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Abstract The classical fluctuation-dissipation theorem predicts the average response of a
dynamical system to an external deterministic perturbation via time-lagged statistical cor-
relation functions of the corresponding unperturbed system. In this work we develop a
fluctuation-response theory and test a computational framework for the leadingorder response
of statistical averages of a deterministic or stochastic dynamical system to an external stochas-
tic perturbation. In the case of a stochastic unperturbed dynamical system, we compute the
leadingorderfluctuation-response formulas for twodifferent cases:when the existing stochas-
tic term is perturbed, and when a new, statistically independent, stochastic perturbation is
introduced. We numerically investigate the effectiveness of the new response formulas for an
appropriately rescaled Lorenz 96 system, in both the deterministic and stochastic unperturbed
dynamical regimes.

Keywords Fluctuation-dissipation theorem · Average response · Stochastic perturbation

1 Introduction

Under suitable conditions, the fluctuation-dissipation theorem (FDT) [28,29,41] furnishes
an approximation to the statistical response of a dynamical system to a deterministic exter-
nal perturbation via statistical correlations of the unperturbed dynamics. The FDT offers
more insight into statistical properties of dynamical processes near equilibrium in various
scientific applications [13,15,16,18,21–25,30,32,37,38]. In the past works [1–3,7,8,10–
12], a computational framework predicting the average response of both deterministic and
stochastic dynamical systems to a small deterministic external perturbation was developed
and extensively studied.
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In the current work, we develop the fluctuation-response theory and numerically test the
computational framework of the response of statistical averages to a stochastic external pertur-
bation, for both the deterministic and stochastic unperturbed dynamics. For the deterministic
unperturbed dynamics, our set-up is similar to the one used in [35], however, the resulting
formula we arrive at is different from the one in [35], on which we will comment below. For
the stochastic unperturbed dynamics, we consider two different types of perturbations: first,
where the existing stochastic term is perturbed, and, second, when a new, statistically inde-
pendent, stochastic term is introduced.We test the computational framework of the stochastic
response on the Lorenz 96 system [33,34], which we used as a test-bed nonlinear chaotic
system with forcing and dissipation for various purposes in the past [1–11,38].

Before going into the details, here we start by explaining the basic idea of the average
response and how it can be expressed via the statistical properties of the underlying unper-
turbed dynamical system, and also what problems one runs into while considering what
otherwise seems to be a rather simple dynamical set-up.

1.1 Deterministic Dynamics

We start by considering a system of ordinary differential equations of the form

dxt
dt

= f (xt ), (1.1)

where t is a scalar time variable, xt is an N -dimensional vector in the Euclidean space RN ,
and f : RN → R

N is a smooth vector field. Observe that the solution xt can be specified in
the form of a semigroup φt ,

xt = φt x = x +
∫ t

0
f (xs)ds, (1.2)

where x is the initial condition. We assume that any solution xt = φt x of (1.1) is attracted,
as t → ∞, to a compact set M ⊂ R

N , on which it possesses a unique invariant ergodic
measure μ. We will say that M is the global attractor of (1.1). Here we assume that the
system in (1.1) is chaotic and mixing, that is, it has positive first Lyapunov exponent and
decaying time autocorrelation functions.

Let A(x) be a twice-differentiable function on RN , then we denote its μ-average as

〈A〉 =
∫
M

A(x)dμ(x). (1.3)

Observe that even though A(xt ) changes with time t , its μ-average 〈A(xt )〉 is fixed in t , due
to the fact that μ is invariant on M under φt ,

〈A(xt )〉 =
∫
M

A(φt x)dμ(x) =
∫
M

A(x)dμ(x) = 〈A〉. (1.4)

1.2 The Concept of the Average Response to a Stochastic Perturbation

Consider the situation where the average 〈A〉 is computed across a statistical ensemble of
solutions of (1.1), which is distributed according to the invariant measure μ above. As we
already pointed out, this average 〈A〉 is constant in time. However, assume that, at t = 0, an
external perturbation (that is, a stochastic modification of the right-hand side) is introduced
into (1.1). Clearly, since the right-hand side is different, the measure μ is no longer invariant
for the new, modified dynamics. Because of that, the statistical average 〈A〉 with respect to
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μ becomes time-dependent for the perturbed dynamics. Here we do not assume that μ is
necessarily the Sinai–Ruelle–Bowen measure [45] as the finite time response to an external
perturbation does not require it; an SRB measure is, however, necessary for the infinite time
response to be differentiable with respect to a deterministic external perturbation [42,43].

The difference between the new time-dependent ensemble average of A and its previous
stationary (for the unperturbed dynamics) value is then called the “response”:

Response of A = δ〈A〉(t) = 〈A〉new(t) − 〈A〉old . (1.5)

Observe that above the average is taken not only with respect to the statistical ensemble
of solutions, but also over all possible realizations of the external stochastic perturbation.
Our goal here is to derive the leading order term in the response, which depends only on
statistics of the unperturbed dynamical system, under the assumption that the perturbation is
sufficiently small.

The more obvious, “brute force” approach, would be to do the following:

1. Start with a point x onM, and emit two trajectories out of x: the unperturbed one, given
by φt x, and the perturbed one, given by the corresponding solution of the perturbed
system.

2. Clearly, both trajectories, perturbed and unperturbed, are generally nonlinear functions
of elapsed time t and initial condition x. So, assuming that the unperturbed solution
φt x is “known”, figure out a suitable way to “expand” the perturbed solution around the
unperturbed one in small increments, and keep only the leading order term.

3. Recall that this has to be done for every x ∈ M, so, average the above result out with
respect to the invariant measure μ, and over all possible realizations of the external
stochastic perturbation. Provided that the leading order response from the previous item
is somehow expressed in terms of trajectories of the unperturbed system, the μ-average
can be replaced with the long-term time average, with help of Birkhoff’s theorem [14].

With the exception of averaging across realizations of stochastic perturbations, this is what
was previously done for the deterministic perturbations of chaotic and stochastic dynamical
systems [1–3,7,10–12]. It is a long and cumbersome way of deriving the response, and the
result involves the (computationally expensive) tangent map T t

x , given by

T t
x = ∂

∂x
φt x. (1.6)

The situation is further complicated by the fact that, for chaotic dynamical systems, T t
x

grows exponentially fast in t , which causes a numerical instability for moderate and long
response times. Thus, this approach can only be practically used for rather short response
times (although it is usually quite precise, provided that the response time is sufficiently
short [1–3,7]).

