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Abstract Weconsider an open quantumwalk on a graph, and the randomvariables defined as
the passage time and number of visits at a given point of the graph. We study in particular the
probability that the passage time is finite, the expectation of that passage time, the expectation
of the number of visits, and discuss the notion of recurrence for open quantum walks. We
also study exit times and exit probabilities from a finite domain, and use them to solve
Dirichlet problems and to determine harmonic measures. We consider in particular the case
of irreducible open quantum walks. The results we obtain extend those for classical Markov
chains.

Keywords Open quantum walks · Quantum Markov chains · Completely positive maps ·
Quantum trajectories

1 Introduction

Open quantum walks were defined in [5]. They are extensions of (discrete-time) Markov
chains, where the process retains some amount of memory, and this memory is encoded by a
quantum state. Open quantum walks are a simple model, which has stirred interest because
of its various possible applications (see [36] and references therein for models based on
open quantum walks, and [38] on the general topic of control of quantum trajectories) and
interesting features and extensions (see [6,7,33]). They have therefore given rise to various
theoretical studies, investigating e.g. ergodic properties, central limit theorems and large
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deviations properties (see [4,9–11,29]). The approach of [10] was to give analogues for open
quantum walks of notions usually associated with Markov chains, such as irreducibility and
period, and to investigate their consequences. In this article, we continue this program of
studying open quantum walks in analogy with Markov chains, and investigate other notions:
the probability of visiting a given site in finite time, the expected number of visits, the
expected return time, and their relation with the Dirichlet problem. Some of these notions
were discussed in e.g. [11,17], but our study is the first systematic exploration of these
concepts and their behavior for irreducible open quantum walks.

The first standard question one may ask about Markov chains treats recurrence problems.
Let (xn)n be a Markov chain on a discrete set V . For any i in V we define

ti = inf{n ≥ 1 | xn = i}, ni = card{n ≥ 1 | xn = i},
The classical results (see e.g. [18,32]) concerning return times (ti )i∈V and number of visits
(ni )i∈V imply that for any i in V

Pi (ti < ∞) = 1⇔ Ei (ni ) = ∞. (1)

Therefore, this equivalence allows to define the notion of recurrence using either quantity
Pi (ti < ∞) or Ei (ni ). In addition, if the Markov chain is irreducible,

Pi (ti < ∞) < 1 for all i ∈ V, or Pi (ti < ∞) = 1 for all i ∈ V, (2)

Ei (ni ) < ∞ for all i ∈ V, or Ei (ni ) = ∞ for all i ∈ V . (3)

Similarly, for an irreducible Markov chain,

Ei (ti ) < ∞ for all i ∈ V, or Ei (ti ) = ∞ for any i ∈ V . (4)

In addition, if the Markov chain admits an invariant probability measure (πi )i∈V , then

Ei (ti ) = π−1
i < ∞ for any i ∈ V . (5)

The second standard question concerns exit times and exit probabilities. If D is a finite subset
of V , we define t∂D as its exit time

t∂D = inf{n ≥ 1 | xn ∈ ∂D}
where ∂D is the boundary of D (we give a precise definition later on), and for i ∈ D, j ∈ ∂D
define the harmonic measure at i relative to j by

μD
i ( j) = Pi (xt∂D = j) (6)

which represents the probability of exiting D through j when starting from i . It is known that
the map i �→ μD

i ( j) is harmonic on D for any j ∈ ∂D, and is an important tool in solving
Dirichlet problems. In addition, the solution of a Dirichlet problem can be characterized as
the minimizer of some functional, related to a Dirichlet form.

In this article we investigate similar relations to (1)–(5), and study an analogue of Dirichlet
problems for open quantumwalks. We also look at the notion of harmonic measures for open
quantum walks. These measures, as well as the Dirichlet problems for open quantum walks,
provide simple examples of non-commutative extensions of standard geometrical structures.

This article is organized as follows: in Sect. 2 we recall the definitions of open quantum
walks and various notions, including irreducibility and harmonicity. In Sect. 3 we study the
relation between return times andnumber of visits and in particular analogues forOQWof (1),
(2) and (3), and discuss the literature on the subject of recurrence for open quantumwalks. In
Sect. 4 we study the expected values of return times, prove an analogue of (4), and relate these
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Passage times, exit times and Dirichlet problems for OQW 175

expected values to invariant measures, similar to (5). In Sect. 5 we describe various examples
that serve in particular as counterexamples to various possible conjectures. In Sect. 6 we
define Dirichlet problems for open quantumwalks and characterize their solutions. In Sect. 7
we discuss extensions of various results to reducible open quantum walks. In Sect. 8 we
introduce Dirichlet forms for open quantum walks and use them to characterize solutions
of Dirichlet problems. In every section, a non-optimal but nevertheless satisfactory result is
given early in the introductory part, and the intermediate results necessary for the proof (most
of which have weaker assumptions than necessary for the results stated earlier) are detailed
in the rest of the section. The proofs are given in the Appendix, unless they contain elements
necessary to the comprehension of the text.

2 Open Quantum Walks: Definitions and Notation

We start this section with a short presentation of open quantum walks and the associated
notion of irreducibility. We follow the notation of [10] and refer the reader to that article for
more details.

We consider a Hilbert space H of the form H = ⊕
i∈V hi where V is a countable set of

vertices, and each hi is a separable Hilbert space. We view H as describing the degrees of
freedom of a particle constrained to move on V : the “V -component” describes the spatial
degrees of freedom (the position of the particle) while hi describes the internal degrees of
freedom of the particle, when it is located at site i ∈ V .

For book-keeping purposes we denote the subspace hi ofH by hi ⊗|i〉. Therefore, when-
ever a vector ϕ ∈ H belongs to the subspace hi , we will denote it by ϕ ⊗ |i〉 and drop the
(implicit) assumption that ϕ ∈ hi . Similarly, when an operator A onH satisfies h⊥j ⊂ Ker A
and Ran A ⊂ hi , we denote it by A = Li, j ⊗|i〉〈 j | where Li, j is viewed as an operator from
h j to hi . This will allow us to use the same notation as in e.g. [4,5,26,28,33]. Consistently
with this notation, for W a subset of V we denote

HW =
⊕

i∈W
hi ⊗ |i〉.

and IdW = ∑
i∈W Idhi ⊗ |i〉〈i |. We identify HW (respectively B(HW )) with a subspace of

H (respectively B(H)).
An open quantum walk (or OQW) is a map on the Banach space I1(H) of trace-class

operators on H, given by
M : τ �→

∑

i, j∈V
Ai, j τ A∗i, j (7)

where, for any i, j in V , the operator Ai, j is of the form Li, j ⊗ |i〉〈 j | and the operators Li, j

satisfy
∀ j ∈ V,

∑

i∈V
L∗i, j Li, j = Idh j , (8)

(this series is meant in the strong convergence sense). The operators Li, j represent the effect
of a transition from site j to site i , encoding both the probability of that transition and its
effect on the internal degrees of freedom. Equation (8) therefore encodes the “stochasticity”
of the transitions Li, j , and immediately implies that TrM(τ ) = Tr τ for any τ in I1(H).

Recall that an operator X on H is called positive (respectively definite positive) if
〈ϕ, Xϕ〉 ≥ 0 (respectively 〈ϕ, Xϕ〉 > 0) for any ϕ ∈ H \ {0}. We define a state on H
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to be a positive operator in I1(H) with trace one, and call a state faithful if it is definite pos-
itive. We denote the set of states on H (respectively hi ) by S(H) (respectively S(hi )). The
map defined by (7) maps a state to a state. It actually has the stronger property of being trace-
preserving and completely positive, i.e. for any n ∈ N,M⊗IdB(Cn) acting on I1(H)⊗B(Cn)

is positive; such an operator is commonly called a quantum channel, see e.g. [37]. In addition,
the topological dual I1(H)∗ can be identified with B(H) through the linear form

(τ, X) �→ Tr(τ X),

so that the dualM∗ ofM acts on B(H). By the Russo–Dye Theorem (see [34]), we have the
relation1 ‖M∗‖ = ‖M∗(IdH)‖, so that relation (8) implies that ‖M‖ = 1 as an operator on
I1(H).

A crucial remark is that the range of M is a subset of the class of “diagonal” states, i.e.
states of the form ∑

i∈V
τ(i)⊗ |i〉〈i |, (9)

where each τ(i) is in I1(hi ). In addition, even if τ is not diagonal, i.e. is of the form τ =∑
i, j∈V τ(i, j)⊗|i〉〈 j |, thenM(τ ) depends only on its diagonal elements τ(i, i). Therefore,

from now on, we will only consider states of the form (9). The action of M on such states
takes the form

M(τ ) =
∑

i∈V

( ∑

j∈V
Li, j τ( j) L∗i, j

)⊗ |i〉〈i |. (10)

As argued in [10] (see in particular section 8), a natural extension of the above framework
is to encode the transition from site j to site i not by τ( j) �→ Li, j τ( j) L∗i, j , but by a more

general completely positive map τ( j) �→ �i, j
(
τ( j)

)
. We will not discuss this extension any

further. Note, however, that all our results hold for these generalized open quantum walks
(except for the explicit formulas involving operators Li, j , which need to be amended). The
adaptation of the proofs is straightforward.

We now describe a family of classical random processes associated withM. Let � = VN

and for any state ρ onH of the form (9), define on � a probability by defining its restrictions
to V n+1 for n ≥ 0:

Pτ (i0, . . . , in) = Tr
(
Lin ,in−1 . . . Li1,i0 τ(i0) L

∗
i1,i0 . . . L∗in ,in−1

)
. (11)

Relation 8 ensures the consistency of these restrictions, and the Daniell–Kolmogorov exten-
sion Theorem implies that Pτ defines a unique probability on �. We will mostly consider
initial states τ of the form ρ ⊗ |i〉〈i | with ρ ∈ S(hi ), i.e. with initial position i and ini-
tial internal state ρ; for notational simplicity, the corresponding probability Pτ will then be
denoted by Pi,ρ .

We will consider two random processes (xn)n and (ρn)n defined for ω = (i0, i1, . . .) ∈ �

by

xn(ω) = in,

ρn(ω) = Lin ,in−1 . . . Li1,i0 τ(i0) L∗i1,i0 . . . L∗in ,in−1
Tr

(
Lin ,in−1 . . . Li1,i0 τ(i0) L∗i1,i0 . . . L∗in ,in−1

) . (12)

1 Note that the two norms ‖ · ‖ in this relation are different, the first being the norm for operators acting on
B(H), the second the norm for operators acting on H.
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Note that the variable ρn is a state on hxn . Besides, the process (xn, ρn)n is Markov, corre-
sponding to the transitions defined loosely as follows: conditionally on (xn = j, ρn = ρ),
one has

(xn+1, ρn+1) =
(
i,

Li, jρL∗i, j
Tr(Li, jρ L∗i, j )

)
with probability Tr(Li, jρ L∗i, j ). (13)

Remark that (xn)n or (ρn)n considered separately are not Markov processes.
Note that open quantum walks include classical Markov chains. More precisely, consider

a Markov chain (Mn)n on the vertex set V , with probability ti, j of transition from j to i and
initial distribution (pi )i∈V . Define an open quantum walkM with hi ≡ C and Li, j = √

ti, j .
If the initial state is τ = ∑

i∈V pi ⊗ |i〉〈i | then M(τ ) is of the form

M(τ ) =
∑

i∈V

( ∑

j∈V
ti, j p j

)⊗ |i〉〈i |.

