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Abstract InKrotov et al. (in: Lee (eds)Advances inNeural Information Processing Systems,
Curran Associates, Inc., Red Hook, 2016) Krotov and Hopfield suggest a generalized version
of the well-known Hopfield model of associative memory. In their version they consider a
polynomial interaction function and claim that this increases the storage capacity of the
model. We prove this claim and take the ”limit” as the degree of the polynomial becomes
infinite, i.e. an exponential interaction function. With this interaction we prove that model
has an exponential storage capacity in the number of neurons, yet the basins of attraction are
almost as large as in the standard Hopfield model.
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1 Introduction

Neural networks and associative memories have been a highly active research area in com-
puter science, physics and probability theory for more than thirty years. The standard model
of an associative memory was developed in the seminal paper [6]. His model is based on N
neurons, each of which can only take the values ±1. Each pair of these neurons is connected
and thus interacts. We want to store a set of input data (ξμ)Mμ=1, so called patterns or images,
where M may and will depend on the system size N , in the model. Each of the patterns ξμ

is itself a bit string of length N , hence ξμ = (ξ
μ
i )Ni=1 where ξ

μ
i ∈ {−1,+1} for all i and μ.

The strength at which two neurons i and j interact depends on the images and is given by
the so-called synaptic efficacy

Ji j =
M∑

μ=1

ξ
μ
i ξ

μ
j .

With this set of (Ji j )’s we associate a dynamics or updating rule T = (Ti )Ni=1 on {−1,+1}N
such that

Ti (σ ) := sgn

⎛

⎝
N∑

j=1

Ji jσ j

⎞

⎠ σ = (σi ) ∈ {−1,+1}N

and the indices i are either updated uniformly at randomor in a given order.One of the patterns
(ξμ) is considered to be stored, if and only if it is stable under the (retrieval) dynamics T ,
i.e. if and only if Ti (ξμ) = ξ

μ
i for all i = 1, . . . , N .

The central question is now: How many patterns can be stored in the above model? Of
course, this sensitively depends on the way we choose these patterns. Much in agreement
with the choice of messages in information theory in most of the test scenarios for associative
memories the patterns are chosen independent and identically distributed (even though, other
choices may be considered as well, see e.g. [10], [9], [11] or [12]). More precisely, it is
assumed that

P(ξ
μ
i = 1) = P(ξ

μ
i = −1) = 1

2
for all i and μ

and that all (ξμ
i )i,μ are i.i.d. Under these assumptions it was shown in [13] that the Hopfield

model described above can store M = C N
log N patterns with C < 1

2 , if we require that a fixed

(but arbitrary) pattern is stable, andC < 1
4 if we ask for stability of all patterns simultaneously

(also see [3] for amatching upper bound). However, non-rigorous computations involving the
so-called replica trick, suggest that we may even achieve a capacity of M = αN if we allow
for a small fraction of errors in the retrieval and α < 0.138 (see [1], [2]). This prediction was
mathematically confirmed (yet with smaller values of α) in [14], [8], and [15].

In a very recent contribution Krotov and Hopfield suggest a generalized version of the
Hopfield model (see [7]). There, the authors replace the updating dynamics T = (Ti ) by a
more general, still asynchronous one, namely:

Ti (σ ) := sgn
[ M∑

μ=1

(
F

(
1 · ξ

μ
i +

∑

j �=i

ξ
μ
j σ j

) − F
(
(−1) · ξ

μ
i +

∑

j �=i

ξ
μ
j σ j

))]
(1)

where F : R → R is some smooth function. The case of F(x) = x2 reduces to the standard
Hopfield model with the quadratic crosstalk-terms introduced above. Indeed, in this case the
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argument in the sign-function is given by the difference

M∑

μ=1

F
(
1 · ξ

μ
i +

∑

j �=i

ξ
μ
j σ j

) − F
(
(−1) · ξ

μ
i +

∑

j �=i

ξ
μ
j σ j

)

=
M∑

μ=1

1 + 2
∑

j �=i

ξ
μ
i ξ

μ
j σ j +

⎛

⎝
∑

j �=i

ξ
μ
j σ j

⎞

⎠
2

− 1 + 2
∑

j �=i

ξ
μ
i ξ

μ
j σ j −

⎛

⎝
∑

j �=i

ξ
μ
j σ j

⎞

⎠
2

= 4
M∑

μ=1

∑

j �=i

ξ
μ
i ξ

μ
j σ j

and its sign is of course the same as that of
M∑

μ=1

∑
j �=i

ξ
μ
i ξ

μ
j σ j , therefore the dynamics are equal.