1.3 The Forward Kolmogorov Equation

Another way to compute the average response is to employ the concept of the probability
density p of a statistical ensemble distribution. The key idea here is to use that fact that,
while xt is governed by nonlinear dynamics, the partial differential equation for p (called the
forward Kolmogorov equation [19], and also the Fokker–Planck equation [41]) is linear. In
particular, for the deterministic dynamical system in (1.1), the forward Kolmogorov equation
for p is given by

∂

∂t
p(t, x) = −D · (p(t, x) f (x)), (1.7)

123



1486 R. V. Abramov

where D is the differentiation operator with respect to the vector-argument of the function it
acts upon. Above, the dot-product of D with a vector-function a(x) refers to

D · a(x) = ∂ai (x)

∂xi
, (1.8)

with the usual summation convention. Observe that in order for the solution p of (1.7) to
remain a probability density, its integral over RN must remain equal to 1 (which, together
with the non-negativity of p, implies that p must vanish at infinity), even if p itself changes
with time. Indeed, one can verify that the integral of p over RN is preserved by (1.7), which
is necessary for p to remain a probability density.

TheKolmogorov equation above is an extremely useful tool forworkingwith the statistical
properties of the system in (1.1), since it describes the statistical distribution of the system
in a direct fashion. Unfortunately, it cannot be used directly to compute the response of the
deterministic system in (1.1), for the following reason.

Since, as stated earlier, any solution of (1.1) attracts toM as t becomes infinite, it would
be natural to think that, in the limit as t → ∞, p becomes the density of the ergodic invariant
measure μ onM. However, here lies the fundamental “incompatibility” of the Kolmogorov
equation in (1.7), and the limiting dynamics of (1.1) on its global attractor M: for many
applied dynamical systems, especially those with dissipation and forcing [17,42,43,45], the
invariantmeasureμ onM is not differentiable in x (it is also said that it is not continuouswith
respect to the Lebesguemeasure onM). In this situation, the (non-stationary) solution p(t, x)

of (1.7) contracts exponentially rapidly along certain directions of the phase space (while
appropriately expanding transversally, so that its integral over RN remains 1), becoming
singular in the infinite time limit.

Observe that above we considered arguably the most simple setup for a dynamical system,
which describes awide class of applied problems.Yet,we cannotmake use of theKolmogorov
equation (1.7) to statistically describe dynamics near the attractor of the system in (1.1),
which is necessary for understanding of how the system responds to an external perturbation.
Therefore, in order to be able to use the Kolmogorov equation in (1.7), we must be willing to
consider a suitable modification of (1.1), which renders its invariant measure μ continuous
with respect to the Lebesgue measure on R

N . Arguably, the simplest such modification is
achieved via a stochastic noise added into the otherwise deterministic dynamical system
in (1.1).

1.4 Stochastic Dynamics

Here we are going to consider a stochastic modification of (1.1), achieved via introducing
an additional noise term via a Wiener process W t of dimension K :

dxt = f (xt )dt + G(xt )dW t , (1.9)

where G(xt ) is a smooth N × K matrix. For convenience, here we interpret the resulting
integral of the solution

xt = x +
∫ t

0
f (xs)ds +

∫ t

0
G(xs)dW s (1.10)

in the sense of Itô [26,27]. The forward Kolmogorov equation for the differential equation
in (1.9) is given by [19,39]

∂p

∂t
= −D · (p f ) + 1

2
D2 :

(
pGGT

)
, (1.11)
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where “:” denotes the Frobenius product of two matrices, so that

D2 : A(x) = ∂Ai j (x)

∂xi∂x j
for an N × N matrix A. (1.12)

To ensure the smoothness of solutions of (1.11), here we follow [40] and assume that both f
andG have bounded derivatives of all orders, and that the matrix productGGT is uniformly
positive definite in R

N . The latter automatically means that the columns of G span R
N for

any x ∈ R
N , implying K ≥ N . Additionally, we will assume that there is a unique smooth

stationary probability density p0 which sets the right-hand side of (1.11) to zero.
Observe that the solution xt of (1.9) cannot be represented by a t-semigroup like in (1.2),

since W t depends on t explicitly. However, instead a similar representation can be done
for the Kolmogorov equation in (1.11) with help of the transitional probability density p∗.
Indeed, let p∗(t, x, x0) denote the solution of (1.11), for which the initial condition at t = 0
is the delta-function δ(x − x0). Then, assuming that at time t the solution is p(t, x), its
extension p(t + s, x) for s ≥ 0 can be expressed as a convolution with p∗ as follows:

p(t + s, x) =
∫
RN

p∗(s, x, y)p(t, y)d y
def= Ps p(t, x). (1.13)

Now, let p0 denote the stationary smooth probability density of (1.11), such that

1

2
D2 : (p0GGT ) − D · (p0 f ) = 0, (1.14)

and, therefore,
p0 = P t p0 for any t ≥ 0. (1.15)

Then, the statistically average value of a function A(x) is given by

〈A〉 =
∫
RN

A(x)p0(x)dx, (1.16)

where we assume that A(x) is such that the integral above is finite. As before, if a statistical
ensemble of solutions xt of (1.9) is distributed according to p0, then the ensemble average of
A is constant in time, even though each individual solution in such an ensemble is in general
not stationary.

1.5 The Layout of the Paper

In what is to follow, we arrange the presentation in the reverse order (relative to what was
presented above), due to the fact that, as was mentioned previously, it turns out to be easier
to start with a stochastic differential equation of the form in (1.9) and derive the leading
order response via the Kolmogorov equation (1.11), which we do in Sect. 2. Then, in Sect. 3
we return to the deterministic unperturbed dynamics, and derive the response formula in the
“brute force” fashion, sketched above. In Sect. 4 we show that, if one formally replaces the
invariantmeasureμ of the deterministic system in (1.1)with a smooth density approximation,
then the response formulas for the deterministic and stochastic unperturbed dynamics become
equivalent. In Sect. 5 we derive simplified response formulas for both the deterministic
and stochastic unperturbed dynamics under the assumption that the probability density of
the unperturbed state is Gaussian, as was previously done in [9–12,38] for deterministic
perturbations. In Sect. 6we present the numerical experimentswith both the deterministic and
stochastically forced Lorenz 96 models to verify the computed response formulas. Section 7
summarizes the results of the work.
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2 Leading Order Response of a Stochastic Dynamics to a Stochastic
Perturbation

We start by considering the response of the stochastic dynamics in (1.9), as due to the fact that
the invariant state p0 of the unperturbed dynamics in (1.9) is a smooth stationary solution
of the Kolmogorov equation in (1.11), it is in fact much easier technically to derive the
corresponding leadingorder response formula (as opposed to the situationwith a deterministic
unperturbed dynamics). Here we will consider two different types of perturbation: first, when
the existing stochastic matrix is perturbed, and, second, when a new, statistically independent
stochastic perturbation is added.

