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Abstract We study the many body Schrödinger evolution of weakly coupled fermions inter-
acting through a Coulomb potential. We are interested in a joint mean field and semiclassical
scaling, that emerges naturally for initially confined particles. For initial data describing
approximate Slater determinants, we prove convergence of the many-body evolution towards
Hartree–Fock dynamics. Our result holds under a condition on the solution of the Hartree–
Fock equation, that we can only show in a very special situation (translation invariant data,
whose Hartree–Fock evolution is trivial), but that we expect to hold more generally.

Keywords Many-body quantum dynamics · Mean field scaling · Semiclassical scaling ·
Hartree–Fock dynamics · Coulomb interaction

1 Introduction

The evolution of a system of N fermions in the mean field regime is described by the
Schrödinger equation

iε∂tψN ,t =
⎡
⎣

N∑
j=1

[−ε2�x j + Vext(x j )
] + 1

N

N∑
i< j

V (xi − x j )

⎤
⎦ ψN ,t , (1.1)

in the limit N → ∞. Here ε = N−1/3 and, according to fermionic statistics, ψN ,t ∈
L2

a(R3N ), the subspace of L2(R3N ) consisting of wave functions antisymmetric with respect
to permutations of the N particles.

The Schrödinger equation (1.1) is relevant for initial N particle wave functions ψN ,0 ∈
L2

a(R3N ) localized in a volume of order one; in this case, the factor ε2 in front of the
kinetic energy guarantees that both terms in the Hamiltonian are of order N . We conclude
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that, for fermionic systems, the mean field regime is linked with a semiclassical limit, with
ε = N−1/3 playing the role of Planck’s constant (notice, however, that in other situations,
different scalings may be of interest; see, in particular, [4,5,12,19]).

Physically, it makes sense to consider initial data approximating equilibria of confined
systems. At zero temperature, this leads to the study of the mean field dynamics of approx-
imate Slater determinants. In [8], it has been proven that this evolution can be described
through the Hartree–Fock equation, for regular interaction (the same conclusion was already
reached in [10], for analytic potentials and short times). The result has been extended in [9]
to the case of fermions with a pseudorelativistic dispersion relation. At positive temperature,
convergence towards Hartree–Fock dynamics for mixed quasi free initial data has been later
established in [6].

Let us focus on the zero temperature case and explain the results of [8] in more details.
Let ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N and such that

tr |[ωN , x]| ≤ C Nε, and tr |[ωN , ε∇]| ≤ C Nε . (1.2)

The projections ωN are the one-particle reduced densities of N -particle Slater determinants.
We consider the time evolution of initial fermionic wave functionsψN ∈ L2

a(R3N )with one-

particle reduced density γ
(1)
N close in the trace norm topology to ωN . Denoting by ψN ,t the

solution of the Schrödinger equation (1.1) with initial dataψN and by γ
(1)
N ,t the corresponding

one-particle reduced density, it is shown in [8] that γ (1)
N ,t is close (in the Hilbert-Schmidt and

in the trace class topology) to the solution of the Hartree–Fock equation

iε∂tωN ,t = [−ε2� + (V ∗ ρt ) − Xt , ωN ,t
]

(1.3)

with initial data ωN ,0 = ωN . Here ρt (x) = N−1ωN ,t (x; x) and the exchange operator Xt is
defined by the integral kernel Xt (x; y) = N−1V (x − y)ωN ,t (x; y) (strictly speaking, in [8]
the convergence towards the Hartree–Fock equation has only been shown for Vext(x) = 0,
but it is easy to extend the result to non-vanishing smooth external fields).

In otherwords, the time-evolution of initial data close to a Slater determinant remains close
to a Slater determinant evolved with respect to the Hartree–Fock equation (1.3). This holds
provided the reduced density ωN of the initial Slater determinant satisfies the commutator
bounds (1.2). These estimates play a crucial role in [8] to obtain convergence up to the correct
time scale. They reflect the semiclassical structure of ωN , i.e. the fact that the integral kernel
ωN (x; y) varies on the short scale of order ε in the x − y direction, while it varies on scales
of order one in the x + y direction. This structure is expected to arise in Slater determinants
approximating equilibrium states.

Notice that the Hartree–Fock equation (1.3) still depends on N (recall that ε = N−1/3).
As N → ∞, one expects the Wigner transform

WN ,t (x, v) =
∫

dy ωN ,t

(
x + εy

2
; x − εy

2

)
eiv·y

of the solution of (1.3) to converge towards a probability density W∞,t on phase space,
solving the classical Vlasov equation

∂t W∞,t + v · ∇x W∞,t + ∇(V ∗ ρt ) · ∇vW∞,t = 0.

Convergence of the Hartree–Fock evolution towards the Vlasov dynamics has been estab-
lished in several works, see [1,2,16,17], but only recently, in [7], some results have been
obtained for the situation we consider here, where ωN ,t is a projection. Remark also that
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Mean Field Evolution of Fermions… 1347

direct convergence from the many-body quantum evolution to the Vlasov dynamics has been
shown in [18] for analytic potentials and later in [21] for C2-interactions.

The convergence towards theHartree–Fock equation has been established in [8] for regular
interaction potentials satisfying

∫
dp |V̂ (p)|(1 + p2) < ∞ . (1.4)

This assumption excludes the case of a Coulomb interaction V (x) = 1/|x |. The Schrödinger
equation (1.1) for a Coulomb potential is very interesting from the point of view of physics.
It arises naturally when considering the dynamics of large atoms and molecules. In fact the
Hamilton operator for an electrically neutral atom with N electrons and a nucleus fixed at
the origin is given by

H atom
N =

N∑
j=1

[
−�x j − N

|x j |
]

+
N∑

i< j

1

|xi − x j | (1.5)

and acts on the Hilbert space L2
a(R3N ) of the N electrons. Thomas–Fermi theory suggests

that electrons are localized at distances of order N−1/3 from the nucleus (see, for example,
the review article [14]). It is therefore convenient to introduce new variables X j = N 1/3x j .
Expressed in terms of the new variables, the atomic Hamiltonian (1.5) takes the form

H atom
N = ∑N

j=1

[
−N 2/3�X j − N4/3

|X j |
]

+ N 1/3 ∑N
i< j

1
|Xi −X j |

= N 4/3
{∑N

j=1

[
−ε2�X j − 1

|X j |
]

+ 1
N

∑
i< j

1
|Xi −X j |

}
(1.6)

with ε = N−1/3. Choosing the correct time scale, we arrive exactly at the Schrödinger
equation (1.1) with Vext(x) = −1/|x | and interaction V (x) = 1/|x |. Remark that Hartree–
Fock theory is known to provide a good approximation to the ground state energy of (1.6).
While the classical Thomas–Fermi theory only captures the leading order of the ground state
energy, which is of order N 7/3 (see [14,15]), Hartree–Fock theory was proven in [3,13] to
provide a much more accurate approximation, with an error of order smaller than N 5/3.