The reason for this more general choice of the interaction function F is the following
insight: in the standard Hopfield model there is an energy associated with the dynamics T
(i.e. the energy of a configuration decreases by an application of T ). This energy of a spin
configuration σ is given by H(σ ) = − 1

N

∑
μ

∑
i, j ξ

μ
i ξ

μ
j σiσ j and it decreases ”too slowly”

as the configuration σ approaches pattern to allow for a superlinear storage capacity
The authors in [7] therefore in particular analyze what they call “polynomial interaction”

(or, as they put it, energy) functions, i.e. F(x) = xn . Krotov and Hopfield state the following
assertion

Theorem 1 ([7], formulas (5) and (6))

1. In the generalized Hopfield model with interaction function F(x) = xn one can store up
to M = αnNn−1 patterns, if small errors in the retrieval are tolerated.

2. In the samemodel, one can store M = Nn−1

cn log N
patterns for cn > 2 (2n−3)!!, if one wants

a fixed pattern to be a fixed point of the dynamics T introduced in (1) with a probability
converging to 1.

A proof of this theorem could probably be rather involved. This is due to the fact that the
energy function of the model described in Theorem 1 is of a polynomial form. As a matter
of fact, up to normalization, the energy of the model in these cases is H(σ ) = ∑

μ P(mμ),
where mμ := ∑

i ξ
μ
i σi is the overlap of the configuration σ with the μ′th pattern and P is a

polynomial, or, in other words, with F(x) = xn and n even

F

⎛

⎝1 · ξ
μ
i +

∑

j �=i

ξ
μ
j σ j

⎞

⎠ − F

⎛

⎝(−1) · ξ
μ
i +

∑

j �=i

ξ
μ
j σ j

⎞

⎠

consists of many summands of the form ξ
μ
i

(
∑
j �=i

ξ
μ
j σ j

)m

wherem is an even number smaller

than n. There is, however, a closely related model, where the above statement can be proven.
To this end consider the dynamics T̂ = (T̂i ) on {−1,+1}N defined by

T̂i (σ ) := sgn

⎛

⎝
N∑

1= j1,... jn−1

σ j1 · · · σ jn−1Wi, j1... jn−1

⎞

⎠ . (2)
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with

Wi1,...,in = 1

Nn−1

M∑

μ=1

ξ
μ
i1

ξ
μ
i2

· · · ξμ
in

. (3)

Then the following theorem can be shown

Theorem 2 1. In the generalized Hopfield model with dynamics T̂ defined in (2) and (3)
one can store up to M = αnNn−1 patterns, if small errors in the retrieval are tolerated.

2. In the same model, one can store M = Nn−1

cn log N
patterns for cn > 2 (2n − 3)!!, if one

wants a fixed pattern to be a fixed point of the dynamics T̂ with a probability converging
to 1.

While part 1 of the above theoremwasproved in [14],wewill give a proof of the secondpart
(including a computation of the constants cn) in Sect. 2 below. Note that the thermodynamics
of this model was analyzed in [4].

More interesting than these polynomial models is, however, the question what happens
if we formally send n to infinity. One could conjecture from above that this would lead to
an interaction function of the form ex , on the one hand and to a super-polynomial storage
capacity, on the other. This is indeed what we will show. Actually, we will even prove
slightly more: In general, one could imagine that an increase in capacity goes to expense of
associativity, such that in the extreme case, one could store 2N patterns but none of them
has a positive radius of attraction. We will show that this is not the case for our model: The
dynamics is even able to repair an amount of random errors of order N .

