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Abstract This paper extends the model reduction method by the operator projection to the
one-dimensional special relativistic Boltzmann equation. The derivation of arbitrary order
globally hyperbolic moment system is built on our careful study of two families of the
complicate Grad type orthogonal polynomials depending on a parameter. We derive their
recurrence relations, calculate their derivatives with respect to the independent variable and
parameter respectively, and study their zeros and coefficient matrices in the recurrence for-
mulas. Some properties of the moment system are also proved. They include the eigenvalues
and their bound as well as eigenvectors, hyperbolicity, characteristic fields, linear stability,
and Lorentz covariance. A semi-implicit numerical scheme is presented to solve a Cauchy
problem of our hyperbolic moment system in order to verify the convergence behavior of
the moment method. The results show that the solutions of our hyperbolic moment system
converge to the solution of the special relativistic Boltzmann equation as the order of the
hyperbolic moment system increases.
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1 Introduction

The beginning of the relativistic kinetic theory goes back to 1911 when an equilibrium
distribution function was derived for a relativistic gas [34]. Thirty years later, the covariant
formulation of the relativistic Boltzmann equation was proposed in [39] to describe the statis-
tical behavior of a thermodynamic system not in thermodynamic equilibrium. The transport
coefficients were determined from the Boltzmann equation by using the Chapman–Enskog
methodology in [29]. Different from a non-relativistic monatomic gas, a relativistic gas has
a bulk viscosity. It has called the attention of many researchers to a number of applications
of this theory: the effect of neutrino viscosity on the evolution of the universe and the study
of galaxy formation, neutron stars, and controlled thermonuclear fusion etc. The readers are
referred to the monographs [11,23] for more detailed descriptions.

The relativistic kinetic theory is attracting increasing attention in recent years, but it has
been sparsely used to model phenomenological matter in comparison to fluid models. In the
non-relativistic case, the kinetic theory has been studied intensively as amathematical subject
during several decades, and also played an important role from an engineering point of view,
see e.g. [10,12]. From the Boltzmann equation one could determine the distribution function
hence the transport coefficients of gases, however this task was not so easy. Hilbert showed
that an approximate solution of the integro-differential equation could be obtained from a
power series expansion of a parameter (being proportional to the mean free path). Chapman
and Enskog calculated independently the transport coefficients for gases whose molecules
interacted according to any kind of spherically symmetric potential function. Anothermethod
proposed by Grad [21,22] is to expand the distribution function in terms of tensorial Hermite
polynomials and introduce the balance equations corresponding to higher order moments
of the distribution function. The crucial ingredient of the Chapman–Enskog method is the
assumption that in the hydrodynamic regime the distribution function can be expressed as a
function of the hydrodynamic variables and their gradients. The Chapman–Enskog method
has been extended to the relativistic cases, see e.g. [14,19,20,24,25]. Unfortunately, it is
difficult to derive the equations of relativistic fluid dynamics from the kinetic theory [13].
The moment method can avoid such difficulty and is also generalized to the relativistic cases,
see e.g. [1,30–32,37,44]. However, the moment method cannot state the influence of the
Knudsen number. Combining the Chapman–Enskog method with the moment method has
been attempted [13,33].

It is difficult to derive the relativistic moment system of higher order since the family
of orthogonal polynomials can not be found easily. Several authors have tried to construct
the family of orthogonal polynomials analogous to the Hermite polynomials, see e.g [2,23].
Their application can be found in [13,33,45]. Unfortunately, there is no explicit expression of
the moment systems if the order of the moment system is larger than 3. Moreover, the hyper-
bolicity of existing general moment systems is not proved, even for the second order moment
system (e.g. the general Israel and Stewart system). For a special case with heat conduction
and no viscosity, Hiscock and Lindblom proved that the Israel and Stewart moment system
in the Landau frame was globally hyperbolic and linearly stable, but they also showed that
the Israel and Stewart moment system in the Eckart frame was not globally hyperbolic and
linearly stable. For the general case, they only proved that the Israel and Stewart moment
system was hyperbolic near the equilibrium. The readers are referred to [24,27,28]. Follow-
ing the approach used in [26,27], it is easy to show that the above conclusion is not true
if the viscosity exists, that is, the Israel and Stewart moment system in the Landau frame
is not globally hyperbolic too if the viscosity exists. There does not exist any result on the
hyperbolicity or loss of hyperbolicity of (existing) general higher-order moment systems
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for the relativistic kinetic equation. Such proof is very difficult and challenging. The loss
of hyperbolicity may cause the solution blow-up when the distribution is far away from the
equilibrium state. Even for the non-relativistic case, increasing the number ofmoments seems
not to avoid such blow-up [9].

Up to now, there have been some latest progresses on the Grad moment method in the
non-relativistic case. A regularization was presented in [5] for the 1DGradmoment system to
achieve global hyperbolicity. It was based on the observation that the characteristic polyno-
mial of the Jacobian of the flux in Grad’s moment system is independent of the intermediate
moments, and further extended to the multi-dimensional case [6,7]. The quadrature based
projection methods were used to derive hyperbolic PDE systems for the solution of the Boltz-
mann equation [35,36] by using some quadrature rule instead of the exact integration. In the
1D case, it is similar to the regularization in [5]. Those contributions led towell understanding
the hyperbolicity of the Grad moment systems. Based on the operator projection, a general
framework of model reduction technique was recently presented in [18]. It projected the time
and space derivatives in the kinetic equation into a finite-dimensional weighted polynomial
space synchronously, and might give most of the existing moment systems mentioned above.
The aim of this paper is to extend the model reduction method by the operator projection
[18] to the one-dimensional special relativistic Boltzmann equation and derive correspond-
ing globally hyperbolic moment system of arbitrary order. The key is to choose the weight
function and define the polynomial spaces and their basis as well as the projection operator.
The theoretical foundations of our moment method are the properties of two families of the
complicate Grad type orthogonal polynomials depending on a parameter.

The paper is organized as follows. Section 2 introduces the special relativistic Boltzmann
equation and some macroscopic quantities defined via the kinetic theory. Section 3 gives
two families of orthogonal polynomials dependent on a parameter, and studies their proper-
ties: recurrence relations, derivative relations with respect to the variable and the parameter,
zeros, and the eigenvalues and eigenvectors of the recurrence matrices. Section 4 derives the
moment system of the special relativistic Boltzmann equation and Sect. 5 studies its proper-
ties: the eigenvalues and its bound as well as eigenvectors, hyperbolicity, characteristic fields,
linear stability, and Lorentz covariance. Section 6 presents a semi-implicit numerical scheme
and conducts a numerical experiment to check the convergence of the proposed hyperbolic
moment system. Section 7 concludes the paper. To make the main message of the paper
less dilute, all proofs of theorems, lemmas and corollaries in Sects. 2–6 are given in the
Appendices 1–5 respectively.

2 Preliminaries and Notations

In the special relativistic kinetic theory of gases [11], a microscopic gas particle of rest mass
m is characterized by the (D + 1) space-time coordinates (xα) = (x0, x) and momentum
(D + 1)-vector (pα) = (p0,p), where x0 = ct , c denotes the speed of light in vacuum,
and t and x are the time and D-dimensional spatial coordinates, respectively. Besides the
contravariant notation (e.g. pα), the covariant notation such as pα will also be used in the
following and the covariant pα is related to the contravariant pα by

pα = gαβ p
β, pα = gαβ pβ,

where (gαβ) denotes the Minkowski space-time metric tensor and is chosen as
(gαβ) = diag{1,−ID}, ID is the D × D identity matrix, (gαβ) denotes the inverse of (gαβ),
and the Einstein summation convention over repeated indices is used. For a free relativistic
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particle, one has the relativistic energy-momentum relation (aka “on-shell” or “mass-shell”
condition) E2 −p2c2 = m2c4. If putting p0 = c−1E = √p2 + m2c2, then the “mass-shell”
condition can be rewritten as pα pα = m2c2.

As in the non-relativistic case, the relativistic Boltzmann equation describes the evolu-
tion of the one-particle distribution function of an ideal gas in the phase space spanned
by the particle space-time coordinates (xα) and momentum (D+1)-vector (pα). The one-
particle distribution function only depends on (x,p, t) and is defined in such a way that
f (x,p, t)dDxdDp gives the number of particles at time t in the volume element dDxdDp.
For a single gas the Boltzmann equation reads [11]

pα ∂ f

∂xα
= Q( f, f ), (2.1)

where the collision term Q( f, f ) depends on the product of the distribution functions of two
particles at collision, e.g.

Q( f, f ) =
∫

RD

∫

S
D−1+

(
f ′∗ f ′ − f∗ f

)
Bd�

dDp∗
p0∗

,

here f and f∗ are the distributions depending on the momenta before a collision, while f ′
and f ′∗ depend on the momenta after the collision, d� denotes the element of the solid angle,
the collision kernel is given by B = σ

√
(pα∗ pα)2 − m2c2 for a single non degenerate gas

(e.g. electron gas), and σ denotes the differential cross section of collision. The collision
term satisfies

∫

RD
Q( f, f )

dDp
p0

= 0,
∫

RD
pαQ( f, f )

dDp
p0

= 0, (2.2)

so that 1 and pα are called collision invariants. Moreover, the Boltzmann equation (2.1)
should satisfy the entropy dissipation relation (in the sense of classical statistics)

∫

RD
Q( f, f ) ln( f )

dDp
p0

≤ 0,

where the equal sign corresponds to the local thermodynamic equilibrium.
In kinetic theory the macroscopic description of gas can be represented by the first and

second moments of the distribution function f , namely, the partial particle (D+1)-flow Nα

and the partial energy-momentum tensor T αβ , which are defined by

Nα = c
∫

RD
pα f

dDp
p0

, T αβ = c
∫

RD
pα pβ f

dDp
p0

. (2.3)

They can be decomposed into the following forms (i.e. the Landau–Lifshitz decomposition)

Nα = m−1ρUα + nα, (2.4)

T αβ = c−2εUαUβ − 	αβ(P0 + 
) + παβ, (2.5)

where (Uα) = (γ (u)c, γ (u)u) denotes the macroscopic velocity (D + 1)-vector of gas,

γ (u) = (1 − c−2|u|2)− 1
2 is the Lorentz factor, 	αβ is defined by

	αβ := gαβ − c−2UαUβ, (2.6)

which is a symmetric projector onto the D-dimensional subspace orthogonal to Uα , i.e.
	αβUβ = 0. Here, the mass density ρ, the particle-diffusion current nα , the energy density
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ε, the shear–stress tensor παβ , and the sum of thermodynamic pressure P0 and bulk viscous
pressure 
 are defined and related to the distribution f by

ρ := c−2mUαN
α = c−1m

∫

RD
E f

dDp
p0

,

nα := 	α
βN

β = c
∫

RD
p〈α〉 f d

Dp
p0

,

ε := c−2UαUβT
αβ = c−1

∫

RD
E2 f

dDp
p0

, (2.7)

παβ := 	αβ
μνT

μν = c
∫

RD
p〈αβ〉 f d

Dp
p0

,

P0 + 
 := −D−1	αβT
αβ = D−1c−1

∫

RD
(E2 − m2c4) f

dDp
p0

,

where E := Uα pα here and hereafter, p〈α〉 := 	α
β p

β , p〈αβ〉 := 	
αβ
μν pμ pν , and

	αβ
μν := 1

2

(
	α

μ	β
ν + 	β

μ	α
ν − 2D−1	μν	

αβ
)
.

It is obvious to obtain

Uα p
〈α〉 = 0, (2.8)

and easy to verify the identity

pα = c−2EUα + p〈α〉. (2.9)

Multiplying the special relativistic Boltzmann equation (2.1) by 1 and pα respectively,
integrating both sides overRD in terms of p, and using (2.2) gives the following conservation
laws

∂αN
α = 0, ∂αT

αβ = 0. (2.10)

Remark 1 It is common to chooseUα as the velocity of either energy transport (the Landau–
Lifshitz frame) [38])

UβT
αβ = εUα, (2.11)

i.e.

	α
βT

βγUγ = c
∫

RD
Ep〈α〉 f d

Dp
p0

= 0, (2.12)

or particle transport (the Eckart frame [16], in which the velocity is specified by the flow of
particles)

Nα = m−1ρUα,

i.e.

	α
βN

β = c
∫

RD
	α

β p
β f

dDp
p0

= 0.

The former can be applied to the multicomponent gas while the latter is only used for the
single component gas. The present work will be done in the Landau–Lifshitz frame (2.11).
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Remark 2 At the local thermodynamic equilibrium, nα , 
, and παβ will be zero.

Remark 3 In order to simplify the collision term, several simple collision models have
been proposed, see [11]. Similar to the BGK (Bhatnagar–Gross–Krook) model in the non-
relativistic theory, two simple relativistic collision models are the Marle model [40]

Q( f, f ) = −m

τ
( f − f (0)), (2.13)

and the Anderson–Witting model [3]

Q( f, f ) = −Uα pα

τc2
( f − f (0)), (2.14)

where f (0) = f (0)(x,p, t) denotes the distribution function at the local thermodynamic
equilibrium, and τ is the relaxation time and may rely on ρ, θ .

In the non-relativistic limit, both (2.13) and (2.14) tend to the BGK model. However, the
Marle model (2.13) does not satisfy the constraints of the collision terms in (2.2).

The relaxation time τ can be defined by

τ = 1

nπd2 ḡ
,

where n denotes the particle number density, d denotes the diameter of gas particles, and ḡ
is proportional to the mean relative speed ξ̄ between two particles, e.g. ḡ = √

2ξ̄ or ξ̄ [11].

In the non-relativistic case, ξ̄ = 4
√

kT
πm , but the expression of ξ̄ in the relativistic case is

very complicate, see Sect. 8.2 of the book [11]. Usually, ξ̄ or ḡ is suitably approximated, for
example, ḡ ≈ c (that is, ḡ is approximated by using the ultra-relativistic limit). Under such
simple approximation, one has

τ ≈ 1

nπd2c
= m

ρπd2c
.

This paper will only consider the one-dimensional form of relativistic Boltzmann equation
(2.1). In this case, the vector notations x and p will be replaced with x or x1 and p or p1,
respectively, the Greek indices α and β run from 0 to 1, and (2.1) reduces to the following
form

p0
∂ f

∂ct
+ p1

∂ f

∂x
= Q( f, f ), t ∈ R

+, x ∈ R. (2.15)

In the 1D case, the shear–stress tensor παβ disappears even though the local-equilibrium is
departed from, and the local-equilibrium distribution f (0) can be explicitly given by

f (0) = ρg(0), g(0) = 1

2m2cK1(ζ )
exp (−ζ E) , (2.16)

and obeys the common prescription that the mass density ρ and energy density ε are com-
pletely determined singly by the local-equilibrium distribution f (0), that is,

ρ = ρ0 := c−1m
∫

R

E f (0) dp

p0
,

ε = ε0 := c−1
∫

R

E2 f (0) dp

p0
= ρc2

(
G(ζ ) − ζ−1) . (2.17)
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The local-equilibrium distribution f (0) in (2.16) is like the Maxwell-Jüttner distribution
[11] for the case of D = 3 and Maxwell gas

f (0) = ρg(0), g(0) = ζ

4πm4c3K2(ζ )
exp (−ζ E) ,

In (2.16), ζ = (kBT )−1(mc2) is the ratio between the particle rest energy mc2 and the
thermal energy of the gas kBT , kB denotes the Boltzmann constant, T is the thermodynamic
temperature, and Kn(ζ ) denotes the modified Bessel function of the second kind, defined by

Kn(ζ ) =
∫ ∞

0
cosh(nϑ) exp(−ζ cosh ϑ)dϑ, (2.18)

satisfying the recurrence relation

Kn+1(ζ ) = Kn−1(ζ ) + 2nζ−1Kn(ζ ). (2.19)

For ζ � 1 the particles behave as non-relativistic, and for ζ � 1 they behave as ultra-
relativistic.

Similar to (2.7), from the knowledge of the equilibrium distribution function f (0), it is
also possible to determine the other macroscopic variables such as

nα
0 := c

∫

R

p〈α〉 f (0) dp

p0
= 0,

P0 := c−1
∫

R

(
E2 − m2c4

)
f (0) dp

p0
= m−1ρkBT = ρc2ζ−1, (2.20)

where G(ζ ) := K−1
1 (ζ )K2(ζ ).

Now, the conservation laws (2.10) become

∂
(
ρU 0

)

∂ct
+ ∂

(
ρU 1

)

∂x
= 0,

∂
(
c−2ρhU 0U 1

)

∂ct
+ ∂

(
c−2ρhU 1U 1 + P0

)

∂x
= 0, (2.21)

∂
(
c−2ρhU 0U 0 − P0

)

∂ct
+ ∂

(
c−2ρhU 0U 1

)

∂x
= 0,

where h := ρ−1(ε + P0) = c2G(ζ ) denotes the specific enthalpy. They are just the
macroscopic equations of special relativistic hydrodynamics (RHD). In other words, when
f = f (0), the special relativistic Boltzmann equation (2.15) can lead to the RHD equations
(2.21). We aim at finding the reduced model equations to describe states with f = f (0). This
paper will extend the moment method by operator projection [18] to (2.15) and derive its
arbitrary order moment model in Sect. 4.

