∩ E2. Here, the difficulty is that the events Li and R j

for i, j ∈ {1, 2, 3} are not independent of each other once x j0−1 = xi0+1. The events have
following probabilities:

P(L2 ∩ R2) = θ(0|100)θ(1|010)θ(0|001), P(L2 ∩ R3) = θ(1|100)θ(1|010)θ(0|001),
P(R1 ∩ E1) = P(R1)θ(1|001), P(L3 ∩ R2) = θ(0|100)θ(1|010)θ(1|001),
P(L1 ∩ E2) = P(L1)θ(1|100), P(E1 ∩ E2) = θ(1|100)θ(1|001).
P(L1 ∩ R1) = θ(0|100)θ(0|010)θ(0|001),

We assume that δ0G = δ0.
As G acts on measures μ that are a convex combination of δx for x ∈ �1. It is enough to

define as G acts in δx .
We defined our operator G acting on δ−measures. It is clear that G is linear; thus, by (6)

we defined G acting on any measure belonging to A1. In Fig. 2, we illustrate 7 time steps of
the our operator G acting on δx .
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. . .
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1

L 1
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1

L3 ∩ R2L
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3L
2 ∩

R
3

L
3 ∩

R
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0 0 1 1 1 0 0

0 0 0 1 1 0 0

0 1 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 1 1 1 1 0 0

0 0 0 1 1 1 0

0 0 1 1 1 1 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

Fig. 1 Possible evolutions of a configuration x which belongs to �1, we have j0 = i0 + 4. The arrows
indicate the possible configurations that x will become after the operator G acts. In each arrow, we describe
which event was chosen on the left and on the right side
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Fig. 2 Here, we illustrate a fragment of our process G, which happens with positive probability. The initial
configuration is an island of ones, x ∈ �1. Also, we describe the corresponding values of our process X and
(it , jt )

Given μ, we get μ = ∑
x∈�1

kxδx , where kx ≥ 0 for all x ∈ �1 and
∑

x∈�1
kx = 1. So,

we obtain μ = ∑
x∈�1

kxδx . Of course, μ ∈ A1 and μ ≺ μ.

Lemmas 4 and 5 describe some of the relations between operators F and G.

Lemma 4 Given α, β ∈ (0, 1), x ∈ �1 and δx its respective normalized measure. If
limt→∞ δxGt = δ0. then limt→∞ δxFt = δ0 .

Proof By the definition of F andG,we have: δxFt (1) ≤ δxGt (1). So, limt→∞ δxGt (1) = 0,
implying that limt→∞ δxFt (1) = 0. ��

Lemma 5 Given μ, if limt→∞ μGt = δ0, then limt→∞ μFt = δ0. .

Proof The μGt = ∑
x∈�1

kxδxGt . As μGt → δ0, then δxGt → δ0; so, using Lemma 4 we
get δxFt → δ0. Then

∑
x∈�1

kxδxFt → δ0. ��

5 The Operator G and the Process X

Our main task here is to define the process X = (Xt )t∈N, which assumes values in N.

Informally speaking if we started in a measure concentrated at an island x, then Xt will
describe the length of that island at time t .

Given x ∈ �1 and δx , there are positions i0 < j0 such that xk = 1 if i0 < k < j0
and xk = 0 otherwise. If x is the configuration 0Z, we say that j0 = i0 + 1. We define
X0 = j0− i0−1; note that X0 = length(x). After applyingG,with probability one, we will
get new positions i1 < j1,where xk = 1 if i1 < k < j1 and xk = 0 otherwise. For those same
positions, we define X1 = j1 − i1 − 1. Continuing with this argumentation, after applying
Gt , with probability one, we will get new positions it < jt , where xk = 1 if it < k < jt and
xk = 0 otherwise. For those same positions, we define Xt = jt − it − 1. Observe that the
random variable Xt matches the length of the island x after t time steps. Figure 2 illustrates
a possible action of our operator G on δx and shows corresponding values of Xt and (it , jt ).

The randomvariables it and jt , (it < jt ), are related to the event Li∩R j for i, j ∈ {1, 2, 3},
which happened in the previous time step. In the appendix, we describe the probabilities
transition of it and jt and the probabilities transition of the process X associated with the
operator G. Using the θ(·|·) values defined in (2), we obtain the following equation:
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0 1 2 3 c − 2 c − 1 c c + 1 c + 2

Fig. 3 Diagram of process X. The dashed arrow in state zero indicates that zero is an absorbing state

P(Xt+1 = c|Xt = c) =
⎧
⎨

⎩

1 if c = 0,
β(1 − α)2 + 2α(1 − α)(1 − β) if c = 1,
β2(1 − α)2 + 2α(1 − α)(1 − β) if c ≥ 2.

