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Abstract We introduce theminimalmaximally predictivemodels (ε-machines) of processes
generated by certain hidden semi-Markov models. Their causal states are either discrete,
mixed, or continuous random variables and causal-state transitions are described by partial
differential equations. As an application, we present a complete analysis of the ε-machines of
continuous-time renewal processes. This leads to closed-form expressions for their entropy
rate, statistical complexity, excess entropy, and differential information anatomy rates.

Keywords Renewal process · Entropy rate · Excess entropy · Statistical complexity ·
Information anatomy · Hidden Semi-Markov models

1 Introduction

We are interested in answering two very basic questions about continuous-time renewal
processes:

• What are their minimal maximally predictive models—their ε-machines?
• What are information-theoretic characterizations of their randomness, predictability, and

complexity?

For shorthand, we refer to the former as causal architecture and the latter as informa-
tional architecture. Minimal maximally predictive models of discrete-time, discrete-state,
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discrete-output processes are relatively well understood; e.g., see Refs. [1–3]. Some progress
has been made on understanding minimal maximally predictive models of discrete-time,
continuous-output processes; e.g., see Refs. [4–6]. Relatively less is understood about min-
imal maximally predictive models of continuous-time, discrete-output processes, beyond
those with exponentially decaying state-dwell times [6]. The following is a first attempt at
a remedy that complements the spectral methods developed in Ref. [6], as we address the
seemingly unwieldy case of uncountably infinite causal states.

We analyze continuous-time renewal processes in-depth, as addressing the challenges
there carries over to other continuous-time processes. When analyzing discrete-time renewal
processes, we can use the ε-machine definitions outlined in Ref. [1] and the information
anatomy definitions outlined in Ref. [7], but neither definitions carry over to the continuous-
time case. The difficulties are both technical and conceptual. First, the causal states are
now continuous or mixed random variables, unless the renewal process is Poisson. Second,
transitions between causal states are now described by partial differential equations. Finally,
and perhaps most challenging, most informational architecture quantities must be redefined.

Our main thesis is that minimal maximally predictive models of continuous-time renewal
processes require a wholly new ε-machine calculus. To develop it, Sect. 2 describes the
required notation and definitions that enable extending computational mechanics, which is
otherwisewell understood for discrete-time processes [1,8]. Sections 3, 4, and 5 determine the
causal and informational architecture of continuous-time renewal processes. We conclude by
describing the challenges overcome and benefits to understanding the information measures,
using the new formulae of Table 1.

2 Background and Notation

A point process is labeled only with times between events: . . . , τ−1, τ0, τ1, . . .. We view
the time series ←→τ as a realization of random variables

←→T = . . . , T−1, T0, T1, . . .. When
the observed time series is strictly stationary and the process ergodic, we can calculate the
probability distribution Pr(

←→T ) from a single realization ←→τ .
Demarcating the present splits T0 into two parts: the time T0+ since first emitting the

previous symbol and the time T0− to next symbol. Thus, we define T−∞:0+ = . . . , T−1, T0+
as the past and T0−:∞ = T0− , T1, . . . as the future. (To reduce notation, we drop the ∞
indices.) The present T0+:0− itself extends over an infinitesimally small length of time. See
Fig. 1.

Continuous-time renewal processes, a special kind of point process, have a relatively
simple generativemodel. Interevent intervals Ti are drawn from a probability density function
φ(t). The survival function �(t) = ∫ ∞

t φ(t ′)dt ′ is the probability that an interevent interval
is greater than or equal to t and, in a nod to neuroscience, we define the mean firing rate μ

as:

μ−1 =
∫ ∞

0
tφ(t)dt .

Finally, we briefly recall the definitions of entropy, conditional entropy, and mutual
information. The entropy of a discrete random variable X with probability distribution
p(x) is H[X ] = −∑

x p(x) log p(x); the entropy of a continuous random variable X
with probability density function ρ(x) is H[X ] = − ∫

ρ(x) log ρ(x)dx ; and the entropy
of a mixed random variable X with “probability density function” ρ(x) and “probabil-
ity distribution” p(x) with

∫
ρ(x)dx + ∑

p(x) = 1 was defined in Ref. [9] as H[X ] =
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Fig. 1 Interevent intervals τi in the past and future and how they relate to the present; shown as they would
be identified in a neural spike train (blue line). The 0th interval, of total length τ0 = τ0+ + τ0− , is split by
the present marker into a time since last event τ0+ and a time until next event τ0− (Color figure online)

A 1|0, τ ∼ φ

Fig. 2 The smallest generative model of a continuous-time renewal process consists of a single causal state.
The transition is labeled p|s, τ ∼ Pr(T ), denoting the transition is taken with probability p, emits symbol
s for duration τ distributed according to Pr(T ). The length Ti = τ of periods of silence (corresponding to
output symbol 0) are drawn independently, identically distributed (IID) from probability density φ(t)

−∑
p(x) log p(x) − ∫

ρ(x) log ρ(x)dx . Conditional entropy of a random variable X with
respect to random variable Y is, as above, H[X |Y ] = 〈H[X |Y = y]〉y . Mutual informa-
tion between random variable X and random variable Y is I[X; Y ] = H[X ] − H[X |Y ] or,
equivalently, I[X; Y ] = H[Y ] − H[Y |X ].
2.1 Causal Architecture

A process’ forward-time causal states are defined, as usual, by the predictive equivalence
relation [1], written here for the case of point processes:

τ:0+ ∼ε+ τ:0+ ′ ⇔ Pr(T0−:|T:0+ = τ:0+) = Pr(T0−:|T:0+ = τ:0+ ′) .

