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Abstract A dynamical version of theWidom–Rowlinson model in the continuum is consid-
ered. The dynamics is modelled by a spatial two-component birth-and-death Glauber process
where particles, in addition, are allowed to change their type with density dependent rates. An
evolution of states is constructed in terms of correlation function evolution in a certain Ruelle
space. It is shown that such evolution provides the unique weak solution to the associated
Fokker–Planck equation. Existence of a unique invariant measure and ergodicity with expo-
nential rate is established. Vlasov scaling is performed and the chaos preservation property
is shown.

Keywords Widom–Rowlinson model · Mutations · Fokker–Planck equation · Ergodicity ·
Vlasov scaling

1 Introduction

The study of critical behaviour of complex systems and related invariant states is one of
the central problems for statistical and mathematical physics. Particular classes of complex
systems can bemodelled either as lattice or as continuousmodels. The Isingmodel is probably
one of the most famous examples on the lattice, where each particle is allowed to have only
two possible states, the so-called spins±. Its generalization to particleswith any fixed number
of spins is known as the Pottsmodel. It was introduced in [29] and has been intensively studied
on various lattices, see, e.g., [4,34] and the review paper [18]. In contrast to lattice models,
much less is known for their continuous counterparts, i.e., for continuous interacting particle
systems. Below we consider the case of interacting particle systems in the continuum.

We suppose that all particles are located in R
d , are identical by properties and, indis-

tinguishable. A particle at position x ∈ R
d is assumed to have two different spins ±. The
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extension to dynamics with N distinct spins is then a straightforward modification of the
results presented here. The phase space for the dynamics is chosen as the configuration space
Γ 2 = Γ + × Γ −, where

Γ ± =
{
γ ± ⊂ R

d | ∣∣γ ± ∩ Λ
∣∣ < ∞ for all compactsΛ ⊂ R

d
}

,

is the configuration space of all locally finite subsets of R
d . Here, |A| stands for the number

of elements in the set A ⊂ R
d . For simplicity of notation we write γ = (γ +, γ −) ∈ Γ 2

and let γ ±\x and γ ± ∪ x stand for γ ±\{x} and γ ± ∪ {x}, respectively. The one-component
configuration space Γ ± is a Polish space w.r.t. the smallest topology such that all mappings
Γ ± � γ ± �−→ ∑

x∈γ ± f (x) are continuous, where f :Rd −→ R is any continuous function

having compact support (see [23]). Hence Γ 2 equipped with the product topology is a Polish
space. Measurable functions F :Γ 2 −→ R are called observables and probability measures
μ on Γ 2 are called states.

Interactions between particles of different (or the same type) are assumed to be given by a
symmetric pair potential φ:Rd −→ R satisfying the usual conditions such as stability, lower
regularity and, integrability. Associated to a particle at position x ∈ R

d is the relative energy

Eφ

(
x, γ ±) :=

{ ∑
y∈γ ±

φ(x − y),
∑

y∈γ ±
|φ(x − y)| < ∞,

∞, otherwise,

w.r.t. the configuration γ ±.

In this work we consider birth-and-death Markov dynamics with Markov (pre-)generator
L = L0 + V . The first operator describes two-interacting Glauber-type dynamics, whereas
the second one describes mutations of particles. We assume that L0 is for a suitable class of
observables F :Γ 2 −→ R given by

(L0F) (γ ) =
∑
x∈γ +

(
F
(
γ +\x, γ −)− F(γ )

)+
∑
x∈γ −

(
F
(
γ +, γ −\x)− F(γ )

)

+ z+
∫

Rd

e−Eφ− (x,γ −)e−Eψ+ (x,γ +) (F (γ + ∪ x, γ −)− F(γ )
)
dx

+ z−
∫

Rd

e−Eφ+ (x,γ +)e−Eψ− (x,γ −) (F (γ +, γ − ∪ x
)− F(γ )

)
dx .

Here, z± > 0 are the activities of ± particles and φ±, ψ± are symmetric, non-negative and
satisfy some reasonable integrability condition (see Sect. 3). The pair potentials φ± describe
the interaction of a new particle x ∈ R

d added to the configuration γ ∓ with particles of
different type, i.e., Eφ±(x, γ ±) is the relative energy of the configuration γ ± w.r.t. x ∈ R

d .

Likewise, ψ± describe the interaction of a particle x ∈ R
d added to γ ± and interacting

with particles of the same type, i.e., Eψ±(x, γ ±) is the relative energy of x w.r.t. γ ±. Such
interactions imply that the birth rate for a particle at position x ∈ R

d is small, provided there
are many particles of types ± close to x .

Birth-and-death models have also various applications in biology, in particular in the
modelling of tumour evolution (see, e.g., [8]). In such a case particles are considered as tumour
cells and it is natural to admit cells to change their type. Such events are called mutations,
they are modelled by the elementary Markov events (γ +, γ −) �−→ (γ +\x, γ − ∪ x) and
(γ +, γ −) �−→ (γ + ∪ x, γ −\x). In this work we consider mutations with Markov generator
given by the heuristic formula
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(V F)(γ ) = q+ ∑
x∈γ +

e−Eκ+ (x,γ +\x)e−Eτ+ (x,γ −)
(
F
(
γ +\x, γ − ∪ x

)− F(γ )
)

+ q− ∑
x∈γ −

e−Eκ− (x,γ −\x)e−Eτ− (x,γ +)
(
F
(
γ + ∪ x, γ −\x)− F(γ )

)
.

The constants q± > 0 are the so-called mutation activities and play a similar role as the usual
activities z±. The pair potentials κ± ≥ 0 take the interactions with particles of same type
into account, whereas τ± take the interactions with particles of different type into account.

In this work we construct an non-equilibrium evolution of states and study its time-
behaviour as t → ∞. An evolution of states corresponding to L is, by definition, a family
of states (μt )t≥0 which satisfies the Fokker–Planck equation

d

dt

∫

Γ 2

F(γ )dμt (γ ) =
∫

Γ 2

(LF)(γ )dμt (γ ), μt |t=0 = μ0, t ≥ 0, (1)

for a suitable large class of observables F. It is worth to mention that, without additional
assumptions, (LF)(γ ) makes no sense for any γ ∈ Γ 2. A rigorous meaning for LF and the
definition of solutions to (1) will be given in Sect. 3. At this point we have to restrict the
class of admissible states μ. Namely, we consider an evolution of states (μt )t≥0 for which
there exists an associated sequence of correlation functions kμt = (k(n,m)

μt )∞n,m=0 satisfying
a certain (space-inhomogeneous) Ruelle bound (see Sect. 2). Such bound is used to define
a certain Banach space of correlation functions with some norm ‖ · ‖Kα . We realize the
following scheme

(a) For each initial state μ0 there exists a unique solution (μt )t≥0 to (1). Moreover, such
solution is constructed in the class of states for which the associated sequence of corre-
lation functions exists and satisfies a certain (space-inhomogeneous) Ruelle bound. As
a consequence of the construction, it will be shown that the corresponding evolution of
correlation functions t �−→ kμt is continuous w.r.t. ‖ · ‖Kα

(b) There exists a unique invariant measure μinv with correlation function kinv which is
associated with the evolution of states. Moreover, the evolution of states is ergodic with
exponential rate, i.e., there exist constants a, b > 0 such that

∥∥kμt − kinv
∥∥Kα

≤ ae−bt
∥∥kμ0 − kinv

∥∥Kα
, t ≥ 0.

(c) Using the notion of Vlasov scaling (see [9]), we derive the kinetic equation for the
approximate density of the particle system. We show convergence of the scaled evolu-
tion to solutions corresponding to a certain (limiting) hierarchical system of equations.
Solutions to the latter system of equations satisfy the chaos preservation property.

Let us briefly comment on the results. Many results known for continuous systems are related
with the analysis of equilibrium states which are the so-called Gibbs-typemeasures (see, e.g.,
[5,20] and the references therein). The analysis of non-equilibrium evolution of states is a
non-trivial problem on its own which has to be realized for each model separately.

In the first step we use a (two-component) modification of the techniques developed in
[10] to provide an evolution of correlation functions. Since this construction is already well
known (see [24]) and has been realized for several models, we keep all computations and
arguments short and simply point out the main differences for this model. It is worth to
mention that in contrast to the latter works (see also [10,11]) we do not suppose that the
correlation functions are bounded w.r.t. the spatial variables. In the second step we show that
the evolution of correlation functions is, in fact, associated to an evolution of states which
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provides a solution to the Fokker–Planck equation (1). Known techniques for the construction
of an evolution of states are related with some kind of approximation by finite volumes (see,
e.g., [3,12,21]). In our approach we use an approximation by finite systems (the number
of particles remains finite at any moment of time) simultaneously with an approximation
of the operator L . Solutions to such approximation enjoy the additional property that the
corresponding correlation functions are integrable. Hence we can identify them with an
evolution of densities on the space of finite configurations. Details concerning the evolution
of densities for Markov evolutions on the space of finite configurations can be found in [16].
The ergodicity statement is known for the Sourgailis model (see [7]) and for the so-called
G−-dynamics (see [25]). We extend and improve the techniques from the latter work for
this particular model. The Vlasov scaling is, on the formal level, easy to derive (see [9] for
one-component models and [8] for two-component models). It is, however, an important task
to show that such formal convergence of equations implies convergence of solutions to these
equations.

This work is organized as follows. Preliminaries and notations are introduced in Sect. 2.
Section 3 is devoted to the construction of an evolution of states and correlation function
evolution. Ergodicity is proved in Sect. 4, whereas Vlasov scaling is studied in Sect. 5. Two
particular models which are included in the general form of the Markov operator L are
considered in the last section.

2 Preliminaries

2.1 Space of Finite Configurations

Let Γ0 = {η ⊂ R
d ||η| < ∞} be the space of all finite configurations over R

d . It has the
natural decomposition Γ0 = ⊔∞

n=0 Γ
(n)
0 , where Γ

(0)
0 = {∅} and Γ

(n)
0 = {η ⊂ R

d ||η| = n}.
Let (̃Rd)n be the collection of all ordered (x1, . . . , xn) ∈ (Rd)n such that x j �= xk whenever
j �= k. Then,

symn :
(̃
Rd
)n −→ Γ

(n)
0 , (x1, . . . , xn) �−→ {x1, . . . , xn} , n ≥ 1,

is a bijection. A set O ⊂ Γ0 is said to be open, if sym−1
n (O) ⊂ (̃Rd)n is open for any n ∈ N.

The latter space is endowed with the subspace topology. In the case n = 0 we require {∅} to
be open. This defines a topology on Γ0.