P(Xt+1 = c − 1|Xt = c) =
⎧
⎨

⎩

0 if c = 0,
(1 − α)2(1 − β) if c = 1,
2β(1 − α)2(1 − β) if c ≥ 2.

P(Xt+1 = c − 2|Xt = c) =
{
0 if c < 2,
(1 − α)2(1 − β)2 if c ≥ 2.

P(Xt+1 = c + 1|Xt = c) =
{
0 if c = 0,
2αβ(1 − α) if c > 0.

P(Xt+1 = c + 2|Xt = c) =
{
0 if c = 0,
α2 if c > 0.

In Fig. 3, we show the diagram of the process X . In state one, indicated by the first dark
gray ball from the left to the right, there are only non-null transition probabilities to go to
0, 1, 2 and 3. For any state c > 1 indicated by the second dark gray ball, from the left to
the right, there are only non-null transition probabilities to go to c − 2, c − 1, c, c + 1 and
c + 2.

Proof of (M.1). When α = β = 0, (M.1) follows from the transition probability of F.
When α = 0 and β ∈ (0, 1) the process X is really easy to manage. It only has non-null
transition probabilities to stay on the same position or go to the left side, decrease by one
or two units. Therefore, process X goes to zero with probability one. So, for all μ we get
limt→∞ μGt = δ0. Thus, by the Lemmas 4 and 5 we get limt→∞ μFt = δ0. The mean time
to absorption of X gives an upper bound of the mean time of convergence ofG, which is the
upper bound of the mean time of convergence of F. ��

From now on, in our text, we will take 0 < α < 1 and 0 < β < 1, which is enough to
prove (M.2) and (M.3).

6 The Process X and the Process Y

We now present the process X in another manner, which will allow us to couple it with a
discrete time Markov chain Y. Process Y is simpler than the process X, what allows us to
study Y analytically.

Given α, β ∈ (0, 1), a ≥ 2 and i = 1, 2 we define

li (α, β) = P(Xt+1 = a − i |Xt = a) and ri (α, β) = P(Xt+1 = a + i |Xt = a). (7)

For simplicity we will denote here l2(α, β), l1(α, β), r1(α, β) and r2(α, β)by l2, l1, r1
and r2 respectively. We further define intervals Also, we shall define intervals Ii for i =
1, 2, . . . , 7.
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0 1 2 3 a − 1 a a + 1 a + 2

Fig. 4 Diagram of process Y. The dashed arrow in state zero indicates that zero is an absorbing state

I1 = [0, l1/2β), I2 = [l1/2β, 1 − r1 − r2), I3 = [0, l2),
I4 = [l2, l2 + l1), I5 = [l2 + l1, 1 − r1 − r2), I6 = [1 − r1 − r2, 1 − r2),
I7 = [1 − r2, 1].

LetU1, U2, . . . be a sequence of independent identically distributed random variables, where
Ut has a uniform distribution on [0, 1].

We define the process Y = (Yt )t∈N in the following way: let a ∈ N, Y0 = a and
Yt+1 = FY (Yt ,Ut+1) where

FY (Yt ,Ut+1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Yt if Yt−1 = 0;
Yt − 1 if Ut+1 ∈ I1 and Yt > 0;
Yt if Ut+1 ∈ I2 and Yt > 0;
Yt + 1 if Ut+1 ∈ I6 and Yt > 0;
Yt + 2 if Ut+1 ∈ I7 and Yt > 0.

(8)

In the Fig. 4, we show the diagram of the process Y. For any state a ≥ 1, indicated by the
dark gray ball, there are just transition probabilities to go to a − 1, a, a + 1 and a + 2.

In contrast to the process X , the process Y acts in a homogenous manner at each a ≥ 1.
In the same spirit used to define the processY (8), process X can be defined in the following

way: let a ∈ N, X0 = a and Xt+1 = FX (Xt ,Ut+1), where

FX (Xt ,Ut+1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FY (Xt ,Ut+1) if Xt ∈ {0, 1};
Xt − 2 if Ut+1 ∈ I3 and Xt > 1;
Xt − 1 if Ut+1 ∈ I4 and Xt > 1;
Xt if Ut+1 ∈ I5 and Xt > 1;
Xt + 1 if Ut+1 ∈ I6 and Xt > 1;
Xt + 2 if Ut+1 ∈ I7 and Xt > 1.

(9)

Let a, b ∈ N. We define the coupling of X and Y as follows:
{

(X0, Y0) = (a, b),
(Xt , Yt ) = (

FX (Xt−1,Ut ), FY (Yt−1,Ut )
)
.