This partitions the set of allowed pasts. Each equivalence class of pasts is a forward-time
causal state σ+ = ε+(τ:0+), in which ε+(·) is the function that maps a past to its causal state.
The set of forward-time causal states S+ = {σ+} inherits a probability distribution Pr(S+)

from the probability distribution over pasts Pr(T:0+).
Reverse-time causal states are essentially forward-time causal states of the time-reversed

process. In short, reverse-time causal states S− = {σ−} are the classes defined by the
retrodictive equivalence relation, written here for the case of point processes:

τ0−: ∼ε− τ ′
0−: ⇔ Pr(T:0+|T0−: = τ0−:) = Pr(T:0+|T0−: = τ ′

0−:) .

Reverse-time causal states S− = ε−(T0−:) inherit a probability measure Pr(S−) from the
probability distribution Pr(T0−:) over futures.

The smallest generative model for a continuous-time renewal process is therefore a single
causal-state machine with a continuous-value observable T ; as shown in Fig. 2. Moreover,
the forward- and reverse-time causal states are the same.
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H[T:0+ ]

H[T0−:]

E

C−
μ = H[S−]

C+
μ = H[S+]

Fig. 3 Predictability, compressibility, and causal irreversibility in renewal processes graphically illustrated
using a Venn-like information diagram over the random variables for the past T:0+ (left oval, red), the future
T0−: (right oval, green), the forward-time causal states S+ (left circle, purple), and the reverse-time causal
states S− (right circle, blue). (Cf. Ref. [10].) The forward-time and reverse-time statistical complexities are
the entropies of S+ and S−, i.e., the memories required to losslessly predict or retrodict, respectively. The
excess entropy E = I[T:0+;T0−:] is a measure of process predictability (central pointed ellipse, dark blue)
and Theorem 1 of Ref. [10,11] shows that E = I[S+;S−] by applying the causal shielding relations in
Eqs. (1) and (2) (Color figure online)

Forward-time prescient statistics are any refinement of the forward-time causal-state par-
tition. By construction, they are a sufficient statistic for prediction, but are not necessarily
minimal sufficient statistics [1]. Reverse-time prescient statistics are any refinement of the
reverse-time causal-state partition. They are sufficient statistics for retrodiction, but are again
not necessarily minimal.

The main import of these definitions derives from the causal shielding relations:

Pr(T0−:, T:0+|S+) = Pr(T0−:|S+)Pr(T:0+|S+) (1)

Pr(T0−:, T:0+|S−) = Pr(T0−:|S−)Pr(T:0+|S−) . (2)

The consequence of these is illustrated in Fig. 3. Causal shielding holds not just for forward-
and reverse-time causal states, but for forward- and reverse-time prescient statistics as well.
However, these causal shielding relations are special to prescient statistics, causal states, and
their defining functions ε+(·) and ε−(·). That is, arbitrary functions of the past and future do
not shield the two aggregate past and future random variables from one another. Forward-
and reverse-time generative models do not, in general, have state spaces that satisfy Eqs. (1)
and (2).

The forward-time ε-machine is that with state space S+ and transition dynamic between
forward-time causal states. The reverse-time ε-machine is that with state space S− and
transition dynamic between reverse-time causal states. Defining these transition dynamics
for continuous-time processes requires a surprising amount of care, as discussed in Sects. 3,
4, and 5.

2.2 Informational Architecture

We are broadly interested in information-theoretic characterizations of a process’ predictabil-
ity, compressibility, and randomness. A list of current quantities of interest, though by no
means exhaustive, is given in Figs. 3 and 7. Many lose meaning when naively applied to
continuous-time processes; e.g., see Refs. [5,12,13]. We redefine many of these in order to
avoid trivial divergences and zeros in Sect. 5.

The forward-time statistical complexity C+
μ = H[S+] is the cost of coding the forward-

time causal states and the reverse-time statistical complexity C−
μ = H[S−] is the cost of

coding reverse-time causal states. When S+ or S− are mixed or continuous random vari-

123



114 S. Marzen, J. P. Crutchfield

ables, one employs differential entropies for H[·]. The result, though, is that the statistical
complexities are potentially negative or infinite or both [14, Chap. 8.3], perhaps undesirable
characteristics for a definition of process complexity. This definition, however, allows for
consistency with complexity definitions for discretized continuous-time processes. See Ref.
[15] for possible alternatives for H[·].

3 Continuous-time Causal States

Discrete-time renewal processes are temporally symmetric [16], and the same is true for
continuous-time renewal processes. As such, we will refer to forward-time causal states and
the forward-time ε-machine as simply causal states or the ε-machine, with the understanding
that reverse-time causal states and reverse-time ε-machines will take the exact same form
with slight labeling differences.

We start by describing prescient statistics for continuous-time processes. The Lemma
which does this exactly parallels that of Lemma 1 of Ref. [16]. The only difference is that
the prescient statistic is the time since last event, rather than the number of 0s (count) since
last event.

Lemma 1 The time T0+ since last event is a prescient statistic of renewal processes.

Proof From Bayes Rule:

Pr(T0−:|T:0+) = Pr(T0−|T0+:)Pr(T1:|T:1) .