Let m⊗n be the Lebesgue measure on (Rd)n . Then m⊗n((Rd)n\(̃Rd)n) = 0. The
Lebesgue–Poisson measure λ on Γ0 is defined by

λ = δ∅ +
∞∑
n=1

1

n!m
(n),

where m(n) = m⊗n ◦ sym−1
n is a measure on Γ

(n)
0 , n ≥ 1. We will need the following

well-known identity.

Lemma 1 Let G:Γ0 × Γ0 × Γ0 −→ R be measurable. Then∫

Γ0

∑
ξ⊂η

G(ξ, η\ξ, η)dλ(η) =
∫

Γ0

∫

Γ0

G(ξ, η, η ∪ ξ)dλ(ξ)dλ(η), (2)

whenever one side of the equality is finite for |G|.
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For convenience of the reader, a proof is given in the Appendix.
The Lebesgue exponential is for a measurable function f :Rd −→ R defined by

eλ( f ; η) = ∏
x∈η f (x) and satisfies, provided f ∈ L1(Rd),

∫

Γ0

eλ( f ; η)dλ(η) = exp(〈 f 〉),

where 〈 f 〉 = ∫
Rd f (x)dx denotes the mean of f. Below we give a brief extension to the

two-component case.
Let Γ 2

0 = Γ +
0 × Γ −

0 , where Γ ±
0 are two identical copies of Γ0. It is equipped with

the product topology. For simplicity of notation, we extend all set-operations component-
wise. Namely, η ∪ ξ, η\ξ, ξ ⊂ η stand for (η+ ∪ ξ+, η− ∪ ξ−), (η+\ξ+, η−\ξ−) and,
ξ+ ⊂ η+, ξ− ⊂ η−, where η, ξ ∈ Γ 2

0 . The two-component Lebesgue–Poisson measure
λ+ ⊗ λ− satisfies

λ+ ⊗ λ− ({(η+, η−) ∈ Γ 2
0

∣∣η+ ∩ η− �= ∅}) = 0,

see [14]. Since no confusion can arise we use the notation λ instead of λ+ ⊗ λ−. Thus, for
any measurable function G

∫

Γ 2
0

G(η)dλ(η) =
∫

Γ +
0

∫

Γ −
0

G
(
η+, η−) dλ+ (η+) dλ− (η−) ,

provided one side is finite for |G|. A function G:Γ 2
0 −→ R is said to have bounded support

if there exists N ∈ N and a compact Λ ⊂ R
d such that

G(η) = 0, whenever η ∩ Λc �= ∅ or |η| > N .

Here, we let |η| := |η+| + |η−| and η ∩ Λc := (η+ ∩ Λc, η− ∩ Λc). Denote by Bbs(Γ
2
0 ) the

space of all bounded functions having bounded support.

2.2 Harmonic Analysis on Configuration Spaces

Let X be a locally compact Hausdorff space and

Γ (X) = {γ ⊂ X ||γ ∩ Λ| < ∞ for all compactsΛ ⊂ X}.
General results concerning harmonic analysis onΓ (X) andΓ0(X) (defined analogously with
R
d replaced by X ) can be found in [22]. Here we consider the two-component case which

corresponds to X = R
d × {0, 1}, where (x, 0) is identified with a particle of type + and

(x, 1) with a particle of type −. Recall that Γ 2 = Γ + × Γ −, where

Γ ± =
{
γ ± ⊂ R

d | ∣∣γ ± ∩ Λ
∣∣ < ∞ for any compactΛ ⊂ R

d
}

.

Then

Γ 2 −→ Γ
(
R
d × {0, 1}

)
,
(
γ +, γ −) �−→ {

(x, 0)| x ∈ γ +} ∪ {(x, 1)|x ∈ γ −} , (3)

is a bijection. Hence any function F :Γ (Rd ×{0, 1}) −→ R can be identified with a function
F̃ :Γ 2 −→ R. Similarly, any function G:Γ0(R

d × {0, 1}) −→ R can be identified with a
function G̃:Γ 2

0 −→ R. Most of the results given below are due to [22] obtained by above
identification.
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The Poisson measure πeα± on Γ ±, where α± ∈ R, is the unique probability measure on
Γ ± such that its Laplace transform satisfies

∫

Γ ±
e

∑
x∈γ±

f (x)

dπeα±
(
γ ±) = exp

⎛
⎜⎝eα±

∫

Rd

(
e f (x) − 1

)
dx

⎞
⎟⎠ ,

for any continuous function f on R
d having compact support. The two-component Poisson

measure is defined by πeα := πeα+ ⊗ πeα− . A state μ on Γ 2 is said to have finite local
moments, if for all compacts Λ ⊂ R

d

∫

Γ 2

∣∣γ + ∩ Λ
∣∣n ∣∣γ − ∩ Λ

∣∣n dμ(γ ) < ∞, ∀n ∈ N.

Given two compacts Λ+, Λ− ⊂ R
d , consider the projection

pΛ+,Λ− :Γ 2 −→ Γ 2
Λ+,Λ− , pΛ+,Λ−

(
γ +, γ −) := (

γ + ∩ Λ+, γ − ∩ Λ−) ,
where Γ 2

Λ+,Λ− = {γ ∈ Γ 2|γ ± ⊂ Λ±}. A state μ is said to be locally absolutely continuous

w.r.t. the Poisson measure, if μΛ+,Λ− := μ ◦ p−1
Λ+,Λ− is absolutely continuous w.r.t. πeα ◦

p−1
�+,�− for some α = (α+, α−) ∈ R and all compacts Λ+, Λ− ⊂ R

d . It can be shown

that this definition is independent of the particular choice of α±. Denote by P the space of
all states which have finite local moments and are locally absolutely continuous w.r.t. the
Poisson measure. For any μ ∈ P it holds that

μ
({(

γ +, γ −) ∈ Γ + × Γ −∣∣γ + ∩ γ − = ∅}) = 1,

i.e., events where particles of different types are located at the same position are negligible
(see [14]).

Given G ∈ Bbs(Γ
2
0 ), the K -transform is defined by

(KG)(γ ) :=
∑
η�γ

G(η), γ ∈ Γ 2, (4)

where � means that the sum runs over all finite subsets of γ. Let FP(Γ 2) := K (Bbs(Γ
2
0 )).

For each F ∈ FP(Γ 2) there exists A > 0, N ∈ N and a compact Λ ⊂ R
d such that

F(γ ) = F(γ ∩ Λ) and

|F(γ )| ≤ A(1 + |γ ∩ Λ|)N , γ ∈ Γ 2,

i.e., F is a polynomially bounded cylinder function. Here, γ ∩ Λ := (γ + ∩ Λ, γ − ∩ Λ).

The map K : Bbs(Γ
2
0 ) −→ FP(Γ 2) is a positivity preserving isomorphism with inverse

(
K−1F

)
(η) =

∑
ξ⊂η

(−1)|η\ξ |F(ξ).

Denote by K0 the restriction K F |Γ 2
0
and by K−1

0 its inverse given as above.
Let μ ∈ P. It follows by [15] that the correlation function kμ exists and satisfies

∫

Γ 2

KG(γ )dμ(γ ) =
∫

Γ 2
0

G(η)kμ(η)dλ(η), G ∈ Bbs
(
Γ 2
0

)
. (5)
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The correlation function is uniquely determined by suchproperty.Note that K |G| is integrable
w.r.t. μ. The K -transform satisfies ‖KG‖L1(Γ 2,dμ) ≤ ‖G‖L1(Γ 2

0 ,kμdλ) for any G ∈ Bbs(Γ
2
0 ).

It can be extended to a bounded linear operator K : L1(Γ 2, dμ) −→ L1(Γ 2
0 , kμdλ) in such

a way that (4) holds for μ-a.a. γ ∈ Γ 2 (see [22] together with the identification (3)).

2.3 Ruelle Space of Correlation Functions

Let ρ:Rd −→ [1, ∞) be a measurable, locally bounded function and take α = (α+, α−) ∈
R
2. For simplicity of notation, we let

eλ(ρ; η)eα|η| := eλ

(
ρ; η+) eλ

(
ρ; η−) eα+|η+|eα−|η−|

.

Let Lα := L1(Γ 2
0 , eα|·|eλ(ρ)dλ) with the norm

‖G‖Lα =
∫

Γ 2
0

|G(η)|eα+|η+|eα−|η−|
eλ

(
ρ; η+) eλ

(
ρ; η−) dλ(η).

Since ρ is fixed, we omit here and in the following the additional dependence of Lα on ρ.

Denote by (Lα)∗ the dual Banach space to Lα. We use the duality

〈G, k〉 :=
∫

Γ 2
0

G(η)k(η)dλ(η), G ∈ Lα,

to identify (Lα)∗ with the space of equivalence classes of functions k with the norm

‖k‖Kα = ess sup
η∈Γ 2

0

|k(η)|
eλ(ρ; η+)eλ(ρ; η−)

e−α+|η+|e−α−|η−|
.

Let Kα the Banach space of all such equivalence classes of functions k. Then, each k ∈ Kα

satisfies the (space-inhomogeneous) Ruelle bound

|k(η)| ≤ ‖k‖Kαeλ

(
ρ; η+) eλ

(
ρ; η−) eα+|η+|eα−|η−|

, η ∈ Γ 2
0 .

In general, not any non-negative function k ∈ Kα is the correlation function of a state μ.

Such property can be characterized by an additional positivity property. A functionG ∈ Lα is
called positive definite if KG ≥ 0. Let B+

bs(Γ
2
0 ) be the cone of all positive definite functions

in Bbs(Γ
2
0 ). A function k ∈ Kα is called positive definite (in the sense of Lenard), if

〈G, k〉 =
∫

Γ 2
0

G(η)k(η)dλ(η) ≥ 0, G ∈ B+
bs

(
Γ 2
0

)
.

Note that any positive definite function k is non-negative. It follows from [27] that any positive
definite function k such that k(∅, ∅) = 1 is the correlation function of some μ ∈ P. There
may exist, in general, many different μ ∈ P such that k is the correlation function for μ, i.e.,
(5) holds. A growth condition is sufficient to show that μ is unique with such property (see
[26]). The following is a particular case of [26,27] together with the identification (3).

Theorem 1 Let k ∈ Kα. The following are equivalent.

(1) There exists a unique μ ∈ Pα such that k is its correlation function, i.e., kμ = k.
(2) k(∅, ∅) = 1 and k is positive definite (in the sense of Lenard).
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324 M. Friesen

Let Pα be the collection of all μ ∈ P such that kμ ∈ Kα. It is a complete, non-separable
metric space w.r.t. dα(μ, ν) := ‖kμ − kν‖Kα . Note that for each F ∈ FP(Γ 2) there exists
a constant Cα(F) > 0 such that

∣∣∣∣∣∣∣

∫

Γ 2

F(γ )dμ(γ ) −
∫

Γ 2

F(γ )dν(γ )

∣∣∣∣∣∣∣
≤ dα(μ, ν)Cα(F).

