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Abstract We consider the critical behaviour of the continuous-time weakly self-avoiding
walk with contact self-attraction on Z

4, for sufficiently small attraction. We prove that the
susceptibility and correlation length of order p (for any p > 0) have logarithmic corrections
to mean field scaling, and that the critical two-point function is asymptotic to a multiple of
|x |−2. This shows that small contact self-attraction results in the same critical behaviour as no
contact self-attraction; a collapse transition is predicted for larger self-attraction. The proof
uses a supersymmetric representation of the two-point function, and is based on a rigorous
renormalisation group method that has been used to prove the same results for the weakly
self-avoiding walk, without self-attraction.

Keywords Weakly self-avoiding walk · Collapse transition · Renormalisation group

1 The Model and Main Result

The self-avoiding walk is a basic model for a linear polymer chain in a good solution. The
repulsive self-avoidance constraint models the excluded volume effect of the polymer. In a
poor solution, the polymer tends to avoid contact with the solution by instead making contact
with itself. This is modelled by a self-attraction favouring nearest-neighbour contacts. The
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self-avoiding walk is already a notoriously difficult problem, and the combination of these
two competing tendencies creates additional difficulties and an interesting phase diagram.

In this paper, we consider a continuous-time version of the weakly self-avoiding walk
with nearest-neighbour contact self-attraction on Z

4. When both the self-avoidance and self-
attraction are sufficiently weak, we prove that the susceptibility and finite-order correlation
length have logarithmic corrections to mean field scaling with exponents 1

4 and 1
8 for the

logarithm, respectively, and that the critical two-point function is asymptotic to a multiple of
|x |−2 as |x | → ∞.

1.1 Definition of the Model

For d > 0, let X denote the continuous-time simple random walk on Z
d . That is, X is the

stochastic process with right-continuous sample paths that takes its steps at the times of the
events of a rate-2d Poisson process. A step is independent both of the Poisson process and of
all other steps, and is taken uniformly at random to one of the 2d nearest neighbours of the
current position. The field of local times LT = (Lx

T )x∈Zd of X , up to time T ≥ 0, is defined
by

Lx
T =

∫ T

0
1Xt=x dt. (1.1)

The self-intersection local time and self-contact local time of X up to time T are the random
variables defined, respectively, by

IT =
∑
x∈Zd

(Lx
T )2 =

∫ T

0
ds

∫ T

0
dt 1Xs=Xt , (1.2)

CT =
∑
x∈Zd

∑
e∈U

Lx
T L

x+e
T =

∫ T

0
ds

∫ T

0
dt 1Xs∼Xt , (1.3)

whereU is the set of unit vectors inZ
d and y ∼ x indicates that x and y are nearest neighbours.

Given β > 0 and γ ∈ R, we define

Uβ,γ ( f ) = β
∑
x∈Zd

f 2x − γ

2d

∑
x∈Zd

∑
e∈U

fx fx+e (1.4)

for f : Z
d → R with fx = 0 for all but finitely many x . The potential that associates an

energy to X in terms of its field of local times is given by

Uβ,γ,T = Uβ,γ (LT ) = β IT − γ

2d
CT . (1.5)

The energy Uβ,γ,T increases with the self-intersection local time, corresponding to weak
self-avoidance. For γ > 0, the energy decreases when the self-contact local time increases,
corresponding to a contact self-attraction. For γ < 0, the contact term is repulsive. We are
primarily interested in the case of positive γ , but our results hold also for small negative γ .

Figure 1 shows a sample path X and indicates one self-intersection and four self-contacts.
Although IT also receives contributions from the time the walk spends at each vertex, and
CT receives a contribution from each step, these contributions have the same distribution for
all walks taking the same number of steps. The depicted intersections and contacts are the
meaningful ones.
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Fig. 1 Polymer with one
self-intersection and four
self-contacts shown

Let a, b ∈ Z
d , and let Ea denote the expectation for the process X started at X (0) = a.

We define

cT = Ea

(
e−Uβ,γ,T

)
, cT (a, b) = Ea

(
e−Uβ,γ,T 1XT =b

)
. (1.6)

By translation-invariance, cT does not depend on a. For ν ∈ R, the two-point function is
defined by

Gβ,γ,ν(a, b) =
∫ ∞

0
cT (a, b)e−νT dT, (1.7)

and the susceptibility is defined by

χ(β, γ, ν) =
∫ ∞

0
cT e

−νT dT =
∑
x∈Zd

Gβ,γ,ν(0, x). (1.8)

For p > 0, we define the correlation length of order p by

ξp(β, γ, ν) =
⎛
⎝ 1

χ(β, γ, ν)

∑
x∈Zd

|x |pGβ,γ,ν(0, x)

⎞
⎠

1/p

. (1.9)

In (1.7)–(1.9), self-intersections are suppressed by the factor exp[−β IT ], whereas nearest-
neighbour contacts are encouraged by the factor exp[ γ

2d CT ] when γ > 0.

1.2 The Critical Point

The right-hand sides of (1.7)–(1.8) are positive or +∞, and monotone decreasing in ν by
definition. We define the critical point

νc(β, γ ) = inf{ν ∈ R : χ(β, γ, ν) < ∞}. (1.10)

For γ = 0, an elementary argument shows that νc(β, 0) > −∞ for all dimensions, and
furthermore that νc(β, 0) ∈ [−2β(−�−1

Zd )0,0, 0] for dimensions d > 2; see [3, Lemma A.1].

Here, �Zd is the Laplacian on Z
d , i.e., the Z

d × Z
d matrix with entries

(�Zd )x,y = 1x∼y − 2d1x=y . (1.11)

An equivalent definition is as follows: given a unit vector e ∈ Z
d , the discrete gradi-

ent is defined by ∇e fx = fx+e − fx , and the Laplacian is �Zd fx = ∑
e∈U ∇e fx =

− 1
2

∑
e∈U ∇−e∇e fx .

123



320 R. Bauerschmidt et al.

To estimate the critical point when γ �= 0, we also define

|∇ fx |2 =
∑
e∈U

|∇e fx |2, |∇ f |2 =
∑
x∈Zd

|∇ fx |2. (1.12)

From the definition, we see that
∑
x∈Zd

fx�Zd fx = −1

2
|∇ f |2. (1.13)

It follows that
∑
x∈Zd

∑
e∈U

fx fx+e = 2d
∑
x∈Zd

f 2x +
∑
x∈Zd

fx�Zd fx = 2d
∑
x∈Zd

f 2x − 1

2

∑
x∈Zd

|∇ fx |2

(1.14)

and so we get the useful representation:

Uβ,γ ( f ) = (β − γ )
∑
x∈Zd

f 2x + γ

4d

∑
x∈Zd

∑
e∈U

|∇e fx |2. (1.15)

In particular,

Uβ,γ,T = (β − γ )IT + γ

4d
|∇LT |2. (1.16)

A version of (1.16) can be found in [21].

Lemma 1.1 Let d > 0. Let β > 0 and |γ | < β. If γ ≥ 0 then νc(β, γ ) ∈ [νc(β, 0), νc(β −
γ, 0)]. If γ < 0 then νc(β, γ ) ∈ [νc(β − γ, 0), νc(β, 0)].
Proof Suppose first that γ ∈ [0, β). It follows from (1.5) and (1.16) that

Uβ−γ,0,T ≤ Uβ,γ,T ≤ Uβ,0,T , (1.17)

which implies the desired estimates for νc(β, γ ).
On the other hand, if γ ∈ (−β, 0) then the inequalities are reversed and now

Uβ,0,T ≤ Uβ,γ,T ≤ Uβ−γ,0,T , (1.18)

which again implies the desired result. 
�
1.3 The Main Result

Our main result is the following theorem. It shows that in dimension d = 4, for sufficiently
small β and γ , the two-point function (1.7) has the same asymptotic decay, to leading order,
as the simple random walk two-point function. It also shows that the susceptibility and
correlation length of order p exhibit logarithmic corrections to mean-field behaviour. These
results were all proved for γ = 0 in [2,3,6], and we extend them here to small nonzero γ .

We denote the Laplacian on R
d by �Rd and define a constant cp by

cpp =
∫

R4
|x |p(−�R4 + 1)−1

0x dx . (1.19)

Theorem 1.2 Let d = 4. There exist β∗ > 0 and a positive function γ∗ : (0, β∗) → R such
that whenever 0 < β < β∗ and |γ | < γ∗(β), there are constants Aβ,γ and Bβ,γ such that
the following hold:
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(i) The critical two-point function decays as

Gβ,γ,νc (0, x) = Aβ,γ |x |−2
(
1 + O

(
1

log |x |
))

as|x | → ∞, (1.20)

with Aβ,γ = 1
4π2 (1 + O(β)) as β ↓ 0.

(ii) The susceptibility diverges as

χ(β, γ, νc + ε) ∼ Bβ,γ ε−1 (
log ε−1)1/4 , ε ↓ 0, (1.21)

with Bβ,γ =
(

β

2π2

)1/4
(1 + O(β)) as β ↓ 0.

(iii) For any p > 0, if β∗ is chosen small depending on p, then the correlation length of
order p diverges as

ξp(β, γ, νc + ε) ∼ B1/2
β,γ cpε

−1/2 (
log ε−1)1/8 , ε ↓ 0. (1.22)

Our method of proof extends the renormalisation group argument, used for γ = 0 in
[2,3,6,27], to small nonzero γ . In Sect. 2, as a first step, we show that the two-point function
can be approximated by a finite-volume one. The finite-volume two-point function has a
supersymmetric integral representation [7,9,10], which we state in Sect. 3. These two sec-
tions do not involve the renormalisation group. The application of the renormalisation group
method requires the following new ingredients: (i) in Sect. 4, we provide estimates on the
contact attraction which show that it is compatible with the renormalisation group method
developed in [13,14], and also with the dynamical systems theorem proved in [5], (ii) in
Sect. 5, we use the implicit function theorem to extend the identification of the critical point
from γ = 0 to γ �= 0, and complete the proof of Theorem 1.2.

In fact,we demonstrate that after the introduction ofγ , chosen sufficiently small depending
on g, wemay use the the same renormalisation groupflowof the remaining coupling constants
as in the case γ = 0, to second order in these coupling constants. Thus, since the critical
exponents are determined by this second-order flow, they are independent of small γ , and
take the same values as for γ = 0. The critical value νc(β, γ ) does, however, depend on γ .

1.4 Critical Exponents and Polymer Collapse

It has been known for decades that self-avoiding walk obeys mean-field behaviour in dimen-
sions d ≥ 5. In particular, a version of Theorem 1.2 for the strictly self-avoiding walk (in
discrete time with β = ∞ and γ = 0) in dimensions d ≥ 5 was proved in [18,19] using
the lace expansion [15]. In its original applications, the lace expansion relied on the purely
repulsive nature of the self-avoidance interaction. Models incorporating attraction require
new ideas. For a particular model with self-attraction and specially chosen exponentially
decaying step weights, the lace expansion was used in [28] to prove that, for d ≥ 5, the
mean-square displacement grows diffusively for small attraction. More recently [20], the
lace expansion has been applied in situations where repulsion occurs only in an average
sense. In a further development [17], the lace expansion has been applied to a model of
strictly self-avoiding walk with a self-attraction that rewards visits to adjacent parallel edges,
to prove that sufficiently weak self-attraction does not affect the critical behaviour in dimen-
sions d ≥ 5. The results of [17,28] for d ≥ 5 complement our results for d = 4, via entirely
different methods.
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ν̄ = 1/d

ν̄ = 1/(1+d)

ν̄ = 0

ν̄ = ν̄θ

ν̄ = ν̄SAW

β

our result

Fig. 2 The predicted phase diagram for d ≥ 2

Assuming it exists, the critical exponent ν̄ for the mean-square displacement is defined
by

〈|X (T )|2〉 = 1

cT
E0

(
|X (T )|2e−Uβ,γ,T

)
≈ T 2ν̄ , (1.23)

possibly with logarithmic corrections. A general tenet of the theory of critical phenomena
asserts that other natural length scales, such as the correlation length of order p, are also
governed by the exponent ν̄. A typical argument for this, found in physics textbooks, goes
as follows. It is predicted that cT ≈ eνcT T γ̄−1, where γ̄ is the critical exponent for the
susceptibility [for d = 4, γ̄ = 1 with a logarithmic correction, by (1.21)]. By definition,

ξ2(β, γ, ν)2 =
∫ ∞
0 〈|X (T )|2〉cT e−νT dT∫ ∞

0 cT e−νT dT
. (1.24)

In (1.24), we substitute the asymptotic formula for cT , as well as (1.23), to obtain

ξ2(β, γ, ν) ≈ (ν − νc)
−ν̄ as ν ↓ νc, (1.25)

with the same exponent ν̄ as in (1.23).
Theweakly self-avoidingwalkwith contact self-attraction is amodel for polymer collapse.