In Fig. 5 we illustrate a possible realization of (Xt , Yt ) in the first six time steps with
(X0, Y0) = (3, 4).

Lemma 6 If Y is an absorbing Markov chain (for all ε > 0, limt→∞ P(Yt ≥ ε) = 0) then
X is an absorbing Markov chain (for all ε > 0, limt→∞ P(Xt ≥ ε) = 0).

Proof Let a, b ∈ N. As {(Xt , Yt )}∞t=0 is a coupling, it follows that if X0 = a ≤ b = Y0, then
P(Xt ≤ Yt ) = 1.

Given an arbitrary ε > 0 and X0 = Y0 = a, we get P(Yt ≤ ε) ≤ P(Xt ≤ ε). As
limt→∞ P(Yt ≤ ε) = 1, then limt→∞ P(Xt ≤ ε) = 1. ��
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(X0, Y0) = (3, 4)

U1 ∈ I7 ⇒ (X1, Y1) = (5, 6)

U2 ∈ I4 ∩ I2 ⇒ (X2, Y2) = (4, 6)

U3 ∈ I6 ⇒ (X3, Y3) = (5, 7)

U4 ∈ I5 ⇒ (X4, Y4) = (5, 7)

U5 ∈ I3 ∩ I1 ⇒ (X5, Y5) = (3, 6)

U6 ∈ I4 ∩ I1 ⇒ (X6, Y6) = (2, 5)

Fig. 5 Set (X0, Y0) = (3, 4). Illustrate of a possible realization of (Xt , Yt )

7 Proof of (M.2) and (M.3)

Let us denote by hi the probability that the process Y hits the state 0 given that Y0 = i . The
fundamental relationship among the hi is the following (see [22]):

⎧
⎨

⎩

h0 = 1;
l1
2β

hi−1 −
(
l1
2β

+ r1 + r2

)

hi + r1hi+1 + r2hi+2 = 0 for i ≥ 1.
(10)

where l1, r1 and r2 were defined previously.

Lemma 7 For C1 and C2 constants,

ρ =
√

4(1 − β + β2) − 4α(2 − 3β + 2β2) + α2(5 − 8β + 4β2)

and for j = 1, 2 we define

γ j = −α − 2β + 2αβ + (−1) j+1ρ

2α
.

(a) The solution of system (10) is

hi = 1 + C1((γ1)
i − 1) + C2((γ2)

i − 1);
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(b) If β ≤ φ(α), then C1 and C2 are equal to zero.

Proof In the appendix.
Given the process X , we denote the hitting time of state zero given that we started at state

i by

HX
i = inf{t ≥ 0 : Xt = 0 and X0 = i}

where the infimum of the empty set is ∞. We denote IE(HX
i ) by kXi . ��

Proof of (M.2). Let us take 0 ≤ α ≤ −1 + √
2, β ≤ φ(α) and i ∈ N . Apply Lemma 7,

for hi = 1, i.e., given Y0 = i and ε > 0, then limt→∞ P(Yt > ε) = 0. The process Y is an
absorbing chain, then from Lemma 6 we can conclude that the process X is also an absorbing
chain. Remember that X describes the length of the island under the action of the operator
G that can: increase, decrease, or stay the same. Therefore, the fact that the process X is an
absorbing chain (∀ε > 0, limt→∞ P(Xt > ε) = 0), implies that for any island x ∈ �1, we
will get limt→∞ δxGt = δ0. So, for any μ ∈ A1 we get

lim
t→∞ μGt = lim

t→∞
∑

x∈�1

kxδxGt → δ0,

where kx are non-negative and
∑

x∈�1
kx = 1. Therefore, using the fact that for any μ there

is μ ∈ A1 such that μ ≺ μ, by Lemma 5 we conclude the proof. ��
Given the process Y, we denote the hitting time of state zero given that we started at state

i by

HY
i = inf{t ≥ 0 : Yt = 0 and Y0 = i}

where the infimum of the empty set is ∞. IE(HY
i ) is the expected amount of time before the

process Y hits zero, conditioned that the process starts at i . For simplicity, we will denote,
IE(HY

i ) by kYi . The fundamental relationship among the kYi ’s is the following (see [22]):
{
kY0 = 0;
1 + l1

2β k
Y
i−1 −

(
l1
2β + r1 + r2

)
kYi + r1kYi+1 + r2kYi+2 = 0 for i ≥ 1.

(11)

where l1, r1 and r2 were defined previously.

Lemma 8 Let C1 and C2 be constants; we take γ1 and γ2 as defined in Lemma 7, and we
denote η = 1 − 2α + α2(β − 1) − β.