Therefore, x0 has the same law as M0 and x1 has the same law as M1, etc. This open
quantumwalk will be called the minimal dilation of the Markov chain (because it is an OQW
implementation of the Markov chain with minimal spaces hi , see [10] for more details).

We now introduce the notion of irreducibility for open quantum walks. For i, j in V we
call a path from i to j any finite sequence i0, . . . , i
 in V with 
 ≥ 1, such that i0 = i and
i
 = j . Such a path is said to be of length 
, and we denote the length of a path π by 
(π).
We denote by P
(i, j) the set of paths from i to j of length 
, and let

P(i, j) = ∪
≥1P
(i, j).

For a fixed OQW M and π = (i0, . . . , i
) in P(i, j) we denote by Lπ the operator from hi
to h j defined by:

Lπ = Li
,i
−1 . . . Li1,i0 = L j,i
−1 . . . Li1,i .

Definition 2.1 An open quantum random walkM as above is irreducible if for any i, j in V
and for any ϕ in hi \ {0}, the set

{
Lπϕ |π ∈ P(i, j)

}
(14)

is total in h j .

This definition (which is a special case of Davies irreducibility as defined in [14]) and its
consequences were introduced in [10]. The main consequence is that for M an irreducible
open quantum walk, the set of solutions of M(τ ) = τ is a space of dimension at most one,
and one solution is a faithful state.

Remark 2.2 There was a slight ambiguity in the definition of irreducibility as given in [9,10],
where the path “of length zero” π = {i} with associated transition L{i} = Idhi was allowed
in (14). In other words, irreducibility was defined by the fact that for any i, j in V and ϕ in
hi \ {0}, the set {

ϕ
} ∪ {

Lπϕ |π ∈ P(i, j)
}

(15)

(with π of length at least one) is total. It is easy, however, to see that this second definition
is equivalent to Definition 2.1. Therefore, even though we define irreducibility by Definition
2.1, we can still apply the results of [10].

The following class of open quantum walks will be relevant, and in particular will have
properties closer to those of (classical) Markov chains.
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Definition 2.3 We say that an open quantum walk M is semifinite if for any i in V ,
dim hi < ∞. We say that it is finite if it is semifinite and V is a finite set.

Non-semifinite open quantumwalks, i.e. those that can have an infinite number of degrees
of freedom at a given site i ∈ V , can exhibit local degeneracies that will make them less
interesting to us.

One of the topics of interest in the present paper is that of quantum harmonic operators:

Definition 2.4 An operator A = ∑
i∈V Ai ⊗|i〉〈i |with Ai ∈ B(hi ) for each i ∈ V is called

quantum harmonic if it satisfiesM∗(A) = A, or equivalently if

for any j ∈ V, one has A j =
∑

i∈V
L∗i, j Ai Li, j .

Remark that any operator λIdH, λ in C, is quantum harmonic. In the case of a minimal
dilation of a classical Markov chain, this definition is equivalent to the classical definition of
harmonicity. An immediate property of quantum harmonic operators is the following:

Lemma 2.5 Let M be an open quantum walk and A a quantum harmonic operator for M.
Then for any initial (x0, ρ0), the Markov chain (xn, ρn)n, with transition probabilities given
by Equation (13), is such that mn =

(
Tr(ρn Axn )

)
n is a Px0,ρ0 -martingale.

Before we move on to the next section, it will be convenient to introduce some additional
notation for specific paths. For any i and j in V , and forW a subset of V , we definePW (i, j)
to be the set of paths in P(i, j) that remain inW except possibly for their start- and endpoint.
More precisely:

(i0, . . . , i
) ∈ PW ⇔ (i0, . . . , i
) ∈ P with i1, . . . , i
−1 ∈ W.

We denote for any 
 ≥ 1 by e.g. PW

 the subset of PW consisting of paths of length 
, etc.

3 Passage Times and Number of Visits

In this section we consider the passage times t j to a given point j ∈ V and the number of
visits n j to that point. We define

t j = inf{n ≥ 1 | xn = j}, n j = card{n ≥ 1 | xn = j}.
Recall the standard results (1), (2), (3) in the case where the OQW is a minimal dilation of
a Markov chain. The equivalence (1) follows from the markovianity of the process (xn)n .
However, in the general OQW case, the process (xn)n alone is not markovian and at least
some of the above relations will fail. Indeed, Example 5.1 below with i = 0 and ρ �=
|e1〉〈e1|, |e2〉〈e2| is such that Pi,ρ(ti < ∞) < 1 and Ei,ρ(ni ) = ∞, showing that the
analogue of (1) does not hold. Example 5.2, which displays an irreducible OQW, is such that
Pi,ρ(ti < ∞) = 1 and Ei,ρ(ti ) < ∞ for p < 1/2 and i = 0, ρ = |e2〉〈e2|. Consequently it
shows that this analogue (1) may not even hold for irreducible OQWs.

We therefore have to work some more in order to obtain nontrivial connections between
Pi (ti < ∞) and Ei (ni ), and to obtain universality results in the irreducible case. This will
be done in the next two subsections. As a corollary of our investigation, a clear conclusion
can be drawn for semifinite irreducible open quantum walks, which we give in Theorem 3.1
below. Its proof, however, relies on all results given in those two subsections. We will finish
this section with a discussion of the notion of recurrence for open quantum walks.
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Theorem 3.1 LetM be a semifinite irreducible open quantum walk. We are in one (and only
one) of the following situations:

1. for any i, j in V, ρ in S(hi ), one has Ei,ρ(n j ) = ∞ and Pi,ρ(t j < ∞) = 1;
2. for any i, j in V, ρ in S(hi ), one has Ei,ρ(n j ) < ∞ and Pi,ρ(t j < ∞) < 1;
3. for any i, j in V, ρ in S(hi ), one has Ei,ρ(n j ) < ∞, but there exist i in V , ρ, ρ′ in S(hi )

(ρ necessarily non-faithful) with Pi,ρ(ti < ∞) = 1 and Pi,ρ′(ti < ∞) < 1.

Remark 3.2

1. Situation 1 is illustrated by any finite irreducible OQW, or by a (Z,C2)-simple OQW
(see Example 5.5) with L∗+L+ = L∗−L− = 1

2 IdC2 .
2. Situation 2 is illustrated by e.g. theminimal dilation of a transient classicalMarkov chain,

or a (Z,C2)-simple OQW with, L∗+L+ > 1
2 IdC2 .

3. Situation 3, which of course is themost surprising in comparisonwith the case of classical
Markov chains, is illustrated by Example 5.2.

3.1 Passage Time vs. Number of Visits: General Results

In this section we investigate the quantities Pi,ρ(t j < ∞) and Ei,ρ(n j ), and the relation
between them. The proofs relating the two quantities Pi,ρ(t j < ∞) and Ei,ρ(n j ) in the
classical case are based on the fact that any path π ∈ P( j, j) can be written uniquely as a
concatenation of paths π ∈ PV \{ j}( j, j). We will use this simple idea in the present case.
This is summarized in Proposition 3.3:

Proposition 3.3 There exists a family (P j,i )i, j∈V , whereP j,i is a completely positive linear
contraction from I1(hi ) to I1(h j ), such that for any i, j in V and any ρ in S(hi ),

Pi,ρ(t j < ∞) = Tr
(
P j,i (ρ)

)
, Ei,ρ(n j ) =

∑

k≥0
Tr

(
Pk

j, j ◦P j,i (ρ)
)
,

(where the second expression is possibly∞).

Remark 3.4

1. The map P j,i can be expressed by:

P j,i (ρ) =
∑

π∈PV \{ j}(i, j)
LπρL∗π

(see the proof of Proposition 3.3 to see that this expression is meaningful).
2. An immediate consequence of Proposition 3.3 is that

‖P j,i‖ = sup
ρ∈S(hi )

Pi,ρ(t j < ∞),

where the norm is the operator norm on I1(H).
3. It is immediate from the proof that

Ei,ρ
(
ρt j | t j < ∞) = P j,i (ρ)

Tr
(
P j,i (ρ)

) . (16)

We have the following corollary:
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Corollary 3.5 Let i, j be in V .

1. One has Pi,ρ(t j < ∞) = 1 if and only if P∗
j,i (Idh j ) has the form

(
Id 0
0 ∗

)

in the decom-

position hi = Ran ρ ⊕ (Ran ρ)⊥. In particular, if there exists a faithful ρ in S(hi ) such
that Pi,ρ(t j < ∞) = 1, then Pi,ρ′(t j < ∞) = 1 for any ρ′ ∈ S(hi ).

2. If there exists a faithful ρ in S(hi ) such that Pi,ρ(ti < ∞) = 1, then one has Ei,ρ′(ni ) =
∞ for any ρ′ ∈ S(hi ).

3. If there exists a faithful ρ in S(hi ) such that Ei,ρ(n j ) < ∞ and hi is finite-dimensional,
then one has Ei,ρ′(n j ) < ∞ for any ρ′ in S(hi ).

4. If Ei,ρ(n j ) < ∞ for every ρ in S(hi ), then there exists a completely positive linear
bounded map N j,i from I1(hi ) to I1(h j ) such that

Ei,ρ(n j ) = Tr
(
N j,i (ρ)

)
, (17)

and one has the expression

N j,i (ρ) =
∑

π∈P(i, j)

LπρL∗π . (18)

Remark 3.6

1. The second part of the first statement, and the second statement, do not hold without the
faithfulness assumption, as shown by Examples 5.1 and 5.2.

2. Since P j,i is a completely positive contraction, one has P∗
j,i (Idh j ) ≤ Idhi . In addition,

by the Russo–Dye Theorem [34], ‖P∗
j, j‖ = ‖P∗

j, j (Idh j )‖ so that if ‖P∗
j, j (Idh j )‖ < 1,

then Ei,ρ(n j ) < ∞ for every ρ in S(hi ) and:

N j,i =
(
Id −P j, j

)−1 ◦P j,i .

3. Again, under the assumptions of point 4, an immediate consequence is

‖N j,i‖ = sup
ρ∈S(hi )

Ei,ρ(n j ),

andN(α)
j,i introduced in Sect. 1 satisfiesN j,i = limα→1 N

(α)
j,i .

4. IfEi,|ϕ〉〈ϕ|(n j ) < ∞ for a total set of unit vectorsϕ of an infinite-dimensionalhi , thenN j,i

can still be constructed as a densely defined (a priori unbounded) selfadjoint operator,
thanks to the representation theory for closed quadratic forms (see e.g. [25, Theorem
VIII.3.13a]).

We have an easy partial converse to the third statement of Corollary 3.5 (a stronger result
will be given under the additional assumption of irreducibility).