Interevent intervals Ti are independent of one another, so Pr(T1:|T:1) = Pr(T1:). The random
variables T0+ and T0− are functions of T0 and the location of the present. Both T0+ and T0−
are independent of other interevent intervals. And so, Pr(T0−|T0+:) = Pr(T0−|T0+). This
implies:

Pr(T0−:|T:0+) = Pr(T1:)Pr(T0−|T0+) . (3)

The predictive equivalence relation groups two pasts τ:0+ and τ ′
:0+ together when

Pr(T0−:|T:0+ = τ:0+) = Pr(T0−:|T:0+ = τ ′
:0+). We see that τ0+ = τ ′

0+ is a sufficient condition
for this from Eq. (3). The Lemma follows. ��

Some renewal processes are quite predictable, while others are purely random. A Poisson
process is the latter: Interevent intervals are drawn independently from an exponential dis-
tribution and so knowing the time since last event provides no predictive benefit. A fractal
renewal process can be the former. There, the interevent interval is so structured that the
resultant process can have power-law correlations [17]. Then, knowing the time since last
event can provide quite a bit of predictive power [18].

Intermediate between these two extremes is a broad spectrum of renewal processes whose
interevent intervals are structured up to a point and then fall off exponentially only after
some time T ∗. These intermediate cases can be classified as either of the following types of
renewal process, in analogy with Ref. [16]’s classification.

Definition 1 An eventually Poisson process has:

φ(t) = φ(T )e−λ(t−T ) ,

almost everywhere, for some λ > 0 and T > 0. We associate the eventually Poisson process
with the minimal such T .
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Note that a Poisson process is an eventually Poisson renewal process with T = 0. Another
perhaps familiar, but degenerate example of an eventually Poisson renewal process is found in
the spike trains emitted by Poisson neurons with refractory periods [13]. There, the neuron is
effectively prevented from firing two spikes within a time T of each other—the period during
which its ion channels re-energize themembrane voltage to their nonequilibrium steady state.
After that, the time to next spike is drawn from an exponential distribution and so Poisson.
To exactly predict the spike train’s future, we must know the time since last spike, as long
as it is less than T . We gain a great deal of predictive power from that piece of information.
However, we do not care about the time since last spike exactly if it is greater than T , since
at that point the neuron acts as a memoryless Poisson neuron. Moreover, the renewal process
that operates before T (during the refractory period) is degenerate, allowing no spiking.

Eventually �-Poisson processes described in Definition 2 are far less intuitive, as φ(t) is
discontinuous.

Definition 2 An eventually �-Poisson process with �∗ > 0 has an interevent interval dis-
tribution satisfying:

φ(t) = φ(T ∗ + (t − T ∗) mod �∗)e−λ
(t−T ∗)/�∗�

almost everywhere, for the smallest possible T ∗ for which �∗ exists.

Finally, we categorize all other renewal processes as “typical” inDefinition 3. For instance,
the process generated by any generalized integrate-and-fire neuron is typical.

Definition 3 A typical renewal process is neither eventually Poisson nor eventually �-
Poisson.

Theorem 1 shows that Definitions 1, 2, and 3 offer a complete predictive classification of
continuous-time renewal processes.

Theorem 1 A renewal process has three different types of causal state:

1. When the renewal process is typical, the causal states are the time since last event;
2. When the renewal process is eventually Poisson, the causal states are the time since last

event up until time T ∗; or
3. When the renewal process is eventually �-Poisson, the causal states are the time since

last event up until time T ∗ and are the times since T ∗ mod � thereafter.

Proof Lemma 1 implies that two pasts are causally equivalent if they have the same time
since last event, if τ0+ = τ ′

0+ . From Lemma 1’s proof, we further see that two times since
last event are causally equivalent when Pr(T0−|T0+ = τ0+) = Pr(T0−|T0+ = τ ′

0+). In terms
of φ(t), we find that:

Pr(T0− = τ0−|T0+ = τ0+) = φ(τ0− + τ0+)

�(τ0+)
,

using manipulations very similar to those in the proof of Theorem 1 of Ref. [16]. So, to find
causal states, we look for τ0+ �= τ ′

0+ such that:

φ(τ0− + τ0+)

�(τ0+)
= φ(τ0− + τ ′

0+)

�(τ ′
0+)

.

for all τ0− ≥ 0.
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To unravel the consequences of this, we suppose that τ0+ < τ ′
0+ without loss of generality.

Define � = τ ′
0+ − τ0+ and T = τ0+ , for convenience. The predictive equivalence relation

can then be rewritten as:

φ(T + � + τ0−) = λφ(T + τ0−) ,

for any τ0− ≥ 0, where λ = �(T + �)/�(T ). Iterating this relationship, we find that:

φ(T + τ0−) = λ
τ0−/��φ (T + (τ0− mod �)) .

This immediately implies the theorem’s first case. If a renewal process is not eventually
�-Poisson, then φ(τ0− + τ0+)/�(τ0+) = φ(τ0− + τ ′

0+)/�(τ ′
0+) for all τ0− ≥ 0 implies

τ0+ = τ ′
0+ , so that the prescient statistics of Lemma 1 are also minimal.

To understand the theorem’s last two cases, we consider more carefully the set of all pairs
(T,�) for which φ(τ0− + T )/�(T ) = φ(τ0− + T + �)/�(T + �) for all τ0− ≥ 0 holds.
Define the set:

ST,� :=
{
(T,�) : φ(τ0− + T )

�(T )
= φ(τ0− + T + �)

�(T + �)
, for all τ0− ≥ 0

}

and define the parameters T ∗ and �∗ by:

T ∗ := inf{T : there exists � such that (T,�) ∈ ST,�}
and:

�∗ := inf{� : (T ∗,�) ∈ ST,�} .