2.1 Perturbing the Existing Stochastic Term

First, we are going to assume that the already present in (1.9) stochastic diffusion matrix
G(x) is perturbed by a small time-dependent term starting at t = 0:

dxt = f (xt )dt + (G(xt ) + εη(t)H (xt ))dW t , (2.1)

where 0 < ε 
 1 is a small constant parameter to signify that the perturbation is small,
H (x) is a matrix of the same dimension and smoothness properties as G, and η(t) is a
bounded, piecewise continuous and square-integrable function, which is zero for negative
values of t . Then, the corresponding perturbed Kolmogorov equation is obtained from (1.11)
by replacing G with G + εηH :

∂pε

∂t
= −D · (pε f ) + 1

2
D2 :

(
pε(G + εη(t)H )(G + εη(t)H )T

)
. (2.2)

We assume that the solution pε of the perturbed Kolmogorov equation above depends
smoothly on ε for sufficiently small ε, and admits the expansion

pε = p0 + εp1 + ε2 p2 + · · · , (2.3)

where p0 is the stationary solution of the unperturbed Kolmogorov equation, while the
expansion terms pi , i > 0 are independent on ε and have zero initial conditions. We seek the
perturbed solution in the leading order of ε, which leads directly to

∂p1
∂t

= −D · (p1 f ) + 1

2
D2 : (p1GGT ) + η(t)

2
D2 :

(
p0

(
GH T + HGT

))
. (2.4)

One can verify directly that the solution for p1 is given by

p1(t) = 1

2

∫ t

0
P t−s

(
D2 :

(
p0

(
GH T + HGT

)))
η(s)ds, (2.5)

where P t is defined in (1.13). The response of A in the leading order of ε is thus given by

δ〈A〉(t) =
∫
RN

A(p − p0)dx = ε

∫
RN

Ap1dx + O(ε2) = ε

∫ t

0
R1(t − s)η(s)ds + O(ε2),

(2.6)
with

R1(t) = 1

2

∫
RN

A(x)P t
(
D2 :

(
p0

(
GH T + HGT

)))
(x)dx. (2.7)
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At this point, we use the definition of P t in (1.13) to obtain R1(t) in terms of the time-
correlation function [40,41]

R1(t) = 1

2

∫
RN

∫
RN

A(x)p∗(t, x, y)B( y)p0( y)d ydx, (2.8)

with
B( y) = p−1

0 ( y)D2 :
(
p0

(
GH T + HGT

))
( y). (2.9)

Above, the division by p0 is allowed since it is the solution to an elliptic equation which
vanishes at infinity, and thus is never zero for finite y.

For the practical computation of the time correlation function in (2.8), we use theBirkhoff–
Khinchin theorem [20] and replace the spatial integrals in (2.8) with the time average along
a long-term trajectory as

R1(t) = lim
r→∞

1

2r

∫ r

0
A(xt+s)B(xs)ds, (2.10)

which results, after substituting the expression for B(xs), in

R1(t)= lim
r→∞

1

2r

∫ r

0
A(xt+s)p

−1
0 (xs)D2 :

(
p0(xs)

(
G(xs)H T (xs)+H (xs)GT (xs)

))
ds.

(2.11)
The long-term trajectory xs above is computed via a numerical simulation of (1.9), from an
arbitrary initial condition.

2.2 Adding a New Stochastic Term

Here we assume that a new small stochastic term is added to (1.9),

dxt = f (xt )dt + G(xt )dW t + εη(t)H (xt )dW ′
t , (2.12)

where the Wiener process W ′
t is independent of W t . In order to derive the corresponding

Kolmogorov equation, we rewrite the above equation in the form

dxt = f (xt )dt + G̃(t, xt )dW̃ t , (2.13)

where

W̃ t =
(
W t

W ′
t

)
, G̃(t, xt ) =

(
G(xt )

∣∣∣εη(t)H (xt )
)
. (2.14)

The corresponding perturbed Kolmogorov equation is, obviously, given by

∂pε

∂t
= −D · (pε f ) + 1

2
D2 :

(
pεG̃G̃

T
)

. (2.15)

Further observing that

G̃G̃
T = GGT + ε2η2(t)HH T , (2.16)

we arrive at

∂pε

∂t
= −D · (pε f ) + 1

2
D2 :

(
pεGGT

)
+ ε2η2(t)

2
D2 :

(
pεHH T

)
. (2.17)

Observe that there is no first-order term in ε, so we can expand pε near p0 in even powers of
ε as
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p = p0 + ε2 p2 + ε4 p4 + · · · , (2.18)

where, as before, p2i for i > 0 are independent of ε and have zero initial condition, and
similarly obtain the equation for p2 as

∂p2
∂t

= −D · (p2 f ) + 1

2
D2 :

(
p2GGT

)
+ η2(t)

2
D2 :

(
p0HH T

)
. (2.19)

Again, one can verify that p2 is given by

p2(t) = 1

2

∫ t

0
P t−s D2 :

(
p0HH T

)
η2(s)ds. (2.20)

The response of A in the leading order of ε (which is now ε2) is thus given by

δ〈A〉(t)=
∫
RN

A(p − p0)dx=ε2
∫
RN

Ap2dx+O(ε4)=ε2
∫ t

0
R2(t − s)η2(s)ds+O(ε4),

(2.21)

with

R2(t) = 1

2

∫
RN

A(x)P t
(
D2 :

(
p0HH T

))
(x)dx. (2.22)

Following the same steps as above for R1(t), we express R2(t) via the time average as

R2(t) = lim
r→∞

1

2r

∫ r

0
A(xt+s)p

−1
0 (xs)D2 :

(
p0(xs)H (xs)H T (xs)

)
ds. (2.23)

Observe that in this case the response is quadratic in εη(t) (which is unlike the previous case,
where the existing diffusion matrix was perturbed).

3 Leading Order Response of a Deterministic Dynamics to a Stochastic
Perturbation

Now, we consider a small external stochastic perturbation of the deterministic system in (1.1)
of the form

dxt = f (xt )dt + εη(t)H (xt )dW t , (3.1)

where the perturbation term has the same properties as in the previous section, while, for the
purposes of the derivation, we additionally require f to be uniformly Lipschitz in R

N [19,
40] to ensure the existence of solutions to (3.1) (recall that the unperturbed system back
in (1.1) does not necessarily require it for global existence). Here, however, we cannot
use an expansion of Kolmogorov equation near the stationary unperturbed state, since this
state may not necessarily be continuous with respect to the Lebesgue measure. Instead, we
will have to employ the differentiability of the resulting stochastic flow with respect to the
perturbation [31].