Proposition 3.7 Let i be in V and assume that hi is finite-dimensional. If Pi,ρ(ti < ∞) < 1
for every ρ in S(hi ), then Ei,ρ′(ni ) < ∞ for every ρ′ in S(hi ).

Remark 3.8 Proposition 3.7 implies in particular that, if hi is finite-dimensional and there
exists ρ in S(hi ) such that Ei,ρ(ni ) = ∞, then there exists ρ′ in S(hi ) such that Pi,ρ′(ti <

∞) = 1. Note that this does not necessarily hold with ρ′ = ρ, as Examples 5.1 and 5.5 show.
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3.2 The Irreducible Case

We now turn to the “universality” properties analogous to (2) and (3) that are expected in the
irreducible case. We will prove the following:

Proposition 3.9 Let M be an irreducible open quantum walk and let j be in V . We are in
one (and only one) of the following situations:

1. for every i in V there exists a domain dnj,i , dense in hi , such that the quantity Ei,ρ(n j ) is
finite for any ρ that has finite range contained in dnj,i ,

2. for every i in V , for any ρ in S(hi ), the quantity Ei,ρ(n j ) is infinite.

For semifinite OQW, the picture is simpler. We have the following corollary:

Corollary 3.10 Let M be a semifinite irreducible open quantum walk. We are in one (and
only one) of the following situations:

1. the quantity Ei,ρ(n j ) is finite for any i, j in V and any ρ in S(hi ),
2. the quantity Ei,ρ(n j ) is infinite for any i, j in V and any ρ in S(hi ).

Remark 3.11

1. Example 5.1 shows that the above statements do not hold without the irreducibility
assumption.

2. Example 5.3 shows that any irreducible open quantumwalk that admits an invariant state
(and in particular a finite OQW) is in case 2 of Corollary 3.10.

The next proposition is the last ingredient to prove Theorem 3.1.

Proposition 3.12 Let M be an irreducible open quantum walk. Assume that there exists
i, j in V with dim hi < ∞, dim h j < ∞ and Ei,ρ(n j ) = ∞ for some ρ in S(hi ). Then
P j,ρ′(t j < ∞) = 1 for every ρ′ in S(h j ).

The proof of Theorem3.1 follows immediately fromCorollary 3.5, Proposition 3.7, Corol-
lary 3.10 and Proposition 3.12.

3.3 Notions of Recurrence for Open Quantum Walks

In view of Corollary 3.10, we propose the following terminology:

Definition 3.13 A semifinite irreducible open quantum walk M is called transient if it sat-
isfies property 1. of Corollary 3.10, and recurrent if it satisfies property 2.

In other words, our classification depends on the quantity Ei,ρ(ni ) being finite or infinite.
Thanks to Corollary 3.10, for a semifinite irreducible open quantum walk this quantity is
universal in the sense that it is either finite for all i and ρ, or infinite for all i and ρ. We
now compare this with existing definitions of recurrence for open quantum walks and related
objects.

First of all, if the open quantum walk M is the minimal dilation of a classical Markov
chain, then M is recurrent in our sense if and only if the Markov chain is recurrent in the
classical sense.

Fagnola and Rebolledo defined in [20] a notion of recurrence for (continuous-time)
quantum dynamical semigroups. When applied to the (discrete-time) quantum dynamical
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semigroup (Mn)n , this definition of recurrence is that for any operator A of B(H) that satis-
fies 〈ϕ, Aϕ〉 > 0 for any ϕ ∈ H \ {0}, the set

D(U(A)) = {
ϕ =

∑

i∈V
ϕi ⊗ |i〉 s.t.

∑

k≥0
〈ϕ, (M∗)k(A) ϕ〉 < ∞}

.

equals {0}. We call this notion FR-recurrence. Our definition of a recurrent OQW, as can be
seen from Sect. 1, is equivalent to the fact that for any j ∈ V , D

(
U(A j )

) = {0} for A j =
Idh j ⊗| j〉〈 j |. It is clear that if the OQW is FR-recurrent, then it is recurrent in our sense. If the
OQWis not FR-recurrent, then there exists A as above such that

∑
k≥0〈ϕ, (M∗)k(A) ϕ〉 < ∞,

and if the OQW is semifinite, then for any j in V there exists λ j > 0 such that λ j Idh j ⊗
| j〉〈 j | ≤ A and the OQW is not recurrent. Therefore, for semifinite OQWs, our notion of
recurrence and FR-recurrence are equivalent.

A series of results investigating recurrence of open quantum walks can be found in [11,
28,29]. In particular, in these references, a site i ∈ V is called (LS)-recurrent if (in our terms)
one has Pi,ρ(ti < ∞) = 1 for any ρ in S(hi ). The OQW is called (LS)-site-recurrent if every
site i in V is LS-recurrent. In other words, LS-recurrence classifies sites depending on the
quantity

inf
ρ∈S(hi )

Pi,ρ(ti < ∞) (19)

being equal to 1 or not. Corollary 3.10 shows that, for a semifinite irreducible open quantum
walk, infρ∈S(hi ) Pi,ρ(ti < ∞) = 1 for some i if and only if it is true for all i (a fact which
is not proved in [11,28,29]), and also that this is equivalent with recurrence in the sense of
Definition 3.13. Therefore, an irreducible semifinite OQW is LS-site-recurrent if and only if
it is recurrent in our sense. Without the irreducibility assumption, point 2 of Corollary 3.5
shows that if i is LS-recurrent then Ei,ρ(ni ) = ∞ for any ρ in S(hi ); the converse does not
hold, as shown by Example 5.4. Note, however, that the quantity Ei,ρ(ni ) has the advantage
of being universal in i and ρ, in the sense that (for a semifinite irreducible OQW) it is either
finite for every i and ρ, or infinite for every i and ρ. This is not true of Pi,ρ(ti < ∞) = 1,
as Examples 5.2 and 5.5 show. The reason can be traced back to the fact that the set of
“diagonal” ϕ = ∑

i∈V ϕi ⊗ |i〉 such that P|ϕ〉〈ϕ|(t j < ∞) = 1, even though it is stable by
any Lπ ⊗| j〉〈i |with π ∈ P(i, j), is not a vector space, and therefore cannot be an enclosure
(see the proof of Proposition 3.9 in Sect. 1).

Recently, Dhahri and Mukhamedov discussed a notion of recurrence in [17]. That notion
actually concerns quantum Markov chains (objects that originate in [1,2]), and was defined
in [3]. The connection with open quantum walks is established by associating a quantum
Markov chain to an open quantum walk. This can be done, however, in different ways,
and the property of recurrence depends on the choice of the associated quantum Markov
chain. In addition, it is not clear what this notion of recurrence has to do with the properties
of the random variables (xn)n . A major setback, making the associated quantum Markov

chains non-canonical, is that they are constructed over the algebra
(B(

⊕
i∈V hi )

)⊗N; a more
direct connection could probably be obtained, at least when hi ≡ h, by a construction over

B(h)⊗ (B(CV )
)⊗N, as can be done using the theory of finitely correlated states (see [21]).

Last, remark that, inspired by [24], the authors of [11] discuss an alternate notion of
recurrence to a site i ∈ V . In that new notion, physically speaking, the observer does not at
every time n measure the position xn of the particle, but measures only whether the particle
has returned to i or not. Mathematically, this amounts to considering the probability space
defined by �̃ = {0, 1}N, and probability
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P̃i,ρ(ı̃1, . . . , ı̃n) = Tr
(
�ı̃n ,ı̃n−1 ◦ . . . ◦�ı̃1,1(ρ ⊗ |i〉〈i |))

where we have, for τ a state on H, and with Ai, j as in (7)

�1,1(τ ) = Ai,iτ A
∗
i,i , �1,0(τ ) =

∑

j �=i
Ai, jτ A

∗
i, j ,

�0,1(τ ) =
∑

j �=i
A j,iτ A

∗
j,i , �0,0(τ ) =

∑

j,k �=i
A j,kτ A

∗
j,k .

The new notion of recurrence is then related to the first time t̃i ≥ 1 for which the process
defined by x̃n(ω̃) = ı̃n takes the value 1. It is easy to verify, however, that this t̃i has the
same law under P̃i,ρ as ti under Pi,ρ , so that this alternate notion of recurrence is identical to
LS-recurrence, as was noted in [11].

4 Expectation of Return Times

We now turn to results analogous to (4). Our first statement is a representation result.

Proposition 4.1 For any i, j in V and ρ in S(hi ), we have

Ei,ρ(t j ) =
⎧
⎨

⎩

∑

π∈PV \{ j}(i, j)

(π)Tr LπρL∗π if Pi,ρ(t j < ∞) = 1,

+∞ if Pi,ρ(t j < ∞) < 1.
(20)

If Ei,ρ(t j ) < ∞ for every ρ ∈ S(hi ), then there exists a bounded operator T j,i from I1(hi )
to I1(h j ) such that

Ei,ρ(t j ) = Tr
(
T j,i (ρ)

)
. (21)

Remark 4.2

1. In the case where Ei,ρ(t j ) < ∞ for every ρ ∈ S(hi ) we have the expression

T j,i (ρ) =
∑

π∈PV \{ j}(i, j)

(π) LπρL∗π

2. We have in addition the identity (with both sides possibly∞)

Ei,ρ(ti ) = d

dα
Tr

(
P

(α)
i,i (ρ)

)∣
∣
α=1.

The operators P(α)
i,i are defined in Sect. 1.

Our first relevant theorem is a universality result in the irreducible case:

Theorem 4.3 LetM be a semifinite irreducible open quantum walk. We are in one (and only
one) of the following situations:

1. for any i in V and ρ in S(hi ), one has Ei,ρ(ti ) < ∞,
2. for any i in V and ρ in S(hi ), one has Ei,ρ(ti ) = ∞.

Our proof uses the following intermediate universality result, similar to Proposition 3.9
and which can be useful in a wider setting:

Proposition 4.4 Let M be an irreducible open quantum walk and let j be in V . We are in
one (and only one) of the following situations:
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1. for every i in V , there exists a domain dtj,i , dense in hi , such that the quantity Ei,ρ(t j ) is

finite for any ρ in S(hi ) that has finite range contained in dtj,i ;
2. for every i in V and ρ in S(hi ), the quantity Ei,ρ(t j ) is infinite.

Our second result relates the invariant state with the expectation of return times. To state
it, for j ∈ V , we define by induction for k ∈ N the k-th return time

t (k)j = inf
{
n > t (k−1)j | xn = j

}
.

Theorem 4.5 Let M be a semifinite irreducible open quantum walk with an invariant state
τ inv = ∑

i∈V τ inv(i)⊗ |i〉〈i |. Then we are in situation 1 of Theorem 4.3, and for any i, j in

V and ρ in S(hi ), the sequence (t (k)j /k)k converges, with respect to Pi,ρ , both almost-surely

and in the L1 sense, to
E

j, τ inv( j)
Tr τ inv( j)

(t j ) =
(
Tr τ inv( j)

)−1
. (22)

The proof is based on the Kümmerer-Maassen ergodic Theorem and Birkhoff’s ergodic
Theorem. Note that Theorem 1.6 in [11] shows a result of the same type, but with less
explicit assumptions.