Note that T ∗ and �∗ defined in this way are unique and exist, as we assumed that ST,� is
nonempty. When �∗ > 0, then the process is eventually �-Poisson. If �∗ = 0, then the
process must be an eventually Poisson process with parameter T ∗. To see this, we return to
the equation:

φ(T ∗ + � + τ0−) = �(T ∗ + �)

�(T ∗)
φ(T ∗ + τ0−) ,

and rearrange terms to find:

φ(T ∗ + � + τ0−) − φ(T ∗ + τ0−)

φ(T ∗ + τ0−)
= �(T ∗ + �) − �(T ∗)

�(T ∗)
.

As �∗ = 0, we can take the limit that � → 0 and we find that:

d logφ(t)

dt

∣
∣
t=T ∗+τ0−

= d log�(t)

dt

∣
∣
t=T ∗ .

The righthand side is a parameter independent of τ0− . So, this is a standard ordinary differen-
tial equation for φ(t). It is solved by φ(t) = φ(T ∗)e−λ(t−T ∗) for λ := −d log�(t)/dt

∣
∣
t=T ∗ .

��

Theorem 1 implies that there is a qualitative change in S+ depending onwhether or not the
renewal process is Poisson, eventually Poisson, eventually �-Poisson, or typical. In the first
case, S+ is a discrete random variable; in the second case, S+ is a mixed random variable;
and in the third and fourth cases, S+ is a continuous random variable.
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4 Wave Propagation on Continuous-time ε-machines

Identifying causal states in continuous-time follows an almost entirely similar path to that used
for discrete-time renewal processes in Ref. [16]. The seemingly slight differences between
the causal states of eventually Poisson, eventually�-Poisson, and typical renewal processes,
however, have surprisingly important consequences for continuous-time ε-machines.

As described by Theorem 1, there is often an uncountable infinity of continuous-time
causal states. As one might anticipate from Refs. [13,16], however, there is an ordering to
this infinity of causal states that makes calculations tractable. There is one major difference
between discrete-time ε-machines and continuous-time ε-machines: transition dynamics
often amount to specifying the evolution of a probability density function over causal-state
space.

As such, a continuous-time ε-machine constitutes an unusual presentation of the process
generated by a hidden Markov model. It appears as a conveyor belt that transports the distri-
bution of times since last event. Under special conditions, the conveyor belt ends in a trash
bin or a second mini-conveyor belt. Compare Figs. 4, 5, and 6.

The exception to this general rule is given by the Poisson process itself. The ε-machine of
a Poisson process is exactly the minimal generative model shown in Fig. 2. At each iteration,
an interevent interval is drawn from a probability density function φ(t) = λe−λt , with λ > 0.
Knowing the time since last event does not aid in predicting the time to next event, above
and beyond knowing λ. Hence, the Poisson ε-machine has only a single state.

In the general setting, though, the ε-machine dynamic describes the evolution of the
probability density function over its causal states. We therefore search for labeled transition

S+

Fig. 4 ε-Machine for the generic not eventually Poisson renewal process: Continuous-time causal states S+,
tracking the time since last event and depicted as the semi-infinite horizontal line, are isomorphic with the
positive real line. If no event is seen, probability flows towards increasing time since last event, as described in
Eq. (6). Otherwise, arrows denote allowed transitions back to the reset state or “0 node” (solid orange circle
at left), denoting that an event occurred (Color figure online)

T ∗
S+

Fig. 5 ε-Machine for an eventuallyPoisson renewal process:Continuous-time causal statesS+ are isomorphic
with the real line only to [0, T ∗], as they again denote time since last event. A leaky absorbing node at T ∗
(solid white circle at right) corresponds to any time since last event after T ∗. If no event is seen, probability
flows towards increasing time since last event or the leaky absorbing node, as described in Eqs. (6) and (7).
When an event occurs the process transitions (curved arrows) back to the reset state—node 0 (solid blue circle
at left) (Color figure online)
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Δ∗

T ∗

S+

Fig. 6 ε-Machine for an eventually �-Poisson renewal process: Graphical elements as in the previous figure.
The circular causal-state space at T ∗ (circle on right) has total duration �∗, corresponding to any time since
last event after T ∗ mod �∗. If no event is seen, probability flows as indicated around the circle, as described
in Eq. (6)

operatorsO(x) such that ∂ρ(σ, t)/∂t = O(x)ρ(σ, t), giving partial differential equations that
govern the labeled-transition dynamics.

Finally, we provide expressions for the forward- and reverse-time statistical complexities
of continuous-time renewal processes. Interestingly, a renewal process viewed in reverse-time
has equivalent statistics. Therefore, the forward- and reverse-time ε-machines are equivalent,
and so C+

μ = C−
μ . As such, we can relabel both as Cμ without fear of confusion.

4.1 Typical Renewal Processes

The ε-machine of a renewal process that is not eventually Poisson takes the state-transition
form shown in Fig. 4. Let ρ(σ, t) be the probability density function over the causal states σ at
time t . Our approach to deriving labeled transition dynamics parallelswell-known approaches
to determining Fokker–Planck equations using a Kramers–Moyal expansion [19]. Here, this
means that any probability at causal state σ at time t +�t could only have come from causal
state σ − �t at time t , if σ ≥ �t . This implies:

ρ(σ, t + �t) = Pr(St+�t = σ |St = σ − �t)ρ(σ − �t, t) . (4)

However, Pr(St+�t = σ |St = σ − �t) is simply the probability that the interevent interval
is greater than σ , given that the interevent interval is at least σ − �t , or:

Pr(St+�t = σ |St = σ − �t) = �(σ)

�(σ − �t)
. (5)

Together, Eqs. (4) and (5) imply that:

ρ(σ, t + �t) = �(σ)

�(σ − �t)
ρ(σ − �t, t) .