3 Evolution of States

3.1 Scheme of Construction

Let L be the Markov operator given by the heuristic formulas in the introduction. A general
approach to the construction of an evolution of states can be found in [13], we consider a
modification of such scheme. Details, assumptions and the rigorous statements are given
later on. The aim is to solve the Fokker–Planck equation (1) in the class Pα for some
α = (α+, α−) ∈ R

2 and a measurable, locally bounded function ρ:Rd −→ [1, ∞).

This parameters will be specified later on.

Definition 1 A family (μt )t≥0 ⊂ Pα is a weak solution to (1), if for all F ∈ FP(Γ 2) the
following conditions are satisfied:

(a) LF ∈ L1(Γ 2, dμt ) for all t ≥ 0.
(b) t �−→ ∫

Γ 2(LF)(γ )dμt (γ ) is locally integrable.
(c) We have

∫

Γ 2

F(γ )dμt (γ ) =
∫

Γ 2

F (γ ) dμ0(γ ) +
t∫

0

∫

Γ 2

(LF)(γ )dμs(γ )ds, t ≥ 0. (6)

For any μ ∈ Pα and F ∈ L1(Γ 2, dμ) let

〈〈F, μ〉〉 :=
∫

Γ 2

F(γ )dμ(γ ).

Remark 1 Let (μt )t≥0 ⊂ Pα be a weak solution to (1). Then, t �−→ 〈〈F, μt 〉〉 is absolutely
continuous (see (6)) and hence (1) holds for each F ∈ FP(Γ 2) and a.a. t ≥ 0.

Let (μt )t≥0 ⊂ Pα be a solution to (1) and denote by (kt )t≥0 ⊂ Kα its associated evolution
of correlation functions (see (5)). Define a linear mapping L̂ := K−1

0 LK0 acting on functions
Bbs(Γ

2
0 ). Then (kt )t≥0 is (at least formally) a solution to

d

dt

∫

Γ 2
0

G(η)kt (η)dλ(η) =
∫

Γ 2
0

(L̂G)(η)kt (η)dλ(η), kt |t=0 = k0, G ∈ Bbs
(
Γ 2
0

)
. (7)

Uniqueness for weak solutions to (1) holds, provided that (7) has at most one solution. For
existence of solutions to (1) one first constructs a solution to (7). Afterwards it is necessary to
show that such solution corresponds to an evolution of states (μt )t≥0 ⊂ Pα and this evolution
of states is a weak solution to (1).
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In order to find a solution to (7) we consider the pre-dual Cauchy problem

∂Gt

∂t
= L̂Gt , Gt |t=0 = G0, (8)

on Lα. Here (Gt )t≥0 is the so-called evolution of quasi-observables. We will prove that
(L̂, Bbs(Γ

2
0 )) can be realized as a linear operator on Lα, it is closable, and its closure is the

generator of an analytic semigroup of contractions on Lα. Solutions to (7) are then obtained
by duality. The main part of this section consists of the proof that an evolution (kt )t≥0,

obtained by such procedure, is, in fact, positive definite (see Theorem 1).
Following [10,17], we apply general perturbation theory for sub-stochastic, analytic semi-

groups (see [1,33]). In order that L̂ is awell-defined linearmapping on Bbs(Γ
2
0 ), the potentials

should satisfy the following assumption.

There exists a measurable, locally bounded function ρ:Rd −→ [1, ∞) such that (1 −
e−g(x−·))ρ is integrable for any x ∈ R

d and any g ∈ {φ±, ψ±, κ±, τ±}.
The linear mapping L̂ is given by L̂ = A + B, where (AG)(η) = −M(η)G(η) and

M(η) = ∣∣η+∣∣+ ∣∣η−∣∣+ q+ ∑
x∈η+

e−Eκ+ (x,η+\x)e−Eτ+ (x,η−)

+ q− ∑
x∈η−

e−Eκ− (x,η−\x)e−Eτ− (x,η+),

(BG)(η) = z+
∑
ξ⊂η

∫

Rd

e−Eφ− (x,ξ−)e−Eψ+ (x,ξ+) fx
(
φ−; η−\ξ−) fx

(
ψ+; η+\ξ+)

× G
(
ξ+ ∪ x, ξ−) dx

+ z−
∑
ξ⊂η

∫

Rd

e−Eφ+ (x,ξ+)e−Eψ− (x,ξ−) fx
(
φ+; η+\ξ+) fx

(
ψ−; η−\ξ−)

× G
(
ξ+, ξ− ∪ x

)
dx

+ q+∑
ξ⊂η

∑
x∈ξ+

e−Eκ+ (x,ξ+\x)e−Eτ+ (x,ξ−) fx
(
κ+; η+\ξ+) fx

(
τ+; η−\ξ−)

× G
(
ξ+\x, ξ− ∪ x

)

+ q−∑
ξ⊂η

∑
x∈ξ−

e−Eκ− (x,ξ−\x)e−Eτ− (x,ξ+) fx
(
κ−; η−\ξ−) fx

(
τ−; η+\ξ+)

× G
(
ξ+ ∪ x, ξ−\x)

− q+∑
ξ⊂η
ξ �=η

∑
x∈ξ+

e−Eκ+ (x,ξ+\x)e−Eτ+ (x,ξ−) fx
(
κ+; η+\ξ+) fx

(
τ+; η−\ξ−)G(ξ),

(9)

− q−∑
ξ⊂η
ξ �=η

∑
x∈ξ−

e−Eκ− (x,ξ−\x)e−Eτ− (x,ξ+) fx
(
κ−; η−\ξ−) fx

(
τ−; η+\ξ+)G(ξ). (10)

Here fx (g; η) := eλ(e−g(x−·) − 1; η) = ∏
y∈η(e

−g(x−y) − 1). Fix any α = (α+, α−) ∈ R.

The multiplication operator A is well-defined on the domain

D(A) = {G ∈ Lα|M · G ∈ Lα} .
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We show that, given some mild additional conditions, also B is well-defined on Bbs(Γ
2
0 )

but also on D(A). Let B ′ be the linear mapping B, where fx (g; η) is replaced by∏
y∈η |e−g(x−y) − 1| and in the last two terms, see (9) and (10), the − is replaced by +.

Moreover, define

Cg
(
x, α±) := exp

⎛
⎜⎝eα±

∫

Rd

(
1 − e−g(x−y)

)
ρ(y)dy

⎞
⎟⎠ , x ∈ R

d , (11)

where g ∈ {φ±, ψ±, κ±, τ±}. Then, for any 0 ≤ G ∈ D(A), see ρ ≥ 1, we get by (2)
∫

Γ 2
0

B ′G(η)eλ(ρ; η)eα|η|dλ(η) ≤
∫

Γ 2
0

β(α; η)G(η)eλ(ρ; η)eα|η|dλ(η),

where

β(α; η) = z+e−α+ ∑
x∈η+

e−Eφ− (x,η−)e−Eψ+ (x,η+\x)Cφ−
(
x, α−)Cψ+

(
x, α+)

+ z−e−α− ∑
x∈η−

e−Eφ+ (x,η+)e−Eψ− (x,η−\x)Cφ+
(
x, α+)Cψ−

(
x, α−)

+ q+eα+−α− ∑
x∈η−

e−Eκ+ (x,η+)e−Eτ+ (x,η−\x)Cκ+
(
x, α+)Cτ+

(
x, α−)

+ q−eα−−α+ ∑
x∈η+

e−Eκ− (x,η−)e−Eτ− (x,η+\x)Cκ−
(
x, α−)Cτ−

(
x, α+)

+ q+ ∑
x∈η+

e−Eκ+ (x,η+\x)e−Eτ+ (x,η−)
(
Cκ+

(
x, α+)Cτ+

(
x, α−)− 1

)

+ q− ∑
x∈η−

e−Eκ− (x,η−\x)e−Eτ− (x,η+)
(
Cκ−

(
x, α−)Cτ−

(
x, α+)− 1

)
.

Remark 2 Suppose thatCg(x, α±) are bounded for any g ∈ {φ±, ψ±, κ±, τ±}. Then there
exists a constant a = a(α) > 0 such that

β(α; η) ≤ a(α)M(η), η ∈ Γ 2
0 .

Consequently, (B ′, D(A)) and since |BG| ≤ B ′|G| also (L̂, D(A)) = (A + B, D(A)) is a
well-defined operator on Lα.

3.2 Assumptions

Here and below we suppose that the following conditions are satisfied.

(A) Suppose that φ±, ψ±, κ±, τ±:Rd −→ [0, ∞) are symmetric. Moreover, there exists
a measurable, locally bounded function ρ:Rd −→ [1, ∞) such that (1− e−g(x−·))ρ is
integrable for any x ∈ R

d and any g ∈ {φ±, ψ±, κ±, τ±}.
(B) There exists α = (α+, α−) and a constant a(α) ∈ (0, 1) such that

β(α; η) ≤ a(α)M(η), η ∈ Γ 2
0 . (12)

Below we give some comments and sufficient conditions on assumptions (A) and (B).
Note that Cg(x, α±) given as in (11) is (for ρ = 1) related to the construction of Gibbs
measures (see, e.g., [31]).
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Remark 3 Let φ±, ψ±, τ±, κ± ≥ 0 be symmetric, measurable functions.

(a) Suppose thatφ±, ψ±, τ±, κ± are continuous andhave compact support. Then condition
(A) holds for any measurable, locally bounded function ρ ≥ 1,

(b) Take ρ = 1. Then condition (A) holds, provided all potentials φ±, ψ±, τ±, κ± are
integrable.

The following lemma shows that condition (B) is satisfied in the low activity regime.

Lemma 2 Suppose that condition (A) is satisfied and assume that for any g ∈ {φ±, ψ±, τ±,

κ±}

sup
x∈Rd

∫

Rd

(
1 − e−g(x−y)

)
ρ(y)dy < ∞. (13)

Then for any α = (α+, α−) ∈ R there exit q±
0 (α), z±0 (α) > 0 such that condition (B) holds

for all q± < q±
0 (α) and z± < z±0 (α).

Proof By (13) it follows that Cg(x, α±) is bounded in x by a constant depending on α± for
any g ∈ {φ±, ψ±, τ±, κ±}. This implies that there exists a constant C(α) > 0 such that

β(α; η) ≤ (
z+ + q− + q+)C(α)

∣∣η+∣∣+ (
z− + q+ + q−)C(α)

∣∣η−∣∣ ,
which yields the assertion. ��
We consider two examples for which this lemma is applicable, i.e., (13) is satisfied.