Before ending this section, we discuss the macroscopic variables calculated by a given
distribution f , in other words, for the nonnegative distribution f (x, p, t), which is not iden-
tically zero, can the physically admissible macroscopic states {ρ, u, θ = ζ−1} satisfying
ρ > 0, |u| < c and θ > 0 be obtained?

Theorem 2.1 For the nonnegative distribution f (x, p, t), which is not identically zero, the
density current Nα and energy-momentum tensor T αβ calculated by (2.3) satisfy
(
T 00 + T 11)2 > 4

(
T 01)2, N 0 − c−1uN 1 > 0, c−2ρ−1(T 00 − c−1uT 01) > 1,

(2.22)
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where the macroscopic velocity u is the unique solution satisfying |u| < c of the quadratic
equation

T 01c−2u2 − (T 00 + T 11)c−1u + T 01 = 0, (2.23)

that is

u =
{

T 00+T 11−
√

(T 00+T 11)2−4(T 01)2

2T 01c−1 , T 01 = 0,
0, T 01 = 0,

(2.24)

satisfying |u| < c. And the positive mass density ρ is calculated by

ρ = c−1m
N 0 − c−1uN 1

√
1 − c−2u2

. (2.25)

Furthermore, the equation

G
(
θ−1)− θ = c−2ρ−1(T 00 − c−1uT 01), (2.26)

has a unique positive solution θ in the interval (0,+∞).

Furthermore, the following conclusion holds.

Theorem 2.2 Under the assumptions of Theorem 2.1, the bulk viscous pressure 
 satisfies


 > −ρc2θ.

Remark 4 The proofs of those theorems are given in the Appendix 1. Theorem 2.1 provides
a recovery procedure of the admissible primitive variables ρ, u, and θ from the nonnegative
distribution f (x, p, t) or the given density current Nα and energy-momentum tensor T αβ

satisfying (2.22).
It is useful in the derivation of the moment system as well as the numerical scheme.

Remark 5 The assumption on positivity of f (x, p, t) is physical and sufficient for three
constraints in Theorem 2.1. Generally, the moment expansion cannot preserve the positivity
of f (x; p; t). However, one is only interested in the (macroscopic) moments and not in the
particular value of f . Using the moments calculated by a Grad expansion, physically relevant
information can be obtained even though the distribution function may become negative.

Before discussing the moment method, we first non-dimensionalize the relativistic Boltz-
mann equation (2.15). Here we only consider the Anderson–Witting model (2.14). If setting

x = Lx̂, p = c p̂, p0 = c p̂0, t = L

c
t̂, g = cĝ, f = n0

c3
f̂ ,

where L denotes themacroscopic characteristic length, n0 and θ0 = mc2/kB are the reference
particle number and temperature, respectively, then the 1D relativistic Boltzmann equation
(2.15) with (2.14) is non-dimensionalized as follows

n0
c2L

(

p0
∂ f̂

∂ t̂
+ p1

∂ f̂

∂ x̂

)

= n20πd
2

c2
Ûα p̂

αρ̂
(
f̂ (0) − f̂

)
,

or

p̂0
∂ f̂

∂ t̂
+ p̂1

∂ f̂

∂ x̂
= n0Lπd2Ûα p̂

αρ̂
(
f̂ (0) − f̂

)
.
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Thanks to Kn = λ
L = τ0c

L = 1
n0Lπd2

, the above equation is rewritten as

p̂0
∂ f̂

∂ t̂
+ p̂1

∂ f̂

∂ x̂
= ρ̂

Kn
Ûα p̂

α
(
f̂ (0) − f̂

)
. (2.27)

Thus, if τ̃ := Kn
ρ̂
is considered as a new“relaxation time”, then the collision termof relativistic

Boltzmann equation (2.27) has the same form of non-relativistic BGK model. For the sake
of convenience, in the following, we still use τ , x , t , f , p, p0, ρ to replace τ̃ , x̂ , t̂ , f̂ , p̂, p̂0,
ρ̂, respectively.

3 Two Families of Orthogonal Polynomials

This section introduces two families of orthogonal polynomials dependent on a parameter ζ

and their properties which will be used in deriving and discussing of our moment system.
These polynomials are similar to those given in [2]. All proofs are given in the Appendix 2.

If considering

ω(�)(x; ζ ) = (x2 − 1)�− 1
2

K1(ζ )
exp(−ζ x), � = 0, 1,

as the weight functions in the interval [1,+∞), where ζ ∈ R
+ denotes a parameter, then the

inner products with respect to ω(�)(x; ζ ) can be introduced as follows

( f, g)ω(�) :=
∫ +∞

1
f (x)g(x)ω(�)(x; ζ )dx, f, g ∈ L2

ω(�) [1,+∞), � = 0, 1,

where L2
ω(�) [1,+∞) :=

{
f
∣∣ ∫ +∞

1 f (x)2ω(�)(x; ζ )dx < +∞
}
. It is worth noting that

the choice of the weight function ω(�)(x; ζ ) is dependent on the equilibrium distribution
f (0)(x, p, t) in (2.16).
Let {P(�)

n (x; ζ )}, � = 0, 1, be two families of standard orthogonal polynomials with
respect to the weight function ω(�)(x; ζ ) in the interval [1,+∞), i.e.

(
P(�)
m , P(�)

n

)

ω(�)
= δm,n, � = 0, 1, (3.1)

where δm,n denotes the Kronecker delta function, which is equal to 1 if m = n, and 0
otherwise. Obviously, {P(�)

n (x; ζ )} satisfies
(
P(�)
n , xk

)

ω(�)
= 0, k ≤ n − 1, (3.2)

and

Q(x; ζ ) =
n∑

i=0

(
Q(x; ζ ), P(�)

n

)

ω(�)
P(�)
n (x; ζ ), (3.3)

for any polynomial Q(x; ζ ) of degree ≤ n in L2
ω(�) [1,+∞).

The orthogonal polynomials {P(�)
n (x; ζ )} can be obtained by using the Gram-Schmidt

process. For example, several orthogonal polynomials of lower degree are given as follows
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Fig. 1 The polynomials P(�)
n (x, ζ ) given in (3.4)

P(0)
0 (x; ζ ) = 1

√
G(ζ ) − 2ζ−1

,

P(0)
1 (x; ζ ) =

√
G(ζ ) − 2ζ−1

√
G(ζ )2 − 3ζ−1G(ζ ) + 2ζ−2 − 1

(
x − 1

G(ζ ) − 2ζ−1

)
,

P(0)
2 (x; ζ )

= ζ
√
G(ζ )2 − 3ζ−1G(ζ ) + 2ζ−2 − 1

√
2G(ζ )3 − 7ζ−1G(ζ )2 − 2G(ζ ) + 6ζ−2G(ζ ) + ζ−1

×
(

x2 − G(ζ )2 − 2ζ−1G(ζ ) − 1

ζ
(
G(ζ )2 − 3ζ−1G(ζ ) + 2ζ−2 − 1

) x − G(ζ )2 − 3ζ−1G(ζ ) + ζ−2 − 1

G(ζ )2 − 3ζ−1G(ζ ) + 2ζ−2 − 1

)

,

P(1)
0 (x; ζ ) = √ζ ,

P(1)
1 (x; ζ ) =

√
ζ

√−G(ζ )2 + 3ζ−1G(ζ ) + 1
(x − G(ζ )) , (3.4)

and plotted in Fig. 1 with respect to x and ζ . It shows that the coefficients in those orthog-
onal polynomials are so irregular that it will be quite complicate to study the properties of
{P(�)

n (x; ζ )}. Let c(�)
n be the leading coefficient of P(�)

n (x; ζ ), � = 0, 1. Without loss of gen-
erality, assume c(�)

n > 0, � = 0, 1. Due to the important result on the zeros of orthogonal
polynomials [43, Theorem 3.2], the polynomial P(�)

n (x; ζ ) has exactly n real simple zeros in
the interval (1,+∞), � = 0, 1. Thus if those zeros are denoted by {x (�)

i,n }ni=1 in an increasing

order, then the polynomial P(�)
n (x; ζ ) can be rewritten as follows

P(�)
n (x; ζ ) = c(�)

n

n∏

i=1

(
x − x (�)

i,n

)
. (3.5)

In the following, we will derive the recurrence relations of {P(�)
n (x; ζ )}, calculate their

derivatives with respect to x and ζ , respectively, and study the properties of zeros and coef-
ficient matrices in the recurrence relations.
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3.1 Recurrence Relations

This section presents the recurrence relations for the orthogonal polynomials {P(�)
n (x; ζ )},

� = 0, 1, the recurrence relations between {P(0)
n (x; ζ )} and {P(1)

n (x; ζ )}, and the specific
forms of the coefficients in those recurrence relations.

Using the three-term recurrence relation and the existence theorem of zeros of general
orthogonal polynomials in Theorems 3.1 and 3.2 of [43] gives the following conclusion.

Theorem 3.1 For � = 0, 1, a three-term recurrence relation for the orthogonal polynomials
{P(�)

n (x; ζ )} can be given by

x P(�)
n = a(�)

n−1P
(�)
n−1 + b(�)

n P(�)
n + a(�)

n P(�)
n+1, (3.6)

or in the matrix-vector form

xP(�)
n = J(�)

n P(�)
n + a(�)

n P(�)
n+1en+1, P(�)

n := (P(�)
0 , . . . , P(�)

n )T , (3.7)

where both coefficients

a(�)
n :=

(
x P(�)

n , P(�)
n+1

)

ω(�)
= c(�)

n

c(�)
n+1

, b(�)
n :=

(
x P(�)

n , P(�)
n

)

ω(�)
=

n+1∑

i=1

x (�)
i,n+1 −

n∑

i=1

x (�)
i,n ,

(3.8)

are positive, en+1 is the last column of the identity matrix of order (n + 1), and

J(�)
n :=

⎛

⎜⎜⎜⎜⎜⎜
⎝

b(�)
0 a(�)

0 0
a(�)
0 b(�)

1 a(�)
1

. . .
. . .

. . .

a(�)
n−2 b(�)

n−1 a(�)
n−1

0 a(�)
n−1 b(�)

n

⎞

⎟⎟⎟⎟⎟⎟
⎠

∈ R
(n+1)×(n+1),

which is a symmetric positive definite tridiagonal matrix with the spectral radius larger
than 1.

Besides those, the recurrence relations between {P(0)
n (x; ζ )} and {P(1)

n (x; ζ )} can also be
obtained.

Theorem 3.2 (i) Two three-termrecurrence relations between {P(0)
n (x; ζ )}and {P(1)

n (x; ζ )}
can be given by

(x2 − 1)P(1)
n = pn P

(0)
n + qn P

(0)
n+1 + rn+1P

(0)
n+2, (3.9)

P(0)
n+1 = rn P

(1)
n−1 + qn P

(1)
n + pn+1P

(1)
n+1, (3.10)

or in the matrix-vector form

P(0)
n+1 = JTn P

(1)
n + pn+1P

(1)
n+1en+2, (3.11)

(x2 − 1)P(1)
n = JnP

(0)
n+1 + rn+1P

(0)
n+2en+1, (3.12)

where

pn := c(0)
n

c(1)
n

, qn := c(1)
n

c(0)
n+1

(
n+2∑

i=1

x (0)
i,n+2 −

n∑

i=1

x (1)
i,n

)

= c(0)
n+1

c(1)
n

n+1∑

i=1

(
x (1)
i,n+1 − x (0)

i,n+1

)
,
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rn := c(1)
n−1

c(0)
n+1

, (3.13)

and

Jn :=

⎛

⎜⎜⎜
⎝

p0 q0 r1 0 0 · · · 0
0 p1 q1 r2 0 · · · 0

. . .
. . .

. . .

0 pn qn

⎞

⎟⎟⎟
⎠

∈ R
(n+1)×(n+2).

(ii) Two two-term recurrence relations between {P(0)
n (x; ζ )}and {P(1)

n (x; ζ )} canbe derived
as follows

(x2 − 1)P(1)
n = p̃n(x + q̃n)P

(0)
n+1 + r̃n P

(0)
n , (3.14)

P(0)
n+1 = 1

p̃n
(x − q̃n)P

(1)
n − a(1)

n−1

a(0)
n

r̃n P
(1)
n−1, (3.15)

where

p̃n := c(1)
n

c(0)
n+1

, q̃n :=
n+1∑

i=1

x (0)
i,n+1 −

n∑

i=1

x (1)
i,n , r̃n := pn(1 − p̃2n). (3.16)

3.2 Partial Derivatives

This section calculates the derivatives of the polynomial P(�)
n (x; ζ ) with respect to x and ζ ,

� = 0, 1.

Theorem 3.3 For � = 0, 1, the first-order derivative of the polynomial P(�)
n+1(x; ζ ) with

respect to the parameter ζ satisfies

∂P(�)
n+1

∂ζ
= a(�)

n P(�)
n − 1

2

(
G(ζ ) − ζ−1 − b(�)

n+1

)
P(�)
n+1. (3.17)

Theorem 3.4 The first-order derivatives of the polynomials {P(�)
n (x; ζ )} with respect to the

variable x satisfy

∂P(0)
n+1

∂x
= n + 1

p̃n
P(1)
n + ζrn P

(1)
n−1, (3.18)

(x2 − 1)
∂P(1)

n

∂x
+ x P(1)

n = (n + 1) p̃n P
(0)
n+1 + ζ pn P

(0)
n . (3.19)

3.3 Zeros

Using the separation theorem of zeros of general orthogonal polynomials [43] gives the
following conclusion on our orthogonal polynomials {P(�)

n (x; ζ )}.
Theorem 3.5 For � = 0, 1, the zeros {x (�)

i,n }ni=1 of P
(�)
n (x; ζ ) and {x (�)

i,n+1}n+1
i=1 of P(�)

n+1(x; ζ )

satisfy the separation property

1 < x (�)
1,n+1 < x (�)

1,n < x (�)
2,n+1 < · · · < x (�)

n,n < x (�)
n+1,n+1.
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There is still another important separation property for the zeros of the orthogonal poly-
nomials {P(�)

n (x; ζ ), � = 0, 1}.
Theorem 3.6 The n zeros {x (1)

i,n }ni=1 of P
(1)
n and n + 1 zeros of {x (0)

i,n+1}n+1
i=1 of P(0)

n+1 satisfy

1 < x (0)
1,n+1 < x (1)

1,n < x (0)
2,n+1 < · · · < x (1)

n,n < x (0)
n+1,n+1.

According to Theorems 3.5 and 3.6, we can know the sign of the coefficients of the
recurrence relations in Theorem 3.2.

Corollary 1 All quantities pn, qn, rn in (3.13) and p̃n, q̃n, r̃n in (3.16) are positive.

UsingCorollary 1, r̃n = pn(1 − p̃2n), and p̃n = (c(0)
n+1)

−1c(1)
n gives the following corollary.

Corollary 2 The leading coefficient of P(0)
n+1 is larger than that of P

(1)
n , i.e. c(0)

n+1 > c(1)
n .

According to Theorems 3.3 and 3.5, the following conclusion holds.

Corollary 3 The zeros {x (�)
i,n }ni=1 of P

(�)
n strictly decrease with respect to ζ , i.e.

∂x (�)
i,n

∂ζ
< 0.

3.4 Generalized Eigenvalues and Eigenvectors of Coefficient Matrices in the
Recurrence Relations

This section discusses the generalized eigenvalues and eigenvectors of two (2n+1)×(2n+1)
matrices A0

n and A
1
n , defined by

A0
n :=

(
J(0)
n O
O J(1)

n−1

)

, A1
n :=

(
O JTn−1

Jn−1 O

)
, (3.20)

where J(0)
n , J(1)

n , and Jn appear in the recurrence relations in Theorems 3.1 and 3.2.
Consider the following generalized eigenvalue problem (2nd sense): Find a vector y that

obeys A1
ny = λ̂A0

ny. If let u denote the first n + 1 rows of y, and v be the last n rows of y,
then one has

λ̂J(0)
n u = JTn−1v, λ̂J(1)

n−1v = Jn−1u. (3.21)

Multiplying (3.7), (3.11), and (3.12) by P(1)
n (−x; ζ ) with |x | > 1 gives

P(0)
n (x; ζ )P(1)

n (−x; ζ ) = 1

x
J(0)
n P(0)

n (x; ζ )P(1)
n (−x; ζ ) + 1

x
a(0)
n P(0)

n+1(x; ζ )P(1)
n (−x; ζ )en+1,

(3.22)

P(1)
n−1(x; ζ )P(1)

n (−x; ζ ) = 1

x
J(1)
n−1P

(1)
n−1(x; ζ )P(1)

n (−x; ζ ) + 1

x
a(1)
n−1P

(1)
n (x; ζ )P(1)

n (−x; ζ )en,

(3.23)

P(0)
n (x; ζ )P(1)

n (−x; ζ ) = JTn−1P
(1)
n−1(x; ζ )P(1)

n (−x; ζ ) + pn P
(1)
n (x; ζ )P(1)

n (−x; ζ )en+1,

(3.24)

(x2 − 1)P(1)
n−1(x; ζ )P(1)

n (−x; ζ )=Jn−1P(0)
n (x; ζ )P(1)

n (−x; ζ ) + rn P
(0)
n+1(x; ζ )P(1)

n (−x; ζ )en .