Theorem 3 Consider the generalized Hopfield model with the dynamics described in (1)
and interaction function F given by F(x) = ex . For a fixed 0 < α < log(2)/2 let M =
exp (αN )+1 and let ξ1, . . . , ξM be M patterns chosen uniformly at random from {−1,+1}N .
Moreover fix � ∈ [0, 1/2). For any μ and any ξ̃ μ taken uniformly at random from the
Hamming sphere with radius �N centered in ξμ, S(ξμ, �N ), where �N is assumed to be an
integer, it holds that

P
(∃μ ∃i : Ti

(̃
ξμ

) �= ξ
μ
i

) → 0,

if α is chosen in dependence of � such that

α <
I (1 − 2�)

2

with I : x �→ 1
2 ((1 + x) log(1 + x) + (1 − x) log(1 − x)).

Remark 1 Note that Theorem 3 in particular implies that

P
(∃μ ∃i : Ti

(
ξμ

) �= ξ
μ
i

) → 0

as N → ∞, i.e. with a probability converging to 1, all the patterns are fixed points of the
dynamics. In this case we can even take α <

I (1)
2 .

Remark 2 Theorem 3 can be proven analogously if the configuration ξ̃ μ is drawn uniformly
at random from aHamming ball B(ξμ, ρN ). Indeed, the probability of correcting an arbitrary
pattern of the sphere S(ξμ, ρN ) can be used as a bound for the probability of correcting an
arbitrary pattern of lower spheres.

Theorem 2 and Theorem 3 will be proven in the following section.
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2 Proofs

We start with the proof of Theorem 2.

Proof of Theorem 2 As already mentioned the first part of the Theorem has already been
proven in [14].

We are interested in bounding the following probability

P(∃i ≤ N : T̂i (ξ
1) �= ξ1i ) = P

(
∃i ≤ N : −

M∑

μ=2

ξ1i ξ
μ
i

(∑

j

ξ1j ξ
μ
j

)n−1
> Nn−1

)
.

With the exponential Chebyshev inequality and the independence of the random variables
(ξ

μ
i ) for different μ it follows that

P(∃i ≤ N : T̂i (ξ
1) �= ξ1i ) ≤ Ne−t Nn−1

E

[
exp

(−t ξ1i ξ2i
(∑

j

ξ1j ξ
2
j

)n−1)]M−1
.

For the moment generating function we condition on the values of ξ1i ξ2i to get the upper
bound

P(∃i ≤ N : T̂i (ξ
1) �= ξ1i ) ≤ Ne−t Nn−1

E

⎡

⎢⎣cosh

⎛

⎜⎝t

⎛

⎝
∑

j

ξ1j ξ
2
j

⎞

⎠
n−1

⎞

⎟⎠

⎤

⎥⎦

M−1

.

The random variables (ξ1j ξ
2
j ) j are i.i.d. and distributed like ξ11 . Define m = 1√

N

∑
j ξ

1
j ξ

2
j

and write the expectation as the sum over all possible values x of m:

E

⎡

⎢⎣cosh

⎛

⎜⎝t

⎛

⎝
∑

j

ξ1j ξ
2
j

⎞

⎠
n−1

⎞

⎟⎠

⎤

⎥⎦ =
∑

x

cosh
(
t N

n−1
2 xn−1

)
· P(m = x).

The sum is over all x ∈ {0,± 1√
N

, . . . ,±√
N }. First we want to eliminate the tail events and

use the fact that the probability vanishes fast enough if we restrict x away from zero. To this
end we fix β > 1

2 and split the sum at log(N )β . Additionally observe that x cannot grow
faster than

√
N and set t = an/M for an > 0 independent of N . Thus

∑

x :log(N )β<|x |≤√
N

cosh
(
t N

n−1
2 xn−1

)
· P(m = x)

≤ 2 cosh
(
t Nn−1)

P(m > log(N )β) ≤ 2 exp
(
t Nn−1) exp

(
−1

2
log(N )2β

)

= 2 exp

([
ancn − 1

2
log(N )2β−1

]
log(N )

)
.

Here we used a standard large deviations estimate and cosh(z) ≤ exp(|z|). This part of the
moment generating function converges to zero for N → ∞ because for N large enough the
term in brackets can be bounded by a negative value.
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For the critical values of m we use the inequality cosh(z) ≤ exp( z
2

2 ) for all z and write
the exponential function in its Taylor expansion:

∑

x :|x |≤log(N )β

cosh
(
t N

n−1
2 xn−1

)
P(m = x) ≤

∑

x :|x |≤log(N )β

e
t2
2 Nn−1x2(n−1)

P(m = x)

=
∑

x :|x |≤log(N )β

(
1 + t2

2
Nn−1x2(n−1) +

∞∑

k=2

1

2k
(t2Nn−1x2(n−1))k

k!