The goal of our paper is to extend the convergence of themany-body dynamics towards the
time-dependent Hartree–Fock equation to the case of a Coulomb interaction. Our results are
still not completely satisfactory, in the sense that they make use of a property of the solution
of the time-dependent Hartree–Fock equation (1.3) which we can only show to hold true for
very special choices of the initial data. Nevertheless, we believe our results to be of some
interest, since they reduce the problem of the derivation of the Hartree–Fock equation for
Coulomb systems from the analysis of themany-body Schrödinger equation (1.1) to the study
of the properties of the simpler Hartree–Fock equation (1.3). Notice that the time evolution
of fermions interacting through a Coulomb potential has been recently considered in [4]. In
this work, however, a different scaling was considered, with the N particles occupying a large
volume of order N . After rescaling lengths, this choice leads to the Schrödinger equation
(1.1), with short times t of order ε = N−1/3.

Let us now illustrate our results in a precise form. For a wave function ψN ∈ L2
a(R3N )

we define the one-particle reduced density γ
(1)
N as the non-negative trace class operator with

integral kernel given by

γ
(1)
N (x; y) = N

∫
dx2 . . . dxN ψN (x, x2, . . . , xN )ψ N (y, x2, . . . , xN ) . (1.7)
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Notice here that we use the standard normalization tr γ (1)
N = N . A simple computation shows

that the reduced density of the Slater determinant

ψslater(x1, . . . , xN ) = 1√
N ! det

(
fi (x j )

)
i, j≤N ,

where { f j }N
j=1 is an orthonormal system on L2(R3), is given by the orthogonal projection

ωN =
N∑

j=1

| f j 〉〈 f j | (1.8)

on the N dimensional linear space spanned by the orbitals { f j }N
j=1.

We consider a sequence of initial data ψN ∈ L2
a(R3N ), which we assume close to a

Slater determinant in the sense that the one-particle reduced density γ
(1)
N associated with ψN

satisfies ‖γ (1)
N − ωN ‖tr ≤ C , uniformly in N , for a sequence ωN of orthogonal projections

of rank N (ωN is the one-particle reduced density of a Slater determinant).
Under this condition, we consider the evolution ψN ,t = e−i HN t/εψN of the initial data

ψN , generated by the Coulombic Hamiltonian

HN =
N∑

j=1

−ε2�x j + 1

N

N∑
i< j

1

|xi − x j | . (1.9)

To simplify the notation we assumed here that the external potential vanishes (but it is easy
to extend our results to the case Vext �= 0).

We compare ψN ,t with the Slater determinant with reduced density ωN ,t given by the
solution of the time-dependent Hartree–Fock equation

iε∂tωN ,t =
[
−ε2� + 1

|.| ∗ ρt − Xt , ωN ,t

]
(1.10)

with the position-space density ρt (x) = N−1ωN ,t (x; x) and where Xt is the exchange
operator, with the integral kernel Xt (x; y) = N−1|x − y|−1.

As in [8], a crucial role in our analysis is played by the operator |[x, ωN ,t ]|. Let us define
its density

ρ|[x,ωN ,t ]|(x) = |[x, ωN ,t ]|(x; x) .

An important ingredient in [8] was the estimate

‖ρ|[x,ωN ,t ]|‖1 = tr |[x, ωN ,t ]| ≤ CeK |t |Nε , (1.11)

valid for all t ∈ R. For interaction potentials satisfying (1.4), (1.11) was proven in [8]
propagating the commutator bounds (1.2) along the solution of the Hartree–Fock equation.
Here, to deal with the Coulomb singularity of the interaction, we need additional information
on the operator |[x, ωN ,t ]|; in particular, we need a bound (again of the order Nε) on the
L p norm of ρ|[x,ωN ,t ]|, for a p > 5. Unfortunately, we do not know what assumptions on
the initial data ωN imply the validity of these bounds for the solution of the Hartree–Fock
equation (1.10). Our main result is therefore a conditional statement; it gives convergence
of the many-body evolution with Coulomb interaction towards the Hartree–Fock equation
on the time interval [0; T ] provided the L1 and the L p norm of ρ|[x,ωN ,t ]| are of order Nε,
uniformly in t ∈ [0; T ] (for a p > 5).
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Theorem 1.1 Let ωN be a sequence of orthogonal projections on L2(R3), with tr ωN = N
and such that tr (−ε2�)ωN ≤ C N, for a constant C > 0 independent of N . Let ωN ,t denote
the solution of the Hartree–Fock equation (1.10) with initial data ωN ,0 = ωN . We assume
that there exists a time T > 0, a p > 5 and a constant C > 0 such that

sup
t∈[0;T ]

3∑
i=1

[‖ρ|[xi ,ωN ,t ]|‖1 + ‖ρ|[xi ,ωN ,t ]|‖p
] ≤ C Nε . (1.12)

Let ψN ∈ L2
a(R3N ) be such that its one-particle reduced density matrix γ

(1)
N satisfies

tr
∣∣∣γ (1)

N − ωN

∣∣∣ ≤ C Nα (1.13)

for a constant C > 0 and an exponent 0 ≤ α < 1.
Consider the evolution ψN ,t = e−i HN t/εψN , with the Hamilton operator (1.9) and let

γ
(1)
N ,t be the corresponding one-particle reduced density. Then for every δ > 0 there exists

C > 0 such that
sup

t∈[0;T ]

∥∥∥γ
(1)
N ,t − ωN ,t

∥∥∥
HS

≤ C
[

Nα/2 + N 5/12+δ
]

(1.14)

and
sup

t∈[0;T ]
tr

∣∣∣γ (1)
N ,t − ωN ,t

∣∣∣ ≤ C
[
Nα + N 11/12+δ

]
. (1.15)

Recall that ‖ωN ,t‖HS = N 1/2 and tr ωN ,t = N ; this implies that the bounds (1.14) and
(1.15) are non-trivial. They really show that the Hartree–Fock equation is a good approxima-
tion for the many-body evolution with a Coulomb interaction. Remark here that the exponent
0 ≤ α < 1 measures the number of particles that, at time t = 0, are not in the Slater determi-
nant (the initial number of excitations). It turns out, moreover, that the trace-norm condition
(1.13) can be replaced by the bound ‖γ (1)

N −ωN ‖HS ≤ C Nα/2 for the Hilbert-Schmidt norm;
in this case, however, the term Nα/2 on the r.h.s. of (1.14) should be replaced by the larger
error N (1+α)/4.

As pointed out in the introduction, the Hartree–Fock equation (1.10) still depends on N .
As N → ∞, the Wigner transform of the solution of (1.10) is expected to converge to a
solution of the Vlasov equation. However, this result is still open. In fact, the result of [16],
which applies to the case of a Coulomb interaction, does not allow ωN ,t to be a projection.