(a) For β �= φ(α), the solution of system (11) is

kYi = i

η
+ C1((γ1)

i − 1) + C2((γ2)
i − 1);

(b) If β < φ(α), then C1 and C2 are equal to zero.

Proof See the appendix.
Before proving (M.3), we will need to establish some definitions. Let x ∈ �1; then we

define the random variables

τFx = inf{t ≥ 0 : δxFt (0) = 1} and τGx = inf{t ≥ 0 : δxGt (0) = 1}.
The infimum of the empty set is ∞. ��
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Now, we are ready to prove (M.3).
Proof of (M.3) From Lemma 6, we conclude that HX

i ≤ HY
i . So,

kXi ≤ kYi . (12)

Let x ∈ �1. From Lemma 5, we conclude that τFx ≤ τGx . So,

IE
(
τFx

)
≤ IE

(
τGx

)
. (13)

Note that given x ∈ �1 we get length(x) = length(x). Remember that the process X
describes the quantity length(x) under the action of the operator G. Informally speaking,
when the process X achieves the absorbing state zero we get that δxGt achieves the measure
δ0 i.e. τGx = HX

length(x). So,

IE
(
τGx

)
= kXlength(x). (14)

Thus, using (12), (13) , (14) and Lemma 8, we conclude that, for any x ∈ �1,

IE
(
τFx

)
≤ kYlength(x) = length(x)

η
, (15)

where η was defined in Lemma 8.
Given μ, there is a sequence of islands of ones x1, x2, . . . such that μ is a convex

combination of δx1 , δx2 , . . . We also assume giant(μ) < ∞, i.e., there is a natural value M
such that length(xi ) < M for iN∗. The operator F is linear, so μFt is a convex combination
of δx1F

t , δx2F
t , . . . Thus,

τμ = inf{t ≥ 0 : (δx1F
t ) = (δx2F

t ) = ... = δ0}.
Hence,

IE(τμ) ≤ max
{
IE

(
τF
xi

)
, i ∈ N

∗
}

≤ η−1 max{length(xi ) : i ∈ N
∗}

≤ η−1giant(μ)

≤ η−1(1 + giant(μ)).

The second inequality is a consequence of (15).
Given α ∈ (0,−1 + √

2), β < φ(α), and η. ��

8 Numerical Study

Our process will be studied using mean-field approximation and the Monte Carlo method
(M.C.).

8.1 Mean-Field Approximation

Similar to what Ramos and Toom did [23], we define the mean-field operator operator
C : M → M. Its action amounts to mixing randomly all the components. In other words,
for each ν ∈ M, the measure ν C is a product measure with the same densities of zeros and
ones as ν has. The mean-field operator allows us to approximate a given process ν Pt on the
configuration space�Z by another process ν (C P)t on the same space. (Every time, we apply
C first, then P). Thus, instead of the original process, whose set of variables is infinite or very
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large, we deal with the evolution of densities of zeros and ones. Since densities of zeros and
ones sum up to one, the number of independent variables in the mean-field approximation is
equal to one. We choose to deal with the density of ones.

The density of 1 in the measure ν (CF) is expressed as

ν(CF)(1) = νC(1) + α (νC(101) + νC(001) + νC(100))
−(1 − β) (νC(110) + νC(011) + νC(010))

As νC is a product measure, x denotes the density of ones in the measure ν, f (x) denotes
the density of ones in the measure νF. We get,

f (x) = x + α(2x − 3x2 + x3) − (1 − β)(x − x3). (16)

Thus, f (x) is defined and continuous for x, α, β ∈ [0, 1]. The study of the operator F is
substituted with a study of CF, which goes to the study of dynamical systems f : [0, 1] →
[0, 1] with parameters α, β ∈ (0, 1). As usual, we call a fixed point of f any value of
x ∈ [0, 1] such that f (x) = x .

Let us define

β1 = 0, β2 = 2α − (1 − β)

α + (1 − β)
and β3 = 1.

It is easy to conclude for the function f defined in (16),

• If 1 − 2α < β < 1 − α/2, then β1 and β3 are the only fixed points.
• If β < 1 − 2α or 1 − α/2 < β, then β1, β2 and β3 are the only fixed points.

Now, let us denote by f t (x) the t-th iteration of f on the argument x . It is easy to show that

• If β ≤ 1 − 2α, then limt→∞ f t (x0) = 0 for all x0 ∈ [0, 1).
• If β ≥ 1 − α/2, then limt→∞ f t (x0) = 1 for all x0 ∈ (0, 1].
• If 1 − α/2 < β < 1 − 2α, then limt→∞ f t (x0) = β2 for all x0 ∈ (0, 1).