From this, we obtain:

∂ρ(σ, t)

∂t
= lim

�t→0

ρ(σ, t + �t) − ρ(σ, t)

�t

= lim
�t→0

�(σ)
�(σ−�t) ρ(σ − �t, t) − ρ(σ, t)

�t

= lim
�t→0

(
�(σ)

�(σ−�t) − 1
)
ρ(σ − �t, t)

�t
+ lim

�t→0

ρ(σ − �t, t) − ρ(σ, t)

�t

= ∂ log�(σ)

∂σ
ρ(σ, t) − ∂ρ(σ, t)

∂σ
. (6)
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Hence, the labeled transition operator O(0) given no event takes the form:

O(0) = ∂ log�(σ)

∂σ
− ∂

∂σ
.

The probability density function ρ(σ, t) changes discontinuously after an event occurs,
though. All probability mass shifts from σ > 0 resetting back to σ = 0:

O(1)ρ(σ, t) = − φ(σ)

�(σ)
ρ(σ, t) + δ(σ )

∫ ∞

0

φ(σ ′)
�(σ ′)

ρ(σ ′, t)dσ ′ .

In other words, an event “collapses the wavefunction”.
The stationary distribution ρ(σ ) over causal states is given by setting ∂tρ(σ, t) to 0 and

solving. (At the risk of notational confusion, we adopt the convention that ρ(σ ) denotes the
stationary distribution and that ρ(σ, t) does not.) Straightforward algebra shows that:

ρ(σ ) = μ�(σ) .

From this, the continuous-time statistical complexity directly follows:

Cμ =
∫ ∞

0
μ�(σ) log

1

μ�(σ)
dσ .

Recall that for renewal processes, H[S+] = H[S−] = Cμ. This was the nondivergent
component of the infinitesimal time-discretized renewal process’ statistical complexity found
in Ref. [13].

4.2 Eventually Poisson Processes

As Theorem 1 anticipates, there is a qualitatively different topology to the ε-machine of an
eventually Poisson renewal process, largely due to the continuous-time causal states being
mixed discrete-continuous random variables. For σ < T ∗, there is “wave” propagation
completely analogous to that described in Eq. (6) of Sect. 4.1. However, there is a new kind
of continuous-time causal state at σ = T ∗, which does not have a one-to-one correspondence
to the dwell time. Instead, it denotes that the dwell time is at least some value; viz., T ∗. New
notation follows accordingly: ρ(σ, t), defined for σ < T ∗, denotes a probability density
function for σ < T ∗ and π(T ∗, t) denotes the probability of existing in causal state σ = T ∗.
Normalization, then, requires that:

∫ T ∗

0
ρ(σ, t)dσ + π(T ∗, t) = 1 .

The transition dynamics for π(T ∗, t) are obtained similarly to that for ρ(σ, t), in that we
consider all ways in which probability flows to π(T ∗, t + �t) in a short time window �t .
Probability can flow from any causal state with T ∗ − �t ≤ σ < T ∗ or from σ = T ∗ itself.
That is, if no event is observed, we have:

π(T ∗, t + �t) = e−λ�tπ(T ∗, t) +
∫ �t

0+
ρ(T ∗ − t ′, t)�(T ∗)e−λ(�t−t ′)

�(T ∗ − t ′)
dt ′.

The term e−λ�tπ(T ∗, t) corresponds to probability flow from σ = T ∗ and the integrand
corresponds to probability influx from states σ = T ∗ − t ′ with 0 < t ′ ≤ �t . Assuming
differentiability of π(T ∗, t) with respect to t , we find that:

∂

∂t
π(T ∗, t) = −λπ(T ∗, t) + ρ(T ∗, t) , (7)

123



120 S. Marzen, J. P. Crutchfield

where ρ(T ∗, t) is shorthand for limσ→T ∗ ρ(σ, t). This implies that the labeled transition
operator O(0) takes a piecewise form which acts as in Eq. (6) for σ < T ∗ and as in Eq. (7)
for σ = T ∗. As earlier, observing an event causes the “wavefunction collapse” to a delta
distribution at σ = 0.

The causal-state stationary distribution is determined again by setting ∂tρ(σ, t) and
∂tπ(σ, t) to 0. Equivalently, one can use the prescription suggested by Theorem 1 to cal-
culate π(T ∗) via integration of the stationary distribution over the prescient machine given
in Sect. 4.1:

π(T ∗) =
∫ ∞

T ∗
ρ(σ )dσ

= μ

∫ ∞

T ∗
�(σ)dσ .

If we recall that �(σ) = �(T ∗)e−λ(t−T ∗), we find that:

π(T ∗) = μ�(T ∗)/λ .

The process’ continuous-time statistical complexity—precisely, entropy of this mixed ran-
dom variable—is given by:

Cμ =
∫ T ∗

0
μ�(σ) log

1

μ�(σ)
dσ − μ�(T ∗)

λ
log

μ�(T ∗)
λ

.

This is the sum of the nondivergent Cμ component and the rate of divergence of Cμ of the
infinitesimal time-discretized renewal process [13].