Despite the fact that we do not know how to prove the bounds (1.12) for the solution of the
Hartree–Fock equation, they are consistent with the idea that ωN ,t varies on a length scale
of order ε in the (x − y) direction, while it is regular and it varies on scales of order one in
the (x + y) direction.

There is in fact one special situation, in which the required bounds can be easily shown to
hold true. Consider namely an N -fermion system described on a finite box�with volume of
order one and periodic boundary conditions. In this case, we can consider translation invariant
Slater determinants, whose reduced densities have integral kernels ωN (x; y) depending only
on (x − y). Also the commutator [x, ωN ] and its absolute value |[x, ωN ]| are then translation
invariant, and therefore ρ|[x,ωN ]| is a constant, which we can reasonably assume to be of order
Nε (meaning that ωN is a function of (x − y) decaying at distances |x − y|  ε from the
diagonal). Then, we trivially have ‖ρ|[x,ωN ]|‖p ≤ C Nε for all 1 ≤ p ≤ ∞. Furthermore, it
is easy to check that the Hartree–Fock evolution does not change translation invariant initial
data, i.e. in this case we haveωN ,t = ωN for all t ∈ R. This means that ‖ρ|[x,ωN ,t ]|‖p ≤ C Nε

for all 1 ≤ p ≤ ∞ and also for all t ∈ R. So, for translation invariant Slater determinants
describing N fermions in a box with volume of order one with periodic boundary conditions,
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1350 M. Porta et al.

Theorem 1.1 shows (in this case, with no further assumptions), that the many body evolution
generated by (1.9) can be approximated by the Hartree–Fock equation, which means, in other
words, that it leaves the state of the system approximately invariant (we stated Theorem 1.1
for systems defined on R

3, but the result and its proof can be easily extended to systems
defined on a box with volume of order one and with periodic boundary conditions).

Let us remark that Theorem 1.1 can be extended by including an external potential in the
Hamilton operator (1.9) [and in the Hartree–Fock equation (1.10)]. Of course, in presence of
an external potential it may be more difficult to justify the assumption (1.12), especially if the
external potential is singular, as it is in (1.6). Similarly, let us stress the fact that Theorem 1.1
remains true if in (1.9) and in (1.10)we replace the repulsiveCoulomb potential V (x) = 1/|x |
with the attractive interaction V (x) = −1/|x |. Also here, however, it may be more difficult
to justify (1.12) in the attractive case.

Finally, let us add a remark concerning the convergence of the higher order reduced
densities. Theorem 1.1 only establishes the convergence of the one-particle reduced density.
It turns out that ourmethod can be extended to show the convergence of the k-particle reduced
density, for any fixed k ∈ N, but only when tested against observables that are diagonal in a
basis of L2(R3k) consisting of factorized functions.

2 Fock Space Representation

To prove Theorem 1.1 we switch to a Fock space representation of the fermionic system. The
fermionic Fock space over L2

(
R
3
)
is defined as the direct sum

F =
⊕
n≥0

L2
a

(
R
3n)

,

where L2
a

(
R
3n

)
is the antisymmetric subspace of L2

(
R
3n

)
.

The number of particle operator on F is the closure of the symmetric operator defined by
(N�)(n) = nψ(n) for all � = {ψ(n)}n≥0 ∈ F with ψ(n) = 0 for all n large enough.

On F , it is useful to introduce creation and annihilation operators. For f ∈ L2
(
R
3
)
, we

define the creation operator a∗( f ) and the annihilation operator a( f ) through

(
a∗( f )�

)(n)
(x1, . . . , xn) := 1√

n

n∑
j=1

(−1) j f (x j )

×ψ(n−1)(x1, . . . , x j−1, x j+1, . . . , xn) ,

(a( f )�)(n) (x1, . . . , xn) := √
n + 1

∫
dx f (x) ψ(n+1)(x, x1, . . . , xn) ,

for all � = {ψ(n)}n≥0 ∈ F with ψ(n) = 0 for all n large enough. Creation and annihilation
operators satisfy canonical anticommutation relations

{
a( f ), a∗(g)

} = 〈 f, g〉, {a( f ), a(g)} = {
a∗( f ), a∗(g)

} = 0 (2.1)

for all f, g ∈ L2
(
R
3
)
. Using the anticommutation relations it is easy to see that a( f ) and

a∗( f ) extend to bounded operators on F , with ‖a( f )‖ = ‖a∗( f )‖ = ‖ f ‖2, and that a∗( f )

is the adjoint of a( f ).
It is also convenient to define operator valued distributions a∗

x , ax for x ∈ R
3, such that

a∗( f ) =
∫

dx f (x)a∗
x , a( f ) =

∫
dx f (x)ax .
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In terms of the distributions a∗
x , ax , we find

N =
∫

dx a∗
x ax .

More generally, for an operator J on L2(R3)we define its second quantization d(J ) so that
its restriction to the n-particle sector has the form

d(J )|Fn =
n∑

j=1

J ( j)

where J ( j) = 1⊗(n− j) ⊗ J ⊗ 1⊗( j−1) acts non-trivially only on the j-th particle. If J has the
integral kernel J (x; y), we can write d(J ) in terms of the distributions a∗

x , ax as

d(J ) =
∫

dxdy J (x; y)a∗
x ay .

For example, d(1) = N . In the next lemma we collect some bounds for the second quan-
tization of one-particle operators. Its proof can be found in [8, Lemma 3.1]

Lemma 2.1 For every bounded operator J on L2
(
R
3
)
, we have

〈�, d(J )�〉 ≤ ‖J‖〈�,N�〉 ,

‖d(J )�‖ ≤ ‖J‖ ‖N�‖ ,

for every � ∈ F . If J is a Hilbert-Schmidt operator, we also have the bounds

‖d(J )ψ‖ ≤ ‖J‖HS
∥∥N 1/2ψ

∥∥
∥∥∥∥

∫
dx dy J (x; x ′)ax ax ′ψ

∥∥∥∥ ≤ ‖J‖HS
∥∥N 1/2�

∥∥
∥∥∥∥

∫
dx dy J (x; x ′)a∗

x a∗
x ′ψ

∥∥∥∥ ≤ ‖J‖HS
∥∥N 1/2�

∥∥

for every � ∈ F . Finally, if J is a trace class operator, we obtain

‖d(J )‖ ≤ 2 ‖J‖tr∥∥∥∥
∫

dx dy J (x; x ′)ax ax ′

∥∥∥∥ ≤ 2 ‖J‖tr
∥∥∥∥

∫
dx dy J (x; x ′)a∗

x a∗
x ′

∥∥∥∥ ≤ 2 ‖J‖tr

where ‖J‖tr = tr|J | = tr
√

J ∗ J indicates the trace norm of J .