Polymer collapse corresponds to a discontinuous reduction in the exponent ν̄ as γ increases.
A summary of results, predictions, and references can be found in [23, Chapter 6]. See also
[24,29]. The predicted phase diagram for dimensions d ≥ 2 is shown in Figure 2. The
predicted values of the exponent at the θ -transition are ν̄θ = 4

7 for d = 2 and ν̄θ = 1
2 for

d ≥ 3 [23]. The phase labelled ν̄SAW takes its name from the fact that in this phase the model
with attraction is predicted to be in the same universality class as the self-avoiding walk.
The predicted values of the exponent ν̄SAW for the self-avoiding walk are respectively 3

4 ,
0.587597(7), 12 for d = 2, 3, 4 (with a logarithmic correction for d = 4; see [16] for d = 3),
and it has been proved that ν̄SAW = 1

2 for d ≥ 5 [15,19]. It remains a major challenge in
the mathematical theory of polymers to prove the full validity of the phase diagram in all
dimensions d ≥ 2. Very recently, the existence of a collapse transition (a singularity of the
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free energy) has been proven for a two-dimensional prudent self-avoiding walk with contact
self-attraction [26].

For γ ≥ 0, the significance of the restriction γ < β has been noted for a closely related
discrete-time model, for which it is proved that for γ > β the walk is in a compact phase in
the sense that ν̄ = 0, whereas for γ < β it is the case that ν̄ ≥ 1/d [21]. In the compact phase,
the discrete-time model obeys the analogue of cT ≈ ekT

2
with k > 0, so χ(β, γ, ν) = ∞

for all ν ∈ R and νc = +∞. For the 1-dimensional case, the behaviour for the transition line
γ = β has been studied in [22].

The axis γ = 0 corresponds to the weakly self-avoiding walk which is well understood
in dimensions d ≥ 5 [15,19], and in dimension 4 [2,3,6]. Theorem 1.2 extends the results
of [2,3,6] for dimension d = 4 to the region bounded by the dashed line. Our results show
that for d = 4 there is no polymer collapse for small contact self-attraction, in the sense
that the critical behaviour remains the same with small contact attraction as with no contact
attraction. In particular, Theorem 1.2(iii) shows that, in the sense of (1.25), when γ is small,
ν̄ = 1

2 holds with a logarithmic correction.

2 Finite-Volume Approximation

The first step in the proof of Theorem 1.2 is an approximation of Gβ,γ,ν(a, b) and χ(β, γ, ν)

by finite-volume analogues of these quantities. This is the content of Proposition 2.2.
Before proving the proposition, we require some preliminaries. Let Pn be the projection

of Z
d onto the discrete torus of side n, which we denote Z

d
n . Then Pn has a natural action on

the path space (Zd)[0,∞). We let Xn = Pn(X) be the projection of X and note that Xn is a
simple random walk on Z

d
n .

We call h = (hx )x∈Zd a field of path functionals if hx : (Zd)[0,∞) → R is a function
on continuous-time paths for each x ∈ Z

d ; a simple example is given by the local time
functional. We assume that the random field h(X) = (hx (X))x∈Zd has finite support almost
surely, i.e., with probability 1, hx (X) = 0 for all but finitely many x . Denote by h(Xn) the
corresponding random field for Xn , i.e., for x ∈ Z

d
n ,

hx (X
n) =

∑
y∈Zd

hx+ny(X). (2.1)

Given a positive integer k, we define Qk ⊂ Z
d by Qk = {y ∈ Z

d : 0 ≤ yi < k, i =
1, . . . , d}. Then, for integers n, k ≥ 1,

∑
y∈Qk

hx+ny(X
kn) =

∑
y∈Qk

∑
z∈Zd

hx+ny+knz(X) =
∑
y∈Zd

hx+ny(X) = hx (X
n), (2.2)

and it follows by summation over x ∈ Z
d
n that

∑
x∈Z

d
kn

hx (X
kn) =

∑
x∈Zd

n

hx (X
n). (2.3)

Lemma 2.1 Let n, k ≥ 1 and let f and g be nonnegative fields of path functionals with finite
support almost surely. Then

∑
x∈Z

d
kn

fx (X
kn)gx (X

kn) ≤
∑
x∈Zd

n

fx (X
n)gx (X

n). (2.4)
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Proof By (2.3) and (2.2),
∑
x∈Z

d
kn

fx (X
kn)gx (X

kn) =
∑
x∈Zd

n

∑
y∈Qk

fx+ny(X
kn)gx+ny(X

kn). (2.5)

By nonnegativity and two more applications of (2.2),

∑
x∈Zd

n

∑
y∈Qk

fx+ny(X
kn)gx+ny(X

kn) ≤
∑
x∈Zd

n

⎛
⎝ ∑

y∈Qk

fx+ny(X
kn)

⎞
⎠

⎛
⎝ ∑

y∈Qk

gx+ny(X
kn)

⎞
⎠

=
∑
x∈Zd

n

fx (X
n)gx (X

n). (2.6)

This completes the proof. 
�

Fix L ≥ 2 and N ≥ 1. We write �N for the torus Z
d
n with n = LN . Thus, XLN

is the
simple random walk on �N . For FT = FT (X) any one of the functions Lx

T , IT ,CT of X

defined in (1.1)–(1.3), we write FN ,T = FT (XLN
). For instance, with n = LN ,

Lx
N ,T =

∫ T

0
1Xn

t = x dt, IN ,T =
∑
x∈�N

(Lx
N ,T )2. (2.7)

We apply Lemma 2.1 with k = L and n = LN for three choices of f, g:

IN+1,T ≤ IN ,T
(
fx = gx = Lx

T

)
, (2.8)

CN+1,T ≤ CN ,T
(
fx = ∑

e∈U Lx+e
T , gx = Lx

T

)
, (2.9)∑

x∈�N+1

|∇eLx
N+1,T |2 ≤

∑
x∈�N

|∇eLx
N ,T |2 (

fx = gx = ∣∣∇eLx
T

∣∣) . (2.10)

Summation of (2.10) over e ∈ U also gives
∑

x∈�N+1

|∇Lx
N+1,T |2 ≤

∑
x∈�N

|∇Lx
N ,T |2. (2.11)

We identify the vertices of �N with nested subsets of Z
d , centred at the origin (approxi-

mately if L is even), with �N+1 paved by Ld translates of �N . We can thus define ∂�N to
be the inner vertex boundary of�N . We denote the expectation of XLN

started from a ∈ �N

by E�N
a and define

cN ,T (a, b) = E�N
a

(
e−Uβ,γ,T 1X (T )=b

)
(a, b ∈ �N ), (2.12)

cN ,T = E�N
0

(
e−Uβ,γ,T

)
. (2.13)

The finite-volume two-point function and susceptibility are defined by

GN ,β,γ,ν(a, b) =
∫ ∞

0
cN ,T (a, b)e−νT dT, (2.14)

χN (β, γ, ν) =
∫ ∞

0
cN ,T e

−νT dT . (2.15)
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Proposition 2.2 Let d > 0, β > 0 and γ < β. For all ν ∈ R,

lim
N→∞GN ,β,γ,ν(a, b) = Gβ,γ,ν(a, b) (2.16)

and

lim
N→∞ χN (β, γ, ν) = χ(β, γ, ν). (2.17)

Proof Fix a, b ∈ Z
d , and consider N sufficiently large that a, b can be identified with points

in �N . By (1.16), (2.8) and (2.11) (if 0 ≤ γ < β), or by (1.5), (2.8) and (2.9) (if γ < 0),

cN ,T (a, b) ≤ cN+1,T (a, b). (2.18)

Thus, (2.16) follows by monotone convergence, once we show that

lim
N→∞ cN ,T (a, b) = cT (a, b). (2.19)

This follows as in [2, (2.8)]. That is, first we define

c∗
N ,T (a, b) = E�N

a

(
e−Uβ,γ,T 1X (T )=b1{X ([0,T ])∩∂�N �=∅}

)
(2.20)

c∗
T (a, b) = Ea

(
e−Uβ,γ,T 1X (T )=b1{X ([0,T ])∩∂�N �=∅}

)
. (2.21)

Since walks which do not reach ∂�N make equal contributions to both cT (a, b) and
cN ,T (a, b), we have

cT (a, b) − c∗
T (a, b) = cN ,T (a, b) − c∗

N ,T (a, b). (2.22)

Thus,

|cT (a, b) − cN ,T (a, b)| = |c∗
T (a, b) − c∗

N ,T (a, b)| ≤ c∗
T (a, b) + c∗

N ,T (a, b). (2.23)

Let P�N
a and Pa be themeasures associated with E�N

a and Ea , respectively.With Yt a rate-2d
Poisson process with measure P,

c∗
T (a, b) + c∗

N ,T (a, b) ≤ Pa(X ([0, T ]) ∩ ∂�N �= ∅) + P�N
a (X ([0, T ]) ∩ ∂�N �= ∅)

≤ 2P(YT ≥ diam(�N )) → 0 (2.24)

as N → ∞. This completes the proof of (2.16).
Finally, by monotone convergence of GN to G, for ν ∈ R,

lim
N→∞ χN (g, γ, ν) =

∑
b∈Zd

lim
N→∞GN ,g,γ,ν(a, b)1b∈�N = χ(g, γ, ν), (2.25)

which proves (2.17). 
�

3 Integral Representation and Progressive Integration

In this section, we reformulate the model in terms of a perturbation of a supersymmetric
Gaussian integral, in order to prepare for the application of the renormalisation group. The
integral representation,which is a special case of a result from [9],makes useof theGrassmann
integral. We begin by recalling the definition of the Grassmann integral in Sect. 3.1 and state
the integral representation in Sect. 3.2. In Sect. 3.3, we split the integral into a Gaussian part
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and a perturbation. The basic idea underlying the renormalisation group is the progressive
evaluation of this Gaussian integral via a multi-scale decomposition of its covariance, which
we introduce in Sect. 3.4.

3.1 Boson and Fermion Fields

We fix N and write � = �N . Given complex variables φx , φ̄x (the boson field) for x ∈ �,
we define the differentials (the fermion field)

ψx = 1√
2π i

dφx , ψ̄x = 1√
2π i

dφ̄x , (3.1)

where we fix a choice of complex square root. The fermion fields are multiplied with each
other via the anti-commutative wedge product, though we suppress this in our notation.

A differential form that is the product of a function of (φ, φ̄) with p differentials is said
to have degree p. A sum of forms of even degree is said to be even. We introduce a copy �̄

of � and we denote the copy of X ⊂ � by X̄ ⊂ �̄. We also denote the copy of x ∈ � by
x̄ ∈ �̄ and define φx̄ = φ̄x and ψx̄ = ψ̄x . Then any differential form F can be written

F =
∑

�y
F�y(φ, φ̄)ψ �y (3.2)

where the sum is over finite sequences �y over � � �̄, and ψ �y = ψy1 . . . ψyp when �y =
(y1, . . . , yp). When �y = ∅ is the empty sequence, F∅ denotes the 0-degree (bosonic) part
of F .

In order to apply the results of [2,3,6], we require smoothness of the coefficients F�y of
F . For Theorem 1.2(i, ii), we need these coefficients to be C10, and for Theorem 1.2(iii) we
require a p-dependent number of derivatives for the analysis of ξp , as discussed in [6]. We let
N be the algebra of even forms with sufficiently smooth coefficients and we letN (X) ⊂ N
be the sub-algebra of even forms only depending on fields in X . Thus, for F ∈ N (X), the
sum in (3.2) runs over sequences �y over X � X̄ . Note that N = N (�).

Now let F = (Fj ) j∈J be a finite collection of even forms indexed by a set J and write
F∅ = (F∅, j ) j∈J . Given a C∞ function f : R

J → C, we define f (F) by its Taylor
expansion about F∅:

f (F) =
∑
α

1

α! f
(α)(F∅)(F − F∅)α. (3.3)

The summation terminates as a finite sum, since ψ2
x = ψ̄2

x = 0 due to the anti-commutative
product.