4.3 Eventually-� Poisson Processes

Probability wave propagation equations, like those in Eq. (6), hold for σ < T ∗ and for
T ∗ < σ < T ∗ + �. At σ = T ∗, if no event is observed, probability flows in from both
(T ∗ + �)− and from (T ∗)−, giving rise to the equation:

ρ(T ∗, t + �t) = ρ(T ∗ − �t, t) + ρ(T ∗ + �∗ − �t, t) .

Unfortunately, there is a discontinuous jump in ρ(σ, t) at σ = T ∗ coming from (T ∗)− and
(T ∗ + �∗)−. And so, we cannot Taylor expand either ρ(T ∗ − �t, t) or ρ(T ∗ + �∗ − �t, t)
about �t = 0.

Again, we can use the prescription suggested by Theorem 1 to calculate the probability
density function over these causal states and, from that, calculate the continuous-time statis-
tical complexity. Below σ < T ∗, the probability density function over causal states is exactly
that described in Sect. 4.1: ρ(σ ) = μ�(σ). For T ∗ ≤ σ < T ∗ + �, the probability density
function becomes:

ρ(σ ) =
∑

σ ′:(σ ′−T ∗)mod �∗=σ

μ�(σ ′)

= μ

∞∑

i=0

�(σ + i�∗) .
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Recalling Definition 2, we see that �(σ + i�∗) = e−λi�(σ) and so find that for σ > T ∗:

ρ(σ ) = μ�(σ)

∞∑

i=0

e−λi

= μ�(σ)

1 − e−λ
.

Altogether, using Ref. [9], this gives the statistical complexity:

Cμ =
∫ T ∗

0
μ�(σ) log

1

μ�(σ)
dσ +

∫ T ∗+�∗

T ∗
μ�(σ)

1 − e−λ
log

1 − e−λ

μ�(σ)
dσ .

5 Differential Information Rates

Discrete-time entropy rates are usually defined via limT→∞ H[X0:T ]/T , which is equiv-
alent to H[X0|X :0] by the Cesaro Mean Theorem. The definition for the entropy rate
hμ of continuous-time processes follows an analogous pattern. We let �δ be the sym-
bol sequence observed over an arbitrarily small length of time δ, starting at the present
0−. We have hμ = limT→∞ H [T0:T ]/T , and the Cesaro Mean Theorem again yields that

hμ = limδ→0 d H[�δ|←−T ]/dδ.
We must similarly redefine other information measures listed in Ref. [20] as differential

information rates, where we craft new definitions largely based on Fig. 7. Following Fig. 7
too closely would yield infinities in the final answer that are regularizable; e.g., as described
in Ref. [13]. These infinities are exactly related to a well-known problem with differential
entropy: the entropy of a coarse-grained continuous random variable X with probability
density function ρ(x) takes the form of − ∫

ρ(x) log ρ(x)dx + log 1
ε
, where ε is the length

of the boxes used in coarse-graining.
Correspondingly, the original set-theoretic definitions [21] do not quite extend to the

continuous-time case. As mentioned earlier, the present extends over an infinitesimal time.
To define information anatomy rates more precisely, we let �δ be the symbol sequence
observed over an arbitrarily small length of time δ, starting at the present 0−. It could be that
�δ encompasses some portion of T1; the notation leaves this ambiguous. The entropy rate is
now:

hμ = lim
δ→0

d H[�δ|T:0+]
dδ

. (8)

Again, this is equivalent to the more typical random-variable “block” definition of entropy
rate [8]: limT→∞ H [T0:T ]/T .

Similarly, we define the single-measurement entropy rate as:

H0 = lim
δ→0

d H[�δ]
dδ

, (9)

the bound information rate as:

bμ = lim
δ→0

dI[Tδ:;�δ|T:0+]
dδ

, (10)

the ephemeral information rate as:

rμ = lim
δ→0

d H[�δ|T:0+ , Tδ:]
dδ

, (11)
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H[T:0+ ] H[T0−+δ:]

H0 δ

rμδ

bμδbμδ

qμδ

Fig. 7 Predictively useful and predictively useless information for renewal processes: Information diagram for
the pastT:0+ , infinitesimal present�δ , and futureTδ:. Themeasurement entropy rate H0 is the rate of change of
the single-measurement entropy H[�δ] at δ = 0. The ephemeral information rate rμ = H[�δ |T:0+ ,Tδ:] is the
rate of change of useless information generation at δ = 0. The bound information rate bμ = I[�δ;Tδ:|T:0+]
is the rate of change of active information storage. And, the co-information rate qμ = I[T:0+; �δ;Tδ:] is the
rate of change of shared information between past, present, and future. These definitions closely parallel those
in Ref. [20]

and the co-information rate as:

qμ = lim
δ→0

dI[T:0+;�δ; Tδ:]
dδ

. (12)

In direct analogy to discrete-time process information anatomy, we have the relationships:

H0 = 2bμ + rμ + qμ ,

hμ = bμ + rμ .

So, the entropy rate hμ, the instantaneous rate of information creation, again decomposes
into a component bμ that represents active information storage and a component rμ that
monitors “dissipated” information. The information-diagram for rates is given in Fig. 7;
complementing the causal-state diagram of Fig. 3.

Prescient states (not necessarily minimal) are adequate for deriving all information mea-
sures aside from C±

μ . As such, we focus on the transition dynamics of noneventually
�-Poisson ε-machines and, implicitly, their bidirectional machines.

To find the joint probability density function of the the time σ− to next event and time
σ+ since last event, we note that σ+ + σ− is an interevent interval; hence:

ρ(σ+, σ−) ∝ φ(σ+ + σ−) .