For a Fock space vector � ∈ F , we can define the one-particle reduced density as the
non-negative trace class operator on L2(R3) with integral kernel

γ
(1)
� (x; y) = 〈�, a∗

yax�〉 . (2.2)

For a N particle state � = {0, 0, . . . , ψN , . . . } ∈ F , it is easy to check that this definition
coincides with (1.7). In fact

〈�, a∗
yax�〉 = 〈ay�, ax�〉

= 〈(ay�)(N−1), (ax�)(N−1)〉
= N

∫
dx1 . . . dxN−1ψN (x, x1, . . . , xN−1)ψ N (y, x1, . . . , xN−1) .
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Furthermore, for a one-particle observable J on L2(R3), we find that the expectation of the
second quantization of J in the Fock state � is given by

〈�, d(J )�〉 =
∫

dxdy J (x; y) 〈�, a∗
x ay�〉 = tr Jγ

(1)
� .

This motivates the Definition (2.2). Notice in particular, that with this definition

tr γ (1)
� = 〈�,N�〉

is the expected number of particles in �.
Next, we introduce the Hamilton operatorHN on the fermionic Fock space F . Formally,

we define HN in terms of the distributions a∗
x , ax as

HN = ε2
∫

dx ∇x a∗
x ∇x ax + 1

2N

∫
dxdy V (x − y)a∗

x a∗
yayax . (2.3)

More precisely, HN is the self-adjoint operator whose restriction on the n-particle sector of
F is given by

HN |Fn =
n∑

j=1

−ε2�x j + 1

N

n∑
i< j

V (xi − x j ) .

In particular, when restricted on FN , the Hamilton operatorHN coincide with the mean field
Hamilton operator (1.9) defined in the previous section (and thus, for initial data in F with
exactly N particles, the dynamics generated by HN coincides exactly with the evolution
introduced in the previous section).

Let { f j }N
j=1 be an orthonormal system in L2(R3). On F , we consider the Slater determi-

nant

a∗( f1) . . . a∗( fN )� =
{
0, . . . , 0,

1√
N ! det( fi (x j ))i, j≤N , 0, . . .

}
,

where the only non-trivial entry is in the N -particle sector. As stated in (1.8), the one-particle
reduced density associated to this Slater determinant is given by the orthogonal projection

ωN =
N∑

j=1

| f j 〉〈 f j | .

An important observation is the fact that there exists a unitary operator, that we will denote
by RωN : F → F with the following two properties:

RωN � = a∗( f1) . . . a∗( fN )�

and
R∗

ωN
a(g)RωN = a(uN g) + a∗(vN g) (2.4)

where uN = 1−ωN and vN = ∑N
j=1 | f j 〉〈 f j |. In other words, if we complete the orthonor-

mal system { f j }N
j=1 to an orthonormal basis { f j } j≥1 of L2(R3), we find

R∗
ωN

a( f j )RωN = a( f j ), and R∗
ωN

a∗( f j )RωN = a∗( f j )

if j > N , while

R∗
ωN

a( f j )RωN = a∗( f j ), and R∗
ωN

a∗( f j )RωN = a( f j )
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if j ≤ N . The map RωN is known as a particle-hole transformation. It let us switch to a
new representation of the system; the new vacuum describes the Slater determinant with
reduced density ωN . The new creation operators create excitations of the Slater determinant,
i.e. either particles outside the determinant or holes in it. The proof of the existence of the
unitary operator RωN with the properties listed above can be found, for example, in [20].

Theorem 1.1 is a consequence of the following theorem for the evolution of approximate
Slater determinants in the Fock space F .

Theorem 2.2 Let ωN be a sequence of orthogonal projections on L2(R3), with tr ωN = N
and tr (−ε2�)ωN ≤ C N. Let ωN ,t denote the solution of the Hartree–Fock equation (1.10)
with initial data ωN ,0 = ωN . We assume that there exists T > 0, p > 5 and C > 0 such that

sup
t∈[0;T ]

3∑
i=1

[‖ρ|[xi ,ωN ,t ]|‖1 + ‖ρ|[xi ,ωN ,t ]|‖p
] ≤ C Nε. (2.5)

Let ξN ∈ F be a sequence with

〈ξN ,N ξN 〉 ≤ C Nα

for an exponent α, with 0 ≤ α < 1. We consider the evolution

�N ,t = e−iHN t/ε RωN ξN

and denote by γ
(1)
N ,t the one-particle reduced density of �N ,t , as defined in (2.2). Then for all

δ > 0 there is a constant C > 0 such that

sup
t∈[0;T ]

∥∥∥γ
(1)
N ,t − ωN ,t

∥∥∥
HS

≤ C
[

Nα/2 + N 5/12+δ
]

and

sup
t∈[0;T ]

tr
∣∣∣γ (1)

N ,t − ωN ,t

∣∣∣ ≤ C
[
Nα + N 11/12+δ

]
.

Let us show how Theorem 2.2 implies the statement of Theorem 1.1, where we consider
the evolution of N -particle states.

Proof of Theorem 1.1. Set �N = {0, . . . , 0, ψN , 0, . . . } and ξN = R∗
ωN

�N ∈ F . Then we
have �N = RωN ξN , and

〈ξN ,N ξN 〉 = 〈R∗
ωN

�N ,N R∗
ωN

�N 〉
=

∫
dx 〈�N ,

(
a∗(ux ) + a(vx )

) (
a(ux ) + a∗(vx )

)
�N 〉 .

Using the anticommutation relationswe find a(vx )a∗(vx ) = −a∗(vx )a(vx )+〈vx , vx 〉. Since
uN = 1 − ωN is orthogonal to ωN , we conclude that

〈ξN ,N ξN 〉 = 〈�N , [d(uN ) − d(ωN ) + N ]�N 〉
= 2 tr γ (1)

N (1 − ωN ) = 2 tr(γ (1)
N − ωN )(1 − ωN ) .

This implies that

〈ξN ,N ξN 〉 ≤ 2 tr
∣∣∣γ (1)

N − ωN

∣∣∣ ≤ C Nα
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for an exponent 0 ≤ α < 1, from the assumption (1.13). Hence, we can apply Theorem 2.2
and we obtain that

sup
t∈[0;T ]

∥∥∥γ
(1)
N ,t − ωN ,t

∥∥∥
HS

≤ C
[

Nα/2 + N 5/12+δ
]

and that

sup
t∈[0;T ]

tr
∣∣∣γ (1)

N ,t − ωN ,t

∣∣∣ ≤ C
[
Nα + N 11/12+δ

]

for any δ > 0. ��
In order to prove Theorem 2.2, we define the fluctuation dynamics

UN (t) = R∗
ωN ,t

e−iHN t/ε RωN (2.6)

and we observe that

�N ,t = e−iHN t/ε RωN ξN = RωN ,t UN (t)ξN .

The vector UN (t)ξN describes the excitations at time t . The key step in the proof of Theorem
2.2 is the following bound on the expectation of the operatorN in the state UN (t)ξN . This is
a bound on the expected number of excitations of the Slater determinant in the state �N ,t .