We denote the solution to the perturbed system in (3.1) by xε
t = φε

t x, and rewrite (3.1) in
the integral form as

φε
t x = x +

∫ t

0
f (φε

s x)ds + ε

∫ t

0
η(s)H (φε

s x)dW s, (3.2)
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where the stochastic integral is computed in the sense of Itô. Let A(x) be a twice differentiable
function, then one can write its second-order Taylor expansion in ε as

A(φε
t x) − A(φt x) = εDA(φt x) · ∂εφt x +

+ε2

2

[
DA(φt x) · ∂2ε φt x + D2A(φt x) : (∂εφt x ⊗ ∂εφt x)

] + o(ε2),

(3.3)

where “⊗” is the outer product of two vectors, that is,

x ⊗ y = xi y j . (3.4)

Also, the following notation is used above:

∂εφt x
def= ∂φε

t x
∂ε

∣∣∣∣
ε=0

. (3.5)

For the ε-derivative of φε
t x (which we assume to exist almost surely for finite t according

to [31]) we compute

∂

∂ε
φε
t x =

∫ t

0
D f (φε

s x)
∂

∂ε
φε
s xds + ε

∫ t

0
η(s)DH (φε

s x)
∂

∂ε
φε
s x dW s +

+
∫ t

0
η(s)H (φε

s x)dW s, (3.6)

which results, by setting ε = 0, in

∂εφt x =
∫ t

0
D f (φsx)∂εφsxds +

∫ t

0
η(s)H (φsx)dW s . (3.7)

At this point, we need to solve the Itô integral equation above. Applying the Itô differentiation
formula to both sides of (3.7) results in

d(∂εφt x) = D f (φt x)∂εφt xdt + η(t)H (φt x)dW t . (3.8)

At the same time, it is easy to verify that the tangent map T t
x from (1.6) satisfies

∂

∂t
T t

x = D f (φt x)T t
x, (3.9)

which further yields

d(∂εφt x) =
(

∂

∂t
T t

x

) (
T t

x
)−1

∂εφt xdt + η(t)H (φt x)dW t . (3.10)

Now we multiply both sides of the above identity by the inverse of T t
x on the left, which

results, after taking into account the identity

0 = A−1 ∂I
∂t

= A−1 ∂

∂t
(AA−1) = A−1 ∂A

∂t
A−1 + ∂

∂t
(A−1)

for an arbitrary matrix A, in

(
T t

x
)−1 d(∂εφt x) = −

(
∂

∂t

(
T t

x
)−1

)
∂εφt xdt + η(t)

(
T t

x
)−1 H (φt x)dW t . (3.11)
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Pulling the first term in the right-hand side above to the left, combining the terms and
integrating from 0 to t , we arrive at

(
T t

x
)−1

∂εφt x =
∫ t

0
η(s)

(
T s

x
)−1 H (φsx)dW s +

[(
T t

x
)−1

, ∂εφt x
]t
0
, (3.12)

where the last term is the quadratic covariation of the processes
(
T t

x
)−1 and ∂εφt x:

[(
T t

x
)−1

, ∂εφt x
]t
0

=
∫ t

0
d

((
T s

x
)−1

)
d (∂εφsx) =

∫ t

0

∂

∂s

((
T s

x
)−1

)
ds d (∂εφsx) .

(3.13)
However, since we have assumed above that ∂εφt x = ∫ t

0 d (∂εφsx) is almost surely finite
for finite t , the quadratic covariation above in (3.13) is almost surely zero. Further multiply-
ing (3.12) by T t

x on the left and taking into account its cocycle property, we finally arrive
at

∂εφt x =
∫ t

0
η(s)T t−s

φs xH (φsx)dW s . (3.14)

For the second ε-derivative we further obtain by the differentiation of (3.6)

∂2

∂ε2
φε
t x =

∫ t

0

[
D f (φε

s x)
∂2

∂ε2
φε
s x + D2 f (φε

s x) :
(

∂

∂ε
φε
s x ⊗ ∂

∂ε
φε
s x

)]
ds +

+
∫ t

0

[
2η(s)DH (φε

s x)
∂

∂ε
φε
s x + εη(s)

∂

∂ε

(
DH (φε

s x)
∂

∂ε
φε
s x

)]
dW s,

(3.15)

which becomes, upon setting ε = 0,

∂2ε φt x =
∫ t

0

[
D f (φsx)∂2ε φsx + D2 f (φsx) : (∂εφsx ⊗ ∂εφsx)

]
ds +

+2
∫ t

0
η(s)DH (φsx)∂εφsxdW s . (3.16)

Now recall that, according to the definition of the average response in (1.5), we should
compute the expectation (that is, the average) of the second-order Taylor expansion in (3.3)
over all realizations of W t , which leads to

EA(φε
t x) − A(φt x) = εDA(φt x) · E∂εφt x +

+ε2

2

[
DA(φt x) · E∂2ε φt x + D2A(φt x) : E (∂εφt x ⊗ ∂εφt x)

]

+ o(ε2). (3.17)

One immediately observes that

E∂εφt x = E

∫ t

0
η(s)T t−s

φs xH (φsx)dW s = 0, (3.18a)

E

∫ t

0
η(s)DH (φsx)∂εφsxdW s = 0, (3.18b)

where in the first identity the integrand is not a random variable, while in the second the inte-
grand is adapted to the natural filtration of W t . After some computation while remembering
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Duhamel’s principle and Itô’s isometry, we arrive at

E (∂εφt x ⊗ ∂εφt x) =
∫ t

0
T t−s

φs xH (φsx)H T (φsx)
(
T t−s

φs x

)T
η2(s)ds, (3.19a)

E∂2ε φt x =
∫ t

0

∫ s

0
T t−s

φs xD
2 f (φsx) :

[
T s−τ

φτ xH (φτ x)H T (φτ x)
(
T s−τ

φτ x

)T
]

η2(τ )dτds.

(3.19b)
Now we recall that the expectations above are taken under the condition that the stochastic
flows start at x, which, in turn, belongs to the attractor of (1.1). Therefore, we further need to
average the result above over the invariant measure μ of the unperturbed system. The result
is, after discarding the higher-order terms,

δ〈A〉(t) = ε2
∫ t

0
R(t − s)η2(s)ds + o(ε2), (3.20a)

R(t) = 1

2

∫
M

[
D2A(φt x) :

(
T t

xH (x)H T (x)
(
T t

x
)T )

+

+DA(φt x)

∫ t

0
T t−s

φs xD
2 f (φsx) :

(
T s

xH (x)H T (x)
(
T s

x
)T )

ds

]
dμ(x).

(3.20b)

4 The Equivalence of the Response Formulas for the Deterministic and
Stochastic Dynamics

While the response formula in (3.20b) is rather complicated for a practical use, one can
actually show that the response operator R(t) in (3.20b) can be written in a more concise
way:

R(t) = 1

2

∫
M

∂2A(φt x)

∂x2
: (
H (x)H T (x)

)
dμ(x). (4.1)

Indeed, observe that, first,
∂A(φt x)

∂x
= DA(φt x)T t

x, (4.2a)

∂2A(φt x)

∂x2
= D2A(φt x) : (

T t
x ⊗ T t

x
) + DA(φt x)

∂

∂x
T t

x, (4.2b)

where the combination of the Frobenius and outer product for matrices denotes
[
A : (B ⊗ C)

]
i j = Akl BkiCl j . (4.3)

Next, differentiating (3.9) with respect to x yields

∂

∂t

(
∂

∂x
T t

x

)
= D f (φt x)

∂

∂x
T t

x + D2 f (φt x) : (
T t

x ⊗ T t
x
)
. (4.4)

Duhamel’s principle then yields

∂

∂x
T t

x =
∫ t

0
T t−s

φs xD
2 f (φsx) : (

T s
x ⊗ T s

x
)
ds. (4.5)
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Combining the results, we obtain

∂2A(φt x)

∂x2
= D2A(φt x) : (

T t
x ⊗ T t

x
) + DA(φt x)

∫ t

0
T t−s

φs xD
2 f (φsx) : (

T s
x ⊗ T s

x
)
ds,

(4.6)

which leads to the above claim.
It is interesting that a different response formula was obtained in [35] for a stochastic

perturbation of a deterministic dynamics.1 The derivation in [35] was also different: instead,
a stochastic perturbation was used directly in the second-order response formula for deter-
ministic perturbations [44], which was further scaled by a factor of one-half.