These results show that ourmean-field approximation has three kinds of distinct behaviors.
In Fig. 6 we plot the curves 1 − 2α and 1 − α/2 which determines when the mean-field
approximation has only two fixed points or only three fixed points.

8.2 Monte Carlo Simulations

Any cellular automaton may be defined on an infinite space Z or on a finite space with
periodic boundary conditions, Zn−the set of remainders modulo n, where n is an arbitrary
natural number. The study of binary PCA in finite space [24,25] and infinite space [8,26] is
an active area of research.

For our finite cellular automata, let us consider the set of states �n = {0, 1}Zn . We call
the elements of �n periodic configurations. The periodic configurations are finite sequences
of ones and zeros, now we imagine these sequences to have a periodic form.

Ct denotes the periodic configuration obtained at time t, and cti denotes its i-th components
where i = 0, . . . , n − 1. We consider the periodic configurations Ct as representations of
measures μt ∈ M�n , so the sequence C0, C1, C2, . . . , is a trajectory of some random
process μ0, μ1, μ2, . . .

Given a periodic configuration C = (c0, . . . , cn−1), we define the density of 1 in C as
follows:

dens(1|C) = c0 + . . . + cn−1

n
. (17)
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Also, we define the following quantities:

dens(1|μt )
de f= 1

t

t∑

k=1

dens(1|Ck). (18)

The purpose of (18) is to estimate the density of 1 at the limit distribution.
In a similar fashion, we can define dens(10|μt ), i.e, the density 10 at the limit distribution.
As for the M.C. simulation, initially we take n = 1000, where c00 = 1 and c01 = . . . =

c0999 = 0. We fix the parameters (α, β) and perform our M.C. simulation for 100000 time
steps.

We used our M.C. simulation as follows: if at the end of iteration the quantity dens(1|Ct )

was zero, we interpreted it as a suggestion that the infinite process with the pair (α, β) is
an eroder of archipelagoes of ones; if at the end of iteration the quantity dens(1|Ct ) was
positive, we interpreted it as a suggestion that the infinite process with the pair (α, β) is not
eroder of archipelagoes of ones.

We used our M.C. simulation within a cycle with a fixed α and growing β: we started
with β = 0 and then iteratively performed our M.C simulation increasing β by 0.001 until β
reached the value 1 or dens(1|Ct ) was positive. Thus, we obtained a certain value of β. In
fact, we performed this cycle 10 times and recorded the arithmetical average of the 10 values
of β thus obtained. All this was done for 1000 values of α, namely, the values 0.001× i with
i = 1, ..., 1000.Thusweobtained1000pairs (α, β) representedby the lower “curve” inFig. 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p
r
o
b
a
b
i
l
i
t
y
 

β

probability α

Theoretical 
Curve

Mean-Field 

Approximation

 M.C. 

Fig. 6 The graph illustrates some of our results. The Theoretical Curve indicates the curve φ(α). The two
Mean-Field Approximation indicate the curves, 1−2α and 1−α/2, obtained in our mean-field approximation
study. The twoMonte Carlo (M.C.) indicate the two curves obtained in simulations. The curves were obtained
as an average of 10 independent experiments.
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Fig. 7 In a for each pair (αi , β j ), we associated a color which indicates the density of 1 at 100000 time steps
with those parameters. In b for each pair (αi , β j ), we associated a color which indicates the density of 10 at
100, 000 time steps with those parameters.

To obtain the upper “curve” in Fig. 6, we perform the M.C. simulation in the same way.
Except this time for each α we stopped the simulations at the smallest value of β for which
the dens(1|Ct ) is equal to one.

Finally, we perform our M.C. simulation in yet another way. Let us take

{(αi , β j ) : αi = 0.001 · i and β j = 0.001 · j} for i, j = 1, . . . , 1000.

For each pair (αi , β j ), we computed dens(1|μ100000) and the density of the pattern 10,
dens(10|μ100000) and plotted the densities for the pairs of parameters in Fig. 7a, b, respec-
tively. The values of the densities are represented by colors.

To verify the robustness of the simulation results, we performed experiments considering
two kinds of initial condition: first one, we assume blocks of 1’s with different lengths, i.e.,
c00 = . . . = c0n−1 = 1 and c0n = . . . = c0999 = 0, where n = 2, . . . , 10; to the second one,
we considered random initial periodic configuration, i.e., initial state of each site was chosen
randomly with equal probability 1/2 for states 1 and 0. In both cases the results were the
qualitatively the same.

A particular case of our process, when β = 1− α, has been considered in [14]. Regnault
obtained the following result for a configuration x where x0 = 1 and xi = 0 for all i �= 0:
If α ≥ 0.996, then δxFt (1) belongs to (0, 1) for all t ≥ 0. This result is verified by our
computer simulations.