(3.25)
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If substituting (3.22) and (3.23) into (3.24) and(3.25) respectively, then one obtains

J(0)
n P(0)

n (x; ζ )P(1)
n (−x; ζ ) = xJTn−1P

(1)
n−1(x; ζ )P(1)

n (−x; ζ )

+
(
xpn P

(1)
n (x; ζ )P(1)

n (−x; ζ ) − a(0)
n P(0)

n+1(x; ζ )P(1)
n (−x; ζ )

)
en+1, (3.26)

x2 − 1

x
J(1)
n−1P

(1)
n−1(x; ζ )P(1)

n (−x; ζ ) = Jn−1P(0)
n (x; ζ )P(1)

n (−x; ζ )

+
(
rn P

(0)
n+1(x; ζ )P(1)

n (−x; ζ ) − x2 − 1

x
a(1)
n−1P

(1)
n (x; ζ )P(1)

n (−x; ζ )

)
en . (3.27)

Transforming (3.26) and (3.27) by x to −x and then adding them into (3.26) and (3.27)
respectively gives

√
x2 − 1

x
J(0)
n u(x; ζ ) = JTn−1v(x; ζ ) −

√
x2 − 1

x
a(0)
n Q2n(x; ζ )en+1, (3.28)

√
x2 − 1

x
J(1)
n−1v(x; ζ ) = Jn−1u(x; ζ ) + rnQ2n(x; ζ )en, (3.29)

for |x | > 1, where

u(x; ζ ) =P(0)
n (x; ζ )P(1)

n (−x; ζ ) + P(0)
n (−x; ζ )P(1)

n (x; ζ ),

v(x; ζ ) =
√
x2 − 1

(
P(1)
n−1(x; ζ )P(1)

n (−x; ζ ) − P(1)
n−1(−x; ζ )P(1)

n (x; ζ )
)

,

and

Q2n(x; ζ ) := P(0)
n+1(x; ζ )P(1)

n (−x; ζ ) + P(0)
n+1(−x; ζ )P(1)

n (x; ζ ). (3.30)

It is not difficult to find that if the second terms at the right-hand sides of (3.28) and (3.29)
disappear, then (3.28) and (3.29) reduce to two equations in (3.21). Thus in order to obtain
the generalized eigenvalues and eigenvectors of A0

n and A1
n , one has to study the zeros of

Q2n(x; ζ ).

Lemma 1 The function Q2n(x; ζ ) is an even polynomial of degree 2n and has 2n real
simple zeros {zi,n, i = ±1, . . . ,±n}, which satisfy z−i,n = −zi,n and zi,n ∈ (1,+∞) for
i = 1, . . . , n.

The polynomials Q10(x; ζ ), P(0)
5 (x; ζ ), P(0)

6 (x; ζ ), P(1)
4 (x; ζ ), and P(1)

5 (x; ζ )with ζ = 1
are plotted in Fig. 2, where the relation between their zeros can be clearly observed.

With the aid of Theorems 3.3 and 3.4, we can calculate the partial derivatives at zi,n of
Q2n(x; ζ ) with respect to x and ζ .

Lemma 2 At the positive zeros {zi,n}ni=1, the partial derivatives of Q2n(x; ζ ) satisfy

∂Q2n

∂ζ
(zi,n; ζ ) = 2

P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

a(0)
n

r̃n

(
( p̃n + p̃−1

n )zi,n P
(1)
n (−zi,n; ζ )P(0)

n+1(−zi,n; ζ )

+(z2i,n − 1)P(1)
n (−zi,n; ζ )2 + P(0)

n+1(−zi,n; ζ )2
)

,

∂Q2n

∂x
(zi,n; ζ ) = 2ζ

P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

a(0)
n

r̃n

(
( p̃n + p̃−1

n )P(0)
n+1(−zi,n; ζ )P(1)

n (−zi,n; ζ )

+zi,n P
(1)
n (−zi,n; ζ )2 + zi,n(z

2
i,n − 1)−1P(0)

n+1(−zi,n; ζ )2
)

.
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Fig. 2 Plots of the polynomials Q10(x; ζ ), P(0)
5 (x; ζ ), P(0)

6 (x; ζ ), P(1)
4 (x; ζ ), and P(1)

5 (x; ζ ) with ζ = 1

Moreover, one has

sign

(
∂Q2n

∂ζ
(zi,n; ζ )

)
= sign

(
∂Q2n

∂x
(zi,n; ζ )

)
= sign

(
P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

)

. (3.31)

Similar to Corollary 3, the following conclusion holds.

Lemma 3 The zeros {zi,n, i = ±1, . . . ,±n} of Q2n(x; ζ ) satisfy

∂zi,n
∂ζ

< 0, i = 1, . . . , n; ∂zi,n
∂ζ

> 0, i = −n, . . . ,−1.

Thanks to Lemmas 1 and 3, the generalized eigenvalues and eigenvectors of two
(2n+1)×(2n+1)matricesA0

n andA
1
n can be obtainedwith the aid of the zeros of Q2n(x; ζ ).

Theorem 3.7 Besides a zero generalized eigenvalue denoted by λ̂0,n, the matrix pairA0
n and

A1
n has 2n non-zero, real and simple generalized eigenvalues, which satisfy

λ̂i,n :=
√
z2i,n − 1

zi,n
, |λ̂i,n | < 1, i = ±1, . . . ,±n, (3.32)

and

∂λ̂i,n

∂ζ
< 0, i = 1, . . . , n,

∂λ̂i,n

∂ζ
> 0, i = −n, . . . ,−1. (3.33)

Corresponding (2n + 1) generalized eigenvectors can be expressed as

yi,n :=
(
uTi,n, v

T
i,n

)T
, (3.34)

with

ui,n = P(0)
n (zi,n; ζ )P(1)

n (−zi,n); ζ + P(0)
n (−zi,n; ζ )P(1)

n (zi,n; ζ ),
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vi,n =
√
z2i,n − 1

(
P(1)
n−1(zi,n; ζ )P(1)

n (−zi,n; ζ ) − P(1)
n−1(−zi,n; ζ )P(1)

n (zi,n; ζ )
)

, (3.35)

for i = ±1, . . . ,±n, and

u0,n = P(0)
n (1; ζ )P(0)

n+1(−1; ζ ) − P(0)
n (−1; ζ )P(0)

n+1(1; ζ ), v0,n = 0. (3.36)

4 Moment Method by Operator Projection

This section begins to extend the moment method by operator projection [18] to the one-
dimensional relativistic Boltzmann equation (2.15) and derive its arbitrary order hyperbolic
moment model. Without loss of generality, units in which both the speed of light c and rest
mass m of particle are equal to one will be used in the following. All proofs are given in the
Appendix 3.

4.1 Weighted Polynomial Space

In order to use themomentmethod by the operator projection to derive the hyperbolicmoment
model of the kinetic equation, we should define the weighted polynomial spaces and norms
as well as the projection operator. Thanks to the equilibrium distribution f (0) in (2.16), the
weight function is chosen as g(0), which will be replaced with the new notation g(0)

[u,θ ] by

considering the dependence of g(0) on the macroscopic fluid velocity u and θ = kBT/m =
ζ−1, that is

g(0)
[u,θ ] = 1

2K1(ζ )
exp

(
− E

θ

)
, E = Uα p

α. (4.1)

Associated with the weight function g(0)
[u,θ ], our weighted polynomial space is defined by

H
g(0)
[u,θ ] := span

{
pμ1 pμ2 . . . pμ�g(0)

[u,θ ] : μi = 0, 1, � ∈ N

}
,

which is an infinite-dimensional linear space equipped with the inner product

〈 f, g〉
g(0)
[u,θ ]

:=
∫

R

1

g(0)
[u,θ ]

f (p)g(p)
dp

p0
, f, g ∈ H

g(0)
[u,θ ] .

Similarly, for a finite positive integer M ∈ N, a finite-dimensional weighted polynomial
space can be defined by

H
g(0)
[u,θ ]
M := span

{
pμ1 pμ2 . . . pμ�g(0)

[u,θ ] : μi = 0, 1, � = 0, 1, . . . , M
}

,

which is a closed subspace of Hg(0)
[u,θ ] obviously.

Thanks to Theorem 2.2, for all physically admissible u and θ satisfying |u| < 1 and θ > 0,
we introduce two notations

P∞[u, θ ] :=(P̃(0)
0 [u, θ ], P̃(0)

1 [u, θ ], P̃(1)
0 [u, θ ], . . . , P̃(0)

M [u, θ ], P̃(1)
M−1[u, θ ], . . .)T , (4.2)

PM [u, θ ] :=(P̃(0)
0 [u, θ ], P̃(0)

1 [u, θ ], P̃(1)
0 [u, θ ], . . . , P̃(0)

M [u, θ ], P̃(1)
M−1[u, θ ])T , (4.3)

where P̃(0)
k [u, θ ] = g(0)

[u,θ ]P
(0)
k and P̃(1)

k [u, θ ] = g(0)
[u,θ ](U 0)−1P(1)

k p〈1〉.
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Lemma 4 The set of all components ofP∞[u, θ ] (resp.PM [u, θ ]) form a standard orthog-

onal basis of Hg(0)
[u,θ ] (resp. H

g(0)
[u,θ ]
M ).

Remark 6 In the non-relativistic limit, E = Uα pα , p〈1〉 and g(0)
[u,θ ] reduce to p2, −p and

1√
2πθ

exp(− p2

θ
), respectively, thus the basis becomes the generalized Hermite polynomial

[5].

Since H
g(0)
[u,θ ]
M is a subspace of H

g(0)
[u,θ ]
N when M < N < +∞, there exists a matrix

PM,N ∈ R
(2M+1)×(2N+1) with full row rank such that PM [u, θ ] = PM,NP N [u, θ ], where

PM,N := diag{I2M+1,2M+1,O2M+1,2N−2M }.
Using the properties of the orthogonal polynomials {P(�)

n (x; ζ ), � = 0, 1, n ≥ 0} in Sect.
3 can further calculate the partial derivatives and give the recurrence relations of the basis
functions {P̃(0)

n [u, θ ], n ≥ 0} and {P̃(1)
n−1[u, θ ], n ≥ 1}.

Lemma 5 (Derivative relations) The partial derivatives of basis functions
{P̃(0)

n [u, θ ], n ≥ 0} and {P̃(1)
n−1[u, θ ], n ≥ 1} can be calculated by

∂ P̃(0)
n [u, θ ]
∂s

= − ∂θ

∂s
ζ 2
(
1

2

(
G(ζ ) − ζ−1 − b(0)

n

)
P̃(0)
n [u, θ ] − a(0)

n P̃(0)
n+1[u, θ ]

)

+ ∂u

∂s

1

(1 − u2)

((
n p̃−1

n−1 − ζqn−1

)
P̃(1)
n−1[u, θ ] − ζ pn P̃

(1)
n [u, θ ]

)
,

∂ P̃(1)
n−1[u, θ ]

∂s
= − ∂θ

∂s
ζ 2
(
1

2

(
G(ζ ) − ζ−1 − b(1)

n−1

)
P̃(1)
n−1[u, θ ] + a(1)

n−1 P̃
(1)
n [u, θ ]

)

+ ∂u

∂s

1

1 − u2

(
(n p̃n−1 − ζqn−1) P̃

(0)
n [u, θ ] − ζrn P̃

(0)
n+1[u, θ ]

)
,

for s = t and x. It indicates that
∂ P̃(0)

M
∂s and

∂ P̃(0)
M−1
∂s ∈ H

g(0)
[u,θ ]
M+1.

Lemma 6 (Recurrence relations) The basis functions
{P̃(0)

n [u, θ ], n ≥ 0} and {P̃(1)
n−1[u, θ ], n ≥ 1} satisfy the following recurrence relations

p0PM [u, θ ] = Mt
MPM [u, θ ]

+
(
−U 1 pM P̃(1)

M [u, θ ] +U 0a(0)
M P̃(0)

M+1[u, θ ]
)
e12M+1

+
(
−U 1rM P̃(0)

M+1[u, θ ] +U 0a(1)
M−1 P̃

(1)
M [u, θ ]

)
e22M+1,

pPM [u, θ ] = Mx
MPM [u, θ ]

+
(
−U 0 pM P̃(1)

M [u, θ ] +U 1a(0)
M P̃(0)

M+1[u, θ ]
)
e12M+1

+
(
−U 0rM P̃(0)

M+1[u, θ ] +U 1a(1)
M−1 P̃

(1)
M [u, θ ]

)
e22M+1, (4.4)

where e12M+1 and e22M+1 are the penultimate and the last column of the identity matrix of
order (2M + 1), respectively, and

Mt
M : = −U 1Pp

MA1
M (Pp

M )T +U 0Pp
MA0

M (Pp
M )T ,

Mx
M : = −U 0Pp

MA1
M (Pp

M )T +U 1Pp
MA0

M (Pp
M )T , (4.5)
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in which Pp
M is a permutation matrix making

Pp
M P̃M [u, θ ] = PM [u, θ ], (4.6)

with

P̃M [u, θ ] := (P̃(0)
0 [u, θ ], . . . , P̃(0)

M [u, θ ], P̃(1)
0 [u, θ ], . . . , P̃(1)

M−1[u, θ ])T .

For a finite integer M ≥ 1, define an operator 
M [u, θ ] : Hg(0)
[u,θ ] → H

g(0)
[u,θ ]
M by


M [u, θ ] f :=
M∑

i=0

f 0i P̃
(0)
i [u, θ ] +

M−1∑

j=0

f 1j P̃
(1)
j [u, θ ], (4.7)

or in a compact form


M [u, θ ] f = [PM [u, θ ], fM ]M , (4.8)

where

f 0i = 〈 f, P̃(0)
i [u, θ ]〉

g(0)
[u,θ ]

, i ≤ M, f 1j = 〈 f, P̃(1)
j [u, θ ]〉

g(0)
[u,θ ]

, j ≤ M − 1, (4.9)

fM = ( f 00 , f 01 , f 10 , . . . , f 0M , f 1M−1)
T . (4.10)

and the symbol [·, ·]M denotes the common inner product of two (2M + 1)-dimensional
vectors.

Lemma 7 The operator
M [u, θ ] is a linear and bounded projection operator in sense that

(i) 
M [u, θ ] f ∈ H
g(0)
[u,θ ]
M for all f ∈ H

g(0)
[u,θ ] ,

(ii) 
M [u, θ ] f = f for all f ∈ H
g(0)
[u,θ ]
M .

Remark 7 The so-calledGrad type expansion is to expand the distribution function f (x, p, t)

in the weighted polynomial space Hg(0)
[u,θ ] as follows

f (x, p, t) = [P∞[u, θ ], f∞]∞ ,

where the symbol [·, ·]∞ denotes the common inner product of two infinite-dimensional
vectors, and f∞ = ( f 00 , f 01 , f 10 , . . . , f 0M , f 1M−1, . . .)

T .

4.2 Derivation of the Moment Model

Based on the weighted polynomial spaces Hg(0)
[u,θ ] and H

g(0)
[u,θ ]
M in Sect. 4.1 and the projection

operator 
M [u, θ ] defined in (4.7), the moment method by the operator projection [18] can
be implemented for the 1D special relativistic Boltzmann equation (2.15). In view of the fact
that the variables {ρ, u, θ,
, n1} are several physical quantities of practical interest and the
first three are required in calculating the equilibrium distribution f (0).

The (2M + 1)-dimensional vector

WM = (ρ, u, θ,
, ñ1, f 03 , f 12 , . . . , f 0M , f 1M−1)
T ,

will be considered as the dependent variable vector, instead of fM defined in (4.10), where
ñ1 := n1

√
1 − u2. The relations betweenWM and fM is

fM = DW
MWM , (4.11)
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Fig. 3 Schematic diagram of the moment method by the operator projection for the 1D special relativistic
Boltzmann equation

where the square matrix DW
M depends on θ and is of the following explicit form

DW
1 =

⎛

⎝
(c(0)

0 )−1 0 0
0 0 0
0 0 0

⎞

⎠ , DW
2 =

⎛

⎜⎜⎜⎜⎜
⎝

(c(0)
0 )−1 0 0 c(0)

0 0
0 0 0 c(0)

1 x (0)
1,1 0

0 0 0 0 −c(1)
0

0 0 0 −c(0)
2 x (0)

1,2x
(0)
2,2 0

0 0 0 0 c(1)
1 x (1)

1,1

⎞

⎟⎟⎟⎟⎟
⎠

,

and DW
M = diag{DW

2 , I2M−4} for M ≥ 3, which is derived from (2.7), (2.12) and (2.17).
Referring to the schematic diagram shown in Fig. 3, the arbitrary order moment system

for the Boltzmann equation (2.15) can be derived by the operator projection as follows:

Step 1 (Projection 1) Projecting the distribution function f into the space H
g(0)
[u,θ ]
M by the

operator 
M [u, θ ] defined in (4.8).
Step 2 Calculating the partial derivatives in time and space provides

∂
M [u, θ ] f
∂s

=
[

∂PM [u, θ ]
∂s

, fM

]

M
+
[
PM [u, θ ], ∂fM

∂s

]

M

=
[
CM+1PT

M,M+1PM [u, θ ],PT
M,M+1fM

]

M+1
+
[
PM [u, θ ], ∂fM

∂s

]

M
,

(4.12)

for s = t and x , where CM+1 is a square matrix of order (2M + 3) and directly derived with
the aid of the derivative relations of the basis functions in Lemma 5.