5 Examples

Example 5.1 Consider the open quantum walk defined by V = {0, 1, 2}, with hi = C
2 for

i = 0, 1, 2 and

L1,0 =
(
1 0
0 0

)

L2,0 =
(
0 0
0 1

)

L0,1 =
(
1 0
0 1

)

L2,2 =
(
1 0
0 1

)

,

all other transitions being zero. This OQW is obviously not irreducible. Denote by e1, e2 the

canonical basis ofC2. For ρ =
(
1− r s
s r

)

(with r ∈ [0, 1] and |s|2 ≤ r(1−r), so that r = 1

if and only if ρ = |e2〉〈e2|) one has P0,ρ(t0 < ∞) = 1− r , and E0,ρ(n0) = 0 if r = 1, and
∞ otherwise. One therefore has

P0,ρ(t0 < ∞) = 1, E0,ρ(n0) = ∞, E0,ρ(t0) = 2 for ρ = |e1〉〈e1|;
P0,ρ(t0 < ∞) = 0, E0,ρ(n0) = 0, E0,ρ(t0) = ∞ for ρ = |e2〉〈e2|;
P0,ρ(t0 < ∞) ∈]0, 1[, E0,ρ(n0) = ∞, E0,ρ(t0) = ∞ otherwise.

In this case, it is easy to compute the operator P0,0:

P0,0(ρ) =
(
1 0
0 0

)

ρ

(
1 0
0 0

)

.

Therefore, P∗ k
0,0(Idh0) =

(
1 0
0 0

)

for any k ≥ 1, so that loosely speaking, one has

∑
k≥0 P∗ k

0,0(Idh0) =
(∞ 0
0 0

)

, consistently with Proposition 3.3.

Example 5.2 Consider the open quantum walk defined by V = {0, 1, 2, . . .} with h0 = C
2

and hi = C for i > 0, and transition operators

L0,0 =
(
0 1
0 0

)

L1,0 =
(
1 0

)
L0,1 =

√
p/2

(
1
1

)
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and Li,i+1 = √
p, Li+1,i = √

q for i ≥ 1, with p + q = 1 (all other transitions being
zero). This OQW is semifinite and irreducible, independently of the value of p. However,
it is a simple exercise (using classical results about the gambler’s ruin, see [22]) to see that,
depending on the value of p, one has different behaviors for P0,ρ(t0 < ∞) and E0,ρ(n0):

• for p ≥ 1/2 one has

P0,ρ(t0 < ∞) = 1 ∀ρ ∈ S(h0),

E0,ρ(n0) = ∞ ∀ρ ∈ S(h0),

E0,ρ(t0) = 2p − r

2p − 1
for ρ =

(
1− r s
s r

)

.

• for p < 1/2 one has

P0,ρ(t0 < ∞) = 1 and E0,ρ(t0) = 1 ifρ = |e2〉〈e2|,
P0,ρ(t0 < ∞) < 1 and E0,ρ(t0) = ∞ ifρ �= |e2〉〈e2|,

E0,ρ(n0) < ∞ ∀ρ ∈ S(h0).

Here again it is easy to compute the operator P0,0: for any ρ in I1(h0) we have

P0,0(ρ) =
(
0 1
0 0

)

ρ

(
0 0
1 0

)

+ 1

2
inf(p/q, 1)

(
1 0
1 0

)

ρ

(
1 1
0 0

)

.

In particular, for p ≥ 1/2, one has P∗k
0,0(Idh0) = Idh0 , and for p < 1/2 one has

P∗k
0,0(Idh0) =

(
uk+1 0
0 uk

)

with uk → 0 exponentially fast, so that P∗k
0,0(Idh0) is summable.

This is consistent with Corollary 3.5. In addition, for p ≥ 1/2 one has

T0,0(ρ) =
(
0 1
0 0

)

ρ

(
0 0
1 0

)

+ p

2p − 1

(
1 0
1 0

)

ρ

(
1 1
0 0

)

.

Example 5.3 In the case of an irreducible open quantum walk which admits a faithful invari-
ant state (for example a finite irreducible open quantum walk), the Kümmerer–Maassen
ergodic Theorem (proved originally in [27], see [31] for an infinite-dimensional extension
and [10] for an application to the case of open quantum walks) immediately implies that,
for any initial position i in V and any state ρ in S(hi ), any point j is almost-surely visited
infinitely often:

Pi,ρ(n j = ∞) = 1.

A fortiori, one has Pi,ρ(t j < ∞) = 1 and Ei,ρ(n j ) = ∞, and therefore the OQW is always
recurrent. This is the same as in the classical case, where an irreducible Markov chain on a
finite set is always recurrent.

Example 5.4 Consider the open quantum walk with V = {0, 1, 2, 3}, h0 = C and hi = C
2

for i = 1, 2, 3, and

L0,0 = 1 L0,1 =
(
1/2 0

)

L2,1 =
(√

3/2 0
0 1

)

L1,2 =
(
0 0
0 1

)

L3,2 =
(
1 0
0 0

)

L2,3 =
(
0 1
1 0

)

,
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all other transitions Li, j being zero. One checks by examination that, starting from i = 1 and

ρ =
(
1− r s
s r

)

: with probability (1−r)/4 the first step goes to 0 and then thewalk stays there

and, with probability (3+r)/4 the first step goes to 2 and then, after a finite number of steps,
goes back and forth between 1 and 2. Therefore, for any ρ, one hasP1,ρ(t0 < ∞) = (1−r)/4
but E1,ρ(n0) = ∞. Again it is easy to compute P1,1:

P1,1(ρ) =
(
0 0
0 1

)

ρ

(
0 0
0 1

)

+
(

0 0√
3/2 0

)

ρ

(
0
√
3/2

0 0

)

.

One thenhasP∗ k
1,1(Idh0) =

(
(3/4)k 0

0 1

)

, so that loosely speaking,
∑

k P
∗ k
1,1(Idh0) =

(
4 0
0 ∞

)

,

consistently with Corollary 3.5.

Example 5.5 We consider now the case of (space) homogeneous nearest-neighbor random
walks on V = Z with hi ≡ h = C

2 for all i ∈ Z. This OQW is entirely determined by
two operators L+ and L− on C

2 satisfying L∗+L+ + L∗−L− = Idh. We call such an open
quantum walk a (Z,C2)-simple OQW. It is proven in [11] that:

1. if L∗+L+ = L∗−L− = {1/2} then Pi,ρ(ti < ∞) = 1 for any i and ρ,
2. ifPi,ρ(ti < ∞) = 1 for any i and ρ with L+, L− normal, then L∗+L+ = L∗−L− = {1/2}.
With the tools developed in this section, we can recover the first point and make the second
more precise. First, if L∗+L+ = L∗−L− = {1/2} then

P∗
i,i (Idh) =

∑

π∈PV \{i}(i,i)

(
1

2

)
(π)

Idh

which, by the results on (classical) simple random walks, is just Idh, and by Corollary 3.5,
Pi,ρ(ti < ∞) = 1 for any ρ. Second, assume that L+ and L− are normal, and consider a
diagonal basis for L∗+L+ (and therefore for L∗−L−). In this basis, one has

L∗+L+ =
(
p1 0
0 p2

)

L∗−L− =
(
q1 0
0 q2

)

(23)

with pk + qk = 1, k = 1, 2. It is then easy to show that if a path π is made of n+(π) “up”
steps, and n−(π) “down” steps, then

L∗π Lπ = (L∗+L+)n+(π)(L∗−L−)n−(π) =
(
pn+(π)

1 qn−(π)

1 0

0 pn+(π)

2 qn−(π)

2

)

,

and using again standard results on simple random walks we have

P∗
0,0(Idh) =

(
inf(2p1, 2q1) 0

0 inf(2p2, 2q2)

)

.

Therefore, if L+ and L− are normal, then:

• if p1 = p2 = 1/2, then Pi,ρ(ti < ∞) = 1 for any i and ρ, and therefore Ei,ρ(ni ) = ∞;
• if p1 and p2 are both �= 1/2, then Pi,ρ(ti < ∞) < 1 for any i and ρ, and therefore

Ei,ρ(ni ) < ∞;
• if e.g. p1 = 1/2 and p2 �= 1/2 then Pi,ρ(ti < ∞) = 1 for ρ = |e1〉〈e1| and < 1

otherwise. If furthermore theOQWis irreducible (see [9, Proposition 6.12] for a necessary
and sufficient condition), then by Theorem 3.1 one has Ei,ρ(ni ) = ∞ for any i and ρ.
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A natural question is what happens when we drop the assumption of normality for L+ and
L−. We can still assume the form (23); if sup(p1, p2) < 1/2 or inf(p1, p2) > 1/2 and L+,
L− do not have an eigenvector in common, then [9, Theorem 5.4] implies that the process
satisfies a law of large numbers xn/n → m �= 0 almost-surely, and satisfies a large deviations
principle with respect to any Pi,ρ . This is enough to show that Ei,ρ(ni ) < ∞ for any i and ρ.
On the other hand, if e.g. p1 > 1/2 and p2 < 1/2 then we can still have Pi,ρ(ti < ∞) = 1
for any i and ρ: consider (as suggested by [11]) the case

L+ = 1√
2

(
1 1
0 0

)

L− = 1√
2

(
0 0
1 −1

)

where L∗+L+ = L∗−L− = {0, 1}. By [9, Proposition 6.12], this open quantum walk is
irreducible. In addition, for any π = (i0, . . . , i
), denoting ε = i1 − i0, one shows that
2
(π)/2 Lπ equals

±
(
1 ε

0 0

)

if i
 − i
−1 = +1, ±
(
0 0
1 ε

)

if i
 − i
−1 = −1.

We can therefore compute, again using results for simple random walks,

P0,0(ρ) = 1

2

(
1 −1
0 0

)

ρ

(
1 0
−1 0

)

+ 1

2

(
0 0
1 1

)

ρ

(
0 1
0 1

)

.

We therefore have P∗
0,0(Idh0) = Idh0 , so that Pi,ρ(t j < ∞) = 1 and Ei,ρ(n j ) = ∞ for any

i, j and ρ. In addition, Ei,ρ(ti ) = ∞ for any i and ρ.

6 Exit Times and Dirichlet Problems on Finite Domains

In this section, we consider a finite subset D of V and studywhether, conditionally on starting
with x0 in D, the position process (xn)n reaches the boundary ∂D of D (which we define
below) in finite time. We then study the related problem of solving Dirichlet problems of
the type

(
(Id −M∗)(Z)

)
i = Ai for every i in D, with a boundary condition Z j = Bj for

j ∈ ∂D. Before we start, however, let us discuss shortly the Dirichlet problem on V . We
consider an irreducible open quantum walk M, fix A = ∑

i∈V Ai ⊗ |i〉〈i | with Ai in B(hi )

for all i , and look for a solution Z of the equation (Id−M∗)(Z) = A.As in the classical case
(see e.g. [30]), the form of the solution differs, depending on the recurrence or transience of
the OQW. We give here only a simple result in the transient case. We define the Dirichlet
problem on V with data A as the following equation with unknown Z :

(Id −M∗)(Z) = A. (24)

The operators N j,i as defined in (18) play a central role in this section.