Proposition 2.3 Let ωN be a sequence of orthogonal projections on L2(R3), with tr ωN = N
and tr (−ε2�)ωN ≤ C N. Suppose that there exists T > 0, p > 5 and C > 0 such that

sup
t∈[0;T ]

3∑
i=1

[‖ρ|[xi ,ωN ,t ]|‖1 + ‖ρ|[xi ,ωN ,t ]|‖p
] ≤ C Nε. (2.7)

Let UN (t) be the fluctuation dynamics defined in (2.6) and ξN ∈ F . Then, for every δ > 0
small enough, there exists a constant C > 0 such that

sup
t∈[0;T ]

〈UN (t)ξN ,NUN (t)ξN 〉 ≤ C
[
〈ξN ,N ξN 〉 + N 5/6+δ

]
,

for all ξN ∈ F with ‖ξN ‖ = 1.

Remark that the proof of this proposition, which will be given in the next section, can be
extended to show a similar bound for higher moments of the number of particles operator
(these estimates are needed to establish the convergence of higher order reduced densities,
as stated after Theorem 1.1). Let us now show how Proposition 2.3 can be used to establish
Theorem 2.2.

Proof of Theorem 2.2. We follow here the same argument used in [8]. From (2.2), we obtain

γ
(1)
N ,t (x; y) =

〈
�N ,t , a∗

yax�N ,t

〉

=
〈
UN (t)ξN , R∗

ωN ,t
a∗

yax RωN ,t UN (t)ξN

〉
.

Equation (2.4) implies that

γ
(1)
N ,t (x; y) = 〈UN (t; 0)ξN ,

(
a∗ (

ut,y
) + a

(
v̄t,y

)) (
a

(
ut,x

) + a∗ (
v̄t,x

))UN (t; 0)ξN
〉

= 〈UN (t; 0) ξN ,
[
a∗ (

ut,y
)

a
(
ut,x

) − a∗ (
v̄t,x

)
a

(
v̄t,y

) + 〈
v̄t,y, v̄t,x

〉

+ a∗ (
ut,y

)
a∗ (

v̄t,x
) + a

(
v̄t,y

)
a

(
ut,x

)]UN (t; 0) ξN
〉
, (2.8)
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where we introduced the short-hand notation ut,x (z) = uN ,t (x; z) and vt,y(z) = vN ,t (y; z)
for the kernels of uN ,t = 1 − ωN ,t and vN ,t = ∑N

j=1 | f j 〉〈 f j | if ωN ,t = ∑N
j=1 | f j 〉〈 f j |.

Notice that then

〈
v̄t,y, v̄t,x

〉 =
∫

dz vN ,t (z; y) v̄N ,t (z; x) = (
vN ,t v̄N ,t

)
(y; x) = ωN ,t (x; y) .

This leads to

γ
(1)
N ,t (x; y) − ωN ,t (x; y) (2.9)

= 〈UN (t; 0) ξN ,
[
a∗ (

ut,y
)

a
(
ut,x

) − a∗ (
v̄t,x

)
a

(
v̄t,y

)

+a∗ (
ut,y

)
a∗ (

v̄t,x
) + a

(
v̄t,y

)
a

(
ut,x

)]UN (t; 0) ξN
〉
. (2.10)

Let J be a Hilbert-Schmidt operator on L2
(
R
3
)
. Integrating its kernel against the difference

(2.10), we find

tr J
(
γ

(1)
N ,t − ωN ,t

)

= 〈
ξN ,UN (t; 0)∗ (

d
(
uN ,t JuN ,t

) − d
(
v̄N ,t J ∗vN ,t

))UN (t; 0) ξN
〉

+ 2Re
〈
ξN ,UN (t; 0)∗ ( ∫

dr1dr2
(
vN ,t JuN ,t

)
(r1, r2) ar1ar2

)UN (t; 0) ξN
〉
. (2.11)

Using Lemma 2.1 and ‖uN ,t‖ = ‖vN ,t‖ = 1, we find
∣∣tr J

(
γ

(1)
N ,t − ωN ,t

)∣∣
≤ (‖uN ,t JuN ,t‖HS + ‖v̄N ,t J ∗vN ,t‖HS

) ∥∥(N + 1)1/2 UN (t; 0) ξN
∥∥

+ 2 ‖vN ,t JuN ,t‖HS
∥∥(N + 1)1/2 UN (t; 0) ξN

∥∥
≤ C‖J‖HS

∥∥(N + 1)1/2 UN (t; 0) ξN
∥∥ .

By duality, this implies that

‖γ (1)
N ,t − ωN ,t‖HS ≤ C

∥∥(N + 1)1/2 UN (t; 0) ξN
∥∥ .

With Proposition 2.3 we conclude that

sup
t∈[0;T ]

‖γ (1)
N ,t − ωN ,t‖HS ≤ C

[
Nα/2 + N 5/12+δ

]

for any δ > 0.
Finally, we prove the trace class bound (1.15). Starting from (2.11) we find, for any

compact operator J on L2(R3),
∣∣tr J

(
γ

(1)
N ,t−ωN ,t

)∣∣
≤ (‖uN ,t JuN ,t‖ + ‖v̄N ,t J ∗vN ,t‖

) 〈
ξN ,UN (t; 0)∗ NUN (t; 0) ξN

〉

+ 2 ‖vN ,t JuN ,t‖HS
∥∥(N + 1)1/2 UN (t; 0) ξN

∥∥ ‖ξN ‖
≤2‖J‖ ∥∥(N + 1)1/2 UN (t; 0) ξN

∥∥2

+ 2 ‖vN ,t JuN ,t‖HS
∥∥(N + 1)1/2 UN (t; 0) ξN

∥∥ ‖ξN ‖
≤2‖J‖ ∥∥(N + 1)1/2 UN (t; 0) ξN

∥∥
+ 2 ‖J‖ ‖vN ,t‖HS

∥∥(N + 1)1/2 UN (t; 0) ξN
∥∥ ‖ξN ‖.
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From Proposition 2.3 and ‖vN ,t‖HS ≤ N
1
2 , we obtain that, for every δ > 0 there existsC > 0

such that

tr
∣∣∣γ (1)

N ,t − ωN ,t

∣∣∣ ≤ C
[
Nα + N 11/12+δ

]
. (2.12)

This completes the proof of Theorem 2.2. ��

3 Control of the Fluctuations

The goal of this section is to show Proposition 2.3. To reach this goal, we derive a differential
inequality for the expectation 〈UN (t)ξN ,NUN (t)ξN 〉 and we apply Gronwall’s lemma. We
have

iε
d

dt
〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉

= 4i

N
Im

∫
dx dy

1

|x − y|
×

{ 〈UN (t; 0) ξN , a∗ (
ut,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN
〉

+ 〈UN (t; 0) ξN , a∗ (
ut,y

)
a∗ (

v̄t,y
)

a∗ (
v̄t,x

)
a

(
v̄t,x

)UN (t; 0) ξN
〉

+ 〈UN (t; 0) ξN , a
(
v̄t,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN
〉 }

, (3.1)

where, as in the last section, we use the short-hand notation ut,x (z) = uN ,t (x; z), vt,x (z) =
vN ,t (x; z), with the operators uN ,t = 1 − ωN ,t and vN ,t as defined after (2.8). The proof of
(3.1) is a lengthy but straightforward computation that can be found in [8, Proof of Proposition
3.3].