3.2.1 Bounded Correlation Functions

Let ρ(x) = 1 for all x ∈ R
d . This case corresponds to bounded correlation functions, since

for each μ ∈ Pα its correlation function kμ satisfies

kμ(η) ≤ ‖k‖Kαe
α+|η+|eα−|η−|

, η ∈ Γ 2
0 .

In particular, kμ is bounded on {(η+, η−)||η+| = n, |η−| = m} for all n, m ∈ N0. Suppose
that all potentials are integrable. Then condition (A) holds and Cg(x, α±) given by (11) is
independent of x for any g ∈ {φ±, ψ±, τ±, κ±}. Hence (13) holds and condition (B) is
satisfied, provided z± and q± are small enough. Such condition reflects a balance condition
of the interactions between particles of the same and of different type.

3.2.2 Unbounded Correlation Functions

Suppose that all potentials φ±, ψ±, τ±, κ± are given by g(x) := e−δ|x |2 for some δ > 0.
Take any δ′ ∈ (0, δ) and let

ρ(x) = eδ′|x |2 , x ∈ R
d .

Then, for each μ ∈ Pα its correlation function kμ satisfies for all n, m ∈ N0

k(n,m)
μ (x1, . . . , xn; y1, . . . , ym) ≤ ‖k‖Kαe

α+neα−m
n∏

k=1

eδ′|xk |2
m∏

k=1

eδ′|yk |2

= ‖k‖Kαe
δ′∑n

k=1(α
++|xk |2)eδ′∑m

k=1(α
−+|yk |2),
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and hence is not necessarily bounded. Let us show that (13) holds.
Denote by ωd the surface volume of the sphere {y ∈ R

d ||y| = 1}. For any x ∈ R
d it

follows by g ≥ 0
∫

Rd

(
1 − e−g(x−y)

)
eδ′|y|2dy ≤

∫

Rd

e−δ|x−y|2eδ′|y|2dy

≤ ωde
−δ|x |2

∞∫

0

rd−1e−(δ−δ′)r2+2|x |δrdr = ωde
− δδ′

δ−δ′ |x |2
∞∫

0

rd−1e
−(δ−δ′)

(
r− |x |δ

δ−δ′
)2
dr

= ωde
− δδ′

δ−δ′ |x |2
∞∫

− |x |δ
δ−δ′

(
r + |x |δ

δ − δ′

)d−1

e−(δ−δ′)r2dr

≤ ωde
− δδ′

δ−δ′ |x |2
∫

R

(
|r | + |x |δ

δ − δ′

)d−1

e−(δ−δ′)r2dr.

The integral on the right-hand side is due to

∫

R

(
r + |x |δ

δ − δ′

)d−1

e−(δ−δ′)r2dr =
d−1∑
k=0

(
d − 1

k

)(
δ

δ − δ′

)k

|x |k
∫

R

|r |d−1−ke−(δ−δ′)r2dr,

a polynomial of order d − 1 in |x |. Hence there exists a constant c(d, δ, δ′) > 0 such that
∫

Rd

(
1 − e−g(x−y)

)
eδ′|y|2dy ≤ c(d, δ, δ′), x ∈ R

d .

3.3 Evolution of Quasi-observables and Correlation Functions

Suppose that conditions (A) and (B) are satisfied. Let 1∗(η) =
{
1, |η| = 0

0, otherwise
. The next

proposition shows that the Cauchy problem (8) is well-posed in Lα.

Proposition 1 The operator (L̂, D(A)) is the generator of an analytic semigroup (T̂ (t))t≥0

of contractions on Lα such that T̂ (t)1∗ = 1∗. Moreover, Bbs(Γ
2
0 ) is a core for (L̂, D(A)).

Proof Observe that (A, D(A)) is the generator of a positive, analytic semigroup of contrac-
tions on Lα. By condition (B) it follows that

∫

Γ 2
0

B ′G(η)eα|η|eλ(ρ; η)dλ(η) ≤ a(α)

∫

Γ 2
0

M(η)G(η)dλ(η). (14)

Hence B ′ is a well-defined positive linear operator on D(A) which satisfies |BG| ≤ B ′|G|
for any G ∈ D(A). Take r ∈ (0, 1) such that a(α)

r < 1, then
∫

Γ 2
0

(
A + 1

r
B ′
)
G(η)eλ(ρ; η)eα|η|dλ(η) ≤ 0, 0 ≤ G ∈ D(A).

Hence, (A+ B ′, D(A)) is the generator of a positive, strongly continuous semigroup of con-
tractions, cf. [33, Theorem 2.2]. By [1, Theorem 1.1], this semigroup is analytic. Moreover,
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[1, Theorem 1.2] implies that (A + B, D(A)) is the generator of an analytic semigroup of
contractions on Lα. Since 1∗ ∈ D(A) and L̂1∗ = 0, it follows that T̂ (t)1∗ = 1∗. In order
to see that Bbs(Γ

2
0 ) is a core, let (Λn)n∈N be an increasing sequence of compacts in R

d and
G ∈ D(A). Define

Gn(η) :=
{
G(η) ∧ n, |η| ≤ n and η ⊂ Λn,

0, otherwise,
,

then Gn ∈ Bbs(Γ
2
0 ), Gn −→ G a.e. as n → ∞ and |Gn | ≤ |G|, for all n ∈ N. Domi-

nated convergence yields Gn −→ G in Lα. Moreover, dominated convergence also implies
L̂Gn −→ L̂G a.e., as n → ∞. Since |MGn | ≤ M |G| and |BGn | ≤ B ′|Gn | ≤ B ′|G|
applying again dominated convergence shows that L̂Gn −→ L̂G in Lα. ��

For convenience of notation, we let D(A) = D(L̂), so that (L̂, D(L̂)) is the generator of an
analytic semigroup on Lα. Let T̂ (t)∗ be the adjoint semigroup on Kα, solutions to (7) are
given by T̂ (t)∗k0. Denote by (L̂∗, D(L̂∗)) the adjoint operator to L̂. It is given by

D(L̂∗) = {
k ∈ Kα|∃k1 ∈ Kα such that 〈L̂G, k〉 = 〈G, k1〉 ∀G ∈ D(A)

}
,

with L̂∗k := k1.Using condition (B) together with (2) it is possible to give an explicit formula
for L̂∗ and characterize D(L̂∗) as the maximal domain for the action of L̂∗ given by this
formula.

Let g0, g1:Rd −→ R+ be given with (1 − e−g j (x−·))ρ ∈ L1(Rd) for all x ∈ R
d and

j = 0, 1. Let Qx (g0, g1) be a linear operator on Kα given by

Qx (g0, g1) k(η) =
∫

Γ 2
0

fx
(
g0; ξ+) fx

(
g1; ξ−) k(η ∪ ξ)dλ(ξ), x ∈ R

d . (15)

This operator satisfies

|Qx (g0, g1) k(η)| ≤ eα|η|eλ(ρ; η)Cg0

(
x, α+)Cg1

(
x, α−) ‖k‖Kα . (16)

Let LΔ be a linear mapping given by
(
LΔk

)
(η) = −|η|k(η) (17)

− q+ ∑
x∈η+

e−Eκ+ (x,η+\x)e−Eτ+ (x,η−)Qx
(
κ+, τ+) k(η) (18)

− q− ∑
x∈η−

e−Eκ− (x,η−\x)e−Eτ− (x,η+)Qx
(
τ−, κ−) k(η) (19)

+ z+
∑
x∈η+

e−Eφ− (x,η−)e−Eψ+ (x,η+\x)Qx
(
ψ+, φ−) k (η+\x, η−)

+ z−
∑
x∈η−

e−Eφ+ (x,η+)e−Eψ− (x,η−\x)Qx
(
φ+, ψ−) k (η+, η−\x)

+ q+ ∑
x∈η−

e−Eκ+ (x,η+)e−Eτ+ (x,η−\x)Qx
(
κ+, τ+) k (η+ ∪ x, η−\x)

+ q− ∑
x∈η+

e−Eκ− (x,η−)e−Eτ− (x,η−\x)Qx
(
τ−, κ−) k (η+\x, η− ∪ x

)
.
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Lemma 3 There exists M(α+), N (α−) > 0 such that for any α+
0 < α+ and α−

0 < α−

∥∥LΔk
∥∥Kα

≤
(

M(α+)

α+ − α+
0

+ N (α−)

α− − α−
0

)
‖k‖Kα0

. (20)

Consequently, LΔ is a bounded linear operator from Kα0 to Kα. Moreover, for each G ∈
D(L̂) and each k ∈ Kα we have LΔk ∈ ⋂α±

0 >α± Kα0 , G · LΔk is integrable and

∫

Γ 2
0

(L̂G)(η)k(η)dλ(η) =
∫

Γ 2
0

G
(
η)(LΔk

)
(η)dλ(η). (21)

Proof The first assertion follows from (16), M(η) ≤ (1 + q+)|η+| + (1 + q−)|η−| and
∣∣η±∣∣ e−(α±−α±

0 )|η±| ≤ 1

e(α± − α±
0 )

, η ∈ Γ 2
0 .

Let us show the second assertion. By (20) it follows that LΔk ∈ ⋂α±
0 >α± Kα0 holds for any

k ∈ Kα. Property (21) follows from (2) provided we can show that (2) is applicable. Denote
by L ′Δ the linear mapping LΔ where the − in (17)–(19) is replaced by + and fx (g; η) is
replaced by

∏
y∈η |1 − e−g(x−y)| in the definition of (15). Then (2) is applicable, provided

that |G| · L ′Δ|k| is integrable. But this follows from
(
L ′Δ|k|) (η) ≤ β(α; η)eα|η|eλ(ρ; η)‖k‖Kα ≤ a(α)M(η)eα|η|eλ(ρ; η)‖k‖Kα .

Since |G · L�k| ≤ |G| · L ′Δ|k| we see that also G · LΔk is integrable, which completes the
proof. ��

The next statement shows that LΔ can be identified with L̂∗.

Proposition 2 Consider LΔ on its maximal domain

D
(
LΔ
) = {

k ∈ Kα|LΔk ∈ Kα

}
,

then (LΔ, D(LΔ)) = (L̂∗, D(L̂∗)).

Proof Let G ∈ D(L̂) and k ∈ D(L̂∗). By (21) it follows that
∫

Γ 2
0

G(η)(L̂∗k)(η)dλ(η) =
∫

Γ 2
0

(L̂G)(η)k(η)dλ(η) =
∫

Γ 2
0

G(η)
(
LΔk

)
(η)dλ(η).