We define the integral
∫
F of a differential form F in the usual way as the Riemann

integral of its top-degree part (which may be regarded as a function of the boson field). In
particular, given a positive-definite � × � symmetric matrix C with inverse A = C−1, we
define the Gaussian expectation (or super-expectation) of F by

EC F =
∫

e−SA F, (3.4)

where

SA =
∑
x∈�

(
φx (Aφ̄)x + ψx (Aψ̄)x

)
. (3.5)
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Finally, for F = f (φ, φ̄)ψ �y , we let

θF = f (φ + ξ, φ̄ + ξ̄ )(ψ + η)�y, (3.6)

where ξ is a new boson field, η = (2π i)−1/2dξ a new fermion field, and ξ̄ , η̄ are the corre-
sponding conjugate fields. We extend θ to all F ∈ N by linearity and define the convolution
operator ECθ by letting ECθF ∈ N denote the Gaussian expectation of θF with respect to
(ξ, ξ̄ , η, η̄), with φ, φ̄, ψ, ψ̄ held fixed.

3.2 Integral Representation of the Two-Point Function

An integral representation formula applying to general local time functionals is given in
[7,9]; see also [27, Appendix A]. We state the result we need in the proposition below.

Let � denote the Laplacian on �, i.e. �xy is given by the right-hand side of (1.11) for
x, y ∈ �. We define the differential forms:

τx = φx φ̄x + ψx ψ̄x (3.7)

τ�,x = 1

2

(
φx (−�φ̄)x + (−�φ)x φ̄x + ψx (−�ψ̄)x + (−�ψ)x ψ̄x

)
(3.8)

|∇τx |2 =
∑
e∈U

(∇eτ)2x . (3.9)

Proposition 3.1 Let d > 0 and β > 0. For γ < β and ν ∈ R,

GN ,β,γ,ν(a, b) =
∫

e− ∑
x∈�(Uβ,γ (τ )+ντx+τ�,x)φ̄aφb. (3.10)

Proof The proof is identical to the proof of the p = 1 case of [27, Proposition 2.2] when, in
the notation used in [27], we set

F(S) = e−Uβ,γ (S)−(ν−1)
∑

x∈� Sx (3.11)

in [27, (A.13)]. 
�
3.3 Gaussian Approximation

We divide the integral in (3.10) into a Gaussian part and a perturbation. Although the division
is arbitrary here, a careful choice of the division must be made, and it is made in Theorem 5.1.
We require several definitions. Let z0 > −1 and m2 > 0. We set

g0 = (β − γ )(1 + z0)
2, ν0 = ν(1 + z0) − m2, γ0 = 1

4d
γ (1 + z0)

2, (3.12)

and define

V+
0,x = g0τ

2
x + ν0τx + z0τ�,x , U+

x = |∇τx |2. (3.13)

The monomial U+
x should not be confused with the potential Uβ,γ . We define

Z0 =
∏
x∈�

e−(V+
0,x+γ0U+

x )
, (3.14)

and, with C = (−� + m2)−1 and with the expectation given by (3.4),

ZN = ECθ Z0. (3.15)
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Recall that ZN ,∅ denotes the 0-degree part of ZN . We define a test function 1 : �N → R

by 1x = 1 for all x , and write D2ZN ,∅(0, 0;1,1) for the directional derivative of ZN ,∅ at
(φ, φ̄) = (0, 0), with both directions equal to 1. That is,

D2ZN ,∅(0, 0;1,1) = ∂2

∂s∂t
ZN ,∅(s1, t1)

∣∣
s=t=0. (3.16)

Proposition 3.2 Let d > 0, γ, ν ∈ R, β > 0 and γ < β. If the relations (3.12) hold, then

GN ,β,γ,ν(a, b) = (1 + z0)EC (Z0φ̄aφb), (3.17)

and

χN (β, γ, ν) = (1 + z0)χ̂N (m2, g0, γ0, ν0, z0), (3.18)

with

χ̂N (m2, g0, γ0, ν0, z0) = 1

m2 + 1

m4

1

|�|D
2ZN ,∅(0, 0;1,1). (3.19)

Proof We make the change of variables ϕx �→ (1 + z0)1/2ϕx (with ϕ = φ, φ̄, ψ, ψ̄) in
(3.10), and obtain

GN ,β,γ,ν(a, b) = (1 + z0)
∫

e− ∑
x∈�

(
g0τ 2x +γ0|∇τx |2+ν(1+z0)τx+(1+z0)τ�,x

)
φ̄aφb. (3.20)

Then, for any m2 ∈ R, we have

GN ,β,γ,ν(a, b) = (1 + z0)
∫

e− ∑
x∈�(τ�,x+m2τx )Z0φ̄aφb (3.21)

(m2 simply cancels with ν0 on the right-hand side). We use this with m2 > 0, so that the
inverse matrix C = (−� + m2)−1 exists. By symmetry of the matrix �, (3.5) gives

S(−�+m2) =
∑
x∈�

(
τ�,x + m2τx

)
. (3.22)

Then (3.17) follows from (3.21)–(3.22) and (3.4). Summation over b ∈ �N gives the for-
mula χN (β, γ, ν) = (1 + z0)

∑
x∈� EC (Z0φ̄0φx ). Then (3.18), with (3.19), follows by an

elementary computation as in [3, Section 4.1]. 
�
3.4 Progressive Integration

The identity (3.17) splits the two-point function into a Gaussian part and a perturbation Z0.
The Gaussian part is parametrised by (m2, z0), although the dependence on z0 has been
shifted out of the integral. We analyse the integral (3.17) using the renormalisation group
method developed in [4,11–14], which is itself inspired by [30]. This method is based on a
decomposition

C = C1 + · · · + CN−1 + CN ,N , (3.23)

of the covariance C used to define ZN in (3.15), where C1, . . . ,CN−1,CN ,N are covari-
ances. For simplicity, we write CN = CN ,N . A finite-range decomposition of this sort was
constructed in [1,8]. Specifically, we use the decomposition of [1].

The covariance decomposition allows us to evaluate ZN progressively by defining induc-
tively

Z j+1 = EC j+1θ Z j ( j < N ). (3.24)
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It is a basic fact that a sum of two independent Gaussian random variables with covariances
C ′ and C ′′ is itself Gaussian with covariance C ′ +C ′′. By [11, Proposition 2.6], this property
extends to the Gaussian super-expectation in the sense that

ECθ = ECN θ ◦ . . . ◦ EC1θ. (3.25)

Thus, the definition of Z j+1 in (3.24) agrees with (3.15) when j + 1 = N .
From the perspective of the renormalisation group, we view the map Z j �→ Z j+1 as

defining a dynamical system. The evaluation of ZN can be accomplished by studying this
system’s dependence on its initial condition, as we discuss in the next section.

4 Initial Coordinates for the Renormalisation Group

Following the approach of [3], we represent Z j by a pair of coordinates I j and K j that
capture the relevant (expanding), marginal, and irrelevant (contracting) parts of Z j . We
begin in Sect. 4.1 by defining coordinates (I0, K0) for Z0. Norms used to control the evolution
of these coordinates are introduced in Sect. 4.2, and it is shown in Sects. 4.3, 4.4 that K0

satisfies norm estimates that permit the results of [5,14] to be applied. The initial coordinate
K0 depends on the coupling constants (g0, γ0, ν0, z0) of (3.12), and regularity of K0 as a
function of these variables is established in Sect. 4.5.

4.1 Initial Coordinates for the Renormalisation Group

We now divide Z0 into coordinates I0 and K0. The division depends on the sign of γ .

4.1.1 Coordinates for Positive γ

Assume that γ ≥ 0. For X ⊂ �, we define

I+
0 (X) =

∏
x∈X

e−V+
0,x , K+

0 (X) =
∏
x∈X

I+
0,x (e

−γ0U+
x − 1). (4.1)

Here, I+
0,x = I+

0 ({x}), and we usually denote evaluation at a singleton by a subscript. By
definition and binomial expansion,

Z0 =
∏
x∈�

(
I+
0,x + K+

0,x

)
=

∑
X⊂�

I+
0 (� \ X)K+

0 (X). (4.2)

This polymer gas representation of Z0 extends a much simpler representation used to study
the weakly self-avoiding walk previously, e.g., in [2,3]. In particular, when γ0 = 0,

K+
0 (X) = 1∅(X) =

{
1 X = ∅

0 otherwise,
(4.3)

and (4.2) agrees with [3, (5.27)]. Thus the effect of nonzero γ0 is incorporated entirely into
the non-trivial K+

0 of (4.1), rather than (4.3).
Then (V+

0 , K+
0 ) can be viewed as the initial condition of the dynamical system (3.24).

This initial condition is not uniquely defined as a function of (β, γ, ν). Rather, the constraints
(3.12) leave uswith the freedom to choose ν0 and z0 aswe please. The key to the success of the
renormalisation group method is the identification of critical values νc0, z

c
0 that lie on a stable

manifold for the Gaussian fixed point (V0, K0) = 0. The existence of the stable manifold,
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which is a highly non-trivial fact, is obtained using the main result of [5]. This result allows
for the possibility that K+

0 is non-zero as long as ‖K+
0 ‖ = O(g30) in an appropriate norm.

We take advantage of this additional generality in order to prove Theorem 1.2.

4.1.2 Coordinates for Negative γ

Assume that γ < 0. Define

V−
0,x = V+

0,x + 4dγ0τ
2
x , U−

x = 2
∑
e∈U

τxτx+e. (4.4)

By the identity

∑
x∈�

(
g0τ

2
x + γ0

∑
e∈U

(∇eτx )
2
)

=
∑
x∈�

(
(g0 + 4dγ0)τ

2
x − 2γ0

∑
e∈U

τxτx+e

)
, (4.5)

we can write

Z0 =
∏
x∈�

(I−
0,x + K−

0,x ) =
∑
X⊂�

I−
0 (� \ X)K−

0 (X), (4.6)

with

I−
0 (X) =

∏
x∈X

e−V−
0,x , K−

0 (X) =
∏
x∈X

I−
0,x (e

γ0U−
x − 1). (4.7)

Thus, we can parametrise Z0 via either pair (I±
0 , K±

0 ). We use (I+
0 , K+

0 ) when γ0 ≥ 0 and
(I−

0 , K−
0 ) when γ0 < 0. With this convention,

K±
0 (X) =

∏
x∈X

I±
0,x (e

−|γ0|U±
x − 1) (use + for γ0 ≥ 0, use − for γ0 < 0). (4.8)

4.2 Norms

In this section, we recall some definitions and basic facts concerning norms, from [11]. For
now, we only consider the case of scale j = 0.