Step 3 (Projection 2) Projecting the partial derivatives in (4.12) into the space H
g(0)
[u,θ ]
M gives


M [u, θ ]∂
M [u, θ ] f
∂s

=
[
PM [u, θ ],CT

M fM
]

M
+
[
PM [u, θ ], ∂fM

∂s

]

M

=
[

PM [u, θ ],CT
MDW

MWM + ∂
(
DW

MWM
)

∂s

]

M

=:
[
PM [u, θ ],DM

∂WM

∂s

]

M
, (4.13)
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where the (2M + 1)-by-(2M + 1) matrix DM can be obtained from CM and DW
M and is of

the following form

DM =

⎛

⎜⎜⎜
⎝

D2 O
0 ∗ ∗ 0
...

...
... I2M−4

0 ∗ ∗ 0

⎞

⎟⎟⎟
⎠

, M ≥ 3, (4.14)

and

D2 =

⎛

⎜⎜⎜⎜⎜
⎝

(c(0)
0 )−1 0 −ρζ 2(c(0)

1 )−2(c(0)
0 )−1 c(0)

0 0
0 (1 − u2)−1c(0)

1 ñ1 ρζ 2(c(0)
1 )−1 c(0)

1 x (0)
1,1 0

0 −(1 − u2)−1c(1)
0 ρ 0 0 −c(1)

0

0 −(1 − u2)−1c(0)
2 ñ1(x (0)

1,2 + x (0)
2,2) 0 −c(0)

2 x (0)
1,2x

(0)
2,2 0

0 −(1 − u2)−1c(1)
1 
 0 0 c(1)

1 x (1)
1,1

⎞

⎟⎟⎟⎟⎟
⎠

,

D1 =
⎛

⎜
⎝

(c(0)
0 )−1 0 −ρζ 2(c(0)

1 )−2(c(0)
0 )−1

0 0 ρζ 2(c(0)
1 )−1

0 −(1 − u2)−1c(1)
0 ρ 0

⎞

⎟
⎠ ,

where the elements “∗” of DM in (4.14) are explicitly given by

DM (2n + 1, 2) = 1

(1 − u2)

(
(n p̃n−1 − ζqn−1) f 1n−1 − ζrn−1 f

1
n−2

)
,

DM (2n + 2, 2) = 1

(1 − u2)

((
(n + 1) p̃−1

n − ζqn
)
f 0n+1 − ζ pn f

0
n

)
,

DM (2n + 1, 3) = −ζ 2
(
1

2

(
G(ζ ) − ζ−1 − b(0)

n

)
f 0n − a(0)

n−1 f
0
n−1

)
,

DM (2n + 1, 3) = −ζ 2
(
1

2

(
G(ζ ) − ζ−1 − b(1)

n

)
f 1n + a(1)

n−1 f
1
n−1

)
.

Step 4 Multiplying (4.13) by the particle velocity (pα) yields

p0
M [u, θ ]∂
M [u, θ ] f
∂t

:= [p0PM [u, θ ],DM
∂WM

∂t
]M

= [Mt
M+1P

T
M,M+1PM [u, θ ],PT

M,M+1DM
∂WM

∂t
]M+1, (4.15)

p
M [u, θ ]∂
M [u, θ ] f
∂x

:= [pPM [u, θ ],DM
∂WM

∂x
]M

= [Mx
M+1P

T
M,M+1PM [u, θ ],PT

M,M+1DM
∂WM

∂x
]M+1. (4.16)

Step 5 (Projection 3) Projecting (4.15) and (4.16) into the space H
g(0)
[u,θ ]
M gives


M [u, θ ]
(
p0
M [u, θ ]∂
M [u, θ ] f

∂t

)
= [PM [u, θ ],Mt

MDM
∂WM

∂t
]M , (4.17)


M [u, θ ]
(
p
M [u, θ ]∂
M [u, θ ] f

∂x

)
= [PM [u, θ ],Mx

MDM
∂WM

∂x
]M . (4.18)
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Step 6 Substituting them into the 1D special relativistic Boltzmann equation (2.15) derives
the abstract form of the moment system


M [u, θ ]
(
pα
M [u, θ ]

(
∂
M [u, θ ] f

∂xα

))
= 
M [u, θ ]Q(
M [u, θ ] f,
M [u, θ ] f ),

(4.19)

and then matching the coefficients in front of the basis functions {P̃(�)
k [u, θ ]} leads to an

“explicit” matrix-vector form of the moment system

B0
M

∂WM

∂t
+ B1

M
∂WM

∂x
= S(WM ), (4.20)

which consists of (2M + 1) equations, where B0
M = Mt

MDM and B1
M = Mx

MDM . For a
general collision term Q( f, f ), it is difficult to obtain an explicit expression of the source
term S(WM ) in (4.20). For the Anderson–Witting model (2.14), the right-hand side of (4.19)
becomes

1

τ

M [u, θ ]Q(
M [u, θ ] f,
M [u, θ ] f )

= − 1

τ

M [u, θ ]E
M [u, θ ]( f − f (0))

= − 1

τ

M [u, θ ]

[
Pp
M+1A

0
M+1

(
Pp
M+1

)TPT
M,M+1PM [u, θ ],PT

M,M+1

(
fM − f (0)M

)]

M+1

= − 1

τ

[
PM [u, θ ],Pp

MA0
M

(
Pp
M

)T D̃
W
MWM

]

M
,

which implies that the source term S(WM ) can be explicitly given by

S(WM ) = − 1

τ
Pp
MA0

M (Pp
M )T D̃

W
MWM = − 1

τ

(
U 0Mt

M −U 1Mx
M

)
D̃
W
MWM , (4.21)

where f (0)M =
(
ρ
√
G(ζ ) − 2ζ−1, 0, . . . , 0

)T
, and thematrix D̃

W
M is the sameasDW

M except for

the zero component of the upper left corner. It is worth noting that the first three components
of S(WM ) are zero due to (2.12) and (2.17).

Remark 8 With aid of the explicit forms of DW
1 , D1, DW

2 , and D2, the explicit form of the
moment equations with M = 1 or 2 are very easily given. For example, when M = 1, the
moment system is written as follows

B0
1
∂W1

∂t
+ B1

1
∂W1

∂x
= 0,

where

B0
1 =

⎛

⎜
⎝

c(0)
0 U 0 c(0)

0 U 0U 1ρ 0
(c(0)

1 )−1U 0 ζ(c(0)
1 )−1(x (0)

1,2 + x (0)
2,2)U

1(U 0)2ρ −ζ 2x (0)
1,2x

(0)
2,2U

0(c(0)
0 )−2ρ

−√
ζ

−1U 1 −x (1)
1,1

√
ζ (U 0)3 −√

ζU 1ρ

⎞

⎟
⎠ ,

B1
1 =

⎛

⎜
⎝

c(0)
0 U 1 c(0)

0 (U 0)3ρ 0
(c(0)

1 )−1U 1 ζ(c(0)
1 )−1(x (0)

1,2 + x (0)
2,2)(U

0)3ρ −ζ 2x (0)
1,2x

(0)
2,2U

1(c(0)
0 )−2ρ

−√
ζ

−1U 0 −x (1)
1,1

√
ζ (U 0)2U 1 −√

ζU 0ρ

⎞

⎟
⎠ .
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It is shown that those equations become the macroscopic RHD equations (2.21) by multiply-
ing those equations by (B0

1)
−1.

Remark 9 With aid of the “projection operator”, the standard Grad moment method can be
conveniently derived and easily understood. For example, the derivation of Grad moment
system by using truncation can be simply and clearly described as follows


M [u, θ ]
(
pα

(
∂
M [u, θ ] f

∂xα

))
= 
M [u, θ ]Q(
M [u, θ ] f,
M [u, θ ] f ), (4.22)

which is non-hyperbolic, while our moment system (4.19) is proved to be globally hyperbolic
in the next section.By comparing (4.22) to (4.19), the difference between them is easily found,
and becomes crucial to make the moment system hyperbolic [18].

Remark 10 Similar to those in [5], our moment system is also non-conservative because the
projection is still operated outside the differential operators ∂

∂t and
∂
∂x .

5 Properties of the Moment System

This section studies some mathematical and physical properties of moment system (4.19) or
(4.20). All proofs are given in the Appendix 4.

5.1 Hyperbolicity, Eigenvalues, and Eigenvectors

In order to prove the hyperbolicity of the moment system (4.20), one has to verify that B0
M is

invertible and BM := (B0
M )−1B1

M is real diagonalizable. In the following, we always assume
that the first three components ofWM satisfy ρ > 0, |u| < 1, and θ > 0.

Lemma 8 If the macroscopic variables satisfy ρ > 0, |u| < 1, θ > 0 and 
 > −ρθ , then
the matrix DM is invertible for M ≥ 1.

Theorem 5.1 (Eigenvalues and eigenvectors) The (2M + 1) eigenvalues of the moment
system (4.20) are given by

λi,M = u − λ̂i,M

1 − uλ̂i,M
, i = −M, . . . , M, (5.1)

satisfying |λi,M | < 1, and corresponding eigenvectors are

ri,M = D−1
M Pp

Myi,M , i = −M, . . . , M, (5.2)

where λ̂i,M and yi,M are given in Theorem 3.7.

Lemma 9 Both real matrices U 0Mt
M −U 1Mx

M andMt
M are positive definite.

Theorem 5.2 (Hyperbolicity) The moment system (4.20) is strictly hyperbolic, and the spec-
tral radius of BM is less than one.

5.2 Characteristic Fields

This section further discusses whether there exists the genuinely nonlinear or linearly degen-
erate characteristic field of the quasilinear moment system.
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Theorem 5.3 For themoment system (4.20), λ0,M-characteristic field is linearly degenerate,
i.e.

∇WMλ0,M (WM ) · r0,M (WM ) = 0, ∀WM .

Remark 11 With the aid of numerical experiments, we can conclude that for the moment
system (4.20) with M ≥ 4, there exist at least two characteristic fields, which are neither
linearly degenerate nor genuinely nonlinear, see Appendix “Explaination of Remark 11”
section for more explanation.

5.3 Linear Stability

It is obvious that the moment system (4.20)-(4.21) has the local equilibrium solutionW(0)
M =

(ρ0, u0, θ0, 0, . . . , 0)T , where ρ0, u0, and θ0 are constant and satisfy ρ0 > 0, |u0| < 1,
and θ0 > 0. Similar to the non-relativistic case [15], let us linearize the moment system
(4.20)–(4.21) atW(0)

M . If assuming thatWM = W(0)
M (1+ NWM ) and each component of NWM

is small, then the linearized moment system is

B0
M

∣∣
W(0)

M

∂W̄M

∂t
+ B1

M

∣∣
W(0)

M

∂W̄M

∂x
= QM

∣∣
W0

M
W̄M , (5.3)

where

QM = − 1

τ

(
U 0Mt

M −U 1Mx
M

)
D̃
W
M .

Following [15], W̄M is assumed to be

W̄M = W̃M exp(i(ωt − kx)),

where i is the imaginary unit, W̃M is the nonzero amplitude, andω and k denote the frequency
and wave number, respectively. Substituting the above plane waves into (5.3) gives

(
iωB0

M − ikB1
M − QM

) ∣∣
W(0)

M
W̃M = 0.

Because the amplitude W̃M is nonzero, the above coefficient matrix is singular, i.e.

det
(
iωB0

M − ikB1
M − QM

) ∣∣
W(0)

M
= 0, (5.4)

which implies the dispersion relation between ω and k.
The following linear stability result holds for the moment system (4.20)–(4.21).

Theorem 5.4 The moment system (4.20) with the source term (4.21) is linearly stable in
space and time at the local equilibrium, that is, the linearized moment system (5.3) is stable
in time and space, i.e. Im(ω(k)) ≥ 0 for each k ∈ R and Re(k(ω))Im(k(ω)) ≤ 0 for each
ω ∈ R

+, respectively.

5.4 Lorentz Covariance

In physics, the Lorentz covariance is a key property of space-time following from the special
theory of relativity, see e.g. [17]. This section studies the Lorentz covariance of the moment
system (4.20). Besides the truncations or projection of distribution function, there are the
truncations or projections of equation in the current moment method. It is nontrivial to know
which parts of the expansion of the equation we have removed in the truncation or projection
procedure, and whether they are Lorentz invariant or not.
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Some Lorentz covariant quantities are first pointed out below.

Lemma 10 (i) Each component of Du
MdWM is Lorentz invariant, where

Du
M := diag{1, (1 − u2)−1, 1, . . . , 1}, and dWM denotes the total differential ofWM.

(ii) The matrices A0
M, A1

M and the source term S(WM ) defined in (4.21) are Lorentz invari-
ant.

Theorem 5.5 (Lorentz covariance) The moment system (4.20) with the source term (4.21)
is Lorentz covariant.

6 Numerical Experiment

This section conducts a numerical experiment to check the behavior of our hyperbolicmoment
equations (HME) (4.19) or (4.20) with (4.21) by solving the Cauchy problem with initial
data

WM (x, 0) =
{
WL

M , x < 0,

WR
M , x > 0,

(6.1)

whereWL
M = (7, 0, 1, 0, . . . , 0)T andWR

M = (1, 0, 1, 0, . . . , 0)T . It is similar to the problem
for the moment system of the non-relativistic BGK equation used in [5].

6.1 Numerical Scheme

The spatial grid {xi , i ∈ Z} considered here is uniform so that the stepsize 	x = xi+1 − xi
is constant. Thanks to Theorem 5.1, the grid in t-direction {tn+1 = tn + 	t, n ∈ N} can be
given with the stepsize 	t = CCFL	x , where CCFL denotes the CFL (Courant-Friedrichs-
Lewy) number. Use f ni and ρn

i to denote the approximations of f (xi , p, tn) and ρ(xi , tn)
respectively. For the purpose of checking the behavior of our hyperbolic moment system,
similar to [8], we only consider a first-order accurate semi-implicit operator-splitting type
numerical scheme for the non-conservative system (4.19) or (4.20), which is formed into
the convection and collision steps:


M [uni , θni ] (p0
M [uni , θni ](
 f )∗i
) = 
M [uni , θni ] (p0(
 f )ni

)

− 	t

	x

[
(
F−)n

i+ 1
2

− (
F+)n
i− 1

2

]
, (6.2)

and


M [u∗
i , θ

∗
i ]
(

p0
M [u∗
i , θ

∗
i ] (
 f )n+1

i − (
 f )∗i
	t

)

= − 1

τ ∗
i


M [u∗
i , θ

∗
i ](U 0∗

i p0 −U 1∗
i p1)

(
I − 
 f → f (0) [u∗

i , θ
∗
i ]
) (


M [u∗
i , θ

∗
i ](
 f )n+1

i

)
,

(6.3)

where (
 f )ni := 
M [uni , θni ] f ni and the “numerical fluxes” (
F−)n
i+ 1

2
and (
F+)n

i− 1
2
are

derived based on the nonconservative version of the HLL (Harten-Lax-van Leer) scheme
[42] and given by
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(
F−)n
i+ 1

2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


M [uni , θni ] (p(
 f )ni
)
, 0 ≤ λL

i+ 1
2
,

λR
i+ 1

2

M [uni ,θni ](p(
 f )ni )−λL

i+ 1
2

M [uni ,θni ](p
M [uni ,θni ](
 f )ni+1

)

λR
i+ 1

2
−λL

i+ 1
2

+
λL
i+ 1

2
λR
i+ 1

2

(

M [uni ,θni ](p0
M [uni ,θni ](
 f )ni+1

)−
M [uni ,θni ](p0(
 f )ni
))

λR
i+ 1

2
−λL

i+ 1
2

, λL
i+ 1

2
< 0 < λR

i+ 1
2
,


M [uni , θni ] (p
M [uni , θni ](
 f )ni+1

)
, 0 ≥ λR

i+ 1
2
,

and

(
F+)n
i− 1

2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


M [uni , θni ] (p
M [uni , θni ](
 f )ni−1

)
, 0 ≤ λL

i− 1
2
,

λR
i− 1

2

M [uni ,θni ](p
M [uni ,θni ](
 f )ni−1

)−λL
i− 1

2

M [uni ,θni ](p(
 f )ni )

λR
i− 1

2
−λL

i− 1
2

+
λL
i− 1

2
λR
i− 1

2

(

M [uni ,θni ](p0(
 f )ni

))−
M [uni ,θni ](p0
M [uni ,θni ](
 f )ni−1

)

λR
i− 1

2
−λL

i− 1
2

, λL
i− 1

2
< 0 < λR

i− 1
2
,


M [uni , θni ](p (
 f )ni
)
, 0 ≥ λR

i− 1
2
.

Here λL
i± 1

2
= min{λmin

i , λmin
i±1} and λR

i± 1
2

= max{λmax
i , λmax

i±1 }, λmin
i and λmax

i denote the mini-

mum andmaximum eigenvalues of themoment system (4.20) at the grid point xi respectively,
see Theorem 5.1. In Eq. (6.3), the subscript f → f (0) denotes the transformation from f to

f (0) defined by 
 f → f (0) [u∗
i , θ

∗
i ](
 f )∗i = f (0)∗

i or f (0)∗i,M = D
f (0)
i
M f∗i,M , where

D
f (0)
i
M =

(
c(0)∗
0,i

)−2
diag{1, 0, . . . , 0} (U 0∗

i Mt∗
M −U 1∗

i Mx∗
M

)
, (6.4)

whose nonzero components are only in the first row and the component in the upper left
corner is one.