)
P(m = x).

Thedistribution ofm converges to a standard normal distribution and itsmoments are bounded
by the moments of the latter. For l ∈ N let κ2l be the 2l-th moment of a standard normal
distribution. The sum of probabilities can be bounded by one. So for N large enough, t =
an/M , and M = const. N

n−1

log N we derive the following upper bound for the moment generating
function:

∑

x :|x |≤log(N )β

cosh
(
t N

n−1
2 xn−1

)
P(m = x)

≤ 1 + t2

2
Nn−1κ2(n−1) +

∑

x : |x |≤log(N )β

∞∑

k=2

1

2k

(
t2Nn−1x2(n−1)

)k

k! · P(m = x)

≤ 1 + t2

2
Nn−1κ2(n−1) +

∞∑

k=2

1

2k
(t2Nn−1 log(N )2β(n−1))k

k!

≤ 1 + t2

2
Nn−1κ2(n−1) + t4

4
N 2n−2 log(N )4β(n−1)(e − 2)

≤ exp

(
t2

2
Nn−1κ2(n−1) + t4N 2(n−1) log(N )4β(n−1)

)

Inserting t = an/M into this result we obtain

P(∃i ≤ N : T̂i (ξ
1) �= ξ1i )

≤ exp
(
log(N ) − t Nn−1) exp

(
t2

2
Nn−1κ2(n−1)M + t4N 2(n−1) log(N )4β(n−1)M

)

= exp
([

1 − ancn
(
1 − an κ2(n−1)

2

)]
log(N )

)
· (1 + o(1)).

for our choice of t and M .
The moments of the standard normal distribution is given by κ2(n−1) = (2n − 3)!! for all

n ∈ N. Choose an = (κ2(n−1))
−1. The term in brackets can be bounded by negative value if

cn satisfies

1 − ancn
(
1 − an κ2(n−1)

2

)
< 0

which is the case if and only if cn > 2(2n − 3)!!. This is exactly the memory capacity
proposed by Hopfield and Krotov in Theorem 1.

We continue with the proof of our central result.

Proof of Theorem 3 We start by slightly reformulating the dynamics of the model. Indeed,
an (almost) equivalent formulation is to say that a neuron i will remain unchanged after an
application of the update rule if
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294 M. Demircigil et al.

	i E(σ ) :=
M∑

μ=1

⎛

⎝F

⎛

⎝σiξ
μ
i +

∑

j �=i

ξ
μ
j σ j

⎞

⎠ − F

⎛

⎝−σiξ
μ
i +

∑

j �=i

ξ
μ
j σ j

⎞

⎠

⎞

⎠ > 0 (4)

and the spin of neuron i will be changed if 	i E(σ ) is less than zero. In the limit N → ∞
the case 	i E(σ ) = 0 is negligible for the later purposes.

Starting in one of the patterns (without loss of generality the first one ξ1) we want to
show that it is an attractive fixed point of the update dynamics, i.e. we need to show that
Ti (ξμ) = ξ

μ
i and we want the model to correct up to �N random errors by updating each of

the neurons once. Without loss of generality we focus on the pattern ξ1, taking a corrupted
version ξ̃1 uniformly at random from S(ξ1, ρN ) for a fixed ρ ∈ [0, 1

2 ), and the neuron i .
Then we can interpret the summand for μ = 1 in (4):

Esignal = F

⎛

⎝
N∑

j=1

ξ1j ξ̃
1
j

⎞

⎠ − F

⎛

⎝−2 ξ1i ξ̃1i +
N∑

j=1

ξ1j ξ̃
1
j

⎞

⎠

as signal term and the rest of the sum in (4):

Enoise =
M∑

μ=2

⎛

⎝F

⎛

⎝
N∑

j=1

ξ
μ
j ξ̃ j

⎞

⎠ − F

⎛

⎝−2̃ξiξ
μ
i +

N∑

j=1

ξ
μ
j ξ̃ j

⎞

⎠

⎞

⎠

as noise term. As we will show, in order to have neuron i not updated correctly, the noise
term needs to have a bigger impact in (4) than the signal term. We want to show that the
probability for this event vanishes for N → ∞.