The normalization factor of this distribution is:

Z =
∫ ∞

0

∫ ∞

0
φ(σ+ + σ−)dσ+dσ−

=
∫ ∞

0

∫ ∞

σ−
φ(σ+)dσ+dσ−

=
∫ ∞

0
�(σ−)dσ−

= μ−1 .
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So, the joint probability distribution is:

ρ(σ+, σ−) = φ(σ+ + σ−)

Z
= μφ(σ+ + σ−) .

Equivalently, we could have calculated the conditional probability density function of time-
to-next-event given that it has been at least σ+ since the last event. This, by similar arguments,
is φ(σ+ + σ−)/�(σ+). This would have given the same expression for ρ(σ+, σ−).

To find the excess entropy, which is defined as I[T:0+; T0−:] or equivalently as
limT→∞

(
H [T0:T ] − hμT

)
[8], where T0:T is a future of time length T , we merely need

calculate [10,11]:

E = I[S+;S−]
= H[S+] + H[S−] − H[S+,S−]
= −

∫ ∞

0
μ�(σ+) log

(
μ�(σ+)

)
dσ+ −

∫ ∞

0
μ�(σ−) log

(
μ�(σ−)

)
dσ−

+
∫ ∞

0

∫ ∞

0
μφ(σ+ + σ−) log

(
μφ(σ+ + σ−)

)
dσ+dσ−.

Since
∫ ∞
0

∫ ∞
0 f (x + y)dxdy = ∫ ∞

0 x f (x)dx , which can be shown by recourse to Riemann
sums [16], we have:

E =
∫ ∞

0
μ t φ(t) log2

(
μφ(t)

)
dt − 2

∫ ∞

0
μ�(t) log2

(
μ�(t)

)
dt .

This agrees with the formula given in Ref. [13], which was derived by considering the limit
of infinitesimal time discretization [22].

Now, we turn to the more technically challenging task of calculating differential infor-
mation anatomy rates. Suppose that �δ is a random variable for paths of length δ. Each path
is uniquely specified by a list of event times. The trajectory distribution is therefore quite
complicated. However, only trajectories with zero or one event matter for calculating these
differential information anatomy rates. Let Xδ be a random variable defined by:

Xδ =

⎧
⎪⎨

⎪⎩

0 No events in �δ

1 1 event in �δ

2 ≥ 2 events in �δ

.

We first illustrate how to find H0, since the same technique allows calculating hμ. We can
rewrite the path entropy as:

H[�δ] = H[Xδ] + H[�δ|Xδ] .

For renewal processes, when μ is finite, we see that:

Pr(Xδ = 0) = 1 − μδ + O(δ2) ,

Pr(Xδ = 1) = μδ + O(δ2) , and

Pr(Xδ = 2) = O(δ2) .

Straightforward algebra shows that:

H[Xδ] = μδ − μδ log(μδ) + O(δ2 log δ) .
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Wewould like to find a similar asymptotic expansion for H[�δ|Xδ], which can be rewritten
as:

H[�δ|Xδ] = Pr(Xδ = 0)H[�δ|Xδ = 0]
+ Pr(Xδ = 1)H[�δ|Xδ = 1] + Pr(Xδ = 2)H[�δ|Xδ = 2] .

First, we notice that �δ is deterministic given that Xδ = 0—the path of all silence. So,
H[�δ|Xδ = 0] = 0.

Second, we can similarly ignore the term Pr(Xδ = 2)H[�δ|Xδ = 2] since Pr(Xδ = 2)
is O(δ2) and, we claim, H[�δ|Xδ = 2] is O(log δ). Then, note that Pr(�δ|Xδ = 2) is a
probability density function of two variables with the stipulation that neither is negative and
that the sum is less than δ. Hence, by standard maximum entropy arguments, H[�δ|Xδ =
2] is at most log δ. By noting that trajectories with only one event are a strict subset of
trajectories with more than one event but with multiple events arbitrarily close to one another:
H[�δ|Xδ = 2] ≥ H[�δ|Xδ = 1]. The latter, by arguments below, is O(log δ). Thus, the term
Pr(Xδ = 2)H[�δ|Xδ = 2] is O(δ2 log δ) at most.

Finally, to calculate H[�δ|Xδ = 1], we note that when Xδ = 1, paths can be uniquely
specified by an event time, whose probability is Pr(T = t |Xδ = 1) ∝ �(t)�(δ−t). A Taylor
expansion about δ/2 shows that Pr(T = t |Xδ = 1) = δ−1 + O(δ), and so H[�δ|Xδ = 1]
is log δ with corrections of O(δ). Hence, the largest corrections to H[�δ|Xδ] come from
ignoring the paths with two or more events, rather than from approximating all paths with
only one event as equally likely. In sum, we see that:

H[�δ|Xδ] = μδ log δ + O(δ2 log δ) .

Together, these manipulations give:

H[�δ] = μδ − μδ logμ + O(δ2 log δ) .

This then implies:

H0 = lim
δ→0

d H[�δ]
dδ

= μ − μ logμ .

A similar series of arguments helps to calculate hμ(σ+) defined in Eq. (8), where now μ

is replaced by φ(σ+)/�(σ+):

hμ(σ+) = φ(σ+)

�(σ+)
− φ(σ+)

�(σ+)
log

φ(σ+)

�(σ+)
, (13)

which gives:

hμ =
∫ ∞

0
μφ(σ+)dσ+ −

∫ ∞

0
μφ(σ+) log

φ(σ+)

�(σ+)
dσ+ .