SinceG was arbitrary, we get LΔk = L̂∗k and D(L̂∗) ⊂ D(LΔ).Conversely, let k ∈ D(LΔ).

Then (21) implies k ∈ D(L̂∗) and L̂∗k = LΔk. ��
Since Kα is not reflexive, T̂ (t)∗ is, in general, not strongly continuous. However, it is con-
tinuous w.r.t. the weak topology σ(Kα, Lα). Here, σ(Kα, Lα) is the smallest topology such
that all functionals G �−→ 〈G, k〉 are continuous for any k ∈ Kα. It is well-known, see [6,
Chap. 2, pp. 77–79], that T̂ (t)∗ leaves the proper subspace K�

α := D(LΔ) invariant. More-
over, the restriction T̂ (t)� := T̂ (t)∗|K�

α
is a strongly continuous semigroup with generator

L̂�k = LΔk,

D
(
L̂�) = {

k ∈ D
(
LΔ
) |LΔk ∈ K�

α

}
.

123



Non-equilibrium Dynamics for a Widom–Rowlinson Type Model. . . 331

Thus, for any k0 ∈ D(L̂�), kt := T̂ (t)∗k0 is the unique classical solution to

∂kt
∂t

= LΔkt , kt |t=0 = k0. (22)

in Kα. Such system of equations is an Markov analogue of the BBGKY-hierarchy known in
the physical literature (see [32]). Our aim is to get uniqueness for (7), which is simply a weak
formulation of (22). The precise definition of a solution to (7) is given below. We use the
topology of uniformconvergence on compact subsets ofLα onKα.Abasis of neighbourhoods
around 0 is given by sets of the form

{
k ∈ Kα

∣∣ sup
G∈K

|〈G, k〉| < ε

}
, (23)

where ε > 0 and K ⊂ Lα is a compact, cf. [35]. Denote by C the topology generated by the
basis of neighbourhoods (23). Note that C coincides with σ(Kα, Lα) on norm-bounded sets,
cf. [35, Lemma 1.10].

Definition 2 Given k0 ∈ Kα, a weak solution to (7) is a family (kt )t≥0 ⊂ Kα being contin-
uous w.r.t. C and

〈G, kt 〉 = 〈G, k0〉 +
t∫

0

〈
L̂G, ks

〉
ds, G ∈ Bbs

(
Γ 2
0

)
, (24)

holds for all t ≥ 0.

Theorem 2 For any k ∈ Kα there exists a uniqueweak solution to (7), given by kt = T̂ (t)∗k0.
Moreover, the following holds:

(1) For any G ∈ D(L̂), t �−→ 〈G, kt 〉 is continuously differentiable and satisfies (7) for
each t ≥ 0.

(2) If k0 ∈ Kα0 for some α+
0 < α+ and α−

0 < α−, then kt is infinitely often differentiable
w.r.t. to the norm in Kα and satisfies (22).

Proof Since L̂ is the generator of a strongly continuous semigroup, the first assertion follows
by [35, Theorem 2.1].

(1) The contraction property implies ‖kt‖Kα ≤ ‖k0‖Kα and hence, by L̂G ∈ Lα, we see
that s �−→ 〈L̂G, ks〉 is continuous. By (24), we see that t �−→ 〈G, kt 〉 is continuously
differentiable and satisfies (7) for any t ≥ 0.

(2) Let n ∈ N and take α±
0 < α±

1 < · · · < α±
n < α±. Then (LΔ) j k0 ∈ Kαn ⊂ D(LΔ) for

all j = 0, . . . , n and hence (LΔ) j k0 ∈ D(L̂�) for all j = 0, . . . , n.

��
3.4 Positive Definiteness

In this section we show existence and uniqueness of weak solutions to (1).

Lemma 4 Fix any μ ∈ Pα. Then, F, LF ∈ L1(Γ 2, dμ) holds for each F ∈ FP(Γ 2).

Proof Fix μ ∈ Pα. Let G ∈ Bbs(Γ
2
0 ) be such that F = KG ∈ FP(Γ 2). By kμ(η) ≤

‖kμ‖Kαe
α|η|eλ(ρ; η)wehaveG, L̂G ∈ Lα ⊂ L1(Γ 2

0 , kμdλ).Since K : L1(Γ 2
0 , kμdλ) −→

L1(Γ 2, dμ) is continuous, it follows that KG, K L̂G ∈ L1(Γ 2, dμ). The assertion follows
from K L̂G = LKG. ��
The next theorem establishes uniqueness for weak solutions to (1).
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Theorem 3 The Fokker–Planck equation (1) has at most one weak solution (μt )t≥0 ⊂ Pα

such that its correlation functions (kμt )t≥0 satisfy

sup
t∈[0,T ]

∥∥kμt

∥∥Kα
< ∞, ∀T > 0. (25)

Proof Let (μt )t≥0 ⊂ Pα be a weak solution to (1). Denote by (kμt )t≥0 the associated family
of correlation functions. Let G ∈ Bbs(Γ

2
0 ) ⊂ D(L̂) and F = KG ∈ FP(Γ 2). Then

G, L̂G ∈ Lα ⊂ L1(Γ 2
0 , kμt dλ), t ≥ 0 and hence F, LF belong to L1(Γ 2, dμt ) with

LF = K L̂G (see Lemma 4). By 〈〈F, μt 〉〉 = 〈G, kμt 〉, 〈〈LF, μt 〉〉 = 〈L̂G, kμt 〉 and, (1)
it follows that t �−→ 〈L̂G, kμt 〉 is locally integrable and (24) holds. In particular, kμt is
continuous w.r.t. σ(Kα, Lα). By (25) and [35, Lemma 1.10] it is also continuous w.r.t. C.

Hence (kμt )t≥0 is a weak solution to (7). The assertion follows from weak uniqueness of
solutions to (7). ��

Theorem 4 For each μ0 ∈ Pα there exists exactly one weak solution (μt )t≥0 ⊂ Pα to (1)
such that its correlation functions satisfy (25). This solution is uniquely determined by the
associated family of correlation functions kμt = T̂ (t)∗kμ0 .

Since uniqueness was already shown, it remains to prove existence of a weak solution to (1).
To this end, it suffices to show that kt := T̂ (t)∗kμ0 ∈ Kα is positive definite for each t ≥ 0.

3.4.1 Step 1: Evolution of Local Densities

Let Rδ(x) := e−δ|x |2
1+δρ(x) and z±δ (x) := Rδ(x)z±, δ > 0. Then

(1) Rδ(x) −→ 1 as δ → 0 for any x ∈ R
d .

(2) Rδ(x) ≤ e−δ|x |2 ≤ 1 for any x ∈ R
d , δ > 0.

(3) ρ · Rδ is integrable for any δ > 0.

Denote by Lδ the associated Markov operator given by L where z± are replaced by z±δ . It
defines a linear mapping, when restricted to measurable functions F :Γ 2

0 −→ R. Note that
LδF is, in general, not bounded on Γ 2

0 even if F is bounded on Γ 2
0 . Below we consider its

(formal) adjoint operator. Namely, let

Dδ(η) = |η|
+
∫

Rd

z+δ (x)e−Eφ− (x,η−)e−Eψ+ (x,η+)dx +
∫

Rd

z−δ (x)e−Eφ+ (x,η+)e−Eψ− (x,η−)dx

+ q+ ∑
x∈η+

e−Eκ+ (x,η+\x)e−Eτ+ (x,η−) + q− ∑
x∈η−

e−Eκ− (x,η−\x)e−Eτ− (x,η+),

and Dδ = {R ∈ L1(Γ 2
0 , dλ)|Dδ · R ∈ L1(Γ 2

0 , dλ)}. Then (−Dδ, Dδ) is the generator of
a positive analytic semigroup of contractions on L1(Γ 2

0 , dλ). Let Qδ be another (positive)
operator on Dδ given by
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(QδR) (η) =
∫

Rd

R
(
η+ ∪ x, η−) dx +

∑
x∈η+

z+δ (x)e−Eφ− (x,η−)e−Eψ+ (x,η+\x)R
(
η+\x, η−)

+
∫

Rd

R
(
η+, η− ∪ x

)
dx+

∑
x∈η−

z−δ (x)e−Eφ+ (x,η+)e−Eψ− (x,η−\x)R
(
η+, η−\x)

+
∑
x∈η−

e−Eκ+ (x,η+)e−Eτ+ (x,η−\x)R
(
η+ ∪ x, η−\x)

+
∑
x∈η+

e−Eκ− (x,η−)e−Eτ− (x,η+\x)R
(
η+\x, η− ∪ x

)
.

Then ∫

Γ 2
0

(QδR) (η)dλ(η) =
∫

Γ 2
0

Dδ(η)R(η)dλ(η), 0 ≤ R ∈ Dδ.

Consequently, there exists an extension (Jδ, D(Jδ)) of (−Dδ +Qδ, Dδ) such that Jδ is the
generator of a sub-stochastic semigroup (Sδ(t))t≥0 on L1(Γ 2

0 , dλ), cf. [33, Theorem 2.2].

Lemma 5 Dδ is a core for Jδ. Moreover, Sδ(t) leaves L1(Γ 2
0 , (1 + | · |)dλ) invariant.

Proof Let V (η) = |η|, we want to find a constant c = c(δ) > 0 such that

LδV (η) ≤ c(δ)(1 + V (η)) − 1

2
Dδ(η), η ∈ Γ 2

0 . (26)

In such a case the assertion follows from [33, Proposition 5.1]. Observe that

(LδV ) (η) ≤ −|η| + 〈
z+δ
〉+ 〈

z−δ
〉
.

Then (26) holds, provided

〈
z+δ
〉+ 〈

z−δ
〉+ 1

2
Dδ(η) ≤ (1 + c)|η| + c.

By Dδ(η) ≤ 2|η| + 〈z+δ 〉 + 〈z−δ 〉 this holds true, provided
3

2

(〈
z+δ
〉+ 〈

z−δ
〉)+ |η| ≤ (1 + c)|η| + c.

Above inequality is satisfied if c > 0 is such that c > 3
2 (〈z+δ 〉 + 〈z−δ 〉). ��

Let (Iδ, D(Iδ)) be the adjoint operator to (Jδ, D(Jδ)). This operator is defined on
L∞(Γ 2

0 , dλ). The next lemma follows immediately by (2).

Lemma 6 For each F ∈ D(Iδ) the action of Iδ is given by LδF, i.e., IδF = LδF.