We need to distinguish two cases: first the neuron i can be correct, i.e. ξ1i = ξ̃1i , and we
want the associative memory not to change this value (this means	i E (̃ξ1) > 0). In the other
case the neuron is wrong, i.e. ξ1i = −ξ̃1i , and the network needs to correct this neuron (this
means 	i E (̃ξ1) < 0). In both cases the signal term supports the desired behavior. Indeed,
we have:

F

⎛

⎝
N∑

j=1

ξ1j ξ̃
1
j

⎞

⎠ − F

⎛

⎝
N∑

j=1

ξ1j ξ̃
1
j − 2

⎞

⎠ > 0 on the one hand, and

F

⎛

⎝
N∑

j=1

ξ1j ξ̃
1
j

⎞

⎠ − F

⎛

⎝
N∑

j=1

ξ1j ξ̃
1
j + 2

⎞

⎠ < 0 on the other

depending on whether neuron i is correct or incorrect (since
∑N

j=1 ξ1j ξ̃
1
j ≥ (1 − 2�)N > 2

and F = exp). This means that in order for neuron i to update correctly, it must be that
sgn

(
Esignal + Enoise

) = sgn
(
Esignal

)
, which is fulfilled as soon as |Enoise| < |Esignal|. Thus,

a necessary condition for the event {Ti (̃ξ1) �= ξ1i } is that |Enoise| ≥ |Esignal|. Therefore:

P
(∃μ ∃i : Ti

(̃
ξμ

) �= ξ
μ
i

) ≤ N · M · P(
Ti (̃ξ

1) �= ξ1i
)

≤ N · M · P(|Enoise| ≥ |Esignal|
)
.
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By using the straightforward fact that |ea±1 − ea∓1| ≤ [1 − e−2]e2 · ea :

|Enoise| ≤
M∑

μ=2

∣∣∣∣∣∣
exp(ξμ

i ξ1i +
∑

j �=i

ξ
μ
j ξ̃1j ) − exp(−ξ

μ
i ξ1i +

∑

j �=i

ξ
μ
j ξ̃1j )

∣∣∣∣∣∣

≤ [1 − e−2]e2
M∑

μ=2

exp
(〈ξμ |̃ξ1〉)

where 〈x |y〉 is the inner product on {±1}N . At the same time

|Esignal| > eN (1−2�)[1 − e−2].
It follows that:

P
(∃μ ∃i : Ti

(̃
ξμ

) �= ξ
μ
i

) ≤ N · M · P(
Ti (̃ξ

1) �= ξ1i
)

≤ N · M · P
⎛

⎝
M∑

μ=2

e2 exp(〈ξμ |̃ξ1〉) > eN (1−2�)

⎞

⎠ . (5)

We will use two standard estimates from the theory of large deviations [5]: for a Binomially
distributed random variable S̄m,p with parameters m and p and for ε > 0, we have:

P
(
S̄m,p ≥ m(p + ε)

) ≤ exp

(
−m

ε2

2(p + ε)

)
(6)

and for a sum Sm of m i.i.d. random variables Xi with P(X1 = 1) = P(X1 = −1) = 1
2 and

x ∈ (0, 1) we have

P (Sm ≥ mx) ≤ exp (−mI (x)) (7)

as well as

lim
m→∞

1

m
log(P (Sm > mx)) = −I (x) (8)

where again I (x) = 1
2 ((1 + x) log(1 + x) + (1 − x) log(1 − x)). In fact, (8) is nothing but

Cramérs theorem for fair, ±1-Bernoullis.
Now let α < 1

2 I (1 − 2�), M = exp (αN ) + 1 and βo be such that I (βo) = α. By
continuity of I there exists an ε > 0, such that for all x ∈ (1− 2� − ε, 1− 2�] we have that
α < 1

2 I (x) ≤ 1
2 I (1 − 2�). Again by continuity of I we can choose β < βo such that:

α − ε

2
= I (βo) − ε

2
< I (β) < I (βo) = α.