As we mentioned above, generally one cannot assume that the invariant measure of the
deterministic dynamics of the form (1.1) possesses a density, since most often the compact
set on which the solution of (1.1) lives has a complicated structure. However, let us assume
that there exists a smooth probability density p0(x) > 0, such that p0dx is a suitable, in an
appropriate for our purposes sense, approximation for the invariant measure dμ. Under such
a hypothetical assumption, one writes (4.1) in the form

R(t) = 1

2

∫
M

∂2A(φt x)

∂x2
: (
H (x)H T (x)

)
p0(x)dx. (4.7)

Now thatμ is replaced by the density p0(x), one can integrate the above expression by parts,
obtaining

R(t) = 1

2

∫
M

A(φt x)D2 :
(
p0(x)H (x)H T (x)

)
dx. (4.8)

Replacing the measure averages with the time averages with help of Birkhoff’s theorem, we
obtain the same formula as in (2.23):

R(t) = lim
r→∞

1

2r

∫ r

0
A(xt+s)p

−1
0 (xs)D2 :

(
p0(xs)H (xs)H T (xs)

)
ds. (4.9)

In other words, under the assumption of a differentiable approximation to the invariant state,
the time-averaged response formula for the deterministic unperturbed dynamics is identical
to the response formula for the stochastic dynamics in (2.23), where the external stochastic
perturbation is statistically independent to the unperturbed noise term.

Below we will see that this approach allows to obtain a sensible approximation to the
response operator even in a situation where the unperturbed dynamics is purely deterministic,
similar to what was observed for the deterministic perturbations in [10–12,38].

5 The Quasi-Gaussian Approximation for the Response Operator

Observe that the response formulas for the stochastic unperturbed dynamics in (2.11)
and (2.23) are not computable directly, since the equilibrium density p0(x) of (1.9) is not
generally known explicitly. It is, theoretically, possible to compute the response in (4.1) by
computing the tangent map T t

x in parallel with xt (for more details, see [1–3,7,10–12]) and
using (3.20b) expressed as a time-lagged autocorrelation function over the time-series aver-
age. However, the latter option is very expensive from the computational standpoint, and, for

1 The author privately communicated that his response formula applies to a perturbation noise in the
Stratonovich form.
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a chaotic unperturbed dynamical system, it will only remain computationally stable for short
response times.

Instead, we are going to use a simplifiedmethod to compute the response, called the quasi-
Gaussian FDT (qG-FDT) approximation [11]. The main idea of the qG-FDT approximation
is that p0(x) in (2.11), (2.23) and (4.9) is replacedwith itsGaussian approximation,which has
the same mean state and covariance matrix as does p0(x). For that, first observe that (2.11)
and (2.23) (which is identical to (4.9)) can be written as

R1(t) = lim
r→∞

1

2r

∫ r

0
A(xt+s)D

2 :
(
G(xs)H T (xs) + H (xs)GT (xs)

)
ds +

+ lim
r→∞

1

r

∫ r

0
A(xt+s)

(
D ·

(
G(xs)H T (xs) + H (xs)GT (xs)

))
· Dp0(xs)

p0(xs)
ds +

+ lim
r→∞

1

2r

∫ r

0
A(xt+s)

(
G(xs)H T (xs) + H (xs)GT (xs)

)
: D2 p0(xs)

p0(xs)
ds, (5.1a)

R2(t) = lim
r→∞

1

2r

∫ r

0
A(xt+s)D

2 :
(
H (xs)H T (xs)

)
ds +

+ lim
r→∞

1

r

∫ r

0
A(xt+s)

(
D ·

(
H (xs)H T (xs)

))
· Dp0(xs)

p0(xs)
ds +

+ lim
r→∞

1

2r

∫ r

0
A(xt+s)

(
H (xs)H T (xs)

)
: D2 p0(xs)

p0(xs)
ds. (5.1b)

Now, let us denote the mean state of p0(x) as m, and its covariance matrix as C :

m =
∫
RN

x p0(x)dx = lim
r→∞

1

r

∫ r

0
xsds, (5.2a)

C =
∫
RN

(x − m) ⊗ (x − m) p0(x)dx = lim
r→∞

1

r

∫ r

0
(xs − m) ⊗ (xs − m)ds. (5.2b)

Then, the Gaussian approximation pG0 (x) for p0(x) is given by the explicit formula

pG0 (x) = 1√
(2π)N detC

exp

(
−1

2
(x − m) · C−1(x − m)

)
, (5.3)

which results in
DpG0 (x)

pG0 (x)
= −C−1(x − m), (5.4a)

D2 pG0 (x)

pG0 (x)
= C−1((x − m) ⊗ (x − m)

)
C−1 − C−1. (5.4b)

The approximations above are then inserted directly into (5.1a) and (5.1b), resulting in explicit
time-lagged autocorrelation functions, computed along the long-term time series of solutions
of the unperturbed system in (1.9). Observe that the autocorrelations in (5.1a) and (5.1b),
computed via theGaussian approximations in (5.4), simplify somewhat further if thematrices
G and H are constant, as only one term out of the three remains in such a case.
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6 Computational Experiments

In this sectionwe investigate the validity of the qG-FDT response formulas in (5.1a) and (5.1b)
for both the deterministic and stochastic unperturbed dynamics. For the test-bed dynamical
system, we choose the well-known Lorenz 96 model.

6.1 The Rescaled Lorenz 96 Model

The test system used to study the new method of stochastic parameterization here is the
rescaled Lorenz 96 system with stochastic forcing. Without the stochastic forcing, it was
previously used in [4–9,36] to study the deterministic reduced model parameterization, as
well as the average response to deterministic external perturbations. The rescaled Lorenz 96
system with stochastic forcing is given by

dxi =
[
xi−1(xi+1 − xi−2) + 1

β
(x̄(xi+1 − xi−2) − xi ) + F − x̄

β2

]
dt + G dWi

t , (6.1)

with 1 ≤ i ≤ N . Above,Wi
t denotes the family of N mutually independentWiener processes,

indexed by i , with G being a constant stochastic forcing parameter, so that, in terms of the
notations in (1.9), G(x) is a constant multiple of the identity matrix,

G(x) = GI . (6.2)

The model has periodic boundary conditions: xi+N = xi . The parameters x̄ and β are the
statistical mean and the standard deviation, respectively, for the corresponding unrescaled
Lorenz 96 model [33,34]

dxi
dt

= xi−1(xi+1 − xi−2) − xi + F, (6.3)

with the same periodic boundary conditions. The rescaling above ensures that, in the absence
of the stochastic forcing (that is, G = 0) the Lorenz 96 model in (6.1) has zero mean state
and unit standard deviation, and that the time scale of evolution of its solution is roughly the
same for different values of F . In the current work, we test the response theory, developed
above, for two values of F , F = 24 and F = 8, and two values of G, G = 0.5 and G = 0,
with the latter corresponding to the purely deterministic unperturbed dynamics. As in the
original paper [34], we set N = 40.