Next, we estimate the three contribution on the r.h.s. of (3.1) separately. We start with the
term

I = 1

N

∫
dxdy

1

|x − y| 〈UN (t; 0)ξN , a∗(ut,x )a(vt,y)a(ut,y)a(ut,x )UN (t; 0)ξN 〉 . (3.2)

To bound this contribution (and later also to control the other two terms on the r.h.s of (3.1)),
we use a smooth version of the Fefferman-de la Llave representation of the Coulomb potential
[11], given by

1

|x − y| = 4

π2

∫ ∞

0

dr

r5

∫
dz χ(r,z)(x)χ(r,z)(y) (3.3)

where we introduced the notation χ(r,z)(x) = e−(x−z)2/r2 . The proof of (3.3) is a simple
computation with Gaussian integrals which we leave to the reader (the fact that the result
of the integral is proportional to |x − y|−1, which is the only property we are going to use,
follows by simple scaling). Inserting (3.3) into (3.2) we find

I = C

N

∫
dxdy

∫ ∞

0

dr

r5

∫
dz χ(r,z)(x)χ(r,z)(y)

×〈UN (t; 0) ξN , a∗ (
ut,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN 〉
= C

N

∫ ∞

0

dr

r5

∫
dz dx χ(r,z)(x)

×〈UN (t; 0) ξN , a∗ (
ut,x

)
Br,za

(
ut,x

)UN (t; 0) ξN 〉, (3.4)
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where we defined the operator

Br,z =
∫

dy a
(
v̄t,y

)
χ(r,z)(y)a

(
ut,y

) =
∫

ds1ds2(vN ,tχ(r,z)uN ,t )(s1; s2)as1as2 . (3.5)

Lemma 2.1 implies that

‖Br,z‖ ≤ 2‖vN ,tχ(r,z)uN ,t‖tr ≤ 2
∥∥[

χ(r,z), ωN ,t
]∥∥

tr . (3.6)

To bound the r.h.s., we use the next lemma, whose proof is deferred to the end of the section.

Lemma 3.1 Let χr,z(x) = exp(−(x − z)2/r2). Then, for all 0 < δ < 1/2 there exists C > 0
such that the pointwise bound

∥∥[χ(r,z), ωN ,t ]
∥∥

tr ≤ C r
3
2−3δ

3∑
i=1

‖ρ|[xi ,ωN ,t ]|‖
1
6+δ

1

(
ρ∗|[xi ,ωN ,t ]|(z)

) 5
6−δ

(3.7)

holds true. Here �∗|[xi ,ωN ,t ]| denotes the Hardy–Littlewood maximal function defined by

ρ∗|[xi ,ωN ,t ]|(z) = sup
B:z∈B

1

|B|
∫

B
dx ρ|[xi ,ωN ,t ]|(x) (3.8)

with the supremum taken over all balls B ∈ R
3 such that z ∈ B.

Applying (3.7) to the r.h.s. of (3.6) and using the assumption (2.7), we conclude from
(3.4) that, for all δ > 0 there exists C > 0 such that

|I| ≤ C
(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ

∫
dxdz χ(r,z)(x)

(
�∗|[xi ,ωN ,t ]|(z)

) 5
6−δ

×‖a
(
ut,x

)UN (t; 0) ξN ‖2

≤ C
(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ

∫
dx gi,r (x) ‖a

(
ut,x

)UN (t; 0) ξN ‖2

where we defined

gi,r (x) =
∫

dz χ(r,z)(x)
(
�∗|[xi ,ωN ,t ]|(z)

)5/6−δ

. (3.9)

We find

|I| ≤ C
(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ

×〈UN (t; 0) ξN , d(uN ,t gi,r (x)uN ,t )UN (t; 0) ξN 〉
where uN ,t gi,r (x)uN ,t is the operator with the integral kernel

(uN ,t gi,r (x)uN ,t )(s1; s2) =
∫

dx uN ,t (s1; x)gi,r (x)uN ,t (x; s2) .

Applying again Lemma 2.1 and using the fact that ‖uN ,t‖ ≤ 1, we obtain

|I| ≤ C
(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ ‖gi,r‖∞‖N 1/2UN (t; 0) ξN ‖2 . (3.10)
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We have, using the Hardy–Littlewood maximal inequality,

‖gi,r‖∞ ≤ r3/p ‖�∗|[xi ,ω]|‖5/6−δ

(5/6−δ)q ≤ Cr3/p‖�|[xi ,ω]|‖5/6−δ

(5/6−δ)q (3.11)

for any (5/6− δ)−1 < q ≤ ∞ and p such that p−1 + q−1 = 1. To bound the r.h.s. of (3.10),
we divide the r -integral into two parts and then we apply (3.11) with two different choices
of p, q . From the assumption (2.7) we can find q1 > 6 and q2 < 6 and δ > 0 sufficiently
small such that

sup
t∈[0;T ]

‖ρ|[xi ,ωN ,t ]|‖q1(5/6−δ) + ‖ρ|[xi ,ωN ,t ]|‖q2(5/6−δ) ≤ C Nε .

With this choice of q1, q2, we have p1 < 6/5 and p2 > 6/5 which implies (possibly after
reducing again the value of δ > 0) that r−7/2−3δ+3/p1 is integrable close to zero and that
r−7/2−3δ+3/p2 is integrable at infinity. We conclude that

|I| ≤ Cε ‖N 1/2UN (t; 0) ξN ‖2 = Cε 〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉 (3.12)

for all t ∈ [0; T ].
The second term on the l.h.s. of (3.1) can be estimated similarly. Recalling the definition

(3.5) of the operator Br,z , we can write

II = C

N

∫
dxdy

1

|x − y| 〈UN (t; 0) ξN , a∗(vt,x )a
∗(ut,y)a

∗(vt,y)a(vt,x )UN (t; 0) ξN 〉

= C

N

∫
dxdy

∫ ∞

0

dr

r5

∫
dzχr,z(x)χr,z(y)

×〈UN (t; 0) ξN , a∗(vt,x )a
∗(ut,y)a

∗(vt,y)a(vt,x )UN (t; 0) ξN 〉
= C

N

∫
dx

∫ ∞

0

dr

r5

∫
dzχr,z(x)

×〈UN (t; 0) ξN , a∗(vt,x )B∗
r,za(vt,x )UN (t; 0) ξN 〉

which implies, with (3.6), (3.7), the assumptions (2.7) and (3.9) that, for δ > 0 small enough,

|II| ≤ C(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ

∫
dxdz χr,z(x)

(
ρ∗|[xi ,ω]|(z)

)5/6−δ

× ∥∥a(vt,x )UN (t; 0) ξN
∥∥2

≤ C(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ

×〈UN (t; 0) ξN , d(vN ,t gi,r (x)vN ,t )UN (t; 0) ξN 〉

≤ C(Nε)1/6+δ

N

3∑
i=1

∫ ∞

0

dr

r7/2+3δ ‖gi,r‖∞
∥∥N 1/2UN (t; 0) ξN

∥∥2 .