Recall the notation introduced in Sect. 3.1. A test function g is defined to be a function
(�x, �y) �→ g�x,�y , where �x and �y are finite sequences of elements in � � �̄. When �x or �y is the
empty sequence ∅, we drop it from the notation as long as this causes no confusion; e.g., we
may write g�x = g�x,∅. The length of a sequence �x is denoted |�x |. Gradients of test functions
are defined component-wise. Thus, if �x = (x1, . . . , xm) and α = (α1, . . . , αm) with each
αi ∈ N

U
0 , and similarly for �y = (y1, . . . , yn) and β = (β1, . . . , βn), then

∇α,β

�x,�y g�x,�y = ∇α1
x1 . . . ∇αm

xm ∇β1
y1 . . . ∇βn

yn gx1,...,xm ,y1,...,yn . (4.9)

Let h0 > 0 be a parameter, which we set below. We fix positive constants p� ≥ 4 and
pN and assume that all test functions vanish when |�x | + |�y| > pN . For Theorem 1.2(i, ii),
any choice of pN ≥ 10 is sufficient, whereas for Theorem 1.2(iii) it is necessary to choose
pN large depending on p [6]. The � = �(h0) norm on such test functions is defined by

‖g‖� = sup
�x,�y

h
−(|�x |+|�y|)
0 sup

α,β:|α|1+|β|1≤p�

|∇α,βg�x,�y |, (4.10)
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where |α|1 denotes the total order of the differential operator ∇α . Thus, for any test function
g and for sequences �x, �y with |�x |+|�y| ≤ pN and corresponding α, β with |α|1+|β|1 ≤ p�,

|∇α,βg�x,�y | ≤ h
|�x |+|�y|
0 ‖g‖�. (4.11)

For any F ∈ N , there exist unique functions F�y of (φ, φ̄) that are anti-symmetric under
permutations of �y, such that

F =
∑

�y

1

|�y|! F�y(φ, φ̄)ψ �y . (4.12)

Given a sequence �x with |�x | = m, we define

F�x,�y = ∂mF�y
∂φx1 . . . ∂φxm

. (4.13)

We define a φ-dependent pairing of elements of N with test functions, by

〈F, g〉φ =
∑
�x,�y

1

|�x |!|�y|! F�x,�y(φ, φ̄)g�x,�y . (4.14)

Let B(�) denote the unit �-ball in the space of test functions. Then the Tφ = Tφ(h0)

semi-norm on N is defined by

‖F‖Tφ = sup
g∈B(�)

|〈F, g〉φ |. (4.15)

We need several properties of the Tφ semi-norm, whose proofs can be found in [11]. First,
there is the important product property [11, Proposition 3.7]

‖FG‖Tφ ≤ ‖F‖Tφ ‖G‖Tφ . (4.16)

An immediate consequence is that ‖e−F‖Tφ ≤ e‖F‖Tφ . This is improved in [11, Proposi-
tion 3.8], which states that (recall that F∅ denotes the 0-degree part of F)

‖e−F‖Tφ ≤ e−2ReF∅(φ)+‖F‖Tφ . (4.17)

Each of the two choices ϕ = φ, φ̄ can be viewed as a test function supported on sequences
with |�x | = 1 and |�y| = 0 and satisfying ϕx̄ = ϕ̄x . In particular, ‖φ‖� is defined as the norm
of a test function. We use [11, Proposition 3.10], which states that if F ∈ N is a polynomial
in φ, φ̄, ψ, ψ̄ of total degree A ≤ pN , then

‖F‖Tφ ≤ ‖F‖T0(1 + ‖φ‖�)A. (4.18)

We write x� = {y : |y − x |∞ ≤ 2d − 1}, where |x |∞ = max{|xi | : 1 ≤ i ≤ d} (this is
the scale-0 version of [13, (1.37)] for a single point). The �x ≡ �(x�) norm of φ ∈ C

� is
defined by

‖φ‖�x = inf
{
‖φ − f ‖� : f ∈ C

� such that fy = 0 ∀y ∈ x�
}

. (4.19)

By taking the infimum in (4.18) over all possible re-definitions of φy for y /∈ x�, we get

‖F‖Tφ ≤ ‖F‖T0(1 + ‖φ‖�x )
A (4.20)

when F ∈ N (x�).
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We need two choices of the parameter h0 (for both choices, h0 ≥ 1): either h0 = �0,
an L-dependent constant; or h0 = h0 = k0 g̃

−1/4
0 , where k0 is a small constant and g̃0 is a

constant which must be chosen small depending on L . Some discussion of these constants
occurs in the proof of Proposition 4.1. In [13], two regulators are defined. At scale 0, these
are given by

G0(x, φ) = e
‖φ‖2

�x (�0) , G̃0(x, φ) = e
1
2 ‖φ‖2

�̃x (�0) . (4.21)

The �̃x norm in the definition of G̃0, is defined in [13, (1.40)]; it is a modification of the �x

norm that is invariant under shifts by linear test functions. Its specific properties do not play
a direct role in this paper. Two regulator norms are defined for F ∈ N (x�) by

‖F‖G0 = sup
φ∈C�

‖F‖Tφ(�0)

G0(x, φ)
, ‖F‖G̃t

0
= sup

φ∈C�

‖F‖Tφ(h0)

G̃ t
0(x, φ)

, (4.22)

where t ∈ (0, 1] is a constant power.
4.3 Bounds on K0

Themain estimate on K±
0,x is given by the following proposition. Consistent with [13, (1.83)],

we fix a large constant CD and define

D0 = D0(g̃0) = {(g, ν, z) ∈ R
3 : C−1

D g̃0 < g < CD g̃0, |ν|, |z| < CD g̃0}. (4.23)

Proposition 4.1 Suppose that V±
0 ∈ D0, with g̃0 sufficiently small. If |γ0| ≤ g̃0, then (with

constants that may depend on L)

‖K±
0,x‖G0 = O(|γ0|), ‖K±

0,x‖G̃0
= O(|γ0|/g0), (4.24)

where the bounds on K+ and K− hold for γ0 ≥ 0 and γ0 < 0, respectively.

The form of the estimates (4.24) can be anticipated from the definition of K±
0 in (4.8). The

upper bound arises from the small size of e−|γ0|U±
x − 1. For small fields, hence small U±

x ,
this is of order |γ0|, as reflected by the G0 norm estimate of (4.24). For large fields, namely
fields of size |φ| ≈ g̃−1/4

0 , the difference e−|γ0|U±
x − 1 is roughly of size |γ0| |φ|4 ≈ |γ0|/g̃0.

This effect is measured by the G̃0 norm.
Before proving the proposition, we write (4.8) for a singleton as

K±
0,x = I±

0,x J
±
x , (4.25)

where, by the fundamental theorem of calculus,

I±
0,x = e−V±

0,x (4.26)

J±
x = e−|γ0|U±

x − 1 = −
∫ 1

0
|γ0|U±

x e−t |γ0|U±
x dt. (4.27)

As in (4.8), the + versions of (4.25)–(4.27) hold only for γ0 ≥ 0 and the − versions only for
γ0 < 0.

Let F ∈ N (x�) be a polynomial of degree at most pN . Then the stability estimates [13,
(2.1)–(2.2)] imply that there exists c3 > 0 and, for any c1 ≥ 0, there exist positive constants
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C, c2 such that if V
±
0 ∈ D0 then

‖I±
0,x F‖Tφ(h0) ≤ C‖F‖T0(h0)

⎧⎨
⎩
e
c3g0

(
1+‖φ‖2

�x (�0)

)
h0 = �0

e
−c1k40‖φ‖2

�x (h0)e
c2k40‖φ‖2

�̃x (�0) h0 = h0.
(4.28)

This essentially reduces our task to estimating J±
x . The next lemma is an ingredient for this.

Lemma 4.2 There is a universal constant C̃ such that

‖U±
x ‖Tφ(h0) ≤ 2U±

∅,x + C̃h40

(
1 + ‖φ‖2�x (h0)

)
, (4.29)

where U±
∅

is the 0-degree part of U±.

Proof Let

M+ = M+
e = (∇eτx )

2, M− = M−
e = 2τxτx+e, (4.30)

so that U±
x = ∑

e∈U M±
e . It suffices to prove (4.29) with U±

x replaced by M± (on both
sides of the equation). In addition, we can replace the �x norm by the � norm; the bound
with the �x norm then follows in the same way that (4.20) is a consequence of (4.18), since
M± ∈ N (x�).

By definition of τx ,

M± = M±
∅

+ R±, (4.31)

where

M+
∅

= (∇e|φx |2
)2

, R+ = 2
(∇e|φx |2

) ∇e(ψx ψ̄x ), (4.32)

M−
∅

= 2|φx |2|φx+e|2, R− = 2
(|φx |2ψx+eψ̄x+e + ψx ψ̄x |φx+e|2 + ψx ψ̄xψx+eψ̄x+e

)
.

(4.33)

Thus, ‖M±‖Tφ ≤ ‖M±
∅

‖Tφ + ‖R±‖Tφ . A straightforward computation shows that

‖R±‖Tφ = O
(
h40(1 + ‖φ‖�)2

)
. (4.34)

By definition of the Tφ semi-norm,

‖∇e|φx |2‖Tφ ≤ ∇e|φx |2 + 2h0(|φx | + |φx+e|) + 2h20. (4.35)

Together with (4.34), the product property, and (4.11), this implies that

‖M+‖Tφ ≤ M+
∅

+ 2|∇e|φx |2|(2h0(|φx | + |φx+e|)) + O
(
h40

) (
1 + ‖φ‖2�

)
. (4.36)

By the inequality

2|ab| ≤ |a|2 + |b|2 (4.37)

and another application of (4.11),

2|∇e|φx |2|(2h0(|φx | + |φx+e|)) ≤ M+
∅

+ O
(
h20‖φ‖2�

)
, (4.38)

and the bound on M+ follows.
For the bound on M−, we use the identity

‖τx‖Tφ = (|φx | + h0)
2 + h20 (4.39)
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from [11, (3.27)]. By the product property and (4.11), this implies that

‖M−‖Tφ ≤ 2|φx |2|φx+e|2 + 2(|φx ||φx+e|)(2h0(|φx+e| + |φx |))
+ O(h40)(1 + ‖φ‖2�). (4.40)

Another application of (4.37) and (4.11) gives

2(|φx ||φx+e|)(2h0(|φx+e| + |φx |)) ≤ |φx |2|φx+e|2 + O(h20‖φ‖2�), (4.41)

and the proof is complete. 
�
An immediate consequence of Lemma 4.2, using (4.17), is that for any s ≥ 0,

‖e−sU±
x ‖Tφ(h0) ≤ e

C̃sh4
0

(
1+‖φ‖2

�x (h0)

)
. (4.42)

Proof of Proposition 4.1 According to the definition of the regulator norms in (4.21)–
(4.22), it suffices to prove that, under the hypothesis on γ0,

‖K±
0,x‖Tφ(h0) = O(|γ0|h40)

{
e‖φ‖2�x (h0 = �0)

e
t
2 ‖φ‖

�̃ (h0 = h0).
(4.43)

For t ∈ [0, 1], let Ĩ±
x (t) = e−t |γ0|U±

x . By (4.25), (4.27), and the product property,

‖K±
0,x‖Tφ(h0) ≤ |γ0|‖I±

0,xU
±
x ‖Tφ(h0) sup

t∈[0,1]
‖ Ĩ±

x (t)‖Tφ(h0). (4.44)

By (4.28) and Lemma 4.2, there exists c3 > 0, and, for any c1 ≥ 0 there exists c2 > 0, such
that

‖I±
0,xU

±
x ‖Tφ(h0) ≤ O(h40)

⎧⎨
⎩
e
c3g0‖φ‖2

�x (�0) h0 = �0

e
−c1k40‖φ‖2

�x (h0)e
c2k40‖φ‖2

�̃x (�0) h0 = h0.
(4.45)

The constant in O(|γ0|h40) may depend on c1, but this is unimportant. Also, by (4.42),

sup
t∈[0,1]

‖ Ĩ±
x (t)‖Tφ(h0) ≤ e

C̃ |γ0|h4
0

(
1+‖φ‖2

�x (h0)

)
. (4.46)

Thus, for h0 = �0, the total exponent in our estimate for the right-hand side of (4.44) is

C̃ |γ0|�40 + (c3g0 + C̃ |γ0|�40)‖φ‖2�x (�0)
. (4.47)

This gives the h0 = �0 version of (4.43) provided that g0 is small and |γ0| is small depending
on L .

For h0 = h0, the total exponent in our estimate for the right-hand side of (4.44) is

C̃ |γ0|k40 g̃−1
0 + (C̃ |γ0|k40 g̃−1

0 − c1k
4
0)‖φ‖2�x (h0) + c2k

4
0‖φ‖2

�̃x (�0)
. (4.48)

This gives the h0 = h0 version of (4.43) provided that |γ0| ≤ g̃0, c1 ≥ C̃ , and c2k40 ≤ t/2.
All the provisos are satisfied if we choose c1 ≥ C̃ , k0 small depending on c1 and g̃0 small.


�
Remark 4.3 By a small modification to the proof of Proposition 4.1, it can be shown that if
Mx ∈ N (x�) is a monomial of degree r ≤ pN − 4 (so that MxU±

x has degree at most pN ),
then

‖MxK
±
0,x‖G0 = O(|γ0|h4+r

0 ). (4.49)
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4.4 Unified Bound on K0

The results of [5,14] are formulated in a sequence of spacesW j that enable the combination
of small-field and large-field estimates into a single norm estimate. In this section, we recast
the result of Proposition 4.1 to see that K±

0 fits into this formulation.
We restrict attention in this section to the W0 norm, whose definition is recalled below.