We must note that the right-hand side of (6.1) does not satisfy the requirements imposed
on (1.9) in Sect. 1; observe that the deterministic part of the right-hand side of (6.1) is
neither bounded nor even uniformly Lipschitz in R

N , which means that the existence of
strong solutions to (6.1) is not guaranteed [19,40]. Nonetheless, below we demonstrate via
the numerical simulations that, for the chosen parameters of the system, numerical solutions
exist for a long enough time to allow the reliable time-averaging for the response computation.

6.2 Long-Term Statistics of the Unperturbed Dynamics

The computational settings for the numerical simulations were chosen as follows:

• Forward integration scheme: Runge-Kutta 4th order for the deterministic part of the time
step, forward Euler for the stochastic part of the time step;

• Time discretization step: 
t = 1/64;
• Time averaging window: Tav =200,000 time units;
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Fig. 1 Probability density functions and time autocorrelation functions

Table 1 The skewness and
kurtosis

Skewness Kurtosis

F = 24,G = 0.5 3.806 × 10−2 2.92

F = 8,G = 0.5 6.42 × 10−2 2.81

F = 24,G = 0 0.1059 2.699

F = 8,G = 0 9.375 × 10−2 2.481

• Spin-up time window (time skipped between the initial condition and the beginning of
the time averaging window): Tskip =10,000 time units;

• Initial condition: each initial state xi , 1 ≤ i ≤ N , is generated at random using normal
distribution with zero mean and unit standard deviation.

In Fig. 1 we show the histograms of the probability density functions (PDFs), computed by
the standard bin-counting, as well as the simplest time-lag autocorrelation functions of the
solution with itself, the latter computed numerically as

C(t) = 1

Tav

∫ Tskip+Tav

Tskip
x(s)x(t + s)ds, (6.4)

where x(t) denotes one of the N variables of (6.1). Obviously, due to the translational invari-
ance of (6.1), both the PDFs and correlation functions are identical across different variables.
Observe that the PDFs look close to Gaussian, and the time autocorrelation functions decay
rather rapidly within the first five units of time. There are two reasons why we need to check
the decay of the time autocorrelation functions: first, we need to ensure that the time averag-
ing window Tav is much longer than the decay time scale of C(t) for the adequate statistical
averaging; and, second, we need to estimate the time scale of development of the response,
since it is directly connected to the time scale of the autocorrelation functions according
to (5.1a) and (5.1b).

For more precise estimates of how close the PDFs on Fig. 1 are to Gaussian, in Table 1
we show the skewness (third moment) and kurtosis (fourth moment) of the PDFs, nondimen-
sionalized by the appropriate powers of the variance. For the purely Gaussian distribution,
the skewness is zero, and the kurtosis is 3. Observe that, in this respect, the PDFs for the
dynamical regimes with greater F and greater G are closer to the Gaussian, and thus we may
expect generally better performance of the qG-FDT approximations in (5.1a) and (5.1b) for
those regimes.

123



1498 R. V. Abramov

6.3 The External Perturbations and the Response Function

For testing the response theory developed above, we use a rather simple set-up. We set
the stochastic perturbation matrix H entirely to zero, except for its single upper-left corner
element, which is set to 1:

H (x) =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞
⎟⎟⎟⎠ . (6.5)

The product εη(t) is set to a small constant η at zero response time:

εη(t) =
{
0, t < 0,
η, t ≥ 0,

(6.6)

where we choose two values for η: η = 0.05, and η = 0.1. Thus, the stochastic perturbation
is applied to the first variable of the model, x1, and constitutes a scalar Wiener noise ηWt .

As far as the choice of the response function A(x) is concerned, it is obvious that monitor-
ing a single scalar quantity (as presented in the theory above) is not sufficient to evaluate the
detailed impact of the external stochastic perturbation, even of the simplest type we chose
above, on the model. Thus, we choose to monitor the response to the stochastic perturbation
of each model variable instead. More precisely, instead of monitoring one response function
for the whole system, we monitor N of those, separately for each model variable:

Ai (x) = x2i , 1 ≤ i ≤ N , (6.7)

where the square of a variable xi is chosen (rather than the variable itself) because it is likely
to respond more substantially to a stochastic perturbation. If we denote the set of all Ai (x)

as the vector A(x), the latter can be expressed concisely as the Hadamard product of x with
itself:

A(x) = x ◦ x. (6.8)

Note that in our previousworks [1–3,7,9–12,38],where the deterministic perturbationswhere
studied, the typical choice of A(x) was x itself. Here, however, we prefer (6.8) because x by
itself is unlikely to respond to a stochastic perturbation in a well-articulated fashion.

The set-up above allows us to compute the response of all x2i , 1 ≤ i ≤ N , separately, to a
small constant stochastic forcing at the first variable, x1, which is switched on at zero time.
Due to the constant nature of the stochastic perturbation, the response formulas are simplified
as

δ〈A〉(t) = R1(t)η, R1(t) =
∫ t

0
R1(s)ds, (6.9)

or

δ〈A〉(t) = R2(t)η
2, R2(t) =

∫ t

0
R2(s)ds, (6.10)

depending on the type of stochastic forcing, where R1(s) and R2(s) are the corresponding
vectorized leading order qG-FDT response operators from (5.1a) and (5.1b) for the vector
response function in (6.8). In what follows, we display the operators R1(t) or R2(t) (again,
depending on the type of stochastic perturbation) computed at different times t = 0.5, 1, 2, 4.
We compare these operators with the directly measured responses via ensemble simulations,
normalized by eitherη (for comparisonwithR1) orη2 (for comparisonwithR2), respectively.
The ensemble simulations are performed with the ensemble size of 20000 members (which
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were sampled from the same long term trajectory of the unperturbed system as was used
to compute the statistics and the qG-FDT response), with 1000 realizations of the Wiener
process carried out for each member. Each such ensemble simulation took several hours on a
16-processor Intel Xeon server, running fully in parallel. In contrast, each qG-FDT response
computation took only few minutes using a single CPU core.

In addition to the plots of the response at different times, we show the relative errors and
collinearity correlations between the actually measured response, and the response predicted
by the qG-FDT formulas in (5.1a) or (5.1b), depending on the type of noise perturbation.
The relative error is defined as the ratio of the Euclidean norm of the difference between the
qG-FDT response and the normalized measured response, over the Euclidean norm of the
qG-FDT response:

Relative error =

⎧⎪⎨
⎪⎩

∥∥∥ δ〈A〉measured
η

−R1

∥∥∥
‖R1‖ when perturbing the existing noise term,∥∥∥ δ〈A〉measured

η2
−R2

∥∥∥
‖R2‖ when perturbing with a new noise term.