9 Concluding Remarks and Open Problems

We studied a particular non-monotonic PCA. For our process, we assumed a class of initial
distributions and we were able to prove the convergence and give an upper bound to the mean
time. The definitions of eroder operator and eroder’s time are well-known in deterministic
cellular automata. In this work, we defined eroder operator and eroder’s mean time in PCA.
We believe that this definition will facilitate research in this area.

We assumed the initial distribution of our process as an archipelago of ones. Our numerical
studies indicate that, depending on the parameters, there are three distinct behaviors. The first
one, the density of ones goes to zero; the second one, it goes to one; and the third one, it is
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Fig. 8 Here we get two space–time diagrams. In each figure we took C0 = (c00, . . . , c
0
99), t = 0, . . . , 100

and the ones and zeros are represented by black and white colors respectively. We started with a uniform
distribution of zeros and ones. Also, we assumed β = 1 − α and α ∈ {0.1, 0.9}. In a when α = 0.1, we see
ones and zeros are concentrate in massive blocks. In b when α = 0.9, we see the ones and zeros well mixed.
The direction of the time flow follows from bottom to top

strictly between zero and one, not reaching these extreme values. In (M.1) and (M.2), we
were able to prove rigorously only the first behavior. For the two others behaviors, we are
only able to offer the following conjecture.

Conjecture 1 There are subsets S of [0, 1] × [0, 1] and partition of S, S = S1 ∪ S2, such
that for a given μ, if (α, β) ∈ S then 0 < μFt (1) < 1 for all t > 0. Moreover, if (α, β) ∈
S1(respectively (α, β) ∈ S2), thenμFt converges (respectively does not converge) to a convex
combination of δ0 and δ1 when t → ∞.

Part of Conjecture 1 was suggested by the results of our M.C. simulation. The third
behavior of our process, when the density of ones is strictly between zero and one, has two
further case: in the first one, the density of the 01 pairs goes to zero, and in the second one
the density of the 01 pair is positive all the time.

This two cases are illustrated in the space-time diagram in Fig. 8 for α = 0.1 and β = 0.9,
i.e, (α, β) ∈ S1 and for α = 0.9 and β = 0.1, i.e, (α, β) ∈ S2. Our numerical studies,
show cross diagonal that (α, 1 − α) ∈ S, where S is the region defined at our conjecture.
Moreover, our simulations suggest that: if α < 1/2(resp. α > 1/2) then limt→∞ μFt (10) =
0(resp.limt→∞ μFt (10) > 0). This result is an extension of the work presented in [14].

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions, which certainly improved the presentation and quality of the paper.

Appendix

Transitions of (it, jt) and Process X

Now, we will study the random variables it and jt (see Fig. 2), starting by its probabilities
transition. Let a, b, c, d ∈ N. We denote by
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P((a, b)|(c, d)) = P((it = a, jt = b)|(it−1 = c, jt−1 = d)).

P((a, b)|(a, b)) =
{
1 if b = a + 1;
P(L2 ∩ R2) in other cases.

P((a + 1, b + 1)|(a, b)) =
⎧
⎨

⎩

0 if b = a + 1;
P(R1 ∩ E1) if b = a + 2;
P(L1 ∩ R3) otherwise.

P((a − 1, b − 1)|(a, b)) =
⎧
⎨

⎩

0 if b = a + 1;
P(L1 ∩ E2) if b = a + 2;
P(L3 ∩ R1) otherwise.

P((a, b − 1)|(a, b)) =
{
0 if b = a + 1;
P(L2 ∩ R1) if b > a + 2.

P((a + 1, b)|(a, b)) =
{
0 if b = a + 1;
P(L1 ∩ R2) if b > a + 2.

P((a + 1, b − 1)|(a, b)) =
{
0 if b ≤ a + 2;
P(L1 ∩ R1) otherwise.

P((a, b + 1)|(a, b)) =
{
0 if b = a + 1;
P(L2 ∩ R3) otherwise.

P((a − 1, b)|(a, b)) =
{
0 if b = a + 1;
P(L3 ∩ R2) otherwise.

P((a − 1, b + 1)|(a, b)) =
{
0 if b = a + 1;
P(L3 ∩ R3) otherwise.

On P((a, b−1)|(a, b)) and P((a+1, b)|(a, b)), we do not indicate what happened when
b = a + 2, because in this case just on the position a + 1 we get the component on state 1
and in all the other components the state is 0. Moreover, in this case {(a, b − 1)|(a, b)} =
{(a + 1, b)|(a, b)}, hence we reach the configuration “all zeros” and P((a + 1, b)|(a, b)) =
P(R1 ∩ L1).