This requires several preliminaries. Let P0 = P0(�) denote the collection of subsets of
vertices in �. We refer to the elements of P0 as polymers. We call a nonempty polymer
X ∈ P0 connected if for any x, x ′ ∈ X , there is a sequence x = x0, . . . , xn = x ′ ∈ X such
that |xi+1 − xi |∞ = 1 for i = 0, . . . , n − 1. Let C0 denote the set of connected polymers.
The small set neighbourhood X� of X ∈ P0 is defined by

X� = {y ∈ � : ∃x ∈ � such that |y − x |∞ ≤ 2d}. (4.50)

We extend the definitions of the regulators G0 = G0, G̃ t
0, defined in (4.21), by setting

G0(X, φ) =
∏
x∈X

G0(x, φ), (4.51)

and extend the definitions (4.22) to define norms, for F ∈ N (X�), by

‖F‖G0 = sup
φ∈C�

‖F‖Tφ(�0)

G0(X, φ)
, ‖F‖G̃t

0
= sup

φ∈C�

‖F‖Tφ(h0)

G̃ t
0(X, φ)

. (4.52)

It follows from the product property of the Tφ norm that these norms obey the product
property

‖F1F2‖G0 ≤ ‖F1‖G0‖F2‖G0 for Fi ∈ N (X�
i ) with X1 ∩ X2 = ∅. (4.53)

Given a map K : P0 → N with the property that K (X) ∈ N (X�) for all X ∈ P0, we
define the F0(G) norms (for G = G, G̃) by

‖K‖F0(G) = sup
X∈C0

g̃− f0(a,X)
0 ‖K (X)‖G0 (4.54)

‖K‖F0(G̃)
= sup

X∈C0
g̃− f0(a,X)
0 ‖K (X)‖G̃t

0
, (4.55)

with

f0(a, X) = a(|X | − 2d)+ =
{
a(|X | − 2d) if |X | > 2d

0 otherwise.
(4.56)

Here a is a small constant; its value is discussed below [14, (1.46)]. The W0 norm is then
defined by

‖K‖W0 = max
{
‖K‖F0(G), g̃

9/4
0 ‖K‖F0(G̃)

}
. (4.57)

Since this definition depends on g̃0 and the volume�, we sometimeswriteW0 = W0(g̃0,�).
The following proposition uses Proposition 4.1 to obtain a bound on theW0 norm of the map
K±
0 : P0 → N defined by

K±
0 (X) =

∏
x∈X

K±
0,x (X ∈ P0). (4.58)

123



336 R. Bauerschmidt et al.

Proposition 4.4 If V±
0 ∈ D0 with g̃0 sufficiently small (depending on L), and if |γ0| ≤

O(g̃1+a′
0 ) for some a′ > a, then ‖K±

0 ‖W0 ≤ O(|γ0|), where all constants may depend on L.

Proof Let X be a connected polymer in P0. By the product property and Proposition 4.1,

‖K±
0 (X)‖G0 ≤ (c|γ0|h40)|X | = (c|γ0|h40)|X |∧2d (c|γ0|h40)(|X |−2d )+ . (4.59)

For G0 = G0, we use h0 = �0, (c|γ0|h40)|X |∧2d ≤ O(|γ0|), and
(c|γ0|h40)(|X |−2d )+ ≤ (c′g̃0)(1+a′)(|X |−2d )+ ≤ g̃ f0(a,X)

0 . (4.60)

For G0 = G̃0, we use h0 = h0 = O(g̃−1/4
0 ) and, since a′ > a,

(c|γ0|h40)(|X |−2d )+ ≤ (c′g̃0)a
′(|X |−2d )+ ≤ g̃ f0(a,X)

0 . (4.61)

Since |γ0| ≤ g̃0, it follows from (4.59) that

g̃9/40 ‖K±
0 ‖F0(G̃)

≤ g̃9/40 O(|γ0|g̃−1
0 ) ≤ |γ0|, (4.62)

and the proof is complete. 
�
The above discussion is based on norms in the setting of the torus �. As in [14], a version

on the infinite lattice Z
d is also required. This can be done in exactly the same manner, by

defining the polymersP0 = P0(Z
d) to be the collection of subsets ofZd , with K±

0 (X) defined
for subsets of Z

d by
∏

x∈X K±
0,x . The W0 = W0(g̃0, Z

d) norm (in infinite volume) can be
defined analogously to (4.57). The hypotheses and conclusion of Proposition 4.4 remain the
same in the setting of Z

d .

4.5 Smoothness of K0

Let C0(Zd) ⊂ P0(Z
d) be the set of connected polymers. By definition, a connected polymer

is nonempty. Given g̃0 > 0, let W∗
0 (g̃0, Z

d) denote the space of maps F : C0(Zd) →
N , with F(X) ∈ N (X�) and ‖F‖W0(g̃0,Zd ) < ∞. Addition in this space is defined by
(F1 + F2)(X) = F1(X) + F2(X). We extend any F : C0(Zd) → N to F : P0(Z

d) → N by
taking F(X) = ∏

Y F(Y ) where the product is over the connected components Y of X .

Given any map F : D → W∗
0 (g̃0, Z

d) for D ⊂ R an open interval, write FX , Fφ
X : D →

N (X�) for the maps defined by partial evaluation of F at X and at (X, φ), respectively. We
say Fφ

X is Ck if all of its coefficients in the decomposition (3.2) are Ck as functions D → R.

Lemma 4.5 Let D ⊂ R be open and F : D → W∗
0 (g̃0, Z

d) be amap. Suppose that Fφ
X is C2

for all X ∈ C0 and φ ∈ C
�, and define F (i) : D → W∗

0 (g̃0, Z
d) by (F (i)(t))φX = (Fφ

X )(i)(t)

for i = 1, 2, where the right-hand side denotes the (component-wise) i th derivative of Fφ
X . If‖F (i)(t)‖W0 < ∞ for i = 1, 2 and t ∈ D, then F (1) is the derivative of F.

Proof For t, t + s ∈ D, define R(t, s) ∈ W0 by

Rφ
X (t, s) = Fφ

X (t + s) − Fφ
X (t) − s(Fφ

X )′(t). (4.63)

By Taylor’s theorem, for any φ and X ,

Rφ
X (t, s) = s2

∫ 1

0
(Fφ

X )′′(t + us)(1 − u) du, (4.64)
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where the integral is taken component-wise. It follows that

‖R(t, s)‖W0 ≤ |s|2 sup
u∈[0,1]

‖F ′′(t + us)‖W0 ≤ O(|s|2), (4.65)

so F is differentiable and its derivative satisfies (F ′)φX = (Fφ
X )′. Continuity of F ′ follows

similarly, since, by the fundamental theorem of calculus,

‖F ′(t + s) − F ′(t)‖W0 ≤ |s| sup
u∈[t,t+s]

‖F ′′(u)‖W0 ≤ O(|s|), (4.66)

which suffices. 
�
Consider the map

(g0, γ0, ν0, z0) �→ K0 ∈ W∗
0 (g̃0, Z

d) (4.67)

defined by

K0(g0, γ0, ν0, z0) =
{
K+
0 (g0, γ0, ν0, z0) (γ0 ≥ 0)

K−
0 (g0, γ0, ν0, z0) (γ0 < 0),

(4.68)

for (g0, γ0, ν0, z0) satisfying the hypotheses of Proposition 4.4. Themap K0 is in fact analytic
away from γ0 = 0. However, we only prove the following, which is what we need later.

Proposition 4.6 Suppose that V±
0 ∈ D0, with g̃0 sufficiently small (depending on L) and

|γ0| ≤ O(g̃1+a′
0 ) for some a′ > a. The map K0(g0, γ0, ν0, z0) is jointly continuous in its

four variables, is C1 in (g0, ν0, z0), and (when γ0 �= 0) is C1 in (g0, γ0, ν0, z0), with partial
derivatives with respect to t = g0, ν0, and z0 satisfying

‖∂K0/∂t‖W0 = O(|γ0|h80). (4.69)

Moreover, K0 is left- and right-differentiable in γ0 at γ0 = 0.

Proof Let t denote any one of the coupling constants g0, γ0, ν0 or z0. We drop the subscript
0, and let K (t) denote K0 viewed as a function of t , with the remaining coupling constants
fixed. Then K φ

X is smooth for any φ, X . If t is g0, ν0 or z0, then

(K φ
x )′ = −Mx (φ)K φ

x , (K φ
x )′′ = M2

x (φ)K φ
x , (4.70)

where Mx is τ 2x , τx or τ�,x , respectively. The maximal degree of Mx is 4, so (4.49) implies
that

‖K ′
x‖G0 ≤ O(|γ0|h80), ‖K ′′

x ‖G0 ≤ O(|γ0|h120 ). (4.71)

For t denoting γ0, we restrict attention to γ0 > 0, and write U = U+ and V0 = V+
0 (the

case γ0 < 0 is similar). Then

(K φ
x )′ = −Ux (φ)e−Vx (φ)−γ0Ux (φ), (K φ

x )′′ = U 2
x (φ)e−Vx (φ)−γ0Ux (φ), (4.72)

and (4.28) and (4.42) imply that

‖K ′
x‖G0 ≤ O(h40), ‖K ′′

x ‖G0 ≤ O(h80). (4.73)

By definition, KX = ∏
x∈X Kx , so, for derivatives with respect to any one of the four

variables (with γ0 �= 0 when differentiating with respect to γ0),

(K φ
X )′ =

∑
x∈X

(K φ
x )′K φ

X\x , (K φ
X )′′ =

∑
x∈X

((K φ
x )′′K φ

X\x + (K φ
x )′(K φ

X\x )
′). (4.74)
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Thus, by the product property, (4.71), and Proposition 4.1,

‖K ′
X‖G0 ≤ O(|X |)|γ0|h80(|γ0|h40)|X |−1. (4.75)

when differentiating with respect to g0, ν0, or z0. The bound (4.69) then follows from the
hypothesis on γ0. Similarly, using (4.73),

‖K ′
X‖G0 ≤ O(|X |)h40(|γ0|h40)|X |−1 (4.76)

when differentiating with respect to γ0 away from γ0 = 0. In both cases, we have

‖K ′′
X‖G0 ≤ O(|X |2)h80(|γ0|h40)(|X |−2)∧0. (4.77)

Thus, by Lemma 4.5, K is C1 in any of its variables. Therefore, K is C1 in (g0, ν0, z0) on
the whole domain and in all the variables when γ0 �= 0.

To show right-continuity in γ0 at γ0 = 0, fix (g0, ν0, z0) and define F ∈ W∗
0 by

F(X) =
{

−Uxe−V0,x X = {x}
0 |X | > 1,

(4.78)

where Ux , V0,x are defined above. Let K ′(γ0) denote the γ0 derivative of K evaluated at
γ0 > 0. Then (4.72) and (4.74) imply that

F(X) − K ′
X (γ0) =

{
Ux Kx (γ0) X = {x}∑

x∈X K ′
x (γ0)KX\x (γ0) |X | > 1.

(4.79)

Thus, by (4.49), (4.73), and Proposition 4.1,

‖F(X) − K ′
X (γ0)‖G0 ≤

{
O(γ0h

8
0) X = {x}

O(|X |)h40(γ0h40)|X |−1 |X | > 1.
(4.80)

It follows that

lim
γ0↓0

‖F − K ′(γ0)‖W0 = 0, (4.81)

i.e., F is the right-derivative of K in γ0 at γ0 = 0. Left-continuity is handled similarly. 
�

5 Existence of Critical Parameters

In Sects. 5.1–5.2, we recall some facts about the renormalisation groupmap defined in [14]. In
Sect. 5.3, we discuss the existence and properties of the finite-volume renormalisation group
flow (a consequence of themain result of [5]), which is crucial to proving Theorem 1.2. Using
the results of Sect. 5.3,we identify critical initial conditions for iteration of the renormalisation
group inSect. 5.4. In Sect. 5.5,we identify the critical point and discuss an important change of
parameters. Then in Sect. 5.6 we obtain the asymptotic behaviour of the two-point function,
susceptibility, and correlation length of order p, and thereby prove Theorem 1.2. Finally,
Sect. 5.7 contains a version of the implicit function theorem that we apply in Sects. 5.4–5.5.