(6.11)

The collinearity correlation is defined as the Euclidean inner product of the qG-FDT response
with one of the measured responses, normalized by the product of their corresponding
Euclidean norms:

Collinearity correlation = δ〈A〉measured · R
‖δ〈A〉measured‖‖R‖ . (6.12)

It is easy to see that the collinearity correlation achieves its maximum value of 1 if and only
if one response is the exact multiple of the other.

6.4 Perturbing the Existing Noise Term

In this section we study the response of two dynamical regimes of the stochastically forced
(G = 0.5) rescaled Lorenz 96 model in (6.1). The first regime corresponds to the constant
forcing F = 24, and is, according to Fig. 1 and Table 1, the closest to the Gaussian regime
of all examined in Sect. 6.2. In Fig. 2 we show the response of the function (6.8) to the
perturbation of the existing stochastic matrixG = 0.5I by the perturbations described above
in (6.5)–(6.6), with η set to 0.05 and 0.1. With help of the periodicity of (6.1), the response
variables in Fig. 2, as well as all subsequent figures, are displayed so that the variable x1 (on
which the perturbation occurs) is at the center of the plot, with x2 immediately to the right,
and xN to the left.

Observe that the precision of the qG-FDT response prediction in this case is truly striking—
there is hardly anyvisual difference between the qG-FDTprediction and the directlymeasured
responses for both η = 0.05 and η = 0.1. Additionally, in Table 2 we show the relative errors
and collinearity correlations for the qG-FDT prediction and two directly measured responses
for the regime with F = 24 and G = 0.5. Observe that the relative errors are about 10–15%
for all displayed response times, and their collinearity exceeds 99%.

In Fig. 3we show the results for the second regimewherewe perturb the existing stochastic
forcing. In this regime, the stochastic diffusion matrix is set to the same value G = 0.5I as
before, by the constant deterministic forcing F is set to F = 24. According to Fig. 1 and
Table 1, this regime is the second closest to the Gaussian, and it is clearly manifested in the
difference between the qG-FDT prediction and the directly measured response with η = 0.05
and η = 0.1, which are shown in Fig. 3. Namely, this time there is a visible discrepancy
between the qG-FDT response prediction and both directly measured responses in the second
variable to the right from the one where the perturbation is applied. Table 3 reinforces this
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Fig. 2 Response to the existing noise perturbation, F = 24, G = 0.5

Table 2 Relative errors and collinearity correlations in the response to the existing noise perturbation, F = 24,
G = 0.5

Rel. errors, F = 24,G = 0.5 Coll. corrs, F = 24,G = 0.5
η = 0.05 η = 0.1 η = 0.05 η = 0.1

t = 0.5 7.82 × 10−2 0.1178 t = 0.5 0.9984 0.9984

t = 1 0.1181 0.1612 t = 1 0.9972 0.9972

t = 2 0.1274 0.1692 t = 2 0.9964 0.9964

t = 4 9.826 × 10−2 0.1383 t = 4 0.9975 0.9974

visual perception, indicating relative errors between15 and26%.Surprisingly, the collinearity
correlations between the qG-FDTprediction and the directlymeasured responses donot suffer
much, still remaining about 97-98% of the maximum possible.

6.5 Perturbing with a New Noise

Here we show the results of numerical simulations where the external stochastic perturbation
is introduced into the system via a separate noise realization. In this situation, we can study
both the fully deterministic and the stochastically forced dynamics of the rescaled Lorenz
96 model in (6.1); together with two different values of the forcing F , this constitutes four

123



Leading Order Response of Statistical Averages… 1501

-0.1

0

0.1

0.2

0.3

0.4

0.5

26 31 36 1 6 11 16

R
es

po
ns

e

Variable

F=8, G=0.5, time = 0.5

qG-FDT
η=0.05

η=0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

26 31 36 1 6 11 16

R
es

po
ns

e

Variable

F=8, G=0.5, time = 1

qG-FDT
η=0.05

η=0.1

-0.2

0

0.2

0.4

0.6

0.8

26 31 36 1 6 11 16

R
es

po
ns

e

Variable

F=8, G=0.5, time = 2

qG-FDT
η=0.05

η=0.1

-0.2

0

0.2

0.4

0.6

0.8

26 31 36 1 6 11 16

R
es

po
ns

e

Variable

F=8, G=0.5, time = 4

qG-FDT
η=0.05

η=0.1

Fig. 3 Response to the existing noise perturbation, F = 8, G = 0.5

Table 3 Relative errors and collinearity correlations in the response to the existing noise perturbation, F = 8,
G = 0.5

Rel. errors, F = 8,G = 0.5 Coll. corrs, F = 8,G = 0.5
η = 0.05 η = 0.1 η = 0.05 η = 0.1

t = 0.5 0.1464 0.1643 t = 0.5 0.9898 0.9898

t = 1 0.2116 0.2354 t = 1 0.9807 0.9807

t = 2 0.2385 0.2614 t = 2 0.9748 0.9746

t = 4 0.2046 0.224 t = 4 0.98 0.9796

different combinations of parameters: (F = 24, G = 0), (F = 8, G = 0), (F = 24,
G = 0.5), and (F = 8, G = 0.5).

As we mentioned before, the qG-FDT approximation in (5.1b) should not formally be
valid for the deterministic unperturbed dynamics with G = 0, since there is no guarantee
that the invariant measure μ of the unperturbed dynamics is even continuous with respect to
the Lebesgue measure, let alone possesses a Gaussian density. However, practice showed in
the past with deterministic perturbations [9–12,38] that the quasi-Gaussian formula for the
deterministic invariant measure can in fact be quite a reasonable approximation, especially
if the unperturbed dynamics is strongly chaotic and rapidly mixing. This is what we confirm
here for stochastic external perturbations as well.
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Fig. 4 Response to the perturbation with a new noise, F = 24, G = 0

Table 4 Relative errors and
collinearity correlations in the
response to the perturbation with
a new noise, F = 24, G = 0

Rel. errors, F = 24,G = 0 Coll. corrs, F = 24,G = 0
η = 0.05 η = 0.1 η = 0.05 η = 0.1

t = 0.5 0.199 0.206 t = 0.5 0.9817 0.9807

t = 1 0.2657 0.25 t = 1 0.966 0.9683

t = 2 0.3325 0.2906 t = 2 0.96 0.9572

t = 4 2.241 1.081 t = 4 0.3126 0.6303

To model the ideal response in the stochastically forced unperturbed regimes with G =
0.5, we apply an independent realization of the unperturbed stochastic forcing with the
diffusion matrix G = 0.5I to each of the 20,000 ensemble members, while modeling the
stochastic perturbation via another 1000 independent realizations of theWiener noise for each
ensemble simulation as before. This is done to retain the same computational expense as for
the other studied cases, which, of course, leads to statistical undersampling of the expectation
over the noise realizations. Indeed, in the case of stochastic perturbations independent from
the unperturbed noise, the expectation must be computed over the comparable number of
realizations separately for the unperturbed noise and for the stochastic perturbation to retain
comparable averaging fidelity. Still, we find that even in this simplified setup the qG-FDT
approximation shows good agreement with the measured response, at least for sufficiently
short response times.
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Fig. 5 Response to the perturbation with a new noise, F = 8, G = 0

