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Abstract We show that minimizers of the Heitmann–Radin energy (Heitmann and Radin in
J Stat Phys 22(3):281–287, 1980) are unique if and only if the particle number N belongs to
an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19,
21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120
(see the paper for a closed-form description of this sequence). The proof relies on the discrete
differential geometry techniques introduced in De Luca and Friesecke (Crystallization in two
dimensions and a discrete Gauss–Bonnet Theorem, 2016).

Keywords Crystallization · Wulff shape · Heitmann–Radin potential · Discrete differential
geometry · Energy minimization

1 Introduction

A fundamental problem in statistical and solid mechanics is to explain theoretically why
atoms at low temperature self-assemble into subsets of periodic lattices, and why these
subsets exhibit specific polyhedral shapes.

In previous studies, the specific shapes have been beautifully explained under two simpli-
fications. First, one assumes crystallization, i.e. one restricts the admissible atomic positions
to lattice sites. Second, one passes to a coarse-grained description in which atomistic energy
minimization is replaced by minimization of an effective surface energy of the region �

occupied by the atoms. Such a surface energy governing the shape � was first written down
by Gibbs, and in modern notation has the form
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∫
∂�

ϕ(ν(x)) dA(x). (1.1)

Here � is an—up to regularity requirements arbitrary—subset of Rd , ν(x) is the outward
unit normal to � at the point x , ϕ is a surface energy density which captures the fact that
interfaces with certain orientations with respect to the crystal lattice are favoured over others,
and dA(x) is the usual area element (Hausdorff measureHd−1) on ∂�. A fundamental result
going back to Taylor [11] and Fonseca and Müller [5] states that minimizers of (1.1) among
sets of finite perimeter and fixed volume are unique up to translation, and given by a dilation
of the Wulff shape {x ∈ R

d : x · ν(x) ≤ ϕ(x) for all x ∈ ∂�}. For a related macroscopic
uniqueness result at finite temperature in the context of the 2D Ising model see [4].

Microscopically, the situation regarding uniqueness is much more subtle. Our goal in
this note is to settle the uniqueness question completely in case of the zero-temperature
two-dimensional Heitmann–Radin model, the perhaps simplest model describing the self-
assembly of atoms into crystalline order and special shapes despite allowing arbitrary particle
positions in R

2.
The Heitmann–Radin energy for a system of N identical particles with positions

x1, .., xN ∈ R
2, introduced in [6], is

EHR(X) := 1

2

∑
1≤i< j≤N

VHR(|xi − x j |), (1.2)

where here and below we abbreviate the position vector of all particles by X ∈ R
2N and the

interaction potential VHR is given by

VHR(r) =
⎧⎨
⎩

+∞ if r < 1
−1 if r = 1
0 if r > 1.

(1.3)

The potential (1.3) arises naturally from the Lennard-Jones potential V (r) = r−2p − 2r−p

by passing to the limit p → ∞ [3]. In [6], Heitmann and Radin proved the fundamental
result that for any fixed N ∈ N, the configurations X minimizing EHR are, up to rotation and
translation, subsets of the triangular lattice

L = {ie + jf : i, j ∈ Z}, e =
(
1
0

)
, f =

(
1/2√
3/2

)
.

We remark that it is an open problem up to which lengthscales this crystallization result
persists at finite temperature. Mermin’s theorem [7] suggests—possibly very slow—decay
of correlations. For certain model systems of infinitely many particles, such as the Gibb-
sian point process with hard-core repulsion (corresponding to the pair potential (1.3) with
the attractive part removed), translational symmetry breaking (although not orientational
symmetry breaking) has been rigorously ruled out [9].

An interesting aspect of the model (1.2)–(1.3) even at zero-temperature is the non-
uniqueness of the minimizers. Example of non-uniqueness are elementary to deduce from
the explicit formula of the ground states in [6]. Such examples by no means contradicts the
macroscopic uniqueness result for (1.1); indeed in [1] the associated macroscopic surface
energy density ϕ is derived for the model (1.2), and it is shown that as the number of N of
particles gets large, the empirical measure μN associated with any sequence of microscopic
minimizers converges after re-scaling to the characteristic function of the uniqueWulff shape.

Further insight into the uniqueness question was recently achieved by Schmidt [10]. He
showed that microscopic regular hexagons (Fig. 1, left picture) are the unique microscopic
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minimizer for their particle number, by re-writing the discrete energy in the form (1.1) via
introducing suitable tiles around each particle and applying the macroscopic uniqueness
theorem for (1.1). Moreover in [10] it is shown that for particle numbers N exceeding those
of a microscopic regular hexagon by 1, the amount of non-uniqueness can be surprisingly

large, of order N
3
4 (for the determination of the proportionality constant see [2]).

Here we completely settle the question of whenmicroscopic uniqueness occurs. The result
is as follows.