The above scheme (6.2) and (6.3) is implemented as follows:

(i) Perform the convection step (6.2) to obtain 
M [uni , θni ] (p0
M [uni , θni ](
 f )∗i
)
, and

then obtain 
M [uni , θni ](
 f )∗i .
(ii) Calculate u∗

i and θ∗
i by solving (2.24) and (2.26), and then give (
 f )∗i .

(iii) Perform the collision step (6.3) to obtain 
M [u∗
i , θ

∗
i ]
(
p0
M [u∗

i , θ
∗
i ](
 f )n+1

i

)
, and

then have 
M [u∗
i , θ

∗
i ](
 f )n+1

i .
(iv) Calculate un+1

i and θn+1
i by solving (2.24) and (2.26), and then obtain (
 f )n+1

i . Set
n = n + 1 and turn to Step (i).

It is worth noting that when 
M [uni , θni ] (p0
M [uni , θni ](
 f )∗i
)
is known, it is easy to

obtain 
M [uni , θni ](
 f )∗i in Step (i), but it is more technical to calculate (
 f )∗i from the
known value of 
M [uni , θni ](
 f )∗i in Step (ii), see the following discussion (Lemma 12).
The other steps are similar to them.
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Lemma 11 If u ∈ (−1, 1), θ ∈ R
+, M ≥ 1, and 0 ≤ f (x, p, t) ≤ +∞, then for any

polynomial f̃ satisfying f̃ g(0)
[u,θ ] ∈ H

g(0)
[u,θ ]
M , equivalently f̃ f ∈ H

f
M , one has

〈 f̃ f, f 〉 f = 〈 f̃ f,
M [u, θ ] f 〉 f = 〈 f̃ g(0)
[u,θ ],
M [u, θ ] f 〉

g(0)
[u,θ ]

. (6.5)

Lemma 12 If u1, u2 ∈ (−1, 1), θ1, θ2 ∈ R
+, M ≥ 1, and 0 ≤ f (x, p, t) ≤ +∞, then the

identity


M [u1, θ1] f = 
M [u1, θ1]
M [u2, θ2] f,
holds.

Lemma 12 implies that in order to calculate

(
 f )∗i = 
M [u∗
i , θ

∗
i ](
 f )∗i = 
M [u∗

i , θ
∗
i ]
M [uni , θni ](
 f )∗i , (6.6)

only u∗
i and θ∗

i have to be obtained.
It can be done the following procedure. For the given “distribution function” 
M [uni , θni ]

(
 f )∗i , calculate corresponding particle flow Nα and energy-momentum tensor T αβ , and
then solve directly (2.24) to obtain u∗

i and solve (2.26) iteratively to obtain θ∗
i by using

Newton-Raphson method.

Remark 12 The function G(θ−1) − θ in (2.26) is a strictly monotonic and convex function
of θ in the interval (0,+∞), because

∂2
(
G(θ−1) − θ

)

∂θ2
= ζ 2(2G(ζ )3ζ 2 − 7G(ζ )2ζ − 2G(ζ )ζ 2 + 6G(ζ ) + ζ

)

= ζ 6(c(0)
2 c(0)

1 c(0)
0 )−2 > 0,

where c(0)
i is the leading coefficient of the polynomial P(0)

i (x; ζ ) defined in (3.4), i = 0, 1, 2.
It means that the Newton-Raphson method for solving (2.26) is convergent with any positive
initial guess.

Remark 13 The present paper does not focus on the numerical solution, but it is worth
investigating how the lack of a conservative form of the moment system and corresponding
numerical scheme effects the numerical solution. Our numerical results in Sect. 6.2 will
show that the numerical solutions of moment system can converge to the reference solution
obtained by the discrete velocity model on a fine mesh.

Before ending this subsection, we discuss the stability of the collision step (6.3) even
though τ is very small.

Theorem 6.1 The semi-implicit scheme (6.3) is unconditionally stable.

All proofs have been given in the Appendix 5.

6.2 Numerical Results

In our numerical experiment, theKnudsen number Kn is chosen as 0.05 and 0.5, respectively,
the spatial domain [−1.5, 1.5] is divided into a uniform grid of 1000 points, andCCFL = 0.9.
In order to verify our results, the reference solutions are provided by using the discrete
velocity model (DVM) [41] with a fine spatial grid of 10000 points and 50 Gaussian points
in the velocity space.
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Fig. 4 Numerical results of the shock tube problem for Kn = 0.05. The left y-axis is for ρ and P0, while
the right y-axis is for u. The thin lines are the numerical results of the HME (4.20), and the thick lines are the
results of DVM. The solid (blue), dashed (red), and dash-dotted (black) lines denote ρ, u, and P0, respectively
(Color figure online)

Figure 4 shows the profiles of the density ρ, velocity u and thermodynamic pressure
P0 at t = 0.3 obtained by using our scheme (6.2) and (6.3) with M = 1, 2, . . . , 9, where
Kn = 0.05, and the thin lines are the numerical results of the HME (4.20), and the thick lines
are the results of DVM, provided as reference solutions. The solid, dashed, and dash-dotted
lines denote ρ, u, and P0, respectively. It is clear that the numerical solutions of the HME
(4.20) converge to the reference solution of the special relativistic Boltzmann equation (2.15)
as M increases. When M = 1, the contact discontinuity and shock wave can be obviously
observed. It is reasonable because the HME (4.20) are the same as the macroscopic RHD
equations (2.21). When M = 2, the discontinuities can also observed, but they have been
damped. When M ≥ 3, the discontinuities are fully damped and the solutions are almost in
agreement with the reference solutions. It is similar to the phenomena in the non-relativistic
case [4,5].

The results at t = 0.3 for the case of Kn = 0.5 are shown in Fig. 5. The discontinuities
are clearer than the case of Kn = 0.05 when M = 1, 2, . . . , 9, and the convergence of the
moment method can also be readily observed, but it is slower than the case of Kn = 0.05.
The contact discontinuities and shock waves are obvious when M ≤ 2, but when M > 6,
the discontinuities are fully damped and the solutions are almost the same as the reference
solutions.
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Fig. 5 Same as Fig. 4 except for Kn = 0.5

Remark 14 The computational complexity of the above numerical scheme is mainly coming
from the Gram-Schmidt orthogonalization and the projection 
M [uni , θni ](
 f )ni+1. For the
purpose of numerical computations, it is valuable to look for a more efficient orthogonaliza-
tion and projection procedure instead of the above.

7 Conclusions

The paper derived the arbitrary order globally hyperbolic moment system of the one-
dimensional (1D) special relativistic Boltzmann equation for the first time and studied the
properties of the moment system: the eigenvalues and their bound as well as eigenvectors,
hyperbolicity, characteristic fields, linear stability, and Lorentz covariance. The key contribu-
tionwas the careful study of two families of the complicateGrad type orthogonal polynomials
depending on a parameter. We derived the recurrence relations and derivative relations with
respect to the independent variable and the parameter respectively, and studied their zeros
and coefficient matrices in the recurrence formulas. Built on the knowledges of two families
of the Grad type orthogonal polynomials with a parameter, the model reduction method by
the operator projection [18] was extended to the 1D special relativistic Boltzmann equation.

A semi-implicit operator-splitting type numerical schemewas presented for our hyperbolic
moment system and a Cauchy problem was solved to verify the convergence behavior of the
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moment method in comparison with the discrete velocity method. The results showed that
the solutions of our hyperbolic moment system could converge to the solution of the special
relativistic Boltzmann equation as the order of the hyperbolic moment system increases.

Now we are deriving the globally hyperbolic moment model of arbitrary order for the 3D
special relativistic Boltzmann equation. Moreover, it is interesting to develop robust, high
order accurate numerical schemes for themoment system, find other basis for the derivation of
moment system with some good property, e.g. non-negativity, and investigate the relativistic
effects by using the moment system.
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Appendix 1: Proofs in Section 2

Proof of Theorem 2.1

Proof For the nonnegative distribution f (x, p, t), which is not identically zero, using (2.3)
gives

T αα > 0, α = 0, 1; T 00 + T 11±2T 01 = c
∫

R

(
p0±p1

)2
f
dp

p0
> 0,

which implies the first inequality in (2.22).
Using the definition of 	αβ in (2.6) and the tensor decomposition of T αβ in (2.5) gives

(2.23), which is a quadratic equation with respect to u. The first inequality in (2.22) tells us
that (2.23) has two different solutions whose product is equal to c2, while one of them with
a smaller absolute value is (2.24).

Using further (2.3) gives

N 0 − c−1uN 1 = c
∫

R

(
p0 − c−1up1

)
f
dp

p0
> 0,

i.e. the second inequality in (2.22), and then using the tensor decomposition of Nα in (2.4)
gives

ρ = c−1m
N 0 − c−1uN 1

√
1 − c−2u2

> 0.

Moreover, using the second identity in (2.17) and (2.3) can give (2.26).
The inequality E ≥ mc2 holds because

E = Uα p
α = (1 − c−2u2)−

1
2

(
c
√
m2c2 + p2 − up

)
> 0,

and

E2 − m2c4 = (1 − c−2u2)−1
(
u
√
m2c2 + p2 − cp

)2

=
(
c2

U 0 p〈1〉
)2

≥ 0.
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Thus, it holds

T 00 − c−1uT 01 − c2ρ = T 00 − 2c−1uT 01 + c−2u2T 11

1 − c−2u2
− c2ρ

= c−1
∫

R

E
(
E − mc2

)
f
dp1

p0
> 0,

which gives the third inequality in (2.22), and implies thatG(θ−1)−θ > 1 for θ ∈ (0,+∞).
On the other hand, one has

lim
θ→0

(
G(θ−1) − θ

) = 1, lim
θ→+∞

(
G(θ−1) − θ

) = lim
θ→+∞ θ = +∞,

and

∂(G(θ−1) − θ)

∂θ
= − θ−2 (G(θ−1)2 − 3G(θ−1)θ + θ2 − 1

) =: ψ̃(G(θ−1), θ).

Because

0 < c−1
∫

R

(E − mc2) f (0) dp

p0
= −m−1ρ(G(θ−1) − 2θ − 1),

0 < c−1
∫

R

(E − mc2)2 f (0) dp

p0
= ρc2(2G(θ−1) − 3θ − 2),

0 < c−1
∫

R

(E − mc2)3 f (0) dp

p0
= −ρmc4((4 − θ)G(θ−1) − 5θ − 4),

one obtains

3

2
θ + 1 < G(θ−1) <

{
min

{
2θ + 1, (4 − θ)−1(5θ + 4)

}
, 0 < θ < 4,

2θ + 1, θ ≥ 4,

which is equivalent to the following inequality

3

2
θ + 1 < G(θ−1) <

{
(4 − θ)−1(5θ + 4), 0 < θ < 1,

2θ + 1, θ ≥ 1.

Thus, one has

ψ̃(G(θ−1), θ) >

⎧
⎪⎨

⎪⎩

ψ̃ (2θ + 1, θ) > θ3(θ − 1) > 0, θ ≥ 1,

ψ̃
(
(4 − θ)−1(5θ + 4), θ

)
> (4 − θ)−2θ4(θ + 8)(1 − θ) > 0, θ < 1,

i.e.

∂(G(θ−1) − θ)

∂θ
> 0,

which implies that G(θ−1)− θ is a strictly monotonic function of θ in the interval (0,+∞).
Thus (2.26) has a unique solution in the interval (0,+∞). The proof is completed. ��

Proof of Theorem 2.2

Proof Under Theorem 2.1, for the nonnegative distribution f (x, p, t), which is not identi-
cally zero, one obtains {ρ, u, θ} satisfying
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ρ > 0, |u| < c, θ > 0. (8.1)

Due to the last equations in (2.7) and (2.20), one obtains


 = −
∫

R

	αβ p
α pβ f

dp

p0
− c2ρθ = c−1

∫

R

(
E2 − m2c4

)
f
dp

p0
− ρc2θ > −ρc2θ,

which completes the proof. ��

Appendix 2: Proofs in Section 3

Proof of Theorem 3.2

Proof (i) For k ≤ n + 2, taking the inner product with respect to ω(0) between the polyno-
mials P(0)

k (x; ζ ) and (x2 − 1)P(1)
n (x; ζ ) gives

(
(x2 − 1)P(1)

n , P(0)
n+2

)

ω(0)
=
(
c(1)
n xn+2, P(0)

n+2

)

ω(0)
= c(1)

n

c(0)
n+2

(
P(0)
n+2, P

(0)
n+2

)

ω(0)
= rn+1,

(
(x2 − 1)P(1)

n , P(0)
n+1

)

ω(0)

=
(

c(1)
n

(

xn+2 −
n+2∑

i=1

x (0)
i,n+2x

n+1 +
(
n+2∑

i=1

x (0)
i,n+2 −

n∑

i=1

x (1)
i,n

)

xn+1

)

, P(0)
n+1

)

ω(0)

= rn+1

(
P(0)
n+2, P

(0)
n+1

)

ω(0)
+ qn

(
P(0)
n+1, P

(0)
n+1

)

ω(0)
= qn,

(
(x2 − 1)P(1)

n , P(0)
n+1

)

ω(0)

=
(

P(1)
n , c(0)

n+1

(

xn+1 −
n+1∑

i=1

x (1)
i,n+1x

n +
(
n+1∑

i=1

x (1)
i,n+1 −

n+1∑

i=1

x (0)
i,n+1

)

xn
))

ω(1)

= pn+1

(
P(1)
n , P(1)

n+1

)

ω(1)
+ c(0)

n+1

c(1)
n

(
n+1∑

i=1

x (1)
i,n+1 −

n+1∑

i=1

x (0)
i,n+1

)(
P(1)
n , P(1)

n

)

ω(1)

= c(0)
n+1

c(1)
n

n+1∑

i=1

(
x (1)
i,n+1 − x (0)

i,n+1

)
= qn,

(
(x2 − 1)P(1)

n , P(0)
n

)

ω(0)
=
(
P(1)
n , P(0)

n

)

ω(1)
=
(
P(1)
n , c(0)

n xn
)

ω(1)

= pn
(
P(1)
n , P(1)

n

)

ω(1)
= pn,

(
(x2 − 1)P(1)

n , P(0)
k

)

ω(0)
=
(
P(1)
n , P(0)

k

)

ω(1)
= 0, k ≤ n − 1,

Substituting them into (3.3) gives (3.9).
(ii) Taking the inner product with respect to ω(1) between P(0)

n+1(x; ζ ) and P(1)
k (x; ζ ) with

k ≤ n + 1
(
P(0)
n+1, P

(1)
n+1

)

ω(1)
=
(
c(0)
n+1x

n+1, P(1)
n+1

)

ω(1)
= pn+1

(
P(1)
n+1, P

(1)
n+1

)

ω(1)
= pn+1,

(
P(0)
n+1, P

(1)
n

)

ω(1)
=
(
P(0)
n+1, (x

2 − 1)P(1)
n

)

ω(0)
= qn,
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(
P(0)
n+1, P

(1)
n−1

)

ω(1)
=
(
P(0)
n+1, (x

2 − 1)P(1)
n−1

)

ω(0)
= rn

(
P(0)
n+1, P

(0)
n+1

)

ω(0)
= rn,

(
P(0)
n+1, P

(1)
k

)

ω(1)
=
(
P(0)
n+1, (x

2 − 1)P(1)
k

)

ω(0)
= 0, k ≤ n − 2.

Similarly, substituting them into (3.3) gives (3.10).
(iii) If using (3.6) to eliminate P(0)

n+2 and P(1)
n+1 in (3.9) and (3.10) respectively, then one

obtains

(x2 − 1)P(1)
n = p̃n(x + q̃n)P

(0)
n+1 + r̃n P

(0)
n , P(0)

n+1 = 1
˜̃pn
(
x − ˜̃qn

)
P(1)
n − a(1)

n−1

a(0)
n

˜̃rn P(1)
n−1,

with

p̃n = rn+1

a(0)
n+1

= c(1)
n

c(0)
n+1

= a(1)
n

pn+1
= ˜̃pn,

q̃n = 1

p̃n
qn − b(0)

n+1 =
n+1∑

i=1

x (0)
i,n+1 −

n∑

i=1

x (1)
i,n = b(1)

n − p̃nqn = ˜̃qn,

r̃n = pn − p̃na
(0)
n = pn(1 − p̃2n) = a(0)

n

a(1)
n−1

(
−rn + 1

p̃n
a(1)
n−1

)
= ˜̃rn .

The proof is completed.
��

Proof of Theorem 3.3

Proof With the aid of definition and recurrence relation of the second kind modified Bessel
function in (2.18) and (2.19), one has

∂

∂ζ
ω(�)(x; ζ ) = K2(ζ ) + K0(ζ ) − 2xK1(ζ )

2K1(ζ )

(
1

K1(ζ )
(x2 − 1)�−

1
2 exp(−ζ x)

)

= (G(ζ ) − ζ−1 − x
)
ω(�)(x; ζ ).