Algebra (namely, integration by parts) not shown here yields the expression:

hμ = −μ

∫ ∞

0
φ(t) logφ(t)dt . (14)

This is the nondivergent component of the expression given in Eq. (10) of Ref. [13] for the
τ -entropy rate of renewal processes, and it agrees with an alternative derivation [23].
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We require slightly different techniques to calculate bμ, aswe no longer need to decompose
a path entropy. From Eq. (10), we have:

bμ(σ+) = lim
δ→0

d H[S−
δ |S+

0 = σ+]
dδ

.

Let us develop a short-time δ-asymptotic expansion for Pr(S−
δ = σ−|S+

0 = σ+). First,
notice we have the Markov chain S+

0 → S+
δ → S−

δ , so that:

Pr(S−
δ = σ−|S+

0 = σ+) =
∫ ∞

0
Pr(S−

δ = σ−|S+
δ = σ ′)Pr(S+

δ = σ ′|S+
0 = σ+)dσ ′.

We already can identify:

Pr(S−
δ = σ−|S+

δ = σ ′) = φ(σ− + σ ′)
�(σ ′)

.

To understand Pr(S+
δ = σ ′|S+

0 = σ+), we expand:

Pr(S+
δ = σ ′|S+

0 = σ+) =
2∑

x=0

Pr(S+
δ = σ ′, Xδ = x |S+

0 = σ+) .

Recall that Pr(Xδ = 2|S+
0 = σ+) is O(δ2), so we have:

Pr(S+
δ = σ ′, Xδ = 0|S+

0 = σ+) = �(σ ′)
�(σ+)

δ(σ ′ − δ − σ+) ,

and:

Pr(S+
δ = σ ′, Xδ = 1|S+

0 = σ+) =
{

φ(σ++δ−σ ′)
�(σ+)

�(σ ′) σ ′ ≤ δ

0 σ ′ > δ
.

Then, straightforward algebra not shown gives:

Pr(S−
δ = σ−|S+

0 = σ+) = φ(σ+ + σ−)

�(σ+)
+ φ′(σ+ + σ−) + φ(σ−)φ(σ+)

�(σ+)
δ + O(δ2) .

This can be used to derive:

bμ(σ+) = φ(σ+)

�(σ+)

(
logφ(σ+) − 1 −

∫ ∞

0
φ(σ−) logφ(σ+ + σ−)dσ−)

,

in nats. When φ(t) = λe−λt , for instance, bμ(σ+) = 0 for all σ+, confirming that Poisson
processes really are memoryless. This allows us to calculate the total bμ as:

bμ =
∫ ∞

0
μ�(σ+)bμ(σ+)dσ+

= −μ
(
1 +

∫ ∞

0

∫ ∞

0
φ(t)φ(t ′) logφ(t + t ′)dtdt ′ −

∫ ∞

0
φ(t) logφ(t)dt

)
,
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in nats. From this, we find rμ using:

rμ = hμ − bμ

= −μ

∫ ∞

0
φ(σ+) logφ(σ+)dσ+

+ μ
(
1 +

∫ ∞

0

∫ ∞

0
φ(σ+)φ(σ−) log�(σ+)dσ+dσ− −

∫ ∞

0
φ(σ+) logφ(σ+)dσ+)

= −μ
(
2

∫ ∞

0
φ(t) logφ(t + t ′)dt − 1 −

∫ ∞

0
φ(t)

∫ ∞

0
φ(t ′) logφ(t + t ′)dt ′dt

)
.

Continuing, we calculate qμ from:

qμ = H0 −(hμ + bμ)

= −μ logμ − μ + μ
( ∫ ∞

0
φ(t)

∫ ∞

0
φ(t ′) logφ(t + t ′)dt ′dt + 1

)

= μ

∫ ∞

0
φ(t)

∫ ∞

0
φ(t ′) logφ(t ′)dt ′dt − μ logμ .

And, we calculate ρμ via:

ρμ = H0 −hμ

= −μ logμ − μ + μ

∫ ∞

0
φ(σ+) logφ(σ+)dσ+ .

All these quantities are gathered in Table 1, which gives them in bits rather than nats.

6 Conclusions

Though the definition of continuous-time causal states of renewal processes parallels that
for discrete-time causal states, continuous-time ε-machines and information measures are
markedly different from their discrete-time counterparts. Similar technical difficulties arise
more generally when describing minimal maximally predictive models of other continuous-
time, discrete-symbol processes that are not the continuous-timeMarkov processes analyzed
in Ref. [6]. The resulting ε-machines do not appear like conventional HMMs—recall
Figs. 4, 5, and 6—and most of the information measures (excepting the excess entropy)
must be reinterpreted as differential information rates. And so, the machinery required to
deploy continuous-time ε-machines differs significantly from that accompanying discrete-
time ε-machines.

That said, the ε-machine continuous-time machinery gave us a new way to calculate these
information measures. Practically, the formulae in Table 1 provide new approaches to binless
plug-in information-measure estimation; e.g., following Ref. [24].

Traditionally, expressions for such information measures come from calculating the time-
normalized path entropy of arbitrarily long trajectories; e.g., as in Ref. [25]. Instead, we
calculated the path entropy of arbitrarily short trajectories, conditioned on the past. This
allows us to extend the results of Ref. [25] for the entropy rate of continuous-time, discrete-
alphabet processes to hidden semi-Markov processes; see the sequel Ref. [26]. We hope
that our results here pave the way toward understanding the difficulties that lie ahead when
studying the structure and information in continuous-time, continuous-value processes.
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