Theorem 1.1 Let N ∈ N. The minimizers of EHR among N-particle configurations are
unique up to translation and rotation if and only if either

(a) N = 3s2 + 3s + 1

for some s ∈ N ∪ {0}, or
(b) N = 3s2 + 3s + 1 + (s + 1)k + s

for some s ∈ N ∪ {0} and some k ∈ {0, 1, 2, 3, 4}.
An explicit list of the numbers between 1 and 120 satisfying (a) or (b) was given in

the Abstract. Case (a) corresponds to regular hexagons (see the leftmost picture in Fig. 1),
recovering the uniqueness result of [10]. The other uniqueness cases were neither previously
conjectured, nor can they be establishedwith the samemethod, as themicroscopicminimizers
are no longer regular hexagons and hence the associated continuum sets introduced in [10]
do not minimize the correspoding continuum energy (1.1).

The results in [10] and Theorem 1.1 suggest interesting statistical mechanics questions
for future research even at zero temperature: what are the most likely coarse-grained shapes
of the minimizers in the case of non-uniqueness? And what can be said about the most likely
particle numbers N in the grand canonical ensemble?

Our proof of Theorem 1.1 relies on the discrete differential geometry approach introduced
recently by us in [3]. In [3] we used this approach to give a new proof of the Heitmann–Radin
crystallization theorem; here we employ it to settle the uniqueness question. This approach
starts by associating, to each particle configuration X = (x1, . . . , xN ), its bond graph, a
planar graph (see Fig. 2) whose definition we recall here: vertices correspond to the particle
positions x j , edges to line segments [x j , xk] connecting two particle positions of distance 1,
and faces to open bounded subsets ofR2 which are nonempty, do not contain any point in X ,
and whose boundary is given by a cycle ∪k

i=1[xi−1, xi ] of edges for some points x0, . . . , xk
with xk = x0. A key result of [3] needed in the proof of Theorem 1.1 is the following
geometric decomposition of the Heitmann–Radin energy on N -particle configurations:

EHR(X) = −3N + P(X) + μ(X) + 3χ(X), (1.4)

Fig. 1 The uniqueness cases for N = 3s2 + 3s + 1 + � with 0 ≤ � ≤ 6s and s = 5. Starting from the
left: N = 91, N = 91 + 5 = 96, N = 91 + (5 + 1) · 1 + 5 = 102, N = 91 + (5 + 1) · 2 + 5 = 108,
N = 91+ (5+ 1) · 3+ 5 = 114, N = 91+ (5+ 1) · 4+ 5 = 120. The particles added to the regular hexagon
on the left in order to obtain the unique minimizers are shown in red (color figure online)
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Fig. 2 Bond graph, defect measure and combinatorial perimeter of a particle configuration. Particles are said
to be connected by an edge (or bond) if their distance is 1. For the bond graph above, the Euler characteristic
χ is 1 (since the graph is connected), the defect measure μ (see (1.5)) equals 3 (since the graph contains a
square and a pentagon), and the combinatorial perimeter equals 17. The latter is because there are 13 regular
boundary edges, i.e. edges lying on the boundary of precisely one face, and 2 wire edges, i.e. edges not lying
on the boundary of any face, which must be counted twice. It follows that the right hand side of (1.4) equals
−3 · 17 + 17 + 3 + 3 · 1 = −28, which indeed agrees with the Heitmann–Radin energy of the configuration

where χ(X) is the Euler characteristic of the bond graph of X , P(X) is its combinatorial
perimeter as introduced in [3], namely the number of boundary edges with “wire edges”
counted twice (see Fig. 2), and μ(X) is the defect measure

μ(X) = �quadrilaterals + 2 �pentagons + 3 �hexagons + . . . , (1.5)

which can be viewed as a distance measure between the bond graph and vacancy-free subsets
of the triangular lattice L. See Fig. 2.

2 Proof of the Theorem

We begin by showing non-uniqueness in the case when the particle number N is not of the
form (a) or (b) in Theorem 1.1. First notice that for such N , the “canonical” minimizer from
[3,6] (see Fig. 3, left picture) has a non-convex angle at the boundary.

As in the Figure, let k ∈ {0, 1, 2, 3, 4, 5} be the number of complete sides of the canonical
minimizer that were added to the central regular hexagon. When k ≤ 2, we can move the
first not yet covered side of the central hexagon (boxed particles, left picture in Fig. 3) on
top of the last not yet covered side of the central hexagon (see Fig. 3, right picture). This
preserves μ = 0 and χ = 1, and does not change the perimeter, and hence, by (1.4), yields
another minimizer. When k ≥ 3, we can instead move the first new side of the canonical

Fig. 3 Two minimizers of EHR for N = 106 = 3 s2 + 3 s + 1+ (s + 1)k + j , with s = 5, k = 2, and j = 3.
Left: The “canonical” minimizer from [3,6]: starting from the grey particles constituting a regular hexagon
with sidelength s, the remaining (red) particles are added by following a counterclockwise path around the
hexagon starting from the encircled point. Right: Another minimizer, obtained from the one on the left by
moving the boxed segment of atoms (color figure online)
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minimizer obtained by covering the central hexagon on top of the third covered side, again
leaving defect measure, Euler characteristic and perimeter—and hence the Heitmann–Radin
energy—unchanged. Either way, the newminimizer is not a rotated translate of the canonical
one.