Proposition 6.1 Let M be an open quantum walk such that Ei,ρ(n j ) < ∞ for any i , j
in V and ρ in S(hi ). If we assume that A = ∑

i∈V Ai ⊗ |i〉〈i | is such that for any i in V ,∑
j∈V ‖N∗

j,i

(
A j

)‖ < ∞, then the operator

Z = A +
∑

i∈V

( ∑

j∈V
N∗

j,i (A j )
)⊗ |i〉〈i | (25)

satisfies (24). If in additionM is irreducible, then any two solutions of (24) differ only by an
operator λIdH.
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The form of Z can be guessed by analogy with the classical case, so that this result is
obtained by direct computation.

We will give analogous results for the Dirichlet problem on a bounded domain. We start
by defining precisely the boundary ∂D of D relative to an open quantum walkM:

∂D = {i ∈ V \ D | ∃ j ∈ D with Li, j �= 0}.
We say that Z = ∑

i∈V Zi ⊗ |i〉〈i | is a solution to the Dirichlet problem on D with data A
and boundary condition B if

{ (
(Id −M∗)(Z)

)
i = Ai for i ∈ D

Z j = Bj for j ∈ ∂D.
(26)

A key step in order to solve explicitly this equation will be to prove that the exit time for D,
defined as

t∂D = inf{n ∈ N | xn ∈ ∂D},
is Pi,ρ-almost-surely finite for any i in D and ρ in S(hi ). Our main results are summarized
in the following statement:

Theorem 6.2 Let M be a semifinite irreducible open quantum walk and let D be a finite
subset of V such that ∂D �= ∅. Then for any i in D and any state ρ on hi ,

Pi,ρ(t∂D < +∞) = 1.

In addition, for any A = ∑
i∈D Ai ⊗ |i〉〈i | and B = ∑

j∈∂D Bj ⊗ | j〉〈 j |, the Dirichlet
problem (26) has a solution, and any two solutions of (26) differ by an operator with support
in HV \(D∪∂D).

The steps in order to prove this, and related results, are described in Subsects. 6.1 and 6.2.

6.1 Exit Times: The Irreducible Case

We now focus on the particular case where the OQW is irreducible. Our first technical result,
which plays an analogous role to Proposition 3.3, is the following:

Proposition 6.3 LetM be an open quantum walk and let D be a finite subset of V such that
∂D �= ∅. Then there exists a family (PD

j,i )i∈D, j∈D∪∂D, where PD
j,i is a completely positive

linear contraction from I1(hi ) to I1(h j ), such that each

PD
i =

∑

j∈∂D

PD
j,i

is again a completely positive linear contraction from I1(hi ) to I1(h∂D). Moreover, for any
i in D, j in D ∪ ∂D and any ρ in S(hi ), one has

Pi,ρ(t j ≤ t∂D < ∞) = Tr
(
PD

j,i (ρ)
)
, Pi,ρ(t∂D < ∞) = Tr

(
PD

i (ρ)
)
.

Remark 6.4 Again, a byproduct of our proof will be the expression

PD
j,i (ρ) =

∑

π∈PD\{ j}(i, j)
LπρL∗π . (27)
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We also obtain the relations

Ei,ρ(ρt j | t j ≤ t∂D < ∞) = PD
j,i (ρ)

Tr
(
PD

j,i (ρ)
) (28)

Ei,ρ(ρt∂D < ∞) = PD
i (ρ)

Tr
(
PD

i (ρ)
) . (29)

The first part of Theorem 6.2 is shown in the following proposition. Apart from having
its own interest, it will be a key step in solving the Dirichlet problem:

Proposition 6.5 LetM be an irreducible open quantum walk and let D be a finite subset of
V such that ∂D �= ∅. Then, for any i in D such that dim hi < ∞ and any state ρ on hi , one
has

Pi,ρ(t∂D < +∞) = 1.

The main consequence of Proposition 6.5 is the following:

Lemma 6.6 Under the assumptions of Proposition 6.5, for any j in D such that dim h j < ∞,
themapPD

j, j has norm‖PD
j, j‖ < 1. For any i in D one candefineND

j,i = (Id−PD
j, j )

−1◦PD
j,i .

Then, defining

nD
j = card{n ≤ t∂D | xn = j},

one has for any ρ in S(hi ) the identity

Ei,ρ(nD
j ) = Tr

(
ND

j,i (ρ)
)
. (30)

Remark 6.7 Under the assumptions of Lemma 6.6, the operatorND satisfies

ND
j,i (ρ) =

∑

π∈PD(i, j)

LπρL∗π , (31)

which shows in particular the obvious relation ND
j,i = PD

j,i for i ∈ D, j ∈ ∂D.

6.2 Dirichlet Problems on D: The Irreducible Case

We now turn to the Dirichlet problem on a finite domain D. Recall that Z = ∑
i∈V Zi⊗|i〉〈i |

is said to be a solution to the Dirichlet problem on D with data A and boundary condition B
if it is a solution of Equation (26), which we recall:

{ (
(Id −M∗)(Z)

)
i = Ai for i ∈ D

Z j = Bj for j ∈ ∂D.

The solution to these equations has a very simple form, now that we have introduced the
operators ND

j,i and P
D
j,i .

Proposition 6.8 LetM be an irreducible, semifinite open quantum walk and let D be a finite
subset of V such that ∂D �= ∅. For any

A =
∑

i∈D
Ai ⊗ |i〉〈i | and B =

∑

j∈∂D

Bj ⊗ | j〉〈 j |,
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the operator

Z = A + B +
∑

i∈D

( ∑

j∈D
ND ∗

j,i (A j )+
∑

j∈∂D

PD ∗
j,i (Bj )

)
⊗ |i〉〈i |

is well-defined, and is a solution to the Dirichlet problem (26). Any two solutions of (26)
differ by an operator with support in HV \(D∪∂D).

6.3 Harmonic Measures: The Irreducible Case

Given a finite subdomain D of V , the harmonic measure quantifies the probability for an
OQW starting in D to escape from D by a given point of its boundary ∂D. It is intimately
related to the Dirichlet problem.

Definition 6.9 Let D be a finite subset of V such that ∂D �= ∅. LetM be an irreducible and
semifinite open quantum walk, conditioned to start at i in D with initial state ρ in S(hi ).
Let j be in ∂D. Recall the definition of the stopping time t∂D = inf{n ∈ N | xn ∈ ∂D}. The
harmonic measure at j relative to i and ρ is defined as

μD
i,ρ( j) = Pi,ρ

(
xt∂D = j

)
.

Recall that for an irreducible and semifinite OQW, the escape time t∂D is finite with
probability 1. The previous propositions directly imply the following:

Proposition 6.10 The harmonic measure is linear in ρ. More precisely, for i ∈ D, j ∈ ∂D,
ρ ∈ S(hi ),

μD
i,ρ( j) = Tr

(
PD

j,i (ρ)
)
, (32)

with PD
j,i (ρ) = ∑

π∈PD(i, j) LπρL∗π (consistently with (27)). Moreover,

Ei,ρ
(
ρt∂D |xt∂D = j

) = PD
j,i (ρ)

Tr
(
PD

j,i (ρ)
) .

Of course by Proposition 6.5,
∑

j∈∂D μD
i,ρ( j) = 1, as we assume the OQW to be irre-

ducible.

Remark 6.11 The connection with the Dirichlet problem is twofold, as usual. First, by lin-
earity in ρ let us write the harmonic measure as :

μD
i,ρ( j) = Tr(ID

j,i ρ),

with ID
j,i = PD

j,i
∗
(Idh j ) =

∑
π∈PD(i, j) L

∗
π Lπ . Let I Dj ∈ B(H) be defined by

I Dj =
∑

i∈D
ID
j,i ⊗ |i〉〈i | + Idh j ⊗ | j〉〈 j |. (33)

Then I Dj is quantum harmonic in D (i.e
(
(Id −M∗)(I Dj )

)
k = 0 for k ∈ D) with boundary

condition Idh j ⊗ | j〉〈 j | on ∂D. Furthermore, one has
∑

j∈∂D I Dj = IdD∪∂D , so that I Dj may
be viewed as a non-commutative quantum analogue of a harmonic measure.

This link with the Dirichlet problem potentially gives an alternative way to evaluate the
harmonic measure. Indeed, assuming the harmonic measure to be linear in ρ (as expected
fromquantummechanics), it is then fully determined by solving aDirichlet problem. Suppose
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(as we actually proved) that μD
i,ρ( j) is linear in ρ, and let us write μD

i,ρ( j) = Tr(ID
j,i ρ)

(without knowing the explicit expression of ID
j,i ). Then conditioning on the first step of the

OQW proves that I Dj = ∑
i∈D ID

j,i ⊗ |i〉〈i | + Idh j ⊗ | j〉〈 j | is quantum harmonic in D with

the appropriate boundary conditions. Furthermore, if I Dj is quantum harmonic in D with

boundary condition Idh j ⊗ | j〉〈 j | then, by Lemma 2.5, (mD
j )n = Tr((I Dj )xnρn) stopped at

n = t∂D is a Pi,ρ-martingale. The optional sampling Theorem then yields

Tr(ID
j,iρ) = Ei,ρ

(
(mD

j )t∂D
) = Pi,ρ

(
x∂D = j

)
.

7 Results for Reducible Open Quantum Walks

In this section, we collect some properties regarding passage times, number of visits and
exit times for reducible open quantum walks. We begin by recalling some results regarding
decompositions of reducible open quantum walks from [10].

We fix an open quantum walk M. By [10, Proposition 7.11], there exists an orthogonal
decomposition of H

H = D ⊕
⊕

κ∈K
Hκ (34)

where we have ⊕

κ∈K
Hκ = sup{supp ρ | ρ aM-invariant state}. (35)

We denote the space (35) byR; we also let D = R⊥. The restrictionMκ ofM to I1(Hκ ) is
an irreducible OQW, and D = {0} if and only ifM has a faithful invariant state. In addition,
each Hκ is an enclosure, i.e. has a decomposition

Hκ =
⊕

i∈V
hκ
i

where every hκ
i is a subspace of hi , and for any i , j in V one has Li, j h

κ
j ⊂ hκ

i . The
decomposition (34) is non-unique, as is discussed in [10, Sects. 6 and 7]; we fix, however,
one such decomposition, and denote byMκ the open quantumwalk induced byM onI1(Hκ ).
We define for every κ in K the set V κ = {

i ∈ V | hκ
i �= {0}}.

For any i in V , hi has a decomposition hD ⊕ ⊕
κ∈K hκ

i . Then, any state ρi on hi can

be written in block matrix form ρ = (ρ
κ,κ ′
i )κ,κ ′∈K∪{0}, where the index 0 corresponds to D.