5.1 Renormalisation Group Coordinates

As discussed in Sect. 3.4, the evolution of Z j defined in (3.24) is tracked via coordinates
(I j , K j ). In order to discuss these, we make the following definitions. We partition � into
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LN− j disjoint scale- j blocks of side L j . We letP j denote the set of scale- j polymers, which
are unions of elements of B j . Given X ∈ P j , we denote the collection of scale- j blocks in
X by B j (X). Scale-0 blocks are simply elements of �, and scale-0 polymers are subsets of
�, as in Section 4.4. Also, as in the scale-0 case, there is a version of blocks and polymers
also on Z

d rather than �.
Given a polynomial Vj of the form

Vj;x = g jτ
2
x + ν jτx + z jτ�,x , (5.1)

the interaction I j (X) is defined for X ∈ P j (�) by

I j (X) = e− ∑
x∈X Vj;x

∏
B∈B j (X)

(1 + Wj (B)), (5.2)

where Wj (B) is an explicit polynomial that is quadratic in Vj and is defined in [4, (3.21)].
In [14, Definition 1.7], a space K j = K j (�) of maps P j → N required to satisfy sev-
eral properties is defined. The coordinate K j is constructed in [14] as an element of K j .
The renormalisation group is used to construct a sequence (Vj , K j ) from which Z j can be
recovered via the circle product

Z j = (I j ◦ K j )(�) =
∑

X∈P j (�)

I j (� \ X)K j (X). (5.3)

5.2 Renormalisation Group Map

We restrict the discussion in this section to a finite volume � = �N with N > 1.
For fixed (m̃2, g̃0) ∈ [0, δ) × (0, δ), we define a sequence g̃ j = g̃ j (m̃2, g̃0) as in [3,

(6.15)]; in particular, g̃0(m̃2, g̃0) = g̃0. In [14, Section 1.7.3], a sequence of norms ‖ · ‖W j =
‖·‖W j (m̃2,g̃ j ,�) parametrised by (m̃2, g̃ j ) is defined onmapsP j → N . We letW j denote the
subspace ofK j consisting of all elements having finiteW j norm. Note thatW0 = K0 ∩W∗

0 ,
where W∗

0 is defined in Sect. 4.5.
In [3, (6.6)–(6.7)], a function ϑ j = ϑ j (m2) (denoted χ j in [3]) is defined in such a

way that ϑ j decays exponentially when j is sufficiently large depending on m. We write
ϑ̃ j = ϑ j (m̃2). Given a constant α > 0, we define the (finite-volume) renormalisation group
domains D j ⊂ R

3 ⊕ W j by

D j (m̃
2, g̃ j ,�) = D j × BW j (m̃2,g̃ j ,�)(αϑ̃ j g̃

3
j ), (5.4)

D j = D j (g̃ j ) = {(g, ν, z) : C−1
D g̃ j < g < CD g̃ j ; |z|, L2 j |ν| < CD g̃ j }. (5.5)

This definition of D j is consistent with (4.23) when j = 0. We let Ĩ j (m̃2) be the neighbour-
hood of m̃2 defined by

Ĩ j = Ĩ j (m̃
2) =

{
[ 12 m̃2, 2m̃2] ∩ I j (m̃2 �= 0)

[0, L−2( j−1)] ∩ I j (m̃2 = 0),
(5.6)

where I j = [0, δ] if j < N and IN = [δL−2(N−1), δ]. The main result of [14] is the
construction of the renormalisation group map on the domains D j . Although [14] constructs
finite- and infinite-volume versions of this map, we only discuss the finite-volume map here.
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Form2 ∈ Ĩ j (m̃2), the finite-volume renormalisation group map at scale j = 1, . . . , N −1
is a map D j (m̃2, g̃ j ,�) → R

3 ⊕ W j+1(m̃2, g̃ j+1,�), which we denote

(Vj , K j ) �→ (Vj+1, K j+1). (5.7)

The first component of this map takes the form

Vj+1 = Vpt, j+1(Vj ) + R j+1(Vj , K j ), (5.8)

where the map Vpt, j+1 defined in [4] captures the second-order evolution of Vj , and R j+1 is
a third-order contribution. The main properties of the map (5.7) are listed in [3, Section 6.4].
Importantly, the renormalisation group map preserves the circle product in the sense that

(I j+1 ◦ K j+1)(�) = EC j+1θ(I j ◦ K j )(�). (5.9)

Since PN (�) = {∅,�N }, this means that, if (V0, K0) = (V±
0 , K±

0 ) and if the renormalisa-
tion group map can be iterated N times with this choice of initial condition, then

ZN = IN (�) + KN (�) = e− ∑
x∈� VN ;x (1 + WN (�)) + KN (�). (5.10)

5.3 Renormalisation Group Flow

The following theorem is an extension of [3, Proposition 7.1] to non-trivial K0. Such an
extension is possible, with only minor modifications to the proof of the K0 = 1∅ case, due
to the generality allowed by the main result of [5].

The theorem provides, for any N ≥ 1 and for initial error coordinate K0 in a specified
domain, a choice of initial condition (νc0, z

c
0) for which there exists a finite-volume renormal-

isation group flow (Vj , K j ) ∈ D j for 0 ≤ j ≤ N . In order to ensure a degree of consistency
amongst the sequences (Vj , K j ), which depend on the volume �N , a notion of consistency
must be imposed upon the collection of initial error coordinates K0,� ∈ K0(�) for varying�.
Specifically, the family K0,� is required to satisfy the property (Zd) of [14, Definition 1.15].
We refer to any such family as a�-family. As discussed in [14, Definition 1.15], any�-family
induces an infinite-volume error coordinate K0,Zd ∈ K0(Z

d) in a natural way.

Theorem 5.1 Let d = 4. There exists a constant a∗ > 0 and continuous functions νc0, z
c
0

of (m2, g0, K0), defined for (m2, g0) ∈ [0, δ]2 (for some δ > 0 sufficiently small) and for
any K0 ∈ W0(m2, g0, Z

d) with ‖K0‖W0(m2,g0,Zd ) ≤ a∗g30 , such that the following holds for
g0 > 0: if K0,� ∈ K0(�) is a �-family that induces the infinite-volume coordinate K0, and
if

V0 = V c
0 (m2, g0, K0) = (g0, ν

c
0(m

2, g0, K0), z
c
0(m

2, g0, K0)), (5.11)

then for any N ∈ N and m2 ∈ [δL−2(N−1), δ], there exists a sequence (Vj , K j ) ∈
D j (m2, g0,�) such that

(Vj+1, K j+1) = (Vj+1(Vj , K j ), K j+1(Vj , K j )) for all j < N (5.12)

and (5.3) is satisfied. Moreover, νc0, z
c
0 are continuously differentiable in g0 ∈ (0, δ) and

K0 ∈ BW0(m2,g0,�)(a∗g30), and

νc0(m
2, 0, 0) = zc0(m

2, 0, 0) = 0,
∂νc0

∂g0
= O(1),

∂zc0
∂g0

= O(1), (5.13)

where the estimates above hold uniformly in m2 ∈ [0, δ].
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Proof The proof results from small modifications to the proofs of [3, Proposition 7.1] and
then to [3, Proposition 8.1], where (in both cases) we relax the requirement that K0 = 1∅,
which was chosen in [3] due to the fact that K0 = 1∅ when γ = 0. The more general
condition that K0 ∈ BW0(m2,g0,�)(a∗g30) comes from the hypothesis of [5, Theorem 1.4]
when (m2, g0) = (m̃2, g̃0). By [5, Remark 1.5], no major changes to the proof result from
this choice of K0. The following paragraph outlines in more detail the modifications to the
proof of [3, Proposition 7.1].

By [5, Theorem 1.4] and [5, Corollary 1.8], for any (m̃2, g̃0) ∈ (0, δ)2 and K̃0 ∈
BW0(m̃2,g̃0,Zd )(a∗g̃30), there is a neighbourhood N(g̃0, K̃0) of (g̃0, K̃0) such that for all

(m2, g0, K0) ∈ Ĩ(m̃2) × N(g̃0, K̃0), there is an infinite-volume renormalisation group flow

(V̌ j , K j ) = x̌dj (m̃
2, g̃0, K̃0;m2, g0, K0) (5.14)

in transformed variables (V̌ j , K j ). The transformed variables are defined in [3, Section 6.6]
and a flow in the original variables can be recovered from the transformed flow. The global
solution is defined by x̌ cj (m

2, g0, K0) = x̌dj (m
2, g0, K0;m2, g0, K0) (or x̌ c ≡ 0 if g0 = 0).

By [5, Remark 1.5], the proof of regularity of x̌ c can proceed as in [3]. The functions (νc0, z
c
0)

are given by the (ν0, z0) components of x̌ c0 = (V̌0, K0) = (V0, K0). 
�
Remark 5.2 The proof of [3, Proposition 7.1], hence of Theorem 5.1, makes important use
of the parameter g̃0 in order to prove regularity of the renormalisation group flow in g0.
However, once the flow has been constructed, we can and do set g̃0 = g0.

Suppose now that we are given some sufficiently small ĝ0 > 0 and a �-family K0,� ∈
W0(m2, ĝ0,�) that satisfies the bounds ‖K0,�‖W0(m2,ĝ0,�) ≤ a∗ĝ30. Then in any fixed
volume � = �N , we can generalise (3.14) by defining Z0 = (I0 ◦ K0)(�) [(3.14) is
recovered when we set K0 = K±

0 ]. We also generalise (3.15) as ZN = ECθ Z0, and let
χ̂N (m2, ĝ0, K0, ν0, z0) be defined as in (3.19) from this ZN [generalising (3.19)]. Then
an analogue of [3, Theorem 4.1] (which corresponds to the case K0 = 1∅) follows from
Theorem 5.1. That is, if (νc0, z

c
0) = (νc0(m

2, ĝ0, K0), zc0(m
2, ĝ0, K0)), then the limit χ̂ =

limN→∞ χ̂N exists and

χ̂
(
m2, ĝ0, K0, ν

c
0, z

c
0

) = 1

m2 , (5.15)

∂χ̂

∂ν0

(
m2, ĝ0, K0, ν

c
0, z

c
0

) ∼ − 1

m4

c(ĝ∗
0 , K0)

(ĝ∗
0Bm2)1/4

as(m2, ĝ0) → (0, ĝ∗
0), (5.16)

where c is a continuous function and the bubble diagram Bm2 is is asymptotic to
(2π2)−1 logm−2, as m2 ↓ 0, when d = 4. For instance, (5.15) follows from (3.19), (5.10),
the bound on KN in Theorem 5.1, and the bound on WN in [13, (4.57)]. See [3, Section 8.4]
for details and for the proof of (5.16).

We wish to obtain a version of (5.15)–(5.16) with the initial conditions of Section 4.1,
i.e. with (ĝ0, K0) = (g0, K

+
0 ) (if γ0 > 0) or (ĝ0, K0) = (g0 + 4dγ0, K

−
0 ) (if γ0 < 0). It

is straightforward to verify that K±
0 ∈ K0. For instance, the fact that K

±
0 is supersymmetric

(which is required of all elements of K0) follows from the fact that K±
0,x is a function of τx

(see [4, Section 5.2.1] for more on this topic). It also follows from the definition that the
finite-volume coordinates K±

0,� form a �-family.
Moreover, by Proposition 4.4, if |γ0| is sufficiently small (depending on g0; we now take

g̃0 = g0) then K0 = K±
0 satisfies the bound required by Theorem 5.1. However, we cannot

apply the theorem immediately with this choice of K0, due to the fact that K±
0 depends on

(g0, ν0, z0). We resolve this issue in the next section.
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5.4 Critical Parameters

For convenience, let

ĝ0 = ĝ0(g0, γ0) = g0 + 4dγ01γ0<0. (5.17)

Thus, ĝ0 is the coefficient of τ 2x in V+
0,x when γ0 ≥ 0, and in V−

0,x when γ0 < 0. Recall the
function K0(g0, γ0, ν0, z0) defined in (4.68). We wish to initialise the renormalisation group
with (ν0, z0) a solution to the system of equations

ν0 = νc0(m
2, ĝ0(g0, γ0), K0(g0, γ0, ν0, z0)), (5.18)

z0 = zc0(m
2, ĝ0(g0, γ0), K0(g0, γ0, ν0, z0)). (5.19)

Such a choice of (ν0, z0) will be critical for K0, where K0 is itself evaluated at this same
choice of (ν0, z0).

When γ0 = 0, we get K0 = 1∅, so K0 no longer depends on (ν0, z0) and this system
is solved by (νc0(m

2, g0, 0), zc0(m
2, g0, 0)) for any (small) m2, g0 ≥ 0. Local solutions for

γ0 �= 0 can then be constructed using a version of the implicit function theorem from [25]
that allows for the continuous but non-smooth behaviour of K0 in γ0. In order to obtain global
solutions with certain desired regularity properties (needed in the next section), we make use
of Proposition 5.10, which is based on a version of the implicit function theorem from [25].