Taking the partial derivative of both sides of identities
(
P(�)
n+1, P

(�)
k

)

ω(�)
= δn+1,k, k = 0, . . . , n + 1,

with respect to ζ and using (3.8) gives

∂

∂ζ

(
P(�)
n+1, P

(�)
n+1

)

ω(�)
= 2

(
∂

∂ζ
P(�)
n+1, P

(�)
n+1

)

ω(�)

+ (G(ζ ) − ζ−1)
(
P(�)
n+1, P

(�)
n+1

)

ω(�)

−
(
x P(�)

n+1, P
(�)
n+1

)

ω(�)

= 2

(
∂

∂ζ
P(�)
n+1, P

(�)
n+1

)

ω(�)

+
(
G(ζ ) − ζ−1 − b(�)

n+1

)
= 0,

∂

∂ζ

(
P(�)
n+1, P

(�)
n

)

ω(�)
=
(

∂

∂ζ
P(�)
n+1, P

(�)
n

)

ω(�)

+
(
P(�)
n+1,

∂

∂ζ
P(�)
n

)

ω(�)

+ (
G(ζ ) − ζ−1)

(
P(�)
n+1, P

(�)
n

)

ω(�)
−
(
x P(�)

n , P(�)
n+1

)

ω(�)

=
(

∂

∂ζ
P(�)
n+1, P

(�)
n

)

ω(�)

− a(�)
n = 0,

123



Globally Hyperbolic Moment Model of Arbitrary Order... 1335

∂

∂ζ

(
P(�)
n+1, P

(�)
k

)

ω(�)
=
(

∂

∂ζ
P(�)
n+1, P

(�)
k

)

ω(�)

+
(
P(�)
n+1,

∂

∂ζ
P(�)
k

)

ω(�)

+ (G(ζ ) − ζ−1)
(
P(�)
n+1, P

(�)
k

)

ω(�)
−
(
x P(�)

k , P(�)
n+1

)

ω(�)

=
(

∂

∂ζ
P(�)
n+1, P

(�)
k

)

ω(�)

= 0, k ≤ n − 1.

Thus one has
(

∂

∂ζ
P(�)
n+1, P

(�)
n+1

)

ω(�)

= −1

2

(
G(ζ ) − ζ−1 − b(�)

n+1

)
,

(
∂

∂ζ
P(�)
n+1, P

(�)
n

)

ω(�)

= a(�)
n ,

(
∂

∂ζ
P(�)
n+1, P

(�)
k

)

ω(�)

= 0, k ≤ n − 1.

Because
∂P(�)

n+1
∂ζ

is a polynomial and its degree is not larger than n+1, using (3.3) gives (3.17).
The proof is completed. ��
Proof of Theorem 3.4

Proof Similar to the proof of Theorem 3.3, one has

∂

∂x
ω(1)(x; ζ ) = xω(0)(x; ζ ) − ζω(1)(x; ζ ).

Because the degrees of polynomials
∂P(0)

n+1
∂x and (x2 − 1) ∂P(1)

n
∂x + x P(1)

n are not larger than n
and n + 1, respectively, and

lim
x→+∞ P(0)

i (x; ζ )P(1)
j (x; ζ )ω(1)(x; ζ ) = 0,

lim
x→1

P(0)
i (x; ζ )P(1)

j (x; ζ )ω(1)(x; ζ ) = 0, ∀i, j ∈ N,

one can calculate the expansion coefficients in (3.3) as follows
(

∂

∂x
P(0)
n+1, P

(1)
n

)

ω(1)
=
(
(n + 1)c(0)

n+1x
n, P(1)

n

)

ω(1)
= n + 1

p̃n

(
P(1)
n , P(1)

n

)

ω(1)
= n + 1

p̃n
,

(
∂

∂x
P(0)
n+1, P

(1)
n−1

)

ω(1)
=
∫ +∞

1

∂

∂x

(
P(0)
n+1P

(1)
n−1ω

(1)
)
dx −

(
P(0)
n+1, (x

2 − 1)
∂

∂x
P(1)
n−1

)

ω(0)

−
(
P(0)
n+1, x P

(1)
n−1

)

ω(0)
+ ζ

(
P(0)
n+1, (x

2 − 1)P(1)
n−1

)

ω(0)
= ζrn,

(
∂

∂x
P(0)
n+1, P

(1)
k

)

ω(1)
=
∫ +∞

1

∂

∂x

(
P(0)
n+1P

(1)
k ω(1)

)
dx −

(
P(0)
n+1, (x

2 − 1)
∂

∂x
P(1)
k

)

ω(0)

−
(
P(0)
n+1, x P

(1)
k

)

ω(0)
+ ζ

(
P(0)
n+1, (x

2 − 1)P(1)
k

)

ω(0)
= 0, k≤n−2,

and
(

(x2 − 1)
∂

∂x
P(1)
n + x P(1)

n , P(0)
n+1

)

ω(0)
=
(
(n + 1)c(1)

n xn+1, P(0)
n+1

)

ω(0)

=(n + 1) p̃n
(
P(0)
n+1, P

(0)
n+1

)

ω(0)
= (n + 1) p̃n,

(
(x2−1)

∂

∂x
P(1)
n +x P(1)

n , P(0)
n

)

ω(0)
=
∫ +∞

1

∂

∂x

(
P(1)
n P(0)

n ω(1)
)
dx−

(
P(1)
n ,

∂

∂x
P(0)
n

)

ω(1)
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+ ζ
(
P(1)
n , P(0)

n

)

ω(1)
= ζ

(
P(1)
n , P(0)

n

)

ω(1)
= ζ pn,

(
(x2−1)

∂

∂x
P(1)
n +x P(1)

n , P(0)
k

)

ω(0)
=
∫ +∞

1

∂

∂x

(
P(1)
n P(0)

k ω(1)
)
dx−

(
P(1)
n ,

∂

∂x
P(0)
k

)

ω(1)

+ ζ
(
P(1)
n , P(0)

k

)

ω(1)
= 0, k ≤ n − 1.

The proof is completed. ��
Proof of Theorem 3.6

Proof Substituting {x (0)
i,n+1}n+1

i=1 into (3.14) gives

(
(x (0)

i,n+1)
2 − 1

)
P(1)
n (x (0)

i,n+1; ζ ) = r̃n P
(0)
n (x (0)

i,n+1; ζ ),

which implies that r̃n = 0. In fact, if assuming r̃n = 0, then the above identity and the
fact that (x (0)

i,n+1)
2 − 1 > 0 imply P(1)

n (x (0)
i,n+1; ζ ) = 0, which contradicts with P(1)

n being a
polynomial of degree n.

Using Theorem 3.5 gives

sign
(
P(1)
n (x (0)

i,n+1; ζ )P(1)
n (x (0)

i+1,n+1; ζ )
)

= sign
(
P(0)
n (x (0)

i,n+1; ζ )P(0)
n (x (0)

i+1,n+1; ζ )
)

< 0.

Thus there exists at least one zeroof the polynomial P(1)
n in each subinterval

(
x (0)
i,n+1, x

(0)
i+1,n+1

)
.

The proof is completed. ��
Proof of Corollary 1

Proof It is obvious that

pn = c(0)
n

c(1)
n

> 0, rn = c(1)
n−1

c(0)
n+1

> 0, p̃n = c(1)
n

c(0)
n+1

> 0.

Using Theorems 3.1 and 3.6 gives

q̃n =
n+1∑

i=1

x (0)
i,n+1 −

n∑

i=1

x (1)
i,n =

n∑

i=1

(
x (0)
i+1,n+1 − x (1)

i,n

)
+ x (0)

1,n+1 > 0,

qn = p̃n

(
n+2∑

i=1

x (0)
i,n+2 −

n∑

i=1

x (1)
i,n

)

= p̃n
(
b(0)
n+1 + q̃n

)
> 0,

which imply qn > 0 and q̃n > 0.
Comparing the coefficients of the nth order terms at two sides of (3.14) gives

r̃n = p−1
n

⎛

⎝
n∑

i=1

n∑

j=i+1

x (1)
i,n x

(1)
j,n − 1 −

n+1∑

i=1

n+1∑

j=i+1

x (0)
i,n+1x

(0)
j,n+1

+
(
n+1∑

i=1

x (0)
i,n+1 −

n∑

i=1

x (1)
i,n

)
n+1∑

i=1

x (0)
i,n+1

)
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= p−1
n

⎛

⎝
n∑

i=1

n∑

j=i+1

x (1)
i,n x

(1)
j,n +

n+1∑

i=1

n+1∑

j=i

x (0)
i,n+1x

(0)
j,n+1 −

n∑

i=1

x (1)
i,n

n+1∑

i=1

x (0)
i,n+1 − 1

⎞

⎠

= p−1
n

(
n∑

i=1

x (0)
i+1,n+1(x

(0)
i+1,n+1 − x (1)

i,n ) + (x (0)
1,n+1)

2 − 1

+
n∑

i=0

n∑

j=i+1

(x (0)
i+1,n+1 − x (1)

i,n )(x (0)
j+1,n+1 − x (1)

j,n)

⎞

⎠ ,

where x (1)
0,n = 0.

Combining it with Theorem 3.6 gives r̃n > 0. The proof is completed. ��
Proof of Corollary 3

Proof Taking partial derivative of P(�)
n (x (�)

i,n ; ζ ) with respect to ζ and using Theorem 3.3
gives

∂x (�)
i,n

∂ζ
= −

(
∂P(�)

n

∂x
(x (�)

i,n ; ζ )

)−1 (
∂P(�)

n

∂ζ
(x (�)

i,n ; ζ )

)

= −a(�)
n−1

(
∂P(�)

n

∂x
(x (�)

i,n ; ζ )

)−1

P(�)
n−1(x

(�)
i,n ; ζ ).

Due to Theorem 3.5, one has

sign(P(�)
n−1(x

(�)
i,n ; ζ )) = (−1)n+i = sign

(
∂P(�)

n

∂x
(x (�)

i,n ; ζ )

)

.

Combining them completes the proof. ��
Proof of Lemma 1

Proof According to the definition of Q2n(x; ζ ) in (3.30), it is not difficult to know that
Q2n(x; ζ ) is an even function and a polynomial of degree 2n.

If taking x in (3.30) as the zero of P(0)
n+1(x; ζ ), i.e. x = x (0)

i,n+1, i = 1, . . . , n + 1, then one
has

Q2n(x
(0)
i,n+1; ζ ) = P(0)

n+1(−x (0)
i,n+1; ζ )P(1)

n (x (0)
i,n+1; ζ ).

Since

sign
(
P(0)
n+1(−x (0)

i,n+1; ζ )
)

= (−1)n+1, i = 1, . . . , n + 1,

using Theorem 3.6 gives

sign
(
Q2n(x

(0)
i,n+1; ζ )Q2n(x

(0)
i+1,n+1; ζ )

)
= sign

(
P(1)
n (x (0)

i,n+1; ζ )P(1)
n (x (0)

i+1,n+1; ζ )
)

< 0,

for i = 1, . . . , n, which implies that there exists at least one zero of Q2n(x; ζ ) in each
subinterval (x (0)

i,n+1, x
(0)
i+1,n+1), i = 1, . . . , n. Because Q2n(x; ζ ) is an even polynomial of

degree 2n, there exists exactly one zero of Q2n(x; ζ ) in each subinterval (x (0)
i,n+1, x

(0)
i+1,n+1),

i = 1, . . . , n. The proof is completed. ��
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Proof of Lemma 2

Proof According to the definition of Q2n(x; ζ ) in (3.30), one has

∂Q2n

∂ζ
(zi,n; ζ ) = ∂P(0)

n+1

∂ζ

∣∣∣
x=zi,n

P(1)
n (−zi,n; ζ ) + ∂P(1)

n

∂ζ

∣∣∣
x=zi,n

P(0)
n+1(−zi,n; ζ )

+ ∂P(0)
n+1

∂ζ

∣∣∣
x=−zi,n

P(1)
n (zi,n; ζ ) + ∂P(1)

n

∂ζ

∣∣∣
x=−zi,n

P(0)
n+1(zi,n; ζ ).

Using Theorem 3.3 gives

∂Q2n

∂ζ
(zi,n; ζ ) = a(0)

n

(
P(0)
n (zi,n; ζ )P(1)

n (−zi,n; ζ ) + P(0)
n (−zi,n; ζ )P(1)

n (zi,n; ζ )
)

+ a(1)
n−1

(
P(1)
n−1(zi,n; ζ )P(0)

n+1(−zi,n; ζ ) + P(1)
n−1(−zi,n; ζ )P(0)

n+1(zi,n; ζ )
)

+
(
1

2
(b(0)

n+1 + b(1)
n ) − (G(ζ ) − ζ−1)

)
Q2n(zi,n; ζ )

= a(0)
n

(
P(0)
n (zi,n; ζ )P(1)

n (−zi,n; ζ ) + P(0)
n (−zi,n; ζ )P(1)

n (zi,n; ζ )
)

+ a(1)
n−1

(
P(1)
n−1(zi,n; ζ )P(0)

n+1(−zi,n; ζ ) + P(1)
n−1(−zi,n; ζ )P(0)

n+1(zi,n; ζ )
)

.

Substituting (3.14) and (3.15) into it gives

∂Q2n

∂ζ
(zi,n; ζ ) = 2a(0)

n

r̃n

(
((zi,n)

2 − 1)P(1)
n (zi,n; ζ )P(1)

n (−zi,n; ζ )

+ p̃n zi,n P
(0)
n+1(−zi,n; ζ )P(1)

n (zi,n; ζ )
)

− 2a(0)
n

r̃n

(
P(0)
n+1(zi,n; ζ )P(0)

n+1(−zi,n; ζ ) − p̃−1
n zi,n P

(0)
n+1(−zi,n; ζ )P(1)

n (zi,n; ζ )
)

= 2
P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

a(0)
n

r̃n

(
( p̃n + p̃−1

n )zi,n P
(1)
n (−zi,n; ζ )P(0)

n+1(−zi,n; ζ )

+(z2i,n − 1)P(1)
n (−zi,n; ζ )2 + P(0)

n+1(−zi,n; ζ )2
)

= 2
P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

a(0)
n

r̃n

⎛

⎝(c(0)
n+1)

2
n+1∏

j=1

(zi,n + x (0)
j,n+1) Ĩ1 − (c(1)

n )2
n∏

j=1

(zi,n + x (1)
j,n) Ĩ2

⎞

⎠,

where

Ĩ1 :=
n+1∏

j=1

(
zi,n + x (0)

j,n+1

)
− zi,n

n∏

j=1

(
zi,n + x (1)

j,n

)
,

Ĩ2 := zi,n

n+1∏

j=1

(
zi,n + x (0)

j,n+1

)
− (z2i,n − 1)

n∏

j=1

(
zi,n + x (1)

j,n

)
.

Similarly, using Theorem 3.4 and (3.14)-(3.15) gives

∂Q2n

∂x
(zi,n; ζ ) = ζ

c(1)
n−1

c(0)
n+1

(
P(1)
n−1(zi,n; ζ )P(1)

n (−zi,n; ζ ) − P(1)
n−1(−zi,n; ζ )P(1)

n (zi,n; ζ )
)
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+ (z2i,n − 1)−1ζ
c(0)
n

c(1)
n

(
P(0)
n (zi,n; ζ )P(0)

n+1(−zi,n; ζ )

−P(0)
n (−zi,n; ζ )P(0)

n+1(zi,n; ζ )
)

= 2ζ
P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

a(0)
n

r̃n

(
zi,n P

(1)
n (−zi,n; ζ )2

+( p̃n + p̃−1
n )P(0)

n+1(−zi,n; ζ )P(1)
n (−zi,n; ζ )

+(z2i,n − 1)−1zi,n P
(0)
n+1(−zi,n; ζ )2

)

= 2ζ
P(1)
n (zi,n; ζ )

P(1)
n (−zi,n; ζ )

a(0)
n

r̃n

⎛

⎝(c(0)
n+1)

2

∏n+1
j=1(zi,n + x (0)

j,n+1)

z2i,n − 1
Ĩ2 − (c(1)

n )2
n∏

j=1

(zi,n + x (1)
j,n) Ĩ1

⎞

⎠ .

Using Theorem 3.6 gives

zi,n + x (0)
j+1,n+1 > zi,n + x (1)

j,n, j = 1, . . . , n,

zi,n + x (0)
1,n+1 > zi,n + 1 > zi,n > zi,n − 1,

for i = 1, . . . , n, which imply

Ĩ1 > 0, Ĩ2 > 0.

Thus one has

n+1∏

j=1

(zi,n + x (0)
j,n+1) Ĩ1 −

n∏

j=1

(zi,n + x (1)
j,n) Ĩ2

=
⎛

⎝
n+1∏

j=1

(zi,n + x (0)
j,n+1) − (zi,n − 1)

n∏

j=1

(zi,n + x (1)
j,n)

⎞

⎠

×
⎛

⎝
n+1∏

j=1

(zi,n + x (0)
j,n+1) − (zi,n + 1)

n∏

j=1

(zi,n + x (1)
j,n)

⎞

⎠ > 0,

n+1∏

j=1

(zi,n + x (0)
j,n+1) Ĩ2 − ((zi,n)

2 − 1)
n∏

j=1

(zi,n + x (1)
j,n) Ĩ1

=zi,n

⎛

⎝
n+1∏

j=1

(zi,n + x (0)
j,n+1) Ĩ1 −

n∏

j=1

(zi,n + x (1)
j,n) Ĩ2

⎞

⎠

+ 2
n+1∏

j=1

(zi,n + x (0)
j,n+1)

n∏

j=1

(zi,n + x (1)
j,n) > 0.