We denote by ρκ
i the diagonal blocks: ρκ

i = ρ
κ,κ
i . The main tool in this section is a simple

observation: for any path π ∈ P
(i, j) starting at i , the probability of observing, as 
 first
steps, the trajectory π = (i0, . . . , i
) with initial conditions (i, ρ) satisfies

Pi,ρ(i0, . . . , i
) ≥
∑

κ∈K
Tr

(
(LπρL∗π )κ

) ≥
∑

κ∈K
Tr(Lπρκ L∗π ). (36)

In addition, if ρ has support inR, then inequalities in (36) become an equality. If we denote
by e.g.Pκ

j,i the operatorP j,i associated with the OQWM∗, etc. then we have the following
result:
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Proposition 7.1 Assume that the open quantum walkM admits a decomposition (34). Then,
for any ρ in S(H),

Pi,ρ(t j < ∞) ≥
∑

κ∈K
Tr ρκ × Tr

(
Pκ

j,i

( ρκ

Tr ρκ

))
1i, j∈V κ ,

Ei,ρ(n j ) ≥
∑

κ∈K
Tr ρκ × Tr

(
Nκ

j,i

( ρκ

Tr ρκ

))
1i, j∈V κ ,

Ei,ρ(t j ) ≥
∑

κ∈K
Tr ρκ × Tr

(
Tκ

j,i

( ρκ

Tr ρκ

))
1i, j∈V κ ,

Pi,ρ(t∂D) ≥
∑

κ∈K
Tr ρκ × Tr

(
PDκ

j,i

( ρκ

Tr ρκ

))
1i∈V κ , ∂D∩V κ �=∅.

(where as before we assume that D is a finite domain such that ∂D �= ∅), and each of these
inequalities becomes an equality if we assume that ρ has support in R.

If the support of ρ is contained inR (in particular ifD = {0}) then since∑
κ∈K Tr ρκ = 1,

it is easy to characterize e.g. the equality Pi,ρ(t j < ∞) = 1, or the finiteness of Ei,ρ(n j ), in
terms of the sub-open quantum walksMκ (to which our various results for irreducible open
quantum walks apply).

8 Variational Approach to the Dirichlet Problem

We assume throughout this section that τ inv = ∑
i∈V τ inv(i)⊗ |i〉〈i | is an invariant state for

the OQWM, which furthermore is faithful. In all of this section we write τ� instead of τ inv,
i.e. we let

τ� = τ inv.

Our goal in this section is to characterize the solutions of the Dirichlet problem given by
Equation (26) as minimizers of a certain functional, involving the Dirichlet form associated
to the OQW. The present Dirichlet forms are simple, discrete-time versions of the non-
commutative extensions of classical Dirichlet forms (such extensions were studied first by
Davies and Lindsay in [15], see also [12,13,16]).

We first focus on the definition of the Dirichlet form and its properties. Define on B(H)

the scalar product
〈X, Y 〉� = Tr

(
τ
1/2
� X∗τ 1/2� Y

)
. (37)

Definition 8.1 The Dirichlet form associated to the open quantum walk M is the quadratic
form

E(X, Y ) = 〈X,
(
I −M∗) (Y )〉� (38)

We also denote E(X) = E(X, X), for X ∈ B(H).

The central hypothesis in the following is the detailed balance condition.

Definition 8.2 We say that the open quantumwalkM satisfies the detailed balance condition
with respect to τ� ifM∗ is selfadjoint with respect to the scalar product 〈 · , · 〉�.
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Note that we reserve the notation M∗ for the adjoint of M with respect to the duality
between I1(H) and B(H). The detailed balance condition is satisfied, in particular, if

τ�(i)1/2L∗j,i = Li, j τ�( j)1/2 for all i, j ∈ V .

It has two immediate consequences:

Lemma 8.3 If the open quantum walk M satisfies the detailed balance condition, then
E(X) ≥ 0 for any X ∈ B(H). If in addition M is irreducible, then E(X) = 0 if and only if
X ∈ CIdH.

8.1 Dirichlet Problem on the Whole Domain

Quantum harmonic operators are easily characterized as minimizers of the Dirichlet form.
Indeed, the detailed balance condition implies that E(X) ≥ 0, with equality if and only if
(I −M∗)(X) = 0, that is, if X is harmonic.

Proposition 8.4 Suppose thatM satisfies the detailed balance condition. Then X is a quan-
tum harmonic observable if and only if E(X) is minimal, if and only if E(X) = 0.

8.2 Dirichlet Problem on a Sub-domain

We now focus on the Dirichlet problem on a finite domain D ⊂ V , that we suppose to be
non-empty. Recall the definition of the inner data A and the outer data B as

A =
∑

i∈D
Ai ⊗ |i〉〈i | B =

∑

j∈∂D

Bj ⊗ | j〉〈 j |,

where A j , Bj ∈ B(h j ) for all j .
Our theorem is the following. An analogue of this result can be found in [12] for more

general non-commutative Dirichlet forms.

Theorem 8.5 LetM be an irreducible open quantum walk with detailed balance condition
and D a finite domain of V such that ∂D �= ∅. Then any solution of the Dirichlet problem

{ (
(Id −M∗)(Z)

)
i = Ai for i ∈ D

Z j = Bj for j ∈ ∂D.

is of the form X0+B+Y , where Y has support inHV \(D∪∂D) and X0 is the unique minimizer
over the set B (HD) of the functional

E(X) = 1

2
E(X)+ E(X, B)− 〈A, X〉�. (39)

8.3 The Case of Doubly Stochastic Open Quantum Walks

In this last section we point out that the Dirichlet form can alternatively be written in terms of
first order discrete derivatives (to be defined below) in the special case of doubly stochastic
OQW, i.e. for open quantum walks that satisfy M∗ =M.

Proposition 8.6 Let M be a doubly stochastic open quantum walk satisfying M∗ = M.
Then E(X) equals
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1

2

∑

i, j∈V
Tr

(
(∇X)i, j (∇X)∗i, j

) =: 1
2
‖(∇X)‖2V (40)

where (∇X)i, j = Xi Li, j − Li, j X j for X = ∑
j∈V X j ⊗ | j〉〈 j | ∈ B(H).

Positivity of the Dirichlet form is then manifest in (40). Notice that the passage from the
definition of the Dirichlet form in (38) to the formula (40) amounts to an integration by part.
This presentation of the Dirichlet form in terms of first order difference operators can easily
be extended to finite sub-domains if one includes appropriate boundary terms arising from
the discrete integration by part.
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in Quantum Mechanics”, n◦ANR-14-CE25-0003. They also want to thank Stéphane Attal for discussions at
an early stage of this project, and Hugo Bringuier for his careful reading and corrections.

Appendix 1: Proofs for Section 2

Proof of Lemma 2.5: Conditionally on (xn, ρn), one has for all i in V

mn+1 = Tr(ρn+1Axn+1) = Tr
( Li,xnρn L

∗
i,xn

Tr(Li,xnρn L
∗
i,xn

)
Ai

)

with probability Tr(Li,xnρn L
∗
i,xn

), so that

E
(
Tr(ρn+1Axn+1)|xn, ρn

) =
∑

i∈V
Tr

(
Li,xnρn L

∗
i,xn Ai

)

= Tr
(
ρn

∑

i∈V
L∗i,xn Ai Li,xn

)

= Tr(ρn Axn ) = mn .

��

Appendix 2: Proofs for Section 3

We start by computing simple expressions for the quantities Pi,ρ(t j < ∞) and Ei,ρ(n j ):

Lemma 8.7 We have the identities

Pi,ρ(t j < ∞) =
∑

π∈PV \{ j}(i, j)
Tr(LπρL∗π ), Ei,ρ(n j ) =

∑

π∈P(i, j)

Tr(LπρL∗π ),

where the second expression is possibly∞.

Proof We have Pi,ρ(x1 = i1, . . . , x
 = i
) = Tr(LπρL∗π ) where π = (i, i1, . . . , i
). In
addition,

Pi,ρ(t j < ∞) =
∑

k≥0

∑

i1,...,ik∈V \{ j}
Pi,ρ(x1 = i1, . . . , xk = ik, xk+1 = j)
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which leads to the first formula. We also have immediately Pi,ρ(xk = j) = ∑
π∈Pk (i, j)

Tr(LπρL∗π ), and the second formula follows from

Ei,ρ(n j ) =
∞∑

k=1
Pi,ρ(xk = j).

��

Proof of Proposition 3.3 We begin with the definition ofPi, j . For any ρ in I1(hi ) \ {0}, the
triangle inequality for the trace norm implies that

Tr
(∣
∣

∑

π∈PV \{ j}(i, j)
LπρL∗π 1
(π)≤n

∣
∣
) ≤

∑

π∈PV \{ j}(i, j)
Tr

∣
∣LπρL∗π

∣
∣1
(π)≤n

=
∑

π∈PV \{ j}(i, j)
Tr (Lπ |ρ|L∗π )1
(π)≤n

= Tr|ρ| × Pi, |ρ|
Tr(|ρ|)

(t j ≤ n)

≤ Tr|ρ|,

so that

sup
n

Tr
(∣
∣

∑

π∈PV \{ j}(i, j)
LπρL∗π1
(π)≤n

∣
∣
)

< ∞.

Consequently, by the Banach–Steinhaus Theorem, the operator on I1(hi ) defined by

P j,i (ρ) = lim
n→∞

∑

π∈PV \{ j}(i, j)
LπρL∗π1
(π)≤n

is everywhere defined and bounded.
This proves the first identity in Proposition 3.3. To prove the second we need a series of

technical results. Our strategy is the same as in the classical case: we introduce a weight on
the length of paths, in order to tame the possible divergence of the series giving Ei,ρ(n j )

in Lemma 8.7. First note that, for any i, j ∈ V and any α ∈ (0, 1), there exists a bounded,
completely positive map N(α)

j,i from I1(hi ) to I1(h j ) such that

∑

π∈P(i, j)

α
(π)Tr LπρL∗π = Tr
(
N

(α)
j,i (ρ)

)
.

In particular, the following limit holds in [0,∞]:

Ei,ρ(n j ) = lim
α→1

Tr
(
N

(α)
j,i (ρ)

)
.

This operator N(α)
j,i is defined by

N
(α)
j,i (ρ) = lim

n→∞
∑

π∈P(i, j)

α
(π)LπρL∗π1
(π)≤n,
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using the Banach–Steinhaus Theorem and the simple bound

Tr
(∣
∣

∑

π∈P(i, j)

α
(π) LπρL∗π1
(π)≤n
∣
∣
) ≤

∑

π∈P(i, j)

α
(π) Tr Lπ |ρ|L∗π 1
(π)≤n

=
n∑

k=0
αk

Pi,ρ(xk = j)

≤ (1− α)−1.

We also define

P
(α)
j,i (ρ) = lim

n→∞
∑

π∈PV \{ j}(i, j)
α
(π) LπρL∗π 1
(π)≤n .