This shows that for each R0 ∈ L1(Γ 2
0 , dλ) there exists exactly one weak solution (Rδ

t )t≥0 ⊂
L1(Γ 2

0 , dλ) to

d

dt

∫

Γ 2
0

F(η)Rδ
t (η)dλ(η) =

∫

Γ 2
0

LδF(η)Rδ
t (η)dλ(η), Rδ

t |t=0 = R0, (27)

where F ∈ D(Iδ), cf. [2]. This solution is given by Rδ
t = Sδ(t)R0, t ≥ 0.
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3.4.2 Step 2: Evolution of Localized Correlation Functions

Let L̂δ := K−1
0 LδK0 be the operator given by L̂ where z± are replaced by z±δ . It is considered

on the same domain D(L̂) as L̂.

Lemma 7 For any δ > 0, the assertions of Proposition 1 and Theorem 2 hold with z±δ
instead of z±, i.e., (L̂δ, D(L̂)) is the generator of an analytic semigroup of contractions. Let
T̂δ(t) and T̂δ(t)∗ be the semigroups on Lα and Kα, respectively. Then, for any G ∈ Lα,

T̂δ(t)G −→ T̂ (t)G, δ → 0,

holds in Lα.

Proof Note that condition (A) is independent of δ and hence is still satisfied. Concerning
condition (B), let βδ(α; η) be defined similarly to β(α; η), where z± are replaced by z±δ .

From Rδ ≤ 1 it follows that βδ(α; η) ≤ β(α; η) which shows that condition (B) holds. This
shows the first assertion. Let us prove the second assertion. To this end it suffices to show
that L̂δG −→ L̂G holds in Lα as δ → 0 for any G ∈ Bbs(Γ

2
0 ) (see [6, Chap. 3, Theorem

4.8]). Since |z±δ − z±| = z±(1 − Rδ) −→ 0 and |z±δ − z±| ≤ z± this follows by dominated
convergence. ��
Let Bδ

α be the Banach space of all equivalence classes of functions G with norm

‖G‖Bδ
α

=
∫

Γ 2
0

|G(η)|eλ

(
Rδ; η+) eλ

(
Rδ; η−) eα|η|eλ(ρ; η)dλ(η).

Its dual Banach space is identified with the Banach space Rδ
α of all equivalence classes of

functions u equipped with the norm

‖u‖Rδ
α

= ess sup
η∈Γ 2

0

|u(η)|
eλ(Rδ; η+)eλ(Rδ; η−)eα|η|eλ(ρ; η)

.

The same arguments as in the proof of Proposition 1 and Theorem 2 show that we can
replace Lα, Kα by Bδ

α and Rδ
α. Let Uδ(t) and Uδ(t)∗ be the corresponding semigroups and

let (L̂δ, DB(L̂δ)) be the generator of Uδ(t). It is easily seen that

DB (L̂δ

) = {
G ∈ Bδ

α|M · G ∈ Bδ
α

}
,

and, in particular, Bbs(Γ
2
0 ) ⊂ DB(L̂δ) is a core. Thus, the Cauchy problem

d

dt

〈
G, uδ

t

〉 = 〈
L̂δG, uδ

t

〉
, uδ

t |t=0 = u0, G ∈ Bbs
(
Γ 2
0

)
, (28)

has for every u0 ∈ Rδ
α a unique weak solution in Rδ

α given by uδ
t = Uδ(t)∗u0. Here the

notion of weak solutions to (28) is defined analogously to (7).

Lemma 8 Let k0 ∈ Rδ
α, then T̂δ(t)∗k0 = Uδ(t)∗k0 holds.

Proof Observe thatRδ
α ⊂ Kα is embedded continuously. Consequently, uδ

t = Uδ(t)∗k0 and
kδ
t = T̂δ(t)∗k0 are well-defined. Since also Lα ⊂ Bδ

α is continuously embedded, we obtain
D(L̂) ⊂ DB(L̂δ), i.e., (L̂δ, DB(L̂δ)) is an extension of (L̂δ, D(L̂)). Therefore, (uδ

t )t≥0 is
also a weak solution to (7) and hence uniqueness implies kδ

t = uδ
t , t ≥ 0. ��
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Lemma 9 Let α+
0 < α+, α−

0 < α−, k0 ∈ Rδ
α0

and assume that k0 is positive definite. Then,
uδ
t := Uδ(t)∗k0 is positive definite, for any t ≥ 0.

Proof Define a bounded linear operator H:Rδ
α −→ Lc, for any c = (c+, c−) ∈ R

2, by

Hu(η) :=
∫

Γ 2
0

(−1)|ξ |u(η ∪ ξ)dλ(ξ).

Let G ∈ Bδ
α be arbitrary. Then, for any u ∈ Rδ

α, we get by Fubini’s theorem and (2)

〈K0G, Hu〉 = 〈G, u〉. (29)

We can apply Fubini’s theorem and (2) since
∫

Γ 2
0

∫

Γ 2
0

∫

Γ 2
0

|G(ξ)||u(η ∪ ξ ∪ ζ )|dλ(ζ )dλ(ξ)dλ(η)

≤ ‖u‖Rδ
α
e2e

α+〈Rδ〉ρ e2eα−〈Rδ〉ρ
∫

Γ 2
0

|G(ξ)|eα|ξ |eλ(ρ; ξ)eλ

(
Rδ; ξ+) eλ

(
Rδ; ξ−) dλ(ξ),

is satisfied, where 〈Rδ〉ρ := ∫
Rd

Rδ(x)ρ(x)dx . For the same u and G ∈ DB(L̂) we obtain by

(29) and K0 L̂δG = LδK0G
〈
L̂δG, u

〉 = 〈
K0 L̂δG, Hu

〉 = 〈LδK0G, Hu〉 . (30)

Observe that

〈
G, uδ

t

〉 = 〈G, u0〉 +
t∫

0

〈
L̂δG, uδ

s

〉
ds, G ∈ DB(L̂). (31)

Let G ∈ Kc, where c := (log(2), log(2)). By |G(η)| ≤ 2|η|‖k‖Kc and by M(η) ≤ 2|η| we
get

∫

Γ 2
0

M(η)|G(η)|eα|η|eλ(ρ; η)eλ

(
Rδ; η+) eλ

(
Rδ; η−) dλ(η)

≤ 2‖G‖Kc

∫

Γ 2
0

|η|2|η|eα|η|eλ(ρ; η)eλ

(
Rδ; η+) eλ

(
Rδ; η−) dλ(η)

= 2‖G‖Kc

∞∑
n,m=0

2n+m

n!m! (n + m)eα+neα−m 〈Rδ〉n+m
ρ < ∞.

This implies Kc ⊂ DB(L̂). By (29)–(31) it follows for Rδ
t := Huδ

t ∈ L1(Γ 2
0 , dλ), t ≥ 0,

〈
K0G, Rδ

t

〉 = 〈K0G, R0〉 +
t∫

0

〈
LδK0G, Rδ

s

〉
ds, G ∈ Kc. (32)
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For any F ∈ D(Jδ) ⊂ L∞(Γ 2
0 , dλ) we get |K−1

0 F(η)| ≤ ‖F‖L∞2|η| and hence D(Jδ) ⊂
K0Kc. Thus, we can find G ∈ Kc such that K0G = F. By (32), it follows that

〈
F, Rδ

t

〉 = 〈F, R0〉 +
t∫

0

〈JδF, Rδ
s

〉
ds, F ∈ D (Jδ) .

Recall that k0 ∈ Rδ
α0

. By Theorem 2 we see that uδ
t = Uδ(t)∗k0 is continuous in t ≥ 0 w.r.t.

the norm in Rδ
α. Since H:Rδ

α −→ L1(Γ 2
0 , dλ) is continuous, Rδ

t = Huδ
t is continuous in

t ≥ 0 w.r.t. the norm in L1(Γ 2
0 , dλ). Hence, (Rδ

t )t≥0 is a weak solution to (27). Uniqueness
implies that Rδ

t = Sδ(t)R0 ≥ 0. Finally, for any G ∈ B+
bs(Γ

2
0 ) we get

〈
G, uδ

t

〉 = 〈
K0G, Rδ

t

〉 ≥ 0, t ≥ 0.

��

3.4.3 Step 3: Proof of Theorem 4

Let α+
0 < α+, α−

0 < α−. First, we consider the special case μ0 ∈ Pα0 . Let k0 ∈ Kα0 be the
associated correlation function. Define

k0,δ(η) := k0(η)eλ

(
Rδ; η+) eλ

(
Rδ; η−) , δ > 0, η ∈ Γ 2

0 ,

then k0,δ ∈ Rδ
α0

. The following lemma shows that k0,δ is positive definite. It is a two-
component generalization of [7, Lemma 3.9]. A computationally similar, but technically
different proof is given in the Appendix.

Lemma 10 Let k:Γ 2
0 −→ R be positive definite such that for any C > 0 and any compact

Λ ⊂ R
d

∫

Γ 2
0

C |η|eλ

(
1Λ; η+) eλ

(
1Λ; η−) k(η)dλ(η) < ∞.

Let 0 ≤ f ± ≤ 1 be integrable and define

k̃(η) := k(η)
∏
x∈η+

f +(x)
∏
x∈η−

f −(x), η ∈ Γ 2
0 .

Then k̃ is positive definite.

Lemma 8 implies T̂δ(t)∗k0,δ = Uδ(t)∗k0,δ ∈ Rδ
α and Lemma 9 shows that Uδ(t)∗k0,δ is

positive definite. Let G ∈ B+
bs(Γ

2
0 ), then 〈G, T̂δ(t)∗k0,δ〉 ≥ 0. Observe that

〈
G, T̂δ(t)

∗k0,δ
〉 = 〈T̂δ(t)G − T̂ (t)G, k0,δ〉 + 〈

T̂ (t)G, k0,δ
〉
. (33)

For the first term we obtain, by ‖k0,δ‖Kα ≤ ‖k0‖Kα ,
∣∣〈T̂δ(t)

∗G − T̂ (t)G, k0,δ
〉∣∣ ≤ ∥∥T̂δ(t)G − T̂ (t)G

∥∥Lα
‖k0‖Kα

.

The latter tends to zero, see Lemma 7. The second term in (33) tends, by dominated conver-
gence, to 〈T̂ (t)G, k0〉 = 〈G, T̂ (t)∗k0〉. Thus

〈
G, T̂δ(t)

∗k0,δ
〉 −→ 〈

G, T̂ (t)∗k0
〉
, δ → 0,

and hence 〈G, T̂ (t)∗k0〉 ≥ 0, i.e., T̂ (t)∗k0 is positive definite.
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For the general case, let μ0 ∈ Pα with correlation function k0 ∈ Kα. Then k0,δ(η) :=
e−δ|η|k0(η) belongs to Kα−δ for any δ > 0. By previous case, we see that T̂ (t)∗k0,δ ∈ Kα is
positive definite. Taking the limit δ → 0 yields the assertion.