Using Corollaries 1 and 2, and the above results gives (3.31).
The proof is completed. ��
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Proof of Lemma 3

Proof Taking partial derivative of Q2n(zi,n; ζ ) with respect to ζ gives

∂zi,n
∂ζ

= −
(

∂Q2n

∂x

∣∣∣
x=zi,n

)−1 (
∂Q2n

∂ζ

∣∣∣
x=zi,n

)
, i = 1, . . . , n.

Using Lemma 2 completes the proof. ��
Proof of Theorem 3.7

Proof Obviously, both vectors ui,n and vi,n defined in (3.35) are not zero at the same time,
i = ±1, . . . ,±n. The nonzero eigenvalues and eigenvectors of the matrix pair A0

n and A
1
n in

(3.32) and (3.34) can be obtained with the aid of (3.28)-(3.29) and Lemma 1. Using Lemma
3 further gives (3.33).

In the following, let us discuss the eigenvector y0,n . Multiplying (3.12) by P(0)
n+1(−x; ζ )

gives

(x2 − 1)P(1)
n−1(x; ζ )P(0)

n+1(−x; ζ )

= Jn−1P(0)
n (x; ζ )P(0)

n+1(−x; ζ ) + rn P
(0)
n+1(x; ζ )P(0)

n+1(−x; ζ )en . (9.1)

Transforming (9.1) by x to −x and then subtracting it from (9.1) and letting x = 1 gives as
follows

0 = Jn−1

(
P(0)
n (1; ζ )P0

n+1(−1; ζ ) − P(0)
n (−1; ζ )P(0)

n+1(1; ζ )
)

= Jn−1u0,n,

which is a special case of (3.21) with λ̂ = 0.
The proof is completed. ��

Appendix 3: Proofs in Section 4

Proof of Lemma 4

Proof (i) Due to the definition of E and p〈1〉, it is obvious that each component ofP∞[u, θ ]
(resp. PM [u, θ ]) belongs to H

g(0)
[u,θ ] (resp. H

g(0)
[u,θ ]
M ).

(ii) The mathematical induction is used to prove that any element in the spaceHg(0)
[u,θ ] (resp.

H
g(0)
[u,θ ]
M ) can be expressed as a linear combination of vectors inP∞[u, θ ] (resp.PM [u, θ ])

. For M = 1, it is clear to have the linear combination

pαg(0)
[u,θ ]

(2.9)=
(
p〈α〉 +UαE

)
g(0)
[u,θ ]

(2.8)= (−(U 0)−1U 1−α p〈1〉 +UαE
)
g(0)
[u,θ ]

(3.5)= − (c(1)
0 )−1U 1−α P̃(1)

0 [u, θ ] + (c(0)
1 )−1Uα P̃(0)

1 [u, θ ]
+ (c(0)

0 )−1Uαx (0)
1,1 P̃

(0)
0 [u, θ ],

where the decomposition of the particle velocity vector (2.9) has been used.
Assume that the linear combination
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pμ1 pμ2 . . . pμM g(0)
[u,θ ] =

M∑

i=0

cμ1,...,μM
i,0 P̃(0)

i [u, θ ] +
M−1∑

i=0

cμ1,...,μM
i,1 P̃(1)

i [u, θ ],

μi = 0, 1, i ∈ N, i ≤ M, cμ1,...,μM
i,0 , cμ1,...,μM

i,1 ∈ R,

holds. One has to show that pμ1 pμ2 . . . pμM+1g(0)
[u,θ ] can be expressed as a linear com-

bination of components of PM+1[u, θ ]. Because

pμ1 pμ2 . . . pμM+1g(0)
[u,θ ]

=
(

M∑

i=0

cμ1,...,μM
i,0 P̃(0)

i [u, θ ] +
M−1∑

i=0

cμ1,...,μM
i,1 P̃(1)

i [u, θ ]
)

× (−(U 0)−1U 1−μM+1 p〈1〉 +UμM+1E
)

=
M∑

i=0

cμ1,...,μM
i,0 UμM+1E P̃(0)

i [u, θ ] −
M−1∑

i=0

cμ1,...,μM
i,1 U 1−μM+1(E2 − 1)P(1)

i (E; ζ )

−
M∑

i=0

cμ1,...,μM
i,0 (U 0)−1U 1−μM+1 P(0)

i (E; ζ )p〈1〉 +
M−1∑

i=0

cμ1,...,μM
i,1 UμM+1 P̃(1)

i [u, θ ],

one has

pμ1 pμ2 . . . pμM+1g(0)
[u,θ ]

=
M∑

i=0

cμ1,...,μM
i,0 UμM+1

(
a(0)
i−1 P̃

(0)
i−1[u, θ ] + b(0)

i P̃(0)
i [u, θ ] + a(0)

i P̃(0)
i+1[u, θ ]

)

−
M−1∑

i=0

cμ1,...,μM
i,1 U 1−μM+1

(
pi P̃

(0)
i [u, θ ] + qi P̃

(0)
i+1[u, θ ] + ri+1 P̃

(0)
i+2[u, θ ]

)

−
M∑

i=0

cμ1,...,μM
i,0 U 1−μM+1

(
ri−1 P̃

(1)
i−2[u, θ ] + qi−1 P̃

(1)
i−1[u, θ ] + pi P̃

(1)
i [u, θ ]

)

+
M−1∑

i=0

cμ1,...,μM
i,1 UμM+1

(
a(1)
i−1 P̃

(1)
i−1[u, θ ] + b(1)

i P̃(1)
i+1[u, θ ] + a(1)

i P̃(1)
i+1[u, θ ]

)

=:
M+1∑

i=0

cμ1,...,μM+1
i,0 P̃(0)

i [u, θ ] +
M∑

i=0

cμ1,...,μM+1
i,1 P̃(1)

i [u, θ ],

by using the three-term recurrence relations (3.6), (3.9), and (3.10) for the orthogonal
polynomials {P(�)

n (x; ζ ), � = 0, 1}.
(iii) Using (3.1) gives

〈P̃(�)
i [u, θ ], P̃(�)

j [u, θ ]〉
g(0)
[u,θ ]

=
(
P(�)
i , P(�)

j

)

ω(�)
= δi, j , � = 0, 1. (10.1)

Because of (2.9), one has

dp

p0
= dp〈1〉

−1 + u(U 0E)−1 p〈1〉
−up〈1〉 +U 0E

= −dp〈1〉
U 0E

, E =
√(

(U 0)−1 p〈1〉
)2 + 1.
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Thus it holds

〈P̃(0)
i [u, θ ], P̃(1)

j [u, θ ]〉
g(0)
[u,θ ]

=
∫

R

g(0)
[u,θ ]P

(0)
i (E; ζ )P(1)

j (E; ζ )(U 0)−1 p〈1〉
dp

p0

= −
∫

R

g(0)
[u,θ ]P

(0)
i (E; ζ )P(1)

j (E; ζ )(U 0)−1 p〈1〉
dp〈1〉
U 0E

= 0.

(10.2)

Combining (i) and (ii) with (iii) completes the proof.
��

Proof of Lemma 5

Proof For s = t and x , it is clear to have

∂E

∂s
= ∂u

∂s

1

(1 − u2)
(U 0)−1 p〈1〉,

∂
(
(U 0)−1 p〈1〉

)

∂s
= ∂u

∂s

1

1 − u2
E .

Using the above identities and (4.1) gives

∂g(0)
[u,θ ]
∂s

= −
(

∂θ

∂s
ζ 2 (G(ζ ) − ζ−1 − E

)+ ∂u

∂s

1

θ(1 − u2)
(U 0)−1 p〈1〉

)
g(0)
[u,θ ].

The derivation rule of compound function gives

∂ P̃(0)
n [u, θ ]
∂s

=∂P(0)
n

∂E

∂E

∂s
g(0)
[u,θ ] − ζ 2 ∂P(0)

n

∂ζ

∂θ

∂s
g(0)
[u,θ ] + P(0)

n

∂g(0)
[u,θ ]
∂s

,

∂ P̃(1)
n−1[u, θ ]

∂s
=∂P(1)

n−1

∂E

∂E

∂s
(U 0)−1 p〈1〉g(0)

[u,θ ] − ζ 2 ∂P(1)
n−1

∂ζ

∂θ

∂s
(U 0)−1 p〈1〉g(0)

[u,θ ]

+ P(1)
n−1

∂
(
(U 0)−1 p〈1〉

)

∂s
g(0)
[u,θ ] + P(1)

n−1(U
0)−1 p〈1〉

∂g(0)
[u,θ ]
∂s

.

Combining them and using Theorems 3.1–3.4 complete the proof. ��
Proof of Lemma 6

Proof Using the three-term recurrence relations (3.7), (3.11), and (3.12) gives

EP̃M [u, θ ] = A0
M P̃M [u, θ ] + a(0)

M P̃(0)
M+1[u, θ ]e32M+1 + a(1)

M−1 P̃
(1)
M [u, θ ]e22M+1,

(U 0)−1 p〈1〉P̃M = A1
M P̃M [u, θ ] + pM P̃(1)

M [u, θ ]e32M+1 + rM P̃(0)
M+1[u, θ ]e22M+1,

where e32M+1 is the (M + 1)th column of the identity matrix of order (2M + 1). Thus one
has

EPM [u, θ ] = Pp
MA0

M (Pp
M )TPM [u, θ ]+a(0)

M P̃(0)
M+1[u, θ ]e12M+1+a(1)

M−1 P̃
(1)
M [u, θ ]e22M+1,

(U 0)−1 p〈1〉PM = Pp
MA1

M (Pp
M )TPM [u, θ ] + pM P̃(1)

M [u, θ ]e12M+1 + rM P̃(0)
M+1[u, θ ]e22M+1.

Combining them with (2.9) completes the proof. ��
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Proof of Lemma 7

Proof It is obvious that 
M [u, θ ] is a linear bounded operator and 
M [u, θ ] f ∈ H
g(0)
[u,θ ]
M for

all f ∈ H
g(0)
[u,θ ] .

For all f ∈ H
g(0)
[u,θ ]
M , besides (4.7), by using Lemma 4 one has

f =
M∑

i=0

f̃ 0i P̃
(0)
i [u, θ ] +

M−1∑

j=0

f̃ 1j P̃
(1)
j [u, θ ].

Taking respectively the inner product with P̃(0)
i [u, θ ] and P̃(1)

j [u, θ ] from both sides of the
last equation gives

f 0i = 〈 f, P̃(0)
i [u, θ ]〉

g(0)
[u,θ ]

, i ≤ M, f 1j = 〈 f, P̃(1)
j [u, θ ]〉

g(0)
[u,θ ]

, j ≤ M − 1.

Comparing them with the coefficients in (4.9) shows that f̃ 0i = f 0i , f̃
1
j = f 1j ,

i = 0, . . . , M , j = 1, . . . , M − 1. The proof is completed. ��

Appendix 4: Proofs in Section 5

Proof of Lemma 8

Proof It is obvious that for M = 1, the matrix DM is invertible because
det(DM ) = ρζ 2c(1)

0 (c(0)
0 c(0)

1 (1 − u2))−1 > 0. For M ≥ 2, according to the form of DM

in Sect. 4.2, one has

det(DM ) = det(D2) = ζ 3c(0)
2 c(1)

1 (x (0)
1,2 + x (0)

2,2)(ρG(ζ ) + 
)ρ(c(0)
1 c(0)

0 (1 − u2))−1.

Using 
 > −ρθ gives

det(DM ) > ζ 3c(0)
2 c(1)

1 (x (0)
1,2 + x (0)

2,2)ρ
2(G(ζ ) − ζ−1)(c(0)

1 c(0)
0 (1 − u2))−1 > 0.

The proof is completed. ��
Proof of Theorem 5.1

Proof Consider the following generalized eigenvalue problem (2nd sense): Find a vector
r that obeys λB0

Mr = B1
Mr or λMt

MDMr = Mx
MDMr. Thanks to (4.5), this eigenvalue

problem is equivalent to

(λ − u)A0
M (Pp

M )TDMr = (λu − 1)A1
M (Pp

M )TDMr.

Because Theorem 3.7 tells us that λ̂i,M and yi,M satisfy

λ̂i,MA0
Myi,M = A1

Myi,M , |λ̂i,M | < 1,

the scalar λi,M in (5.1) and vector ri,M in (5.2) solve the above generalized eigenvalue
problem,

and satisfy

|λi,M | <
1 − u

1 − u
= 1.
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The proof is completed. ��
Proof of Lemma 9

Proof Because U 0Mt
M −U 1Mx

M = Pp
M A0

M (Pp
M )T and the permutation matrix Pp

M in (4.6)
satisfiesPp

M (Pp
M )T = (Pp

M )TPp
M = I, twomatricesU 0Mt

M−U 1Mx
M andA0

M are similar and
thus have the same eigenvalues. The definition of A0

M in (3.20) tells us that the eigenvalues

of A0
M are the zeros of P(0)

M+1(x; ζ ) and P(1)
M (x; ζ ) which are larger than one [43, Theorem

3.4], so the matrix U 0Mt
M −U 1Mx

M is positive definite.
Theorem 3.7 implies

ρ
(
(A0

M )−
1
2A1

M (A0
M )−

1
2

)
= ρ

(
(A0

M )−1A1
M

)
< 1,

where ρ(·) is the spectral radius of the matrix. Then [I −
(
(U 0A0

M )− 1
2U 1A1

M (U 0A0
M )− 1

2

)

is positive definite, so the matrix Mt
M is positive definite. ��

Proof of Theorem 5.2

Proof Lemmas 8 and 9 show that the matrix B0
M = Mt

MDM is invertible, and Theorem 5.1
implies that BM is diagonalizable with real eigenvalues and the spectral radius of BM is less
than one. The proof is completed. ��
Proof of Theorem 5.3

Proof Because

∇WMλi,M = 1
(
1 − uλ̂i,M

)2

(

0, 1 − λ̂2i,M ,−(1 − u2)
∂λ̂i,M

∂θ
, 0 . . . , 0

)T

,

and ri,M = D−1
M Pp

M

(
(ui,M )T , (vi,M )T

)T
, i = −M, . . . , M , one has

∇WMλi,M · ri,M = 1
(
1 − uλ̂i,M

)2

((
1 − λ̂2i,M

)
d2P

p
2 r̃

M
i − (1 − u2)

∂λ̂i,M

∂θ
d3P

p
2 r̃

M
i

)

,

(11.1)

where r̃Mi =
(
(u(3)

i,M )T , (v(2)
i,M )T

)T
, u(3)

i,M and v(2)
i,M denote two vectors formed by first three

and two components of ui,M and vi,M respectively, and d2 and d3 are the second and third
row of D−1

2 , specifically

d2 = − G(ζ )(1 − u2)

(ρG(ζ ) + 
)
√

ζ

(
0, 0,G(ζ ), 0,

√
−G(ζ )2 + 3ζ−1G(ζ ) + 1

)
,

d3 = 1

ρζ(G(ζ )2ζ 2−3G(ζ )ζ−ζ 2+1)

(

0,

√
G(ζ )−2ζ−1(G(ζ )2ζ 2−3G(ζ )ζ−ζ 2+1)

√
G(ζ )2ζ 2−3G(ζ )ζ−ζ 2+2

,
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(G(ζ )ζ − 1)ñ1G(ζ )√
ζ (ρG(ζ ) + 
)

,−
√
2G(ζ )3ζ 2 − 7G(ζ )2ζ − 2G(ζ )ζ 2 + 6G(ζ ) + ζ

√
G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 2

,

(G(ζ ) − ζ−1)
√−G(ζ ) + 3ζ−1G(ζ ) + 1

ρG(ζ ) + 


)

.

The identity (11.1) always holds, because λ̂0,M = 0 and u0,M and v0,M are given in (3.36).
The proof is completed. ��

Explanation of Remark 11

In fact, in order to judge by numerical experiments whether the sign of ∇WMλi,M · ri,M
is constant or not, (11.1) should be reformed. For i = ±1,±2, . . . ,±M , Theorem 3.7
and (11.1) give

∇WM λi,M · ri,M
−(1 − u2)

=
(

z2i,M − 1

ρG(ζ ) + 

− ζ

∂zi,M
∂ζ

1

ρ(G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1)

×
⎛

⎝G(ζ )ζ − 1 − ζ zi,M −
(G(ζ )ζ − 1)ñ1

√
z2i,M − 1

ρG(ζ ) + 


⎞

⎠

⎞

⎠ P(1)
M (−zi,M ; ζ )

+
(

z2i,M − 1

ρG(ζ ) + 

+ ζ

∂zi,M
∂ζ

1

ρ(G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1)

×
⎛

⎝G(ζ )ζ − 1 + ζ zi,M +
(G(ζ )ζ − 1)ñ1

√
z2i,M − 1

ρG(ζ ) + 


⎞

⎠

⎞

⎠ P(1)
M (zi,M ; ζ ).

Only a simple case is discussed in the following. As shown in Remark 2, at the local ther-
modynamic equilibrium, 
 = 0 and nα = 0, thus one has

∇WM λi,M · ri,M
−(1 − u2)

=
(
z2i,M − 1

ρG(ζ )
− ζ

∂zi,M
∂ζ

G(ζ )ζ − 1 − ζ zi,M
ρ(G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1)

)

P(1)
M (−zi,M ; ζ )

+
(
z2i,M − 1

ρG(ζ )
+ ζ

∂zi,M
∂ζ

G(ζ )ζ − 1 + ζ zi,M
ρ(G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1)

)

P(1)
M (zi,M ; ζ ).