Since anyπ ∈ P(i, j) is a concatenation ofπ0 ∈ PV \{ j}(i, j) andπ1, . . . , πk inPV \{ j}( j, j),
and

Lπ = Lπk ◦ . . . ◦ Lπ1 ◦ Lπ0 , 
(π) = 
(πk)+ · · · + 
(π1)+ 
(π0),

we have
∑

π∈P(i, j)

α
(π)LπρL∗π1
(π)≤n

=
∑

k≥0

∑

π0∈PV \{ j}(i, j),
π1,...,πk∈PV \{ j}( j, j)

α
∑k

r=0 
(πr ) Lπk . . . Lπ1Lπ0ρL
∗
π0
L∗π1

. . . L∗πk
1∑k

r=0 
(πr )≤n .

Because both sides define bounded operators as n →∞, we have

N
(α)
j,i (ρ) =

∑

k≥0
P

(α) k
j, j ◦P j,i (ρ) =

(
Id −P

(α)
j, j

)−1 ◦P(α)
j,i (ρ).

Since α �→ P
(α)
j, j (ρ) is monotone increasing for ρ ≥ 0, the right-hand side is monotone

increasing as well, and the second identity follows. ��
Proof of Equation (16) By definition, we have

Ei,ρ(ρt j | t j < ∞) = Ei,ρ(ρt j1t j<∞)

Pi,ρ(t j < ∞)

= 1

Pi,ρ(t j < ∞)

∑

π∈PV \{ j}(i, j)

LπρL∗π
Tr LπρL∗π

Tr LπρL∗π

= P j,i (ρ)

Tr
(
P j,i (ρ)

) .

Proof of Corollary 3.5

1. Let i, j ∈ V andρ ∈ S(hi ). ByProposition 3.3,wehavePi,ρ(t j < ∞) = Tr ρ P∗
j,i (Idh j )

and, since Tr ρ = 1, we have Pi,ρ(t j < ∞) = 1 if and only if PρP
∗
j,i (Idh j )Pρ =

Pρ , where Pρ is the orthogonal projection on the support of ρ. Write P∗
j,i (Idh j ) as

P∗
j,i (Idh j ) =

(
IdRan ρ A
A∗ B

)

in the decomposition hi = Ran ρ ⊕ (Ran ρ)⊥. Then the
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property P∗
j,i (Idh j ) ≤ Idhi implies that

(
0 −A
−A∗ IdKer ρ − B

)

≥ 0, so that necessarily

A = 0. In particular, if ρ is faithful, then Pi,ρ(t j < ∞) = 1 if and only if P∗
j,i (Idh j ) =

Idhi . In that case, Pi,ρ′(t j < ∞) = 1 for any ρ′ in S(hi ).
2. Consequently, if this is the case for j = i , then for any ρ′ in S(hi ) one hasEi,ρ′(ni ) = ∞,

since by Proposition 3.3 we have

Ei,ρ′(ni ) =
∑

k≥1
Tr

(
ρ′P∗ k

i,i (Idhi )
)
.

3. If Ei,ρ(n j ) < ∞ with ρ faithful and dim hi < ∞, then for any α ∈ (0, 1),

Tr
(
N j,i (ρ)

) ≥ Tr
(
ρ N

(α) ∗
j,i (Idh j )

) ≥ inf (ρ)× ‖N(α) ∗
j,i (Idhi )‖,

so that N(α) ∗
j,i (Idh j ) is uniformly (in α) bounded in norm. The monotone increasing

function α �→ N
(α) ∗
j,i (Idh j ) therefore has a limit and, by Proposition 3.3, Ei,ρ′(n j ) < ∞

for any ρ′.
4. The construction of N j,i when Ei,ρ(n j ) < ∞ for any ρ is obtained by a Banach–

Steinhaus argument.

��

Proof of Proposition 3.7 Recall that Pi,ρ(ti < ∞) = ‖Pi,i (ρ)‖. By Proposition 3.3, the
mapPi,i is bounded, and since S(hi ) is compact, the supremum p = supρ∈S(hi ) Tr

(
Pi,i (ρ)

)

satisfies p < 1. A standard application of the strong Markov property for the chain (xn, ρn)n
shows that Pi,ρ(ni = k) ≤ pk and by a direct computation Ei,ρ(ni ) ≤ p(1 − p)−2, which
gives the result. ��

Proof of Proposition 3.9 and Corollary 3.10 We start with two simple lemmata: ��

Lemma 8.8 Assume that M is an irreducible open quantum walk and let i, j in V be such
that dim hi < ∞. Then

inf
ρ∈S(hi )

Pi,ρ(t j < ∞) > 0.

Proof of Lemma 8.8 For any ρ in S(hi ), there exists a unit vector ϕ in hi and λ > 0 such
that ρ ≥ λ|ϕ〉〈ϕ|. By irreducibility, there exists a path π inP(i, j) such that ‖Lπϕ‖2 > 0, so
that Pi,ρ(t j < ∞) > 0. By continuity ofP j,i and compactness of S(h j ), one has the result.

��

Lemma 8.9 Assume that M is an irreducible open quantum walk and let i, j be in V . If
dim h j < ∞ and ρ ∈ S(hi ) is such that Ei,ρ(n j ) = ∞, then for any j ′ ∈ V one has
Ei,ρ(n j ′) = ∞.

Proof of Lemma 8.9 By Lemma 8.8, one has infρ′∈S(h j ) P j,ρ′(t j ′ < ∞) > 0 for any j ′ ∈ V .
Now, a standard markovianity argument shows that Ei,ρ(n j ) = ∞ implies Ei,ρ(n j ′) = ∞.

��

Remark 8.10 Here we used only a weaker version of irreducibility, namely the fact that for
any k, l in V , any ϕ in hk , there exists a path π in P(k, l) such that Lπϕ �= 0.
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Let us go back to the proof of Proposition 3.9 and Corollary 3.10. Define for j in V

Dn( j) = {
ϕ =

∑

i∈V
ϕi ⊗ |i〉 s.t.

∑

i∈V

∑

π∈P(i, j)

‖Lπϕi‖2 < ∞}
. (41)

It is immediate that Dn( j) is a vector space, and that (Lk,l ⊗ |k〉〈l|)Dn( j) ⊂ Dn( j) for any
k, l in V . In the language of [10], this means that Dn( j) is an enclosure forM. Moreover, the
only possible enclosures for an irreducibleM are {0} andH. Therefore, either Dn( j) = {0}
or Dn( j) = H. Define for i in V dnj,i = Dn( j) ∩ hi (with a slight abuse of notation). Then
either for every i the subspace dnj,i is dense in hi or for every i it is {0}. Remark that by

Lemma 8.7,
∑

π∈P(i, j) ‖Lπϕi‖2 = Ei,|ϕi 〉〈ϕi |(n j ). By linearity of Ei,ρ(n j ) in ρ, if dnj,i = {0}
then Ei,ρ(n j ) = ∞ for any ρ in S(hi ), and if dnj,i is dense then Ei,ρ(n j ) < ∞ for any ρ with
finite range in dnj,i . This concludes the proof of Proposition 3.9.

Now, if dim hi < ∞, then in situation 2. of Proposition 3.9 one has Ei,ρ(n j ) = ∞ for
any i in V and ρ in S(hi ). Now, Lemma 8.9 forbids the situation where for j �= j ′ one has
Ei,ρ(n j ) = ∞ and Ei,ρ(n j ′) < ∞ for every ρ in S(hi ), and this proves Corollary 3.10.

Remark 8.11 This proof is essentially due to [20].

Proof of Proposition 3.12 By Definition 2.1 of irreducibility, there is no nontrivial invariant
subspace of h j left invariant by all Lπ ,π ∈ P( j, j). Since anyπ ∈ P( j, j) is a concatenation
of paths inPV \{ j}( j, j), there is also no nontrivial invariant subspace of h j left invariant by all
Lπ , π ∈ PV \{ j}( j, j), and this means that P j, j is a completely positive irreducible map on
I1(h j ). In addition, we know from the Russo–Dye Theorem that ‖P j, j‖ = ‖P∗

j, j (Id)‖ ≤ 1,
so that the eigenvalue λ ofP j, j of largest modulus satisfies |λ| ≤ 1. By the Perron–Frobenius
Theorem for completely positive maps acting on the set of trace-class operators of a finite-
dimensional space (see Theorem 3.1 and Remark 3.1 in [35], which are essentially proven
in [19]), there exists a faithful state ρf on h j such that P j, j (ρf ) = |λ|ρf . If |λ| < 1, then
by Proposition 3.3 one has E j,ρf (n j ) < ∞. However, by Proposition 3.9, the assumption
Ei,ρ(n j ) = ∞ implies E j,ρf (n j ) = ∞, a contradiction. Therefore |λ| = 1, ρf is a faithful
invariant state and TrP j, j (ρf ) = Tr ρf = 1. By Corollary 3.5, we have that P j,ρ(t j < ∞) =
1 for any ρ in S(hi ). ��

Appendix 3: Proofs for Section 4

Proof of Proposition 4.1 The expansion of Ei,ρ(t j ) and the construction of T j,i are obtained
by now standard Banach–Steinhaus arguments. ��
Proof of Proposition 4.4 Proposition 4.4 is proved like Proposition 3.9, by introducing

Dt ( j) = {
ϕ =

∑

i∈V
ϕi ⊗ |i〉 s.t.

∑

i∈V

∑

π∈PV \{ j}(i, j)

(π) ‖Lπϕi‖2 < ∞}

(42)

and remarking that Dt ( j) is an enclosure. ��
Proof of Theorem 4.3 Define dtj,i = Dt ( j)∩hi . Remark that in the case of a semifiniteOQW,
by Proposition 4.4, for every j in V either dtj,i = {0} for every i ; or dtj,i = hi for every i . If
for some j one has dtj,i = hi for every i , then we have in particular E j,ρ(t j ) < ∞ for any ρ

in S(h j ); for any j ′, applying Lemma 8.8 again one has infρ∈S(h j ) P j,ρ(t j ′ < ∞) > 0. By
a markovianity argument, one obtains that E j,ρ′(t j ′) < ∞ for any j ′ in V and ρ′ ∈ S(h j ). ��
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Proof of Theorem 4.5 Let τ inv = ∑
i∈V τ inv(i)⊗ |i〉〈i | be an invariant state forM. Then by

the infinite-dimensional extension of the Kümmerer–Maassen ergodic Theorem (see [31]),
one has, for any i ∈ V and ρ ∈ S(hi ), the Pi,ρ-almost-sure convergence

1

n

n∑

k=1
ρk ⊗ |xk〉〈xk | −→

n→∞
∑

j∈V
τ inv( j)⊗ | j〉〈 j |, (43)

where convergence is in the weak-* sense. This implies in particular that

n(k)
j = card{n ≤ k | xn = j}

satisfies, for any j ∈ V , n(k)
j /k →

k→∞ Tr τ inv( j), Pi,ρ-almost-surely. Therefore, t (k)j < ∞ but

t (k)j →
k→∞ ∞. Considering m = t (k)j , we have n(m)

j /m = k/t (k)j and therefore, Pi,ρ-almost-

surely, t (k)j /k → (
Tr τ inv( j)

)−1 .
Observe now that, as shown in Example 5.3, our assumptions imply in particular that

P j,ρ(t j < ∞) = 1 for any ρ in S(h j ), so thatP j, j is a completely positive, trace-preserving
map, with Kraus decomposition

P j, j (ρ) =
∑

π∈PV \{ j}
LπρL∗π .