4 Ergodicity

Suppose the conditions (A) and (B) are satisfied. The following is the main statement for this
section.

Theorem 5 There exists a unique invariant measure μinv ∈ Pα associated to L , i.e.,
∫

Γ 2

LF(γ )dμinv(γ ) = 0, F ∈ FP (Γ 2) . (34)

Let kinv be the associated correlation function.

(1) The semigroup T̂ (t) is uniformly ergodic with exponential rate and projection operator

P̂G(η) =
∫

Γ 2
0

G(ξ)kinv(ξ)dλ(ξ)1∗(η). (35)

(2) The adjoint semigroup T̂ (t)∗ is uniformly ergodic with exponential rate and projection
operator

P̂∗k(η) = kinv(η)k(∅). (36)

(3) There exists constants a, b > 0 such that for all μ0 ∈ Pα

∥∥kμt − kμinv

∥∥Kα
≤ ae−bt

∥∥kμ0 − kμinv

∥∥Kα
, t ≥ 0,

holds, where (μt )t≥0 is the unique weak solution to (1).

The rest of this section is devoted to the proof of this theorem.Multiplication by1∗ and 1−1∗
defines projection operators 1∗:Kα −→ K0

α and (1 − 1∗):Kα −→ K≥1
α , respectively.

Here, K≥1
α = {k ∈ Kα|k(0,0) = 0} and K0

α = {k ∈ Kα|k(n,m) = 0, n + m ≥ 1}. By
1∗(1 − 1∗) = (1 − 1∗)1∗ = 0 we obtain Kα = K0

α ⊕ K≥1
α . Define a linear operator S by

Sk(∅) = 0 and

Sk(η) = 1

M(η)
(Bk)(η), η �= ∅.

It is not difficult to see that S leaves K≥1
α invariant and ‖S‖L(Kα) < 1. The next lemma

provides existence and uniqueness of solutions to LΔk = 0. Its proof is an easy modification
of the arguments in [10].

Lemma 11 The equation

LΔkinv = 0, kinv(∅, ∅) = 1, (37)

has a unique solution kinv ∈ Kα. This solution is given by kinv = 1∗ + (1− S)−1S1∗, where

S1∗(η) = 1
Γ

(1)
0

(
η+) 0|η−|

z+ + 1
Γ

(1)
0

(
η−) 0|η+|z−.
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In particular, (36) is a projection operator on Kα with range

Ran(P̂∗) = {
k ∈ D

(
LΔ
) |LΔk = 0

}
,

and it is given by P̂∗ = 1∗ + (1 − S)−1S1∗, where 1∗ acts as a multiplication operator.

First we establish ergodicity for T̂ (t). Let L0
α := {G ∈ Lα|G = κ1∗, κ ∈ R} and L≥1

α :=
{G ∈ Lα|G(∅) = 0}.ThenLα = L0

α⊕L≥1
α and the projection ontoL0

α is given bymultiplica-
tion with 1∗. Likewise, 1−1∗ projects onto L≥1

α .Define B01:L≥1
α −→ L0

α, B01G = 1∗BG
and L11:L≥1

α −→ L≥1
α , L11G = AG + (1 − 1∗)BG. Taking into account L̂ = L̂(1 − 1∗)

yields

L̂G = B01(1 − 1∗)G + L11(1 − 1∗)G, G ∈ Lα. (38)

Moreover, since D(L̂) = {G ∈ Lα|M · G ∈ Lα} and L0
α ⊂ D(L̂) it follows that D(L11) =

D(L̂) ∩ L≥1
α . Note that B01 is given by

1∗BG(η) = 1∗(η)z−
∫

Rd

G(∅, x)dx + 1∗(η)z+
∫

Rd

G(x, ∅)dx,

and hence is a positive operator. The next statement was shown for the one-component G−-
dynamics in [25]. Based on their techniques we present an extension to the two-component
case. Such extension includes a better estimate on the spectral gap of L̂ and admits a larger
constant in condition (B).

Proposition 3 Let a(α) ∈ (0, 1) be given as in condition (B) and

ω0 := sup

{
ω ∈

[
0,

π

4

] ∣∣∣∣a(α) < cos(ω)

}
. (39)

Then the following statements hold:

(1) The point 0 is an eigenvalue for (L̂, D(L̂)) with eigenspace L0
α and eigenvector 1∗.

(2) Let λ0 := (1 − a(α)) > 0. Then

I1 := {λ ∈ C|Re(λ) > −λ0} \{0},
and

I2 :=
{
λ ∈ C

∣∣∣∣|arg(λ)| <
π

2
+ ω0

}
\{0},

belong to the resolvent set ρ(L̂) of L̂ on Lα.

Proof Let (A1, D(L11)) be the restriction of (A, D(L̂)) to L≥1
α and denote by ‖ · ‖L≥1

α
the

norm onL≥1
α .Observe that M(η) ≥ 1 for all |η| ≥ 1. Then, for any λ = u+ iw, u ≥ 0, w ∈

R, by M(η) ≥ 1 for all |η| ≥ 1,
∣∣∣∣

G

λ + M(η)

∣∣∣∣ ≤ |G|√
(u + 1)2 + w2

≤ |G|min

(
1

|λ| ,
1√

1 + w2

)
.

This implies λ ∈ ρ(A1) and

‖R (λ; A1)G‖L≥1
α

≤ min

(
1

|λ| ,
1√

1 + w2

)
‖G‖L≥1

α
. (40)
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Consider the decomposition

(λ − L11) = (
1 − (1 − 1∗)BR (λ; A1)

)
(λ − A1) . (41)

Then, by (14),

‖(1 − 1∗)BG‖L≥1
α

≤
∫

Γ 2
0

|BG(η)|eα|η|eλ(ρ; η)dλ(η) ≤ a(α)‖M · G‖L≥1
α

,

for any G ∈ L≥1
α . This implies that (1 − (1 − 1∗)BR(λ; A1)) is invertible on L≥1

α , i.e.,
λ ∈ ρ(L11), and

R (λ; L11) = R (λ; A1)
(
1 − (1 − 1∗)BR (λ; A1)

)−1
. (42)

In particular, we obtain for λ = u + iw, u ≥ 0, w ∈ R by (42) and (40)

‖R (λ; L11)G‖L≥1
α

≤
min

(
1
|λ| ,

1√
1+w2

)

1 − a(α)
‖G‖L≥1

α
,

and for λ = iw, w ∈ R

‖R (iw, L11)G‖L≥1
α

≤
√
1 + w2−1

1 − a(α)
‖G‖L≥1

α
.

For λ = u + iw, 0 > u > −λ0 and w ∈ R write

(u + iw − L11) = (1 + uR (iw; L11)) (iw − L11) .

Then, by |u| < λ0 and
|u|√
1+w2

1
1−a ≤ |u|

λ0
< 1 we obtain λ ∈ ρ(L11) and

‖R (λ; L11)G‖L≥1
α

≤
√
1 + w2−1

1 − a(α)

(
1 − |u|

λ0

)−1

‖G‖L≥1
α

.

Therefore, I1 belongs to the resolvent set of L11. For I2 let λ = u + iw ∈ I2 and u < 0.
Then, there exists ω ∈ (0, ω0) such that |arg(λ)| < π

2 + ω and hence

|w| = | tan(arg(λ))||u| ≥ cot(ω)|u|.
This implies for η �= ∅

|λ + M(η)|2 = (u + M(η))2 + w2 ≥ (u + M(η))2 + cot(ω)2u2.

The right-hand side is minimal for the choice u = − M(η)

1+cot(ω)2
which yields

|λ + M(η)|2 ≥ M(η)2

((
cot(ω)2

1 + cot(ω)2

)2

+ cot(ω)2

(1 + cot(ω)2)2

)

= M(η)2
cot(ω)2

1 + cot(ω)2
= M(η)2 cos(ω)2.

Then, by

∥∥(1 − 1∗)BR (λ; A1)G
∥∥
L≥1

α
≤ a(α) ‖A1R (λ; A1)G‖L≥1

α
≤ a(α)

cos(ω)
‖G‖L≥1

α
,
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and (39) we have a(α) < cos(ω). By (41) we obtain I2 ⊂ ρ(L11). Moreover, for each
λ = u + iw such that π

2 < |arg(λ)| < π
2 + ω and, for some ω ∈ (0, ω0),

‖R (λ; L11)G‖L≥1
α

≤
√

(u2 + 1)2 + w2−1

1 − a(α)
cos(ω)

‖G‖L≥1
α

≤
(
1 − a(α)

cos(ω)

)−1

|w| ‖G‖L≥1
α

≤ √
2

(
1 − a(α)

cos(ω)

)−1

|λ| ‖G‖L≥1
α

,

where we have used |w| ≥ |λ|√
2
. For the first claim let ψ ∈ D(L̂) be an eigenvector to the

eigenvalue 0. The decomposition ψ = 1∗ψ + (1 − 1∗)ψ = ψ0 + ψ1 with ψ0 ∈ L0
α and

ψ1 ∈ L≥1
α ∩ D(L̂) = D(L11) yields, by (38),

0 = L̂ψ = 1∗Bψ1 + L11ψ1 ∈ L0
α ⊕ L≥1

α .

Hence L11ψ1 = 0 and since 0 ∈ ρ(L11) alsoψ1 = 0. For the second statement let λ ∈ I1∪ I2
and H = H0 + H1 ∈ L0

α ⊕ L≥1
α . Then, we have to find G ∈ D(L̂) such that

(λ − L̂)G = H.

Using again the decomposition of L̂, above equation is equivalent to the system of equations

λG0 − 1∗BG1 = H0,

(λ − L11)G1 = H1.

Since λ ∈ I1 ∪ I2 ⊂ ρ(L11) the second equation has a unique solution on L≥1
α given by

G1 = R(λ; L11)H1. Therefore, G0 is given by

G0 = 1

λ

(
H0 + 1∗BR (λ; L11) H1

)
.

��
Remark 4 The proof shows that for any ε > 0 there exists ω = ω(ε) ∈ (0, π

2

)
such that

�(ε) :=
{
λ ∈ C

∣∣ |arg (λ + λ0 − ε)| ≤ π

2
+ ω

}
⊂ I1 ∪ I2 ∪ {0},

and there exists M(ε) > 0 with

‖R (λ; L11)G‖L≥1
α

≤ M(ε)

|λ| ‖G‖L≥1
α

,

for all λ ∈ Σ(ε)\{0}. Moreover, (L11, D(L11)) is a sectorial operator of angle ω0 on L≥1
α .