Using the term

ρ(G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1)

(z2i,M − 1)(G(ζ )ζ − 1)P(1)
M (−zi,M ; ζ )

,

to normalize the above identity and noting that

sign(G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1) = −sign(x (0)
1,2x

(0)
2,2) < 0,

gives

sign
(∇WMλi,M · ri,M

) = (−1)M sign
(
ĝ(zi,M ; ζ )

)
,

where ĝ(zi,M ; ζ ) is defined by

ĝ(zi,M ; ζ ) =G(ζ )2ζ 2 − 3G(ζ )ζ − ζ 2 + 1

G(ζ ) (G(ζ )ζ − 1)

(

1 + P(1)
M (zi,M ; ζ )

P(1)
M (−zi,M ; ζ )

)
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Fig. 6 Plots of ĝ(z1,M ; ζ ) in terms of ζ for M = 4 (left) and 7 (right)

− ζ

(zi,M )2 − 1

(

1 − P(1)
M (zi,M ; ζ )

P(1)
M (−zi,M ; ζ )

)
∂zi,M
∂ζ

+ ζ 2zi,M(
(zi,M )2 − 1

)
(G(ζ )ζ − 1)

(

1 + P(1)
M (zi,M ; ζ )

P(1)
M (−zi,M ; ζ )

)
∂zi,M
∂ζ

, i ≥ 1,

and ĝ(zi,M ; ζ ) := ĝ(z−i,M ; ζ ) for i ≤ −1. It is relatively easy to judge by numerical exper-
iments whether the sign of ĝ(zi,M ; ζ ) is constant or not. Figure 6 shows plots of ĝ(z1,4; ζ )

and ĝ(z1,7; ζ ) in terms of ζ . Similar to the special case of M = 4 and 7, our observation in
numerical experiments is that the sign of ĝ(z1,M ; ζ ) is not constant when M ≥ 4 so that both
λ1,M and λ−1,M characteristic fields are neither linearly degenerate nor genuinely nonlinear
when M ≥ 4. Such phenomenon is still not found in the case of M ≤ 3.

Proof of Theorem 5.4

Proof Because the matrix DM in (4.14) at WM = W(0)
M can be reformed as follows

DM =
⎛

⎝
D11
3×3 D12

3×2 O
O D22

2×2 O
O O I2M−4

⎞

⎠ ,

and its inverse is given by

D−1
M =

⎛

⎜
⎝

(
D11
3×3

)−1 − (D11
3×3

)−1
D12
3×2

(
D22
2×2

)−1
O

O
(
D22
2×2

)−1
O

O O I2M−4

⎞

⎟
⎠ ,

as well as

D̃
W
M =

⎛

⎝
O D12

3×2 O
O D22

2×2 O
O O I2M−4

⎞

⎠ ,
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the product of D̃
W
M and D−1

M is of the form

D̃
W
MD−1

M =
⎛

⎝
O3×3 D12

3×2

(
D22
2×2

)−1
O3×(2M−4)

O2×3 I2 O2×(2M−4)
O(2M−4)×3 O(2M−4)×2 I2M−4

⎞

⎠ ,

where D11
3×3 is the 3 × 3 subblock of D2 in the upper left corner, D12

3×2 denotes the 3 × 2
subblock ofD2 in the upper right corner, andD22

2×2 is 2×2 subblock ofD2 in the bottom right

corner. It is obvious that each eigenvalue of −D̃
W
MD−1

M is non-positive, so does the matrix

Q̄M := − 1

τ

(
U 0Mt

M −U 1Mx
M

) 1
2 D̃

W
MD−1

M

(
U 0Mt

M −U 1Mx
M

)− 1
2 .

The matrix U 0Mt
M −U 1Mx

M can be written as follows
⎛

⎝
M11

3×3 M12
3×2 O3,2M−4

(M12
3×2)

T M22
2×2 M23

2×(2M−4)
O2M−4,3 (M23

2×(2M−4))
T M33

(2M−4)×(2M−4)

⎞

⎠ ,

where M11
3×3 is the 3 × 3 subblock of Pp

2A
0
2(P

p
2 )T in the upper left corner, M12

3×2 denotes
the 3 × 2 subblock of Pp

2A
0
2(P

p
2 )T in the upper right corner, andM22

2×2 is 2 × 2 subblock of
Pp
2A

0
2(P

p
2 )T in the bottom right corner, the rest subblocks form the (2M − 2) × (2M − 2)

bottom right corner of Pp
2A

0
M (Pp

M )T . Thus one has

MD := (M12
3×2)

TD12
3×2

(
D22
2×2

)−1 = −
(
D12
3×2

(
D22
2×2

)−1
)T

M11
3×3

(
D12
3×2

(
D22
2×2

)−1
)

,

which is symmetric because M11
3×3D

12
3×2

(
D22
2×2

)−1 + M12
3×2 = O3×2.

On the other hand, because the first three components of S(WM ) are zero, all elements in
the first three rows and the first three columns of the matrix

QM = − 1

τ

(
U 0Mt

M −U 1Mx
M

)
D̃
W
MD−1

M ,

are zero, and the matrix QM is of form

QM = − 1

τ

⎛

⎝
O3,3 O3,2 O3,2M−4

O2,3 M22
2×2 + MD M23

2×(2M−4)
O2M−4,3 (M23

2×(2M−4))
T M33

(2M−4)×(2M−4)

⎞

⎠ .

Hence the matrix QM is symmetric. It is obvious that QM is congruent with Q̄M , so it is
negative semi-definite.

Because both matrices DM and Mt
M are invertible, and Mt

M is positive definite, (5.4) is
equivalent to

det
(
iωI − ikMM − Q̂M

)
= 0, (11.2)

where

Q̂M := (Mt
M

)− 1
2 QM

(
Mt

M

)− 1
2 ,

and

MM := (Mt
M

)− 1
2 Mx

M

(
Mt

M

)− 1
2 .
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It is obvious that the matrix Q̂M is congruent with QM and negative semi-definite, andMM

is symmetric. Using Lemmas 1 and 2 in [15] completes the proof. ��
Proof of Lemma 10

Proof (i) Under the given Lorentz boost (x direction)

t ′ = γ (v)(t − vx), x ′ = γ (v)(x − vt), γ (v) = (1 − v2)−
1
2 ,

where v is the relative velocity between frames in the x-direction, one has

(p0)′ = γ (v)(p0 − p1v), (p1)′ = γ (v)(p1 − p0v),

(U 0)′ = γ (v)(U 0 −U 1v), (U 1)′ = γ (v)(U 1 −U 0v).

Thus one further obtains

E ′ = (U 0)′(p0)′ − (U 1)′(p1)′ = U 0 p0 −U 1 p1 = E,

and
( p〈1〉
U 0

)′ =−(p〈1〉)′

(U 0)′
= − p〈0〉 − p〈1〉v

U 1 −U 0v
= − (U 0)−1U 1 p〈1〉 − p〈1〉v

U 1 −U 0v
= p〈1〉

U 0 ,

(
dp

p0

)′
=d(p1)′

(p0)′
= dp0 − dp1v

p1 − p0v
= (p0)−1 p1dp1 − dp1v

p1 − p0v
= dp

p0
.

Combining them with (4.9) gives that each component of fM is Lorentz invariant, so that
the last (2M − 4) components ofWM are also Lorentz invariant.
From (2.17) and (2.20), it is not difficult to prove that ρ and θ are Lorentz invariant. On
the other hand, because

ñ1 =
∫

R

p〈1〉

U 0 f
dp

p0
,

the quantity ñ1 is Lorentz invariant. Moreover, one has
(

du

1 − u2

)′
= d(U 1)′

(U 0)′
= dU 0 − dU 1v

U 1 −U 0v
= (U 0)−1U 1dU 1 − dU 1v

U 1 −U 0v
= dU 1

U 0 = du

1 − u2
.

Using the above results completes the proof of the first part.
(ii) Because A0

M and A1
M only depend on θ , they are Lorentz invariant.

The source term S(WM ) in (4.21) can be rewritten into

S(WM ) = − 1

τ
Pp
MA0

M (Pp
M )T

(
fM − f (0)M

)
,

which has been expressed in terms of the Lorentz covariant quantities. In fact, the general
source term S(WM ) in the moment system (4.20) is also Lorentz invariant. The proof
is completed.

��
Proof of Theorem 5.5

Proof From the 3rd step in Sec. 4.2 and Lemma 10, one knows that D̂M = DM (Du
M )−1 can

be expressed in terms of the Lorentz covariant quantities, so it is Lorentz invariant. Because
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(Mt
M )′ = −γ (v)(U 1 −U 0v)Pp

MA1
M (Pp

M )T + γ (v)(U 0 −U 1v)Pp
MA0

M (Pp
M )T ,

(Mx
M )′ = −γ (v)(U 0 −U 1v)Pp

MA1
M (Pp

M )T + γ (v)(U 1 −U 0v)Pp
MA0

M (Pp
M )T ,

and

(
∂

∂t

)′
= γ (v)

(
∂

∂t
+ v

∂

∂x

)
,

(
∂

∂x

)′
= γ (v)

(
∂

∂x
+ v

∂

∂t

)
,

one has

(
Du
M

∂WM

∂t

)′
= diag

{
1,
(
(U0)2

)′
, 1, . . . , 1

}
γ (v)

(
∂(ρ, u′, θ, 
, ñ1, f 03 , . . . , f 1M−1)

T

∂t

+ v
∂(ρ, u′, θ,
, ñ1, f 03 , . . . , f 1M−1)

T

∂x

)

= diag
{
1,
(
(U0)−1

)′, 1, . . . , 1
}

γ (v)

(
∂(ρ, (U1)′, θ,
, ñ1, f 03 , . . . , f 1M−1)

T

∂t

+ v
∂(ρ, (U1)′, θ, 
, ñ1, f 03 , . . . , f 1M−1)

T

∂x

)

=Du
Mγ (v)

(
∂WM

∂t
+ v

∂WM

∂x

)
,

where the last equal sign is derived by following the proof of Lemma 10. Similarly, one has

(
Du

M
∂WM

∂x

)′
= Du

Mγ (v)

(
∂WM

∂x
+ v

∂WM

∂t

)
.

Thus it holds

(
B0
M

∂WM

∂t
+ B1

M
∂WM

∂x

)′

= (Mt
M )′
(
DM

∂WM

∂t

)′
+ (Mx

M )′
(
DM

∂WM

∂x

)′

=
(
−(U 1)′Pp

MA1
M (Pp

M )T + (U 0)′P p
MA0

M (P p
M )T

)
DM

(
γ (v)

(
∂WM

∂t
+ v

∂WM

∂x

))

+
(
−(U 0)′Pp

MA1
M (Pp

M )T + (U 1)′Pp
MA0

M (Pp
M )T

)
DM

(
γ (v)

(
∂WM

∂x
+ v

∂WM

∂t

))

=
(
−U 1vPp

MA1
M (Pp

M )T +U 0Pp
MA0

M (Pp
M )T

)
DM

∂WM

∂t

+
(
−U 0Pp

MA1
M (Pp

M )T +U 1Pp
MA0

M (Pp
M )T

)
DM

∂WM

∂x

= B0
M

∂WM

∂t
+ B1

M
∂WM

∂x
.

Combining it with Lemma 10 completes the proof. ��
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Appendix 5: Proofs in Section 6

Proof of Lemma 11

Proof Using Lemmas 4 and 7 gives

f̃ g(0)
[u,θ ] =

M∑

i=0

f̃ 0i P̃
(0)
i [u, θ ] +

M−1∑

j=0

f̃ 1j P̃
(1)
j [u, θ ],


M [u, θ ] f =
M∑

i=0

f 0i P̃
(0)
i [u, θ ] +

M−1∑

j=0

f (1)
j P̃(1)

j [u, θ ],

where

f 0i = 〈 f, P̃(0)
i [u, θ ]〉

g(0)
[u,θ ]

, f̃ 0i = 〈 f̃ g(0)
[u,θ ], P̃

(0)
i [u, θ ]〉

g(0)
[u,θ ]

, i ≤ M,

f 1j = 〈 f, P̃(1)
j [u, θ ]〉

g(0)
[u,θ ]

, f̃ 1j = 〈 f̃ g(0)
[u,θ ], P̃

(1)
j [u, θ ]〉

g(0)
[u,θ ]

, j ≤ M − 1.

Therefore one has

〈 f̃ g(0)
[u,θ ],
M [u, θ ] f 〉

g(0)
[u,θ ]

= 〈 f̃ f,
M [u, θ ] f 〉 f

=
M∑

i=0

f 0i 〈 f̃ f, P̃(0)
i [u, θ ]〉 f +

M−1∑

j=0

f 1j 〈 f̃ f, P̃(1)
j [u, θ ]〉 f

=
M∑

i=0

f 0i 〈 f̃ g(0)
[u,θ ], P̃

(0)
i [u, θ ]〉

g(0)
[u,θ ]

+
M−1∑

j=0

f 1j 〈 f̃ g(0)
[u,θ ], P̃

(1)
j [u, θ ]〉

g(0)
[u,θ ]

=
M∑

i=0

f 0i f̃ 0i +
M−1∑

j=0

f 1j f̃
1
j

=
M∑

i=0

〈 f, f̃ 0i P̃
(0)
i [u, θ ]〉

g(0)
[u,θ ]

+
M−1∑

j=0

〈 f, f̃ 1j P̃
(1)
j [u, θ ]〉

g(0)
[u,θ ]

= 〈 f, f̃ g(0)
[u,θ ]〉g(0)

[u,θ ]
= 〈 f, f̃ f 〉 f .

The proof is completed. ��
Proof of Lemma 12

Proof Using Lemma 7 gives


M [u1, θ1] f =
M∑

i=0

f 0i P̃
(0)
i [u1, θ1] +

M−1∑

j=0

f 1j P̃
(1)
i [u1, θ1],


M [u1, θ1]
M [u2, θ2] f =
M∑

i=0

f̃ 0i P̃
(0)
i [u1, θ1] +

M−1∑

j=0

f̃ 1j P̃
(1)
j [u1, θ1],

f 0i = 〈 f, P̃(0)
i [u1, θ1]〉g(0)

[u1,θ1]
= 〈 f, P(0)

i (u1, ζ1) f 〉 f , i ≤ M,
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f 1j = 〈 f, P̃(1)
j [u1, θ1]〉g(0)

[u1,θ1]
= 〈 f, P(1)

j (u1, ζ1)(U0)
−1
1 p〈1〉 f 〉 f , j ≤ M − 1,

f̃ 0i = 〈
M [u2, θ2] f, P̃(0)
i [u1, θ1]〉g(0)

[u1,θ1]
= 〈
M [u2, θ2] f, P(0)

i (u1, ζ1) f 〉 f , i ≤ M,

f̃ 1j = 〈
M [u2, θ2] f, P̃(1)
j [u1, θ1]〉g(0)

[u1,θ1]

= 〈
M [u2, θ2] f, P(1)
j (u1, ζ1)(U0)

−1
1 p〈1〉 f 〉 f , j ≤ M − 1.

Because both P(0)
i (u1, ζ1) f and P(1)

j (u1, ζ1)(U0)
−1
1 p〈1〉 f belong to the space H

f
M , using

Lemma 11 completes the proof. ��
Proof of Theorem 6.1

Proof Because Eq. (6.3) is equivalent to
(
I + 	t

τ ∗
i

(
Mt∗

i,M

)−1 (
U 0∗
i Mt∗

i,M −U 1∗
i Mx∗

i,M

) (
I − D

f (0)∗
i

i,M

))
fn+1
i,M = f∗i,M ,

it is unconditionally stable if and only if the modulus of each eigenvalue of the matrix

I + 	t

τ ∗
i

(
Mt∗

i,M

)−1 (
U 0∗
i Mt∗

i,M −U 1∗
i Mx∗

i,M

) (
I − D

f (0)∗
i

i,M

)
,

is not less than one. It is true if the real part of each eigenvalue of the matrix

(
Mt∗

i,M

)−1 (
U 0∗
i Mt∗

i,M −U 1∗
i Mx∗

i,M

) (
I − D

f (0)∗
i

i,M

)
=: (Mt∗

i,M

)−1 M̄
∗
D, (12.1)

is non-negative.
In fact, thanks to (6.4), the characteristic polynomial of the upper triangular matrix I −

D
f (0)∗
i

i,M is explicitly given by

0 = det

(
λI −

(
I − D

f (0)∗
i

i,M

))
= det

(
(λ − 1)I + D f (0)∗

i,M

)
= λ(λ − 1)2M ,

and M̄
∗
D is a symmetric matrix and congruent with

(
U 0∗
i Mt∗

i,M −U 1∗
i Mx∗

i,M

) 1
2

(
I − D

f (0)∗
i

i,M

) (
U 0∗
i Mt∗

i,M −U 1∗
i Mx∗

i,M

)− 1
2 ,

which is similar to the matrix I − D
f (0)∗
i

i,M . Thus the matrix M̄
∗
D is positive semi-definite

and each eigenvalue of the matrix
(
Mt∗

i,M

)−1
M̄

∗
D is non-negative because of the relation

(
Mt∗

i,M

)−1
M̄

∗
D =

(
Mt∗

i,M

)− 1
2 ( (

Mt∗
i,M

)− 1
2
M̄

∗
D

(
Mt∗

i,M

)− 1
2 ) (

Mt∗
i,M

) 1
2
. The proof is com-

pleted. ��
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