In addition, we have P j,ρ-almost-surely from (43)

1

n

∑

k

ρ
t (k)j

1
t (k)j ≤n −→

n→∞ τ inv( j)

(the convergence needs not be specified, as h j is finite-dimensional), but the Kümmerer–

Maassen ergodic Theorem applied to P j, j shows that 1
n(m)
j

∑n(m)
j

k=1 ρ
t (k)j

converges almost-

surely to an invariant of P j, j . Therefore,
τ inv( j)

Tr τ inv( j)
is an invariant state for P j, j and P j,ρ-

almost-surely,

1

n(m)
j

n(m)
j∑

k=1
ρ
t (k)i

−→
m→∞

τ inv( j)

Tr τ inv( j)
(44)

In addition, since τ inv( j) is faithful on h j , one has by necessity that P j, j is irreducible:
if there existed an invariant subspace for all Lπ , π ∈ PV \{ j}, then there would exist an
invariant state ρ′j for P j, j with support on this invariant subspace, and considering initial

data ( j, ρ′j ) in (44) above would show that τ inv( j) has support no larger than the support of
ρ′j , a contradiction.

We now define a new probability space by �( j) = (PV \{ j}( j, j)
)⊗N, and let

P
( j)(π1, . . . , πm) = Tr

(
Lπm . . . Lπ1

τ inv( j)

Tr τ inv( j)
L∗π1

. . . L∗πm

)
.

The trace-preserving property ofP j, j shows that this defines a consistent family and by the
Daniell–Kolmogorov extension Theorem this defines a probability P( j) on �( j). In addition,
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the invariance of τ inv( j)
Tr τ inv( j)

by P j, j implies

∑

π1∈PV \{ j}( j, j)
P

( j)(π1, . . . , πm) = P
( j)(π2, . . . , πm),

which shows that P( j) is invariant by the left shift

� : �( j) → �( j)

(π1, π2, . . .) �→ (π2, π3, . . .)

Now, the Perron–Frobenius Theorem implies that 1 is a simple eigenvalue for P j, j . This
immediately shows that for any two cylinder sets E and F ,

1

m

m∑

k=1
P

( j)(E ∩�−k(F)
) −→
m→∞ P

( j)(E)P( j)(F),

so that (�( j),P( j)) is ergodic for �. Now, if we consider the map 
(k) defined by


(k)(π1, π2, . . .) = 
(π1)+ . . .+ 
(πk),

then this map is an additive functional, i.e. satisfies 
(k+k′) = 
(k)+ 
(k′) ◦�k . By Birkhoff’s
ergodic Theorem one has P( j)-almost-sure convergence of 
(k)/k to the expectation of 
(1)

for P( j). It is immediate, however, that the distribution of 
(k) under P( j) is the same as the
distribution of t (k)j under P

j, τ inv( j)
Tr τ inv( j)

. We therefore have

t (k)j /k −→
k→∞ E

j, τ inv( j)
Tr τ inv( j)

(t (1)j ),

where convergence is almost-sure and in the L1 sense, with respect to P
j, τ inv( j)

Tr τ inv( j)

. The first

part of the proof shows that

E
j, τ inv( j)

Tr τ inv( j)

(t (1)j ) = (
Tr τ inv( j)

)−1
,

and this concludes the proof. ��

Appendix 4: Proofs for Section 6

Proof of Proposition 6.1 Consider A = ∑
i∈V Ai ⊗ |i〉〈i | such that for any i in V ,∑

j∈V ‖N∗
j,i (A j )‖ < ∞. Then (25) defines an operator Z . Proving that Z satisfies (24) is

then a straightforward computation. By linearity it is enough to assume that A = Ak⊗|k〉〈k|.
We then have

M∗(Z) =
∑

i∈V

( ∑

j∈V
L∗j,i

(
1 j=k Ak +

∑

π∈P( j,k)

L∗π AkLπ

)
L j,i

)
⊗ | j〉〈 j |.

Since the set of paths obtained by concatenating one step from a given i to a variable j ,
then some π from j to k, is exactly the set of paths from i to k of length ≥ 2, and (i, k)
is the only path from i to k of length 1, we obtain M∗(Z) = Z − Ak ⊗ |k〉〈k|, so that
(Id−M∗)(Z) = A. If Z ′ is another solution of (24), then Y = Z ′ − Z satisfiesM∗(Y ) = Y
and by the Perron–Frobenius Theorem of [23] applied to the irreducible map M∗, we have
Y ∈ CIdH. ��
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Proof of Proposition 6.3 It is now a routine argument to construct PD
i, j using the Banach–

Steinhaus Theorem, as

PD
j,i (ρ) =

∑

π∈PD\{ j}(i, j)
LπρL∗π .

One then has by definitionPi,ρ(t j ≤ t∂D < ∞) = TrPD
j,i (ρ), and the second identity follows

from Pi,ρ(t∂D < ∞) = ∑
j∈∂D Pi,ρ(t j ≤ t∂D < ∞). Relations (28) and (29) are obtained as

Equation (16). ��
Proof of Proposition 6.5 We define

p = inf
i∈D inf

ρ∈S(hi )
Pi,ρ(t∂D < +∞).

We will show independently that p > 0 and that p ∈ {0, 1}, therefore proving Proposition
6.5.

To prove that p > 0, we use a simple adaptation of Lemma 8.8. Fix some ρ in S(hi );
there exist a unit vector ϕ in hi and λ > 0 such that ρ ≥ λ|ϕ〉〈ϕ|. By irreducibility, for any j
in ∂D there exists a path π in P(i, j) such that Lπ ϕ �= 0. There exists j ′ in ∂D (the first
point of ∂D visited by the trajectory π ) and a subpath π ′ of π belonging to PD(i, j ′), with
necessarily Lπ ′ ϕ �= 0. We have shown TrPD

i (ρ) > 0 and, PD
i being continuous, we have

by a compactness argument that infρ∈S(hi ) TrP
D
i (ρ) > 0, and therefore p > 0 as D is finite.

We next prove that p ∈ {0, 1}. By the strong Markov property, for any n one has

1− p = sup
i∈D

sup
ρ∈S(hi )

Pi,ρ(t∂D = +∞)

= sup
i,ρ

Ei,ρ
(
1x1,...,xn∈D Pxn ,ρn (t∂D = +∞)

)

≤ (1− p)Pi,ρ(x1, . . . , xn ∈ D),

and taking n →∞ leads to (1− p) ≤ (1− p)2, so that p ∈ {0, 1}. This concludes our proof.
��

Proof of Lemma 6.6 Let j in V with dim h j < ∞. By irreducibility, there exists a path
π in PD( j, k) for some k ∈ ∂D such that TrLπρL∗π �= 0. There exists k′ in ∂D and a
subpath π ′ of π which belongs to PD\{ j}( j, k′) such that TrLπ ′ρL∗π ′ �= 0, which implies
thatP j,ρ(t j ≤ t∂D) < 1. In particular, TrPD

j, j (ρ) < 1 for anyρ inS(h j ), so that‖PD
j, j‖ < 1.

The same discussion that allowed us to construct N j,i shows that ND
j,i is well-defined by

ND
j,i = (Id −PD

j, j )
−1 ◦PD

j,i and satisfies relations (30) and (31). ��

Proof of Proposition 6.8 By Lemma 6.6, all operators ND
j,i and therefore the operator Z ,

are well-defined. Obviously Z j = Bj for j ∈ ∂D; the proof that
(
(Id −M∗)(Y )

)
i = Ai

for i ∈ D is similar to that for Proposition 6.1. Now consider two solutions Z and Z ′; then
Y = Z − Z ′ satisfies Y j = 0 for j ∈ ∂D and

(
(Id − M∗)(Y )

)
i = 0 for i ∈ D. As in

Lemma 2.5 we can prove that, if mn = (
Tr(ρnYxn )

)
n , then mD

n = minf(n,t∂D) is a Pi,ρ-
martingale for any i in D and ρ in S(hi ). The optional sampling Theorem applied to the
bounded martingale Tr(ρnYxn ) and the stopping time t∂D implies that

Tr
(
ρ Yi

) = Ei,ρ
(
Tr(ρt∂DYxt∂D )

) = 0.

Since this is true for any ρ in S(hi ), we obtain that Yi = 0, for any i ∈ D. ��
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Appendix 5: Proof for Section 8

Proof of Lemma 8.3 Since ‖M∗‖ = 1, the quantum detailed balance condition implies that
the spectrum of M∗ is contained in [−1,+1], so that I − M∗ is a positive operator and
E(X) ≥ 0 for all X ∈ B(H). In addition, E(X) = 0 if and only if M∗(X) = X . If M is
irreducible, then by the Perron–Frobenius Theorem for operators on a C*-algebra (see [23])
applied to the irreducible map M∗, the identity M∗(X) = X is equivalent with X ∈ CIdH.

��
Proof of Theorem 8.5 Let us write Z = B + X + X ′ with X ∈ B(HD) and X ′ ∈
B(HV \(D∪∂D)). By definition of ∂D, one has (Id −M∗)(X ′) ∈ B(HV \D). Denoting C =
(Id−M∗)(B)we have that Z is a solution of (26) if and only if

(
(Id−M∗)(X)

)
k = (A−C)k

for k ∈ D, or equivalently if

E(T, X) = 〈T, A − C〉� for any T ∈ B(HD). (45)

By Lemma 8.3, E(X, X) is non-negative and vanishes only if X ∈ CIdH. However, since
∂D �= ∅, IdH /∈ B(HD) and one has E(X, X) > 0 for any X ∈ B(HD). Consequently, by
a compactness argument, there exists λ > 0 such that E(X, X) ≥ λ‖X‖2� for X ∈ B(HD).
One can then apply the Lax–Milgram Theorem (see [8]): there exists a unique X0 satisfying
(45), which in addition is the minimizer of

B(HD)  X �→ 1

2
E(X, X)− 〈X, A − C〉� = 1

2
E(X, X)+ E(X, B)− 〈X, A〉�.

The solutions of Equation (26) are therefore the operators of the form

Z = B + X0 + X ′

for X ′ ∈ B(HV \(D∪∂D)). ��
Proof of Proposition 8.6 The proof is simply a matter of computation. For doubly stochastic
OQW, Li j = L∗j i , the invariant state τ� is the identity and the Dirichlet form reads

E(X) = Tr
(
X∗(Id −M)X

) =
∑

i, j∈V
Tr

(
X∗i δi j X j − X∗i Li j X j L ji

)
.

On the other hand we have

1

2
‖(∇X)‖2V = 1

2

∑

i, j∈V
Tr

((
Xi Li j − Li j X j

)(
L ji X

∗
i − X∗j L ji

))

= 1

2

∑

i, j∈V
Tr

(
Xi Li j L ji X

∗
i + X∗i Li j L ji Xi − 2Li j X j L ji X

∗
i

)
.

The two formulas coincide since
∑

j∈V Li j L ji = Id for doubly stochastic OQW. ��
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