Then we conclude as we did for (3.10) that

|II| ≤ Cε 〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉 (3.13)

for all t ∈ [0; T ].
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Finally, we consider the third term on the r.h.s. of (3.1). Again we use the Fefferman-de
la Llave formula (3.3) for the Coulomb potential. We obtain

III = C

N

∫
dx dy

∫ ∞

0

dr

r5

∫
dz χ(r,z)(x)χ(r,z)(y)

×〈UN (t; 0) ξN , a
(
v̄t,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN 〉 .

We divide the r -intergral into two parts, setting III = III1 + III2, with

III1 = C

N

∫
dx dy

∫ κ

0

dr

r5

∫
dz χ(r,z)(x)χ(r,z)(y)

×〈UN (t; 0) ξN , a
(
v̄t,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN 〉 ,

III2 = C

N

∫
dx dy

∫ ∞

κ

dr

r5

∫
dz χ(r,z)(x)χ(r,z)(y)

×〈UN (t; 0) ξN , a
(
v̄t,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN 〉 . (3.14)

We start estimating III1. Here, we start by integrating over z. Since
∫

dz χ(r,z)(x)χ(r,z)(y) = r3χ
(
√
2r,x)

(y)

we obtain, with (3.5),

III1 = C

N

∫ κ

0

dr

r2

∫
dxdy χ(

√
2r,x)(y)

×〈UN (t; 0) ξN , a
(
v̄t,x

)
a

(
v̄t,y

)
a

(
ut,y

)
a

(
ut,x

)UN (t; 0) ξN 〉
= C

N

∫ κ

0

dr

r2

∫
dx 〈UN (t; 0) ξN , B√

2r,x a(vt,x )a(ut,x )UN (t; 0) ξN 〉 .

Since ‖vN ,x‖2 = ωN ,t (x; x) =: ρN ,t (x), we find

|III1| ≤ C

N

∫ κ

0

dr

r2

∫
dx ‖B√

2r,x‖ ρ
1/2
N ,t (x) ‖a(ut,x )UN (t; 0) ξN ‖

≤ C

N

∫ κ

0

dr

r2

∫
dx ρ

1/2
N ,t (x)‖[χ(

√
2r,x), ωN ,t ]‖tr‖a(ut,x )UN (t; 0) ξN ‖ . (3.15)

Using the pointwise bound (3.7) and the assumption (2.7), we obtain that, for all δ > 0
sufficiently small, there exists a constant C > 0 such that

|III1| ≤ C(Nε)
1
6+δ

N

3∑
i=1

∫ κ

0

dr

r1/2+3δ

∫
dx ρ

1/2
N ,t (x)

[
ρ∗|[xi ,ωN ,t ]|(x)

] 5
6−δ

×‖a(ut,x )UN (t; 0) ξN ‖ . (3.16)

Applying Hölder’s inequality, we conclude that

|III1| ≤ C(Nε)
1
6+δκ1/2−3δ

N

3∑
i=1

‖ρN ,t‖1/25/3‖ρ∗|[xi ,ωN ,t ]|‖
5
6−δ

25
6 −5δ

×
[∫

dx ‖a(ut,x )UN (t; 0) ξN ‖2
]1/2

. (3.17)
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By the Hardy–Littlewood maximal inequality and the assumption (2.7), we have

‖ρ∗|[xi ,ωN ,t ]|‖ 25
6 −5δ ≤ ‖ρ|[xi ,ωN ,t ]|‖ 25

6 −5δ ≤ C Nε . (3.18)

Furthermore, we have
∫

dx ‖a(ut,x )UN (t; 0) ξN ‖2 = 〈UN (t; 0) ξN , d(uN ,t )UN (t; 0) ξN 〉
≤ 〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉

= ‖N 1/2UN (t; 0) ξN ‖2 . (3.19)

On the other hand, to bound the norm ‖ρN ,t‖5/3 we use the Lieb–Thirring inequality, which
implies

‖ρN ,t‖5/35/3 ≤ tr (−�)ωN ,t ≤ ε−2EHF(ωN ,t )

with the Hartree–Fock energy

EHF(ωN ,t ) = tr (−ε2�)ωN ,t

+ 1

2N

∫
1

|x − y|
[
ωN ,t (x; x)ωN ,t (y; y) − |ωN ,t (x; y)|2]

dxdy .

By energy conservation, we have

‖ρN ,t‖5/35/3 ≤ ε−2EHF(ωN ) . (3.20)

Next, we remark that the potential part of EHF(ωN ) can be bounded by its kinetic energy.
In fact, applying the Hardy–Littlewood-Sobolev inequality and interpolation and using the
normalization ‖ρN ‖1 = N for ρN (x) = ωN (x; x), we find

1

N

∫
1

|x − y|ρN (x)ρN (y)dxdy ≤ C

N
‖ρN ‖26/5

≤ C

N
‖ρN ‖7/51 ‖ρN ‖3/55/3

= C N 2/5‖ρN ‖3/55/3

≤ C N + C N−2/3‖ρN ‖5/35/3 ,

by Young’s inequality. From the Lieb–Thirring, we find

1

N

∫
1

|x − y|ρN (x)ρN (y)dxdy ≤ C N + C tr (−ε2�)ωN

and hence

EHF(ωN ) ≤ C N + C tr (−ε2�)ωN ≤ C N

from the assumption tr (−ε2�)ωN ≤ C N on the initial sequence of orthogonal projection
ωN . From (3.20), we conclude that ‖ρN ,t‖5/3 ≤ N . Combining this estimate with (3.18) and
(3.19), we obtain

|III1| ≤ C
√

Nεκ1/2−3δ‖N 1/2UN (t; 0) ξN ‖ ≤ ε‖N 1/2UN (t; 0) ξN ‖2 + C Nεκ1−6δ

for all t ∈ [0; T ].
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Next, we estimate the second term in (3.14). With the definition (3.5), we have

|III2| ≤ C

N

∫ ∞

κ

dr

r5

∫
dz ‖Br,z‖2 ≤ C

N

∫ ∞

κ

dr

r5

∫
dz ‖[χ(r,z), ωN ,t ]‖2tr .

With the bound (3.7) and the assumption (2.7), we obtain

|III2| ≤ C(Nε)2

N

∫ ∞

κ

dr

r2+6δ ≤ C Nε2κ−1−6δ .

Hence,

|III| ≤ ε‖N 1/2UN (t; 0) ξN ‖2 + C Nεκ1−6δ + C Nε2κ−1−6δ .