Table 5 Relative errors and
collinearity correlations in the
response to the perturbation with
a new noise, F = 8, G = 0

Rel. errors, F = 8,G = 0 Coll. corrs, F = 8,G = 0
η = 0.05 η = 0.1 η = 0.05 η = 0.1

t = 0.5 0.3602 0.3672 t = 0.5 0.9358 0.9347

t = 1 0.4952 0.443 t = 1 0.869 0.8967

t = 2 0.5291 0.4581 t = 2 0.8719 0.8896

t = 4 1.112 0.7775 t = 4 0.5373 0.7163

In Fig. 4 and Table 4 we show the qG-FDT prediction together with the directly measured
response with perturbations η = 0.05 and η = 0.1, for the dynamical regime of (6.1) with
F = 24 and G = 0 (fully deterministic). Observe that, in comparison with the previously
studied regimes, the quality of the qG-FDTprediction tends to deteriorate rather substantially,
as the relative errors increase to 20–33%, and the collinearity correlations drop to 95–98% for
the response times t ≤ 2.However, whatwe can also observe is the large discrepancy between
the two directly measured responses for different perturbation magnitudes, which develops at
t = 4.Note that no such discrepancywas observed for the stochastic unperturbed dynamics—
both directlymeasured responses, forη = 0.05 and η = 0.1,were virtually identical in Figs. 2
and 3. This could be a manifestation of the developing structural instability of the attractor
of the system as the dynamics transition from purely deterministic to stochastic.
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Fig. 6 Response to the perturbation with a new noise, F = 24, G = 0.5

Table 6 Relative errors and collinearity correlations in the response to the perturbation with a new noise,
F = 24, G = 0.5

Rel. errors, F = 24,G = 0.5 Coll. corrs, F = 24,G = 0.5
η = 0.05 η = 0.1 η = 0.05 η = 0.1

t = 0.5 0.1343 8.118 × 10−2 t = 0.5 0.9975 0.9987

t = 1 0.1674 8.757 × 10−2 t = 1 0.9859 0.9962

t = 2 0.4152 0.3859 t = 2 0.9099 0.9225

t = 4 5.17 1.506 t = 4 0.222 0.585

In Fig. 5 and Table 5 we show the results for the regime with F = 8, and all other
parameters set as above. Here, observe that the quality of the qG-FDT prediction deteriorates
even further, as the relative errors increase to 36–53%, and the collinearity correlations drop
to 93–87% for the response times t ≤ 2. This is to be expected, however, since this regime
is the farthest from the Gaussian, according to Fig. 1 and Table 1. The discrepancy between
the directly measured responses for perturbations of different magnitudes, which could be
attributed to the developing structural instability of the attractor, also manifests itself at time
t = 4, as for the previously studied deterministic regime with F = 24.

In Fig. 6 and Table 6 we show the qG-FDT prediction together with the directly measured
response with perturbations η = 0.05 and η = 0.1, for the dynamical regime of (6.1) with
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Fig. 7 Response to the perturbation with a new noise, F = 8, G = 0.5

Table 7 Relative errors and collinearity correlations in the response to the perturbation with a new noise,
F = 8, G = 0.5

Rel. errors, F = 8,G = 0.5 Coll. corrs, F = 8,G = 0.5
η = 0.05 η = 0.1 η = 0.05 η = 0.1

t = 0.5 0.1523 0.1339 t = 0.5 0.9891 0.9911

t = 1 0.3305 0.217 t = 1 0.9467 0.9795

t = 2 0.4922 0.2864 t = 2 0.8971 0.9673

t = 4 2.381 1.097 t = 4 0.3568 0.7128

F = 24 and G = 0.5, where the stochastic perturbation is independent of the unperturbed
noise. It is interesting that, in comparison with the previously studied regimes, the quality
of the qG-FDT prediction tends to be good for short response times, t = 0.5 and t = 1,
with relative errors about 8–16%, and collinearity correlations about 98–99%. However, for
longer response times the errors appear to grow faster than in any of the previously considered
cases.

Just as for the deterministic unperturbed dynamics above, here we can also observe the
large discrepancy between the two directly measured responses for different perturbation
magnitudes, which develops at t = 2. This is likely the manifestation of statistical under-
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samplingmentioned above, since the size of the statistical ensemble is unchanged even though
an additional independent stochastic forcing is introduced into the dynamics.

In Fig. 7 and Table 7 we show the results for the regime with F = 8, G = 0.5, and a sta-
tistically independent stochastic perturbation. Here, the observations appear to be consistent
with the previous results. Namely, the relative errors (15–33%) for the initial times t = 0.5
and t = 1 are worse than those for the previously considered regime, F = 24, G = 0.5,
likely due to the fact that the qG-FDT approximation is worse for the present regime due to
stronger non-Gaussianity of the unperturbed regime. However, the errors for longer times,
t = 2 and t = 4, are smaller than those for the regime with F = 24, again, likely due to the
fact that the statistical undersampling does not manifest as strongly in a less chaotic regime.
The collinearity correlations appear to follow the same trend as the relative errors.

7 Summary

In this work we develop a fluctuation-response theory and test a computational algorithm
for the leading order response of chaotic and stochastic dynamical systems to stochastic
perturbations. The key property of this approach is that it allows to estimate the average
response to an external stochastic perturbation from a certain combination of the time-lagged
averages of the unperturbed system. For dynamical systems, which are already stochastic, we
consider two cases: first, where the existing stochastic term is perturbed; and, second, where
a new stochastic perturbation is introduced, which correspondingly leads to different leading
order average response formulas. We also show that, under appropriate assumptions, the
resulting formulas for leading order response to a stochastic perturbation for the deterministic
and stochastic unperturbed dynamics are equivalent. For the practical computation of the
leading order response approximation, we derive the approximate quasi-Gaussian response
formulas, where the probability density of the unperturbed statistical state is assumed to be
Gaussian.Wenumerically investigate the validity of the quasi-Gaussian response formulas for
stochastic perturbations of both deterministic and stochastically forced Lorenz 96 system.We
find that the quasi-Gaussian response formulas appear tomore effective for the regimeswhere
the unperturbed dynamics is already stochastic. Additionally, for the stochastic perturbations
of the deterministic Lorenz 96 model, we observe what seems to be a manifestation of
structural instability of the system’s attractor under a stochastic perturbation.
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