Before moving to the proof of uniqueness when N is of form (a) or (b), we introduce
some notation (which was also used in [3]). For an N -point configuration, i.e. X ⊂ R

2 with
�X = N , endowed with the planar graph structure described in the Introduction, we say that
x ∈ X is a boundary particle if it is adjacent to a boundary edge, i.e. an edge lying on the
boundary of at most one face. We denote the set of boundary particles by ∂X , and say that X
has simply closed polygonal boundary if the union of boundary edges forms a simply closed
curve.

Let us also recall the Heitmann–Radin crystallization theorem proved in [6] (see also
[3]). This result says that minimizers of the Heitmann–Radin energy (1.2) among arbitrary
N -particle configurations, i.e. X ⊂ R

2 with �X = N , belong—up to translation and rotation
and for N ≥ 3—to the set of crystallized configurations

X N
L := {X ⊂ L : �X = N , all faces of X are triangles,

X has simply closed polygonal boundary}.
This reduces the uniqueness question to uniqueness amongconfigurations inX N

L , and together
with (1.4) shows that

min
X⊂R2, �X=N

EHR(X) = min
X∈X N

L
EHR(X) = −3N + 3 + min

X∈X N
L
P(X).

Moreover, to describe the numerical value of the ground state energy, we recall that for any
N ∈ N there exists a uniquely determined triple (s(N ), k(N ), j (N )) ∈ (N ∪ {0})3 with
k(N ) ≤ 5 and j (N ) ≤ s(N ) such that

N = 3s2(N ) + 3s(N ) + 1 + (s(N ) + 1)k(N ) + j (N ).

In terms of the numbers s, k, and j , it follows from [3,6] that

min
X∈X N

L
P(X) =

{
6 s(N ) if k(N ) = j (N ) = 0,
6 s(N ) + k(N ) + 1 otherwise.

(2.1)

Finally, we will need the following result which is an immediate consequence of [3, Lemma
4.1, Lemma 4.2].

Lemma 2.1 Let N , N ′ ∈ N.
Let X ∈ X N

L and let X ′ := X \ ∂X. Then

P(X) ≥ P(X ′) + 6.

Conversely, let X ′ ∈ X N ′
L and set

X := X ′ ∪ {x ∈ L : there exists x ′ ∈ X ′ with |x − x ′| = 1};
then

P(X) = P(X ′) + 6.

We are now in a position to prove the uniqueness statement in Theorem 1.1. We establish
the claim only for N of the form (b), the proof in case (a) being analogous (and an alternative
proof in case (a) being already known [10]). We use induction on s = s(N ). It is easy to
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see that the claim is satisfied for s = 0, 1, for any value of k in {0, 1, 2, 3, 4}. Fix such a k.
Assuming that the minimizer is unique for Ns−1 := 3(s − 1)2 + 3(s − 1) + 1+ s k + s − 1,
we prove that it is unique for Ns := 3 s2 + 3 s + 1 + (s + 1)k + s. Let X be a minimizer
of EHR among N -particle configurations; then by the Heitmann–Radin theorem X belongs
(up to rotation and translation) to X N

L , and by (2.1) it satisfies P(X) = 6 s + k + 1. Set
X ′ := X \ ∂X . We have that �X ′ = Ns − 6 s − k − 1 = Ns−1. By Lemma 2.1, we conclude
that

6 s + k + 1 = P(X) ≥ P(X ′) + 6 ≥ min
Y∈X N ′

L
P(Y ) + 6 = 6 (s − 1) + k + 1 + 6,

and hence all the above inequalities are equalities. Therefore X ′ is a minimizer. By the
inductive assumption, the minimizer X ′ is unique (up to rotation and translation). Since, by
the construction in Lemma 2.1, the set X is fully determined by X ′, we obtain the claim.

3 Concluding Remarks

The above arguments show that

{N ≥ 3 : the minimizer of P in X N
L is unique} = {an}n≥3,

where

an :=
{
3 s2 + 3 s + 1 if n = 6 s,
3 s2 + 3 s + 1 + (s + 1)k + s if n = 6 s + k + 1, k ∈ {0, 1, 2, 3, 4}. (3.1)

Moreover, using (2.1) one can easily check that for any n ≥ 3, an has a simple geometric
meaning: it is themaximumparticle numberwhoseHeitmann–Radinminimizer has perimeter
n, in formulae:

an = max{N ∈ N : min
X∈X N

L
P(X) = n}. (3.2)

It appears that the sequence {an} is well-known in number theory (see for instance [8,12]).
For example, an seems to co-incide with the number of nonnegative integer solutions to the
Diophantine equation

x + 2 y + 3 z = n.

Nevertheless, to the best of our knowledge, neither the geometric characterizations of an in
Theorem 1.1 and (3.2) nor the explicit one given in (3.1) have been observed before. It would
be very interesting both from a physical and amathematical point of view if a direct argument
linking the Heitmann–Radin model with the above Diophantine equation could be found.
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