Let us define

A = {μ ∈ {2 . . . M}|〈ξμ |̃ξ1〉 ≥ βN },
p = P

(〈ξ2 |̃ξ1〉 ≥ βN
)
.

By (7), we have that: p < exp(−N I (β)). On the other hand, by (8) we can conclude that for
η = 1

2 (α − I (β)) > 0 and N sufficiently large we have p > exp(−N (I (β) + η)).
Now we compute the probability in (5) by picking those patterns ξμ with a significant

overlap with ξ1 (i.e. μ ∈ A).
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P

⎛

⎝
M∑

μ=2

e2 exp(〈ξμ |̃ξ1〉) > eN (1−2�)

⎞

⎠

=
∑

X⊂{2...M}
P

⎛

⎝

⎛

⎝
M∑

μ=2

exp(〈ξμ |̃ξ1〉) > eN (1−2�)−2

⎞

⎠ ∩ (A = X)

⎞

⎠

≤
M−1∑

k=0

∑

X∈Pk ({2...M})
pk(1 − p)M−1−k ·

P

⎛

⎝
∑

μ∈X
exp(〈ξμ |̃ξ1〉) + (M − 1 − k)eβN > eN (1−2�)−2|A = X

⎞

⎠

where Pk denotes the subsets of size k. Additionally we used that every overlap in Ac can be
bounded by exp(βN ). By the identical distribution of the patterns this is equal to

=
M−1∑

k=0

(
M − 1

k

)
pk(1 − p)M−1−k ·

P

⎛

⎝
k+1∑

μ=2

exp(〈ξμ |̃ξ1〉) > eN (1−2�)−2 − (M − 1 − k)eβN |A = {2, . . . , k + 1}
⎞

⎠ .

By using the maximal summand as an upper bound, a standard union bound and the identical
distribution for all μ we arrive at the following term

≤
M−1∑

k=0

(
M − 1

k

)
pk(1 − p)M−1−k ·

P

(
max

μ∈{2,...,k+1} exp(〈ξ
μ |̃ξ1〉) >

1

k
(eN (1−2�)−2 − (M − 1 − k)eβN )|A = {2, . . . , k + 1}

)

≤
M−1∑

k=0

k

(
M − 1

k

)
pk(1 − p)M−1−k ·

P

(
exp(〈ξ2 |̃ξ1〉) >

1

k
(eN (1−2�)−2 − (M − 1 − k)eβN )|A = {2, . . . , k + 1}

)
.

Denote by

r = r(k) = P

(
exp

(〈ξ2 |̃ξ1〉) ≥ 1

k
(eN (1−2�)−2 − (M − 1 − k)eβN )

)
.

We then arrive at

P

((
exp(〈ξ2 |̃ξ1〉) >

1

k
(eN (1−2�)−2 − (M − 1 − k)eβN )

)
|A = {2, . . . , k + 1}

)

= P
((
exp(〈ξ2 |̃ξ1〉) > 1

k (e
N (1−2�)−2 − (M − 1 − k)eβN )

) ; 2 ∈ A
)

P (2 ∈ A)
≤ r(k)

p

because P (2 ∈ A) = p.
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Thus an upper bound is:

P

( M∑

μ=2

exp(−ξ
μ
i ξ1i +

∑

j �=i

ξ
μ
j ξ̃1j ) − exp(ξμ

i ξ1i +
∑

j �=i

ξ
μ
j ξ̃1j ) > ceN (1−2�)

)

≤
M−1∑

k=0

k

(
M − 1

k

)
r(k)pk−1(1 − p)M−1−k .

Now let us split this sum into two parts: the first one for k ∈ {0, . . . , �2p(M − 1)�} and
the second one the remaining part. We start with the second part. By using the identity
k
(M−1

k

) = (M − 1)
(M−2
k−1

)
and the trivial fact that r(k) ≤ 1, we get:

M−1∑

k=�2p(M−1)�+1

k

(
M − 1

k

)
r(k)pk−1(1 − p)M−1−k

≤ (M − 1)
M−1∑

k=�2p(M−1)�+1

(
M − 2

k − 1

)
pk−1(1 − p)M−2−(k−1)

= (M − 1)P (SM−2 ≥ �2p(M − 1)�) ≤ (M − 1)P

(
SM−2 ≥ 3

2
p(M − 2)

)
.