Minimizing over κ we find κ = ε1/2 and we conclude

|III| ≤ ε‖N 1/2UN (t; 0) ξN ‖2 + C Nε3/2−6δ .

Combining this bound with (3.12) and (3.13), we obtain from (3.1) that, for every δ > 0
small enough, there is a constant C > 0 such that

∣∣∣∣
d

dt
〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉

∣∣∣∣ ≤ C〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉 + C Nε1/2−δ

for all t ∈ [0; T ]. Gronwall’s lemma implies that there exists a constant C > 0 such that

sup
t∈[0;T ]

〈UN (t; 0) ξN ,NUN (t; 0) ξN 〉 ≤ C
[〈ξN ,N ξN 〉 + Nε1/2−δ

]
.

This concludes the proof of Proposition 2.3. We still have to show Lemma 3.1.

Proof of Lemma 3.1. The integral kernel of the commutator [χ(r,z), ωN ,t ] is
[χ(r,z), ωN ,t ](x; y) = (

χ(r,z)(x) − χ(r,z)(y)
)
ωN ,t (x; y)

=
∫ 1

0
ds

d

ds
e− (x−z)2

r2
s
ωN ,t (x; y)e− (x−z)2

r2
(1−s)

= −
∫ 1

0
ds e− (x−z)2

r2
s

[
(x − z)2

r2
, ωN ,t

]
(x; y) e− (y−z)2

r2
(1−s)

.

Hence

[χ(r,z), ωN ,t ]
= −

∫ 1

0
ds χ(r/

√
s,z)(x)

[
(x − z)2

r2
, ωN ,t

]
χ(

r/
√
1−s,z

)(x)

= −
3∑

k=1

∫ 1

0
ds χ(r/

√
s,z)(x)

×
(

(x − z)k

r2
[
xk, ωN ,t

] + [
xk, ωN ,t

] (x − z)k

r2

)
χ(

r/
√
1−s,z

)(x)

=
3∑

k=1

Ik + IIk (3.21)

where, with an abuse of notation, we use χ(.,.)(x) to denote both the function of x and the
corresponding multiplication operator.
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We focus on the first term on the r.h.s. of (3.21), for example fixing k = 1. The other
components of the first term, and the three components of the second term can then be
treated similarly. We use the spectral decomposition of the commutator

[
x1, ωN ,t

]
(which,

by assumption, is trace class for all t ∈ [0; T ]), given by

[x1, ωN ,t ] = i
∑

j

λ j |ϕ j 〉〈ϕ j |

for a sequence of eigenvaluesλ j ∈ R and an orthonormal systemϕ j in L2(R3) (we introduced
i = √−1 on the r.h.s., because the commutator is anti self-adjoint). We find

I1 =
∫ 1

0
ds χ(r/

√
s,z)(x)

(x − z)1
r2

[
x1, ωN ,t

]
χ(

r/
√
1−s,z

)(x)

= i

r

∑
j

λ j

∫ 1

0

ds√
s

∣∣∣∣ χ(r/
√

s,z)(x)
(x − z)1

r/
√

s
ϕ j

〉〈
χ(

r/
√
1−s,z

)(x)ϕ j

∣∣∣∣

and therefore, since ‖|ϕ〉〈ψ |‖tr = ‖ϕ‖‖ψ‖,

‖I1‖tr ≤ 1

r

∑
j

|λ j |
∫ 1

0

ds√
s

∥∥∥∥χ(r/
√

s,z)(x)
|x − z|
r/

√
s

ϕ j

∥∥∥∥
∥∥∥χ(r/

√
1−s,z)(x)ϕ j

∥∥∥

≤ 1

r

∫ 1

0

ds√
s

⎛
⎝∑

j

|λ j |
∥∥∥∥χ(r/

√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥∥∥∥
2
⎞
⎠

1/2

×
⎛
⎝∑

j

|λ j |
∥∥∥χ(r/

√
1−s,z)(x)ϕ j

∥∥∥2
⎞
⎠

1/2

. (3.22)

We compute

∑
j

|λ j |
∥∥∥χ(r/

√
1−s,z)(x)ϕ j

∥∥∥2 =
∫

dx e−2(1−s)(x−z)2/r2ρ|[x1,ωN ,t ]|(x)

≤ C
r3

(1 − s)3/2
ρ∗|[x1,ωN ,t ]|(z) (3.23)

where ρ∗|[x1,ωN ,t ]| is the Hardy–Littlewood maximal function associated with ρ|[x1,ωN ,t ]|. To
prove (3.23), we write

e−2(1−s)(x−z)2/r2 =
∫ 1

0
χ(t ≤ e−2(1−s)(x−z)2/r2)dt

=
∫ 1

0
χ

⎛
⎝|x − z| ≤

√
r2 log(1/t)

2(1 − s)

⎞
⎠ dt

and, using Fubini, we find
∫

dx e−2(1−s)(x−z)2/r2ρ|[x1,ωN ,t ]|(x)

=
∫ 1

0
dt

∫
dx χ

⎛
⎝|x − z| ≤

√
r2 log(1/t)

2(1 − s)

⎞
⎠ ρ|[x1,ωN ,t ]|(x)
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≤ C
r3

(1 − s)3/2
ρ∗|[x1,ωN ,t ]|(z)

∫ 1

0
(log(1/t))3/2

≤ C
r3

(1 − s)3/2
ρ∗|[x1,ωN ,t ]|(z)

which shows (3.23). Similarly to (3.23), we also find

∑
j

|λ j |
∥∥∥∥χ(r/

√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥∥∥∥
2

≤ C
r3

s3/2
ρ∗|[x1,ωN ,t ]|(z) .

Combining this bound with the simpler estimate

∑
j

|λ j |
∥∥∥∥χ(r/

√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥∥∥∥
2

≤ C
∑

j

|λ j | = ‖ρ|[x1,ωN ,t ]|‖1

we obtain

∑
j

|λ j |
∥∥∥∥χ(r/

√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥∥∥∥
2

≤ C
r3α ‖ρ|[x1,ωN ,t ]|‖1−α

1

s3α/2

(
ρ∗|[x1,ωN ,t ]|(z)

)α

for any 0 ≤ α ≤ 1. Inserting the last bound and (3.23) on the r.h.s. of (3.22) we conclude

‖I1‖tr ≤ Cr (1+3α)/2‖ρ|[x1,ωN ,t ]|‖(1−α)/2
1

(
ρ∗|[x1,ωN ,t ]|(z)

)(1+α)/2

×
∫ 1

0
ds

1

s1/2+3α/4(1 − s)3/4
.

Hence, for all δ > 0 we find (putting α = 2/3 − 2δ)

‖I1‖tr ≤ Cr3/2−3δ‖ρ|[x1,ωN ,t ]|‖1/6+δ
1

(
ρ∗|[x1,ωN ,t ]|(z)

)5/6−δ

which concludes the proof of Eq. (3.7), and of Lemma 3.1. ��
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