Suppose δ > 0 and suppose r : [0, δ] → [0,∞) is a continuous positive-definite function;
the latter means that r(x) > 0 if x > 0 and r(0) = 0. We define

D(δ, r) = {(w, x, y) ∈ [0, δ]2 × (−δ, δ) : |y| ≤ r(x)} (5.20)

and we let C0,1,±(D(δ, r)) denote the space of continuous functions on D(δ, r) that are C1

in (x, y) away from y = 0, C1 in x everywhere, and have left- and right-derivatives in y at
y = 0. In our applications, we take w = m2, x = g0 or β, and y = γ0 or γ .

Proposition 5.3 There exists a continuous positive-definite function r̂ : [0, δ] → [0,∞) and
continuous functions μ̂c

0, ẑ
c
0 ∈ C0,1,±(D(δ, r̂)) such that the system (5.18)–(5.19) is solved

by (ν0, z0) = (μ̂c
0, ẑ

c
0) whenever (m2, g0, γ0) ∈ D(δ, r̂). Moreover, these functions satisfy

the bounds

μ̂c
0 = O(g0), ẑc0 = O(g0) (5.21)

uniformly in (m2, γ0).

Proof Recall the definition of ĝ0 in (5.17), and let

F(m2, g0, γ0, ν0, z0) = (ν0, z0) − (νc0(m
2, ĝ0, K0), z

c
0(m

2, ĝ0, K0)), (5.22)

where K0 = K0(g0, γ0, ν0, z0). Then for δ > 0 small and an appropriate constant c > 0
(depending on a∗), F is well-defined on

{(m2, g0, γ0, ν0, z0) : (m2, ĝ0, γ0) ∈ D(δ, cg30), |ν0|, |z0| ≤ CDg0}. (5.23)

Indeed, for (m2, g0, γ0, ν0, z0) in this domain, Proposition 4.4 (with g̃0 = g0) implies that
(m2, ĝ0, K0) is in the domain of (νc0, z

c
0). By Theorem 5.1 and Proposition 4.6, F is C1 in

(g0, ν0, z0) and also in γ0 away from γ0 = 0, continuous inm2, and has one-sided derivatives
in γ0 at γ0 = 0.

For fixed (m̄2, ḡ0) ∈ [0, δ]2, set (ν̄0, z̄0) = (νc0(m̄
2, ḡ0, 0), zc0(m̄

2, ḡ0, 0)) so that

F(m̄2, ḡ0, 0, ν̄0, z̄0) = (0, 0). (5.24)
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By (4.69), at (ḡ0, 0, ν̄0, z̄0),

∂K0,x

∂ν0
= ∂K0,x

∂z0
= 0. (5.25)

It follows that Dν0,z0F(m̄2, ḡ0, 0, ν̄0, z̄0) is the identity map on R
2. The existence of δ, r̂ and

μ̂c
0, ẑ

c
0 follows from Proposition 5.10 with w = m2, x = g0, y = γ0, z = (ν0, z0), and with

r1(g0) = cg30, r2(g0) = CDg0.
By the fundamental theorem of calculus, for any 0 < a < γ0,

μ̂c
0(m

2, g0, γ0) = μ̂c
0(m

2, g0, a) +
∫ γ0

a

∂μ̂c
0

∂γ0
(m2, g0, t) dt. (5.26)

Taking the limit a ↓ 0 and using (5.13), we obtain

|μ̂c
0(m

2, g0, γ0)| ≤ O(g0) + γ0 sup
t∈(0,γ0]

∣∣∣∣∂μ̂c
0

∂γ0
(m2, g0, t)

∣∣∣∣ . (5.27)

The supremum above is bounded by a constant and so the first estimate of (5.21) for γ0 ≥ 0
follows from the fact that |γ0| ≤ r̂(g0) (since r̂(g0) can be taken as small as desired). The
case γ0 < 0 and the second estimate follow similarly. 
�
Corollary 5.4 Fix (m2, g0, γ0) ∈ D(δ, r̂) with g0 > 0 and m2 ∈ [δL−2(N−1), δ) and set
(V0, K0) = (V±

0 , K±
0 )with (ν0, z0) = (μ̂c

0, ẑ
c
0). Then for any N ∈ N, there exists a sequence

(Vj , K j ) ∈ D j (m2, g0,�) such that

(Vj+1, K j+1) = (Vj+1(Vj , K j ), K j+1(Vj , K j )) for all j < N (5.28)

and (5.3) is satisfied. Moreover, the second-order evolution equation for Vj is independent
of γ0.

Proof By Proposition 4.4, and by taking r̂ smaller if necessary, K0 = K±
0 satisfies the

estimate required by Theorem 5.1 whenever (m2, g0, γ0) ∈ D(δ, r̂). The existence of the
sequence (5.28) then follows from Theorem 5.1 and Proposition 5.3. Although the presence
of γ0 causes a shift in initial conditions, the second-order evolution of Vj is still given by the
map Vpt [see (5.8)], which is independent of γ0. 
�

By (3.19), χ̂(m2, g0, γ0, ν0, z0) = χ̂ (m2, g0, K0, ν0, z0), where K0 = K0(g0, γ0, ν0, z0)
is defined in (4.68). Then by (5.15)–(5.16), Corollary 5.4, and (4.69), with ĝ0 = ĝ0(g0, γ0),
we have

χ̂
(
m2, ĝ0, γ0, μ̂

c
0, ẑ

c
0

) = 1

m2 , (5.29)

∂χ̂

∂ν0

(
m2, ĝ0, γ0, μ̂

c
0, ẑ

c
0

) ∼ − 1

m4

c(ĝ∗
0 , γ0)

(ĝ∗
0Bm2)1/4

as(m2, g0, γ0) → (0, g∗
0 , γ

∗
0 ), (5.30)

where ĝ∗
0 = ĝ0(g∗

0 , γ
∗
0 ) and we write c(g0, γ0) = c(g0, K0). Although (5.30) depends on

γ0, this dependence ultimately only affects the computation of the critical point νc(β, γ )

and the constants Aβ,γ , Bβ,γ in the proof of Theorem 1.2. The asymptotic behaviour of the
susceptibility in (1.21) results from the logarithmic divergence of the bubble diagram Bm2

and the exponent 1
4 that appears in the denominator in (5.30).

Remark 5.5 We have invoked (4.69) above in order to satisfy the condition

‖∂K0/∂ν0‖W0 ≤ O(g30) (5.31)
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required in the proof of [3, Lemma 8.6] (see [3, (8.34)]). This condition holds trivially when
K0 does not depend on ν0, as in (5.15)–(5.16).

5.5 Change of Parameters

Recall from (3.18) that

χN (β, γ, ν) = (1 + z0)χ̂N (m2, g0, γ0, ν0, z0), (5.32)

whenever the variables on the left- and right-hand sides satisfy

g0 = (β − γ )(1 + z0)
2, ν0 = ν(1 + z0) − m2, γ0 = 1

4d
γ (1 + z0)

2. (5.33)

Given β, γ, ν, these relations leave free two of the variables (m2, g0, γ0, ν0, z0). More gen-
erally, if any three of the variables (β, γ, ν,m2, g0, γ0, ν0, z0) are fixed, then two of the
remaining variables are free. In the following two propositions, which together form an
extension of [3, Proposition 4.2], we fix three variables and show that the addition of the
constraints

ν0 = ν̂c0(m
2, g0, γ0), z0 = ẑc0(m

2, g0, γ0) (5.34)

allows us to uniquely specify the two remaining variables. First, in Proposition 5.6, the three
fixed variables are (m2, β, γ ).

Proposition 5.6 There exist δ∗ > 0, a continuous positive-definite function r∗ : [0, δ∗] →
[0,∞), and continuous functions (ν∗, g∗

0 , γ
∗
0 , ν∗

0 , z
∗
0) defined for (m2, β, γ ) ∈ D(δ∗, r∗),

such that (5.33) and (5.34) hold with ν = ν∗ and (g0, γ0, ν0, z0) = (g∗
0 , γ

∗
0 , ν∗

0 , z
∗
0). More-

over,

g∗
0 = β + O(β2), ν∗

0 = O(β), z∗0 = O(β). (5.35)

Proof Suppose we have found the desired continuous functions (g∗
0 , γ

∗
0 ) and that g∗

0 satisfies
the first bound in (5.35). Then the functions defined by

ν∗
0 = μ̂c

0(m
2, g∗

0 , γ
∗
0 ), z∗0 = ẑc0(m

2, g∗
0 , γ

∗
0 ), ν∗ = ν∗

0 + m2

1 + z∗0
(5.36)

are continuous, (5.33) is satisfied, and the remaining bounds in (5.35) follow using (5.21).
We first solve the third equation of (5.33), and then solve the first equation of (5.33). To

this end, we begin by defining

f1(m
2, g0, γ, γ0) = γ0 − (4d)−1γ (1 + ẑc0(m

2, g0, γ0))
2 (5.37)

for (m2, g0, γ0) ∈ D(δ, r̂) and |γ | ≤ r̂(g0) (recall that r̂ is defined in Proposition 5.3);
although f1 is well-defined for any γ ∈ R, we restrict the domain in preparation for our
application of Proposition 5.10. Note that f1 is C1 in γ and f1(·, ·, γ, ·) ∈ C0,1,±(D(δ, r̂))
for any γ . The equation f1(m2, g0, γ, γ0) = 0 has the solution γ0 = 0 when γ = 0 and, for
any γ0 �= 0,

∂ f1
∂γ0

= 1 − (2d)−1γ (1 + ẑc0(m
2, g0, γ0))

∂ ẑc0
∂γ0

. (5.38)

Since the one-sided γ0 derivatives of ẑc0 exist at γ0 = 0, we can see that the γ0 derivative of
f1 is well-defined and equal to 1 when γ = 0 for any small γ0 (including γ0 = 0). Thus,
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by Proposition 5.10 (with w = m2, x = g0, y = γ , z = γ0 and r1 = r2 = r̂ ), there exists
a continuous function γ

(1)
0 (m2, g0, γ ) on D(δ, r (1)) (for some continuous positive-definite

function r (1) on [0, δ]) such that f1(m2, g0, γ, γ
(1)
0 ) = 0. Moreover, γ (1)

0 is C1 in (g0, γ ).
Next, we define

f2(m
2, β, γ, g0) = g0 − (β − γ )(1 + ẑc0(m

2, g0, γ
(1)
0 (m2, g0, γ )))2 (5.39)

for (m2, g0, γ ) ∈ D(δ, r (1)) and β ∈ [0, δ∗], where δ∗ > 0 will be made sufficiently
small below. Then f2(m2, β, γ, g0) = 0 is solved by (γ, g0) = (0, g∗

0(m
2, β, 0)), where

g∗
0(m

2, β, 0) was constructed in [3, (4.35)]. By [3, (4.37)], g∗
0 = β + O(β2), so we may

restrict the domain of f2 so that |g0| ≤ 2β. Moreover,

∂ f2
∂g0

= 1 − 2(β − γ )(1 + ẑc0(m
2, g0, γ

(1)
0 ))

(
∂ ẑc0
∂g0

+ ∂ ẑc0
∂γ0

∂γ
(1)
0

∂g0

)
. (5.40)

Differentiating both sides of

γ
(1)
0 = 1

4d
γ (1 + ẑc0(m

2, g0, γ
(1)
0 ))2, (5.41)

and solving for
∂γ

(1)
0

∂g0
, gives

∂γ
(1)
0

∂g0
= γ (1 + ẑc0)

∂ ẑc0
∂g0

2d − γ (1 + ẑc0)
∂ ẑc0
∂γ0

, (5.42)

where ẑc0 and its derivatives are evaluated at (m2, g0, γ
(1)
0 ). Thus,

∂γ
(1)
0

∂g0
= 0 when γ = 0. It

follows that ∂ f2/∂g0 is well-defined when (γ, g0) = (0, g∗
0(m

2, β, 0)) and equals

1 − 2β(1 + ẑc0(m
2, g∗

0 , 0))
∂ ẑc0
∂g0

(m2, β, 0, g∗
0), (5.43)

which is positive when δ∗ is small, by (5.21). Thus, by Proposition 5.10 (with w = m2,
x = β, y = γ , z = g0 and r1 = r (1), r2(β) = 2β), there exists a function g∗