We used the bound �2p(M − 1)� > 3
2 p(M − 2), which is a consequence of the fact that

p(M − 1) goes to infinity. This will be shown at the end of the proof. Then, by using (6),
with ε = p

2 we obtain:

M−1∑

k=�2p(M−1)�+1

k

(
M − 1

k

)
r(k)pk−1(1 − p)M−1−k ≤ (M − 1) exp

(
− p(M − 2)

12

)
.

We consider now the first part. Since:

1

k
(eN (1−2�)−2 − (M − 1 − k)eβN ) = 1

k
(eN (1−2�)−2 − e(α+β)N ) + eβN

we clearly see that r(k) is increasing in k if α + β < 1 − 2� is fulfilled. This condition will
be proven later on. Thus:

�2p(M−1)�∑

k=0

(
M − 1

k

)
kr(k)pk−1(1 − p)M−1−k

≤ 1

p
max

k∈{0,...,�2p(M−1)�} kr(k)

≤ 2(M − 1) · r(2p(M − 1)).

Let us examine this last term: since p < e−N I (β), we observe

r(2p(M − 1)) = P

(
exp(〈ξ2 |̃ξ1〉) >

1

2p

(
eN (1−2�−α)−2 − eβN ) + eβN

)

≤ P

(
exp(〈ξ2 |̃ξ1〉) >

1

2

(
eN (1−2�−α+I (β))−2 − e(β+I (β))N ))

.

First of all let us show that 1 − 2� − α + I (β) > β + I (β), so that the first term dominates
the second term: indeed, this is equivalent to proving that α + β < 1− 2�. By concavity we
have for x ∈ (0, 1):
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I (x) ≤ log

(
(1 + x)2

2
+ (1 − x)2

2

)
= log(1 + x2) ≤ x2 ≤ x .

From this we obtain

α + β < α + βo = α + I (α) ≤ 2α ≤ I (1 − 2�) ≤ 1 − 2�.

This proves that 1 − 2� − α + I (β) > β + I (β) and also concludes the statement that r(k)
is increasing (see above). Now take γ such that 1− 2� − ε < γ < 1− 2� − ε

2 for an ε > 0.
Then

1 − 2� − ε < γ < 1 − 2� − α + I (β).

For N sufficiently large we get:

r(2p(M − 1)) ≤ P

(
exp(〈ξ2 |̃ξ1〉) > eγ N

)
.

By applying (7) and for N sufficiently large one sees that:

r(2p(M − 1)) ≤ P

(
exp(〈ξ2 |̃ξ1〉) > eγ N

)
≤ exp (−N I (γ )) .

Now if we bring everything together, we finally arrive at:

P

(
∃μ ∃i : Ti

(̃
ξμ

) �= ξ
μ
i

)

≤ N · M · P
( M∑

μ=2

exp
(−ξ

μ
i ξ1i +

∑

j �=i

ξ
μ
j ξ̃1j

) − exp
(
ξ

μ
i ξ1i +

∑

j �=i

ξ
μ
j ξ̃1j

)
> ceN (1−2�)

)

≤ N · M
(
2(M − 1) exp

(−N I (γ )
) + (M − 1) exp

(− p(M − 2)

12

))

≤ 2N
M

M − 1
exp (−N (I (γ ) − 2α)) + N

M

M − 1
exp

(
2α − M − 2

M − 1
· p(M − 1)

12

)
.

But by the definition of γ , we have I (γ ) > 2α. So the first term clearly tends to 0. For the
second term by using the lower bound on p, we have that:

p(M − 1) ≥ exp(N (α − I (β) − η)).

But we know that I (β) < I (βo) = α and η = 1
2 (α − I (β)), so α − I (β)−η > 0. Therefore

the second term converges also to 0. Also a straightforward consequence of this bound is
that p(M − 1) goes to infinity and thus establishes the still open fact that �2p(M − 1)� >
3
2 p(M − 2), used above. So clearly if the condition α <

I (1−2�)
2 is fulfilled, we obtain

P
(∃μ ∃i : Ti

(̃
ξμ

) �= ξ
μ
i

) → 0

This finishes the proof. ��
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