For P((a, b − 1)|(a, b)), P((a + 1, b)|(a, b)) (resp. P((a + 1, b + 1)|(a, b)), P((a −
1, b − 1)|(a, b)) ) if b > a + 2 (resp. b = a + 2) then jt − it − 1 describes the length of
the island of ones which with non-null probability can: increase by one, increase by two,
decrease by one, decrease by two, or stay the same.

Now, we define process X :

P(Xt = c|Xt−1 = c) = P((a, b)|(a, b)) + P((a − 1, b − 1)|(a, b))
+ P((a + 1, b + 1)|(a, b));

P(Xt = c − 1|Xt−1 = c) =
{
P((a + 1, b)|(a, b)) + P((a, b − 1)|(a, b)) if c > 1;
P((a, b − 1)|(a, b)) if c = 1.

P(Xt = c − 2|Xt−1 = c) = P((a + 1, b − 1)|(a, b));
P(Xt = c + 1|Xt−1 = c) = P((a − 1, b)|(a, b)) + P((a, b + 1)|(a, b));
P(Xt = c + 2|Xt−1 = c) = P((a − 1, b + 1)|(a, b)),

where c = b − a − 1. Thus, we concluded the task to define the process X associated to G.
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Proof of Lemmas 7 and 8

Proof of lemma 7. Item (a) results directly from the difference equation (10). Now, let us
prove item (b); before we do that, several observations need to be established:

(1) If α ∈ (0, 1) and β ≤ φ(α), then γ1 ≥ 1. Moreover, γ1 = 1 when β = φ(α).

(2) If α ∈ (0, 1/3], then γ2 < −1.
(3) If α ∈ (1/3, 1) and β ≥ (α − 1)/(3α − 1), then γ2 ≤ −1. Moreover, γ2 = −1 when

β = (α − 1)/(3α − 1).

As (α − 1)/(3α − 1) is negative for α ∈ (1/3, 1) and β is non-negative, we can conclude
that if α ∈ (1/3, 1), then γ2 < −1. Thus, (2) and (3) can be concatenated in the following
way:

(2’) if α ∈ (0, 1) then γ2 < −1.
Let us consider the case β = φ(α). So, γ1 = 1,which implies that hi = 1+C2((γ2)

i −1).
But in that case, γ2 < −1. Thus, we get |hi | → ∞. However, hi ∈ [0, 1] for all i ∈ N which
will be satisfied just for C2 = 0.

From (1) and (2’), if α ∈ (0, 1) and β < φ(α), then

lim
i→∞C j ((γ j )

2i − 1) =
{ ∞ if C j > 0;

−∞ if C j < 0.
(19)

C1 andC2 can not have the same sign. Because ifC1 andC2 are both positive(respectively
both are negative), then using the limit (19)C1((γ1)

2i −1) andC2((γ2)
2i −1) goes to infinity

(respectively −∞) when i → ∞. So h2i → ∞ (respectively −∞) with i → ∞. But
hi ∈ [0, 1] for all i ∈ N, what will be satisfied only for C1 = C2 = 0.

C1 and C2 can not have different signals. Because if C1 > 0 and C2 < 0(respectively
C1 < 0 and C2 > 0), then using the limit (19) C1((γ1)

2i−1 − 1) and C2((γ2)
2i−1 − 1) goes

to infinity (respectively −∞) when i → ∞. So h2i−1 → ∞ with i → ∞ but hi ∈ [0, 1] for
all i ∈ N, what will be satisfied just for C1 = C2 = 0.

The case when C1 = 0 and C2 is different from zero (respectively C2 = 0 and C2 �= 0)
is trivial. ��
Lemma 9 Given real values C1, C2, a and b where b < −a ≤ −1:

(a) If C1 and C2 are negative, then C1a2i + C2b2i ≤ C1a2i .
(b) If C1 < 0 and C2 > 0, then C1a2i−1 + C2b2i−1 ≤ C1a2i−1.

(c) If C1 and C2 are positive, then

C1a
2i−1 + C2b

2i−1 → −∞ and
2i − 1

C1a2i−1 + C2b2i−1 → 0 when i → ∞.

(d) If C1 > 0 and C2 < 0, then

C1a
2i + C2b

2i → −∞ and
2i

C1a2i + C2b2i
→ 0 when i → ∞.