0(m
2, β, γ ) ∈

C0,1,±(D(δ∗, r (2))) (for some continuous positive-definite function r (2) on [0, δ∗]) such that
f2(m2, β, γ, g∗

0) = 0.
By the fact that g∗

0 solves f2 = 0,

g∗
0 = (β − γ ) + O((β − γ )2). (5.44)

Since |γ | ≤ r (2)(g0) and r (2)(g0) can be taken as small as desired, this implies the first
estimate in (5.35). Thus, by taking r∗ sufficiently small, if |γ | ≤ r∗(β), then |γ | ≤
r (2)(g∗

0(m
2, β, γ )). Thus, for β < δ∗ and |γ | ≤ r∗(β), we can define

γ ∗
0 (m2, β, γ ) = γ

(1)
0 (m2, g∗

0(m
2, β, γ ), γ ), (5.45)

which completes the proof. 
�
Using Proposition 5.6, it is possible to identify the critical point νc, as follows. By (5.29),

(5.32), Proposition 2.2, and Proposition 5.6,

χ(β, γ, ν∗) = 1 + z∗0
m2 = 1 + O(β)

m2 . (5.46)
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Thus, with ν = ν∗, we see that χ < ∞ when m2 > 0, and χ = ∞ when m2 = 0. By (1.10),
this implies that

νc(β, γ ) = ν∗(0, β, γ ) = O(β), νc(β, γ ) < ν∗(m2, β, γ ) (m2 > 0). (5.47)

It follows that

χ(β, γ, νc) = ∞, (5.48)

which is a fact that cannot be concluded immediately from the definition (1.10).
In (5.46), χ is evaluated at ν∗ = ν∗(m2, β, γ ). However, in the setting of Theorem 1.2,

we need to evaluate χ at a given value of ν and then take ν ↓ νc. To do so, we must determine
a choice of m2 in terms of ν such that (5.33) is satisfied and this choice must approach 0
(as it should by (5.47)) right-continuously as ν ↓ νc. The following proposition carries out
this construction. In the following, the functions m̃2, g̃0 should not be confused with the
parameter m̃2, g̃0 that appeared previously in the W j norms.

Proposition 5.7 Write ν = νc + ε. There exist functions m̃2, g̃0, γ̃0, ν̃0, z̃0 of (ε, β, γ ) ∈
D(δ∗, r∗) (all right-continuous as ε ↓ 0) such that (5.33) and (5.34) hold with

(m2, g0, γ0, ν0, z0) = (m̃2, g̃0, γ̃0, ν̃0, z̃0). (5.49)

Moreover,

m̃2(0, β, γ ) = 0, m̃2(ε, β, γ ) > 0 (ε > 0). (5.50)

g̃0 = β + O(β2), ν̃0 = O(β), z̃0 = O(β). (5.51)

Proof The proof is a minor modification of the proof in [3], using Proposition 5.6. Define

m̃2 = m̃2(ε, β, γ ) = inf{m2 > 0 : ν∗(m2, β, γ ) = νc(β, γ ) + ε}, (5.52)

on D(δ∗, r∗). By continuity of ν∗, the infimum is attained and

νc(β, γ ) + ε = ν∗(m̃2(ε, β, γ ), β, γ ). (5.53)

From the above expression, continuity of ν∗, and (5.47), it follows that m̃2 is right-continuous
as ε ↓ 0. It is immediate that (5.50) holds. Also, the functions of (ε, β, γ ) defined by

ν̃0 = ν∗
0 (m̃

2, β, γ ), z̃0 = z∗0(m̃2, β, γ ), (5.54)

g̃0 = (β − γ )(1 + z̃0)
2, γ̃0 = 1

4d
γ (1 + z̃0)

2 (5.55)

are right-continuous as ε ↓ 0 and satisfy (5.33). The bounds (5.51) follow from the definitions
and (5.35), and the proof is complete. 
�
5.6 Conclusion of the Argument

By (5.29), (5.32), Propositions 2.2 and 5.7

χ(β, γ, ν) = 1 + z̃0
m̃2 . (5.56)

Using this, (5.29), and (5.30), by exactly the same argument as in [3, Section 4.3], there is a
differential relation between ∂χ

∂ν
and χ , whose solution yields Theorem 1.2(ii).
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The reason the susceptibility is handled first is that its leading-order critical behaviour
can be computed from the second-order flow of the bulk coupling constants (g j , ν j , z j ). In
contrast, in order to study the two-point function, we begin by writing

φ̄aφb = ∂2

∂σa∂σb
eσa φ̄a+σbφb

∣∣∣
σa=σb=0

(5.57)

in (3.17). The incorporation of the exponential function eσa φ̄a+σbφb into Z0 is equivalent to
subtracting

σa φ̄a1x=a + σbφ̄b1x=b (5.58)

from V±
0 . The renormalisation group map now acts on a polynomial of the form

g jτ
2 + ν jτ + z jτ� −λa, jσa φ̄a1x=a − λb, jσbφb1x=b

− 1
2σaσb(qa, j1x=a + qb, j1x=b). (5.59)

We have only included terms up to second order in (σa, σb) because, by (5.57), only these are
needed to study the two-point function. The coefficients (λa, j , λb, j , qa, j , qb, j ) are referred
to as observable coupling constants and the behaviour of these coupling constants under the
action of the renormalisation group is studied in detail in [2,27].

It was shown in [2] that the observable flow does not affect the bulk flow. Moreover, the
second-order evolution of the observable flow remains identical to that of the case γ0 = 0.
This occurs for the same reason that the bulk flow is unaffected to second order by γ0 (as
in the statement of Corollary 5.4): namely, the second-order contributions to the observable
flow are produced by an extension of the map Vpt [recall (5.8)], whose definition does not
depend on γ0. Thus, the analysis of the observable flow when γ0 is small can proceed in the
same way as when γ0 = 0. That is, the same analysis that was carried out in [2] to study the
two-point function applies directly here to prove Theorem 1.2(i).

The analysis of the correlation length of order p in [6] also applies directly here, and for
the same reason: the second-order flow of coupling constants is independent of γ0. This gives
Theorem 1.2(iii).

5.7 A Version of the Implicit Function Theorem

We make use of [25, Chapter 4, Theorem 9.3], which is a version of the implicit function
theorem that allows for a continuous, rather than differentiable, parameter. While the precise
statement of [25, Chapter 4, Theorem 9.3] takes this parameter from an open subset of a
Banach space, by [25, Chapter 4, Theorem 9.2], the parameter can in fact be taken from an
arbitrary metric space. With this minor change, we restate [25, Chapter 4, Theorem 9.3] as
the following proposition.

Proposition 5.8 Let A be a metric space, let W, X be Banach spaces, and let B ⊂ W be
an open subset. Let F : A × B → X be continuous, and suppose that F is C1 in its second
argument. Let (α, β) ∈ A × B be a point such that F(α, β) = 0 and D2F(α, β)−1 exists.
Then there are open balls M " α and N " β and a unique continuous mapping f : M → N
such that F(ξ, f (ξ)) = 0 for all ξ ∈ M.

We also use the following lemma, which is a small modification of [25, Chapter 3, Theo-
rem 11.1]. In particular, it considers functions that may only be left- or right-differentiable.
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Lemma 5.9 Let F be a mapping as in the previous proposition with A ⊂ R
m1 × R

m2 .
In addition, suppose that F is left-differentiable (respectively, right-differentiable) in α2 at
(α, β), with α = (α1, α2). If f is a continuous mapping defined in a neighbourhood of α,
such that F(ξ, f (ξ)) = 0, then f is left-differentiable (respectively, right-differentiable) in
α2 at α.

The above results lead to the following proposition, which we apply in the proofs of
Propositions 5.3 and 5.6. Recall that D(δ, r) is defined in (5.20).

Proposition 5.10 Let δ > 0, and let r1, r2 be continuous positive-definite functions on [0, δ].
Set

D(δ, r1, r2) = {(w, x, y, z) ∈ D(δ, r1) × R
n : |z| ≤ r2(x)}, (5.60)

and let F be a continuous function on D(δ, r1, r2) that is C1 in (x, z). Suppose that for
all (w̄, x̄) ∈ [0, δ]2 there exists z̄ such that both F(w̄, x̄, 0, z̄) = 0 and DY F(w̄, x̄, 0, z̄) is
invertible. Then there is a continuous positive-definite function r on [0, δ] and a continuous
map f : D(δ, r) → R

n that is C1 in x and such that F(w, x, y, f (w, x, y)) = 0 for all
(w, x, y) ∈ D(δ, r). Moreover, if F is left-differentiable (respectively, right-differentiable)
in y at some point (w, x, y, z), then f is left-differentiable (respectively, right-differentiable)
at (w, x, y).

Proof Take any (w̄, x̄) ∈ [0, δ] × (0, δ] and let R(w̄, x̄) be the maximal radius s such
that for all (w, x, y) ∈ B(w̄, x̄, 0; s) there exists z such that both F(w, x, y, z) = 0 and
DZ F(w, x, y, z) is invertible. By continuity of (DZ F(w, x, y, z))−1 near (w̄, x̄, 0, z̄), and
by Proposition 5.8 (applied to the restriction of F to A × B, for some A " (w̄, x̄, 0) and an
open set B " z̄), we have R(w̄, x̄) > 0 and there is a continuous function

fw̄,x̄ : B(w̄, x̄, 0; R(w̄, x̄)) → R
n (5.61)

such that F(w, x, y, fw̄,x̄ (w, x, y)) = 0 for all (w, x, y) ∈ B(w̄, x̄, 0; R(w̄, x̄)). Moreover,
the unique solution to F(w, x, y, z) = 0 is given by z = fw̄,x̄ (w, x, y) for all such (w, x, y).
By an application of Lemma 5.9 (with α1 = (w, x), α2 = y), we see that fw̄,x̄ is left- or
right-differentiable in y wherever F is. By another application of Lemma 5.9 (with α1 =
(w, y), α2 = x), we see that fw̄,x̄ is C1 in x .

Set R(w̄, 0) = 0 for all w̄ ∈ [0, δ], and let
D f =

⋃
(w̄,x̄)∈[0,δ]2

B(w̄, x̄, 0; R(w̄, x̄)). (5.62)

We define f (w, 0, 0) = 0 and, for x > 0,

f (w, x, y) = fw̄,x̄ (w, x, y) for (w, x, y) ∈ B(w̄, x̄, 0; R(w̄, x̄)). (5.63)

By uniqueness, this function is well-defined. Continuity of f at (w, 0, 0) follows from the
fact that | f (w, x, y)| ≤ r2(x). The remaining desired regularity properties of f follow from
those of the fw̄,x̄ . It remains to show that D(δ, r) ⊂ D f for some continuous positive-definite
function r on [0, δ].

First, let us show that R is continuous on [0, δ]2. Let x̄ > 0 and fix 0 < ε <

R(w̄, x̄). Then for any (w̄′, x̄ ′) ∈ [0, δ] × (0, δ] such that |(w̄, x̄) − (w̄′, x̄ ′)| < ε, we
have B(w̄′, x̄ ′, 0; R(w̄, x̄) − ε) ⊂ B(w̄, x̄, 0; R(w̄, x̄)) by maximality of R. It follows
that R(w̄′, x̄ ′) ≥ R(w̄, x̄) − ε. By a similar argument, R(w̄′, x̄ ′) ≤ R(w̄, x̄) + ε, so
|R(w̄, x̄) − R(w̄′, x̄ ′)| ≤ ε. Thus, R is continuous on [0, δ] × (0, δ]. Continuity at x̄ = 0
follows from the fact that R(w̄, x̄) ≤ r1(x̄) uniformly in w̄.
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For x̄ ∈ [0, δ], let
r(x̄) = inf(R(w̄, x̄) : w̄ ∈ [0, δ]). (5.64)

Since R(·, x̄) is continuous, r(x̄) > 0 for x̄ > 0. Moreover, 0 ≤ r(0) ≤ r1(0) = 0, so r
is positive-definite. Continuity of r follows from joint continuity of R. For any (w, x, y) ∈
D(δ, r) (with this choice of r ),

|(w, x, y) − (w, x, 0)| = |y| < r(x) ≤ R(w, x), (5.65)

so (w, x, y) ∈ B(w, x, 0; R(w, x)). We conclude that D(δ, r) ⊂ D f . 
�
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