Proof Items (a) and (b) are trivial. The case a = 1 is trivial; therefore, we shall consider
when a > 1. Next, let us prove item (c). Note that if 1 < −b/a, then (−b/a)2i−1 → ∞
when i → ∞. Also, a2i−1 → ∞ when i → ∞. So, for each negative M value, there is a
natural value iM such that i > iM implies that

C1

C2
<

M

C2a2i−1 +
(−b

a

)2i−1

. (20)
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Thus, C1a2i−1 < M − C2b2i−1. We proved the first part of item (c). Now, let us prove the
second part. For this task, it is sufficient to prove

C1a2i−1 + C2b2i−1

2i − 1
→ −∞ when i → ∞.

This is what we shall do. We get (−b/a)2i−1 → ∞ and a2i−1 → ∞ when i → ∞. So, for
given M value, M(2i − 1)/a2i−1 → 0 when i → ∞. Therefore, for each negative M value,
there is a natural value iM , such that i > iM implying that

C1 <
M(2i − 1)

a2i−1 + C2

(−b

a

)2i−1

.

Thus, C1a2i−1 < M(2i − 1) − C2b2i−1. Item (c) is proved. ��
Let us prove item (d). Note that 1 < b2/a2, then (b/a)2i → ∞ when i → ∞. Also,

a2i → ∞ when i → ∞. So, for each negative M value, there is a natural value iM such that
i > iM , implying that

C1 <
M

a2i
− C2

(
b

a

)2i

Thus, C1a2i < M −C2b2i . We have now finished the first part of item (d). Now, let us prove
the second part, which essentially proves that

C1a2i + C2b2i

2i
→ −∞ when i → ∞.

Once b < −a ≤ −1, we get that for each negative M value there is natural value iM such
that i > iM , implying that

C1 <
M(2i)

a2i
− C2

(
b

a

)2i

.

Thus, C1a2i < M(2i) − C2b2i−1.

Proof of Lemma 8. Item (a) results directly from the difference equation (11). Here, we need
to observe: (4) if α, β ∈ (0, 1), then −1 ≥ −γ1 > γ2.

If we consider C1 and C2 negative, then by Lemma 9 item (a), we get

kY2i ≤ 2i

η
− C1 − C2 + C1(γ1)

2i .

Moreover,

C1(γ1)
2i → −∞ and

2i

ηC1(γ1)2i
→ 0, when i → ∞,

i.e., there is i0 such that i > i0, implying that kY2i < 0 is impossible. Then, C1 and C2 can
not be simultaneously negative.

If we consider C1 < 0 and C2 > 0, then by Lemma 9 item (b), we get

kY2i−1 ≤ 2i − 1

η
− C1 − C2 + C1(γ1)

2i−1.
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Moreover

C1(γ1)
2i−1 → −∞ and

2i − 1

ηC1(γ1)2i−1 → 0, when i → ∞,

i.e., there is i0 such that i > i0, implying that kY2i−1 < 0 is impossible. So, the case C1 < 0
and C2 > 0 is impossible.

If we consider C1 = 0 and C2 �= 0, then for C2 > 0, C2(γ2)
2i−1 → −∞ when i → ∞

and for C2 < 0, C2(γ2)
2i → −∞ when i → ∞. In both cases, there is i0 such that i > i0,

implying that kY2i−1 < 0 in the first case or kY2i < 0 in the second case. Both cases are
impossible. Then, the case C1 = 0 and C2 �= 0 is impossible.

If we consider C2 = 0 and C1 < 0, then C1(γ1)
i → −∞ when i → ∞. So, there is i0

such that i > i0 implying that kYi < 0 is impossible. Then, the case C2 = 0 and C1 < 0 is
impossible.

If we consider C1 and C2 positive, then by Lemma 9 item (c) we conclude that

C1((γ1)
i − 1) + C2((γ2)

i − 1) → −∞ and
i

C1((γ1)i − 1) + C2((γ2)i − 1)
→ 0 as i → ∞.

Thus, there is i0 such that i > i0, implying that kY2i−1 < 0 is impossible. Then, the case of
C1 and C2 being positive is impossible.

Analogously to the previous case, C1 and C2 positive, if we consider C1 > 0 and C2 < 0,
then by Lemma 9 item (d) we conclude that there is i0 such that i > i0, implies that kY2i < 0
is impossible. Then, the case C1 > 0 and C2 < 0 is impossible.

Until this point, we proved that C2 = 0 and C1 ≥ 0. Thus,

kYi = i

η
+ C1((γ1)

i − 1) for i ∈ N.

However, we get (γ1)
i > 1 ⇒ C1((γ1)

i − 1)) ≥ 0 ⇒ kYi ≥ i/η > 0 when β < φ(α). By
theorem 1.3.5 in [22], the mean hitting time is the minimal non-negative solution to system
(11). This happens in our case when C1 = 0. ��
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