Denote by T̃ (t) the bounded analytic semigroup on L≥1
α given by

T̃ (t) = 1

2π i

∫

σ

eζ t R (ζ ; L11) dζ, t > 0, (43)

where the integral converges in the uniform operator topology, see [28]. Here, σ denotes any
piecewise smooth curve in

{
λ ∈ C

∣∣∣∣|arg(λ)| <
π

2
+ ω0

}
\{0},

running from ∞e−iθ to ∞eiθ for θ ∈ (π
2 , π

2 + ω0
)
.
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TheL≥1
α part of T̂ (t) is given by (1−1∗)T̂ (t)|L≥1

α
and hence has the generator (1−1∗)L̂G =

L11G.As a consequence, we obtain T̃ (t) = (1−1∗)T̂ (t)|L≥1
α

. This yields the decomposition

T̂ (t) = 1∗ + 1∗T̂ (t)(1 − 1∗) + T̃ (t)(1 − 1∗), t ≥ 0. (44)

By duality we see that the adjoint semigroup (T̂ (t)∗)t≥0 on Kα admits the decomposition

T̂ (t)∗ = 1∗ + (1 − 1∗)T̂ (t)∗1∗ + T̃ (t)∗(1 − 1∗), t ≥ 0, (45)

where T̃ (t)∗ ∈ L(K≥1
α ) is the adjoint semigroup to (T̃ (t))t≥0.

Lemma 12 The projection operator P̂:Lα −→ L0
α, given by (35), satisfies

〈P̂G, k〉 = 〈G, P̂∗k〉.
Moreover, we have P̂ = T̂ (t)P̂ = P̂ T̂ (t) and

T̂ (t)∗ P̂∗ = P̂∗T̂ (t)∗ = P̂∗. (46)

Now we are prepared to prove Theorem 5.

Proof (Theorem 5) The spectral properties stated in Remark 4, formulas (43)–(45) imply
that for any ε > 0 there exists C(ε) > 0 such that

‖(1 − 1∗)T̂ (t)G‖Lα ≤ C(ε)e−(λ0−ε)t‖G‖Lα , G ∈ L≥1
α , t ≥ 0.

Repeat, e.g., the arguments in [25]. This yields

‖T̂ (t)∗k‖Kα ≤ C(ε)e−(λ0−ε)t‖k‖Kα , k ∈ K≥1
α .

Let k ∈ Kα, we obtain, by (36),

k − P̂∗k = (1 − 1∗)k · kinv ∈ K≥1
α .

Using (46), we see that

‖T̂ (t)∗k − P̂∗k‖Kα = ‖T̂ (t)∗(k − P̂∗k)‖Kα ≤ C(ε)e−(λ0−ε)t‖k − P̂∗k‖Kα , (47)

holds. This shows that T̂ (t)∗ is uniformly ergodic with exponential rate. By duality also T̂ (t)
is uniformly ergodic with exponential rate. Let μ0 ∈ Pα and μt ∈ Pα be the weak solution
to (1). Denote by (kμt )t≥0 ⊂ Kα its associated family of correlation functions. Then, for any
t ≥ 0,

∥∥kμt − kinv
∥∥Kα

≤ C(ε)e−(λ0−ε)t
∥∥kμ0 − kinv

∥∥Kα
,

shows that kinv is a limit of positive definite functions.Hence, it is positive definite. Thus, there
exists a unique measure μinv ∈ Pα having kinv as its correlation function. Since T̂ (t)∗kinv =
kinv, it follows thatμinv is invariant for L . Property (34) follows immediately from LΔkinv =
0. ��

5 Vlasov Scaling

The general scheme of Vlasov scaling for (one-component) interacting particle systems in
the continuum can be found in [9]. Particular examples for two-component models have been
considered in [8]. For convenience of the reader, we give a brief description.
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The aim is to produce a certain scaling L �−→ Ln, n ∈ N such that the following
scheme holds. Let LΔ

n be the scaled operator on correlation functions and etL
Δ
n the (heuristic)

representation of the scaled evolution of correlation functions. The particular choice of L −→
Ln should preserve the order of singularity. Namely, for β > 0 let RβG(η) := β |η|G(η),

then

Rn−1etL
Δ
n Rnk −→ TΔ

V (t)k, n → ∞, (48)

should exist. The evolution TΔ
V (t) should preserve Lebesgue–Poisson exponentials, i.e., if

r0(η) = eλ(ρ
−
0 , η−)eλ(ρ

+
0 ; η+), then TΔ

V (t)r0(η) = eλ(ρ
−
t , η−)eλ(ρ

+
t ; η+).Wewill show

that ρ−
t , ρ+

t satisfy a certain system of non-linear integro-differential equations.
Instead of investigating the limit (48), observe that formally

Rn−1etL
Δ
n Rn = et Rn−1 LΔ

n Rn .

Thus, it is the same to consider renormalized operators LΔ
n,ren := Rn−1LΔ

n Rn and study the

behaviour of the renormalized semigroups TΔ
n,ren(t) := etL

Δ
n,ren , as n → ∞. We will prove

that the limit

LΔ
n,ren −→ LΔ

V , (49)

exists and LΔ
V is associated with a semigroup TΔ

V (t) = etL
Δ
V . The limit (48) is then obtained

by showing the convergence

TΔ
n,ren(t) −→ TΔ

V (t), (50)

in a proper sense.
Note that LΔ

n,ren and L
Δ
V are operators onKα and therefore cannot be generators of strongly

continuous semigroups. Hence, we consider first the scaled evolution on quasi-observables
L̂n := K−1LnK and the renormalized operators L̂n,ren = Rn L̂n Rn−1 .We show that L̂n,ren is
the generator of an analytic semigroup T̂n,ren(t)of contractions and prove that L̂n,ren −→ L̂V ,

as n → ∞. Here, L̂V is again the generator of an analytic semigroup T̂V (t) of contractions.
By Trotter–Kato approximation (see [6, Chap. 3, Theorem 4.8], it follows that T̂n,ren(t) −→
T̂V (t) strongly in Lα. By duality we obtain (49) and (50).

5.1 Assumptions and Scaling

Put z± �−→ nz± and scale the potentials by 1
n , i.e., g �−→ 1

n gwhere g ∈ {φ±, ψ±, κ±, τ±}.
Denote by Ln the corresponding (heuristic) Markov operator obtained by this scaling. Simi-
larly to the case n = 1, we consider the following assumptions.

(V1) Suppose that there exists α = (α+, α−) ∈ R
2 and a locally bounded measurable

function ρ:Rd −→ [1, ∞) such that (g ∗ ρ)(x) exists for all x ∈ R
d and g ∈

{φ±, ψ±, κ±, τ±}.
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(V2) We have

sup
x∈Rd

(
z+e−α+

ee
α−

(φ−∗ρ)(x)ee
α+

(ψ+∗ρ)(x) + q−eα−−α+
ee

α−
(κ−∗ρ)(x)ee

α+
(τ−∗ρ)(x)

)
< 1,

sup
x∈Rd

(
z−e−α−

ee
α+

(φ+∗ρ)(x)ee
α−

(ψ−∗ρ)(x) + q+eα+−α−
ee

α+
(κ+∗ρ)(x)ee

α−
(τ+∗ρ)(x)

)
< 1,

sup
x∈Rd

ee
α+

(κ+∗ρ)(x)ee
α−

(τ+∗ρ)(x) <
1 + q+

q+ ,

sup
x∈Rd

ee
α−

(κ−∗ρ)(x)ee
α+

(τ−∗ρ)(x) <
1 + q−

q− .

Let us comment of the assumptions. It can be shown that (V1) and (V2) are stronger then
(A) and (B). Similarly to Lemma 2, one can show that

sup
x∈Rd

(g ∗ ρ)(x) < ∞, ∀g ∈ {φ±, ψ±, τ±, κ±} ,

implies that for each α = (α+, α−) there exists z±(α), q±(α) > 0 such that (V1) and (V2)
are satisfied for all z± < z±(α) and q± < q±(α).

5.2 Statements

Let L̂n := K−1LnK be a linear mapping defined on Bbs(Γ
2
0 ) and put L̂n,ren := Rn L̂n Rn−1 .

Then, L̂n,ren = An + Bn where (AnG)(η) = −Mn(η)G(η) with cumulative death rate

Mn(η) = ∣∣η+∣∣+ ∣∣η−∣∣+
∑
x∈η+

e− 1
n Eκ+ (x,η+\x)e− 1

n Eτ+ (x,η−)

+
∑
x∈η−

e− 1
n Eκ− (x,η−\x)e− 1

n Eτ− (x,η+).

Let f nx (g; η) := ∏
y∈η n

(
e− 1

n g(x−y) − 1
)

, the second linear mapping is given by

(BnG) (η)

= z+
∑
ξ⊂η

∫

Rd

e− 1
n Eφ− (x,ξ−)e− 1

n Eψ+ (x,ξ+) f nx
(
φ−; η−\ξ−) f nx

(
ψ+; η+\ξ+)

× G
(
ξ+ ∪ x, ξ−) dx

+ z−
∑
ξ⊂η

∫

Rd

e− 1
n Eφ+ (x,ξ+)e− 1

n Eψ− (x,ξ−) f nx
(
φ+; η+\ξ+) f nx

(
ψ−; η−\ξ−)

× G
(
ξ+, ξ− ∪ x

)
dx

+ q+∑
ξ⊂η

∑
x∈ξ+

e− 1
n Eκ+ (x,ξ+\x)e− 1

n Eτ+ (x,ξ−) f nx
(
κ+; η+\ξ+) f nx

(
τ+; η−\ξ−)

× G
(
ξ+\x, ξ− ∪ x

)

+ q+∑
ξ⊂η

∑
x∈ξ−

e− 1
n Eκ− (x,ξ−\x)e− 1

n Eτ− (x,ξ+) f nx
(
κ−; η−\ξ−) f nx

(
τ−; η+\ξ+)

× G
(
ξ+ ∪ x, ξ−\x)
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− q−∑
ξ⊂η
ξ �=η

∑
x∈ξ+

e− 1
n Eκ+ (x,ξ+\x)e− 1

n Eτ+ (x,ξ−) f nx
(
κ+; η+\ξ+) f nx

(
τ+; η−\ξ−)G(ξ)

− q−∑
ξ⊂η
ξ �=η

∑
x∈ξ−

e− 1
n Eκ− (x,ξ−\x)e− 1

n Eτ− (x,ξ+) f nx
(
κ−; η−\ξ−) f nx

(
τ−; η+\ξ+)G(ξ).

As before, we consider this linear map on the domain

D (An) := {G ∈ Lα|Mn · G ∈ Lα} .

One can show that there exists a constant an(α) ∈ (0, 1) such that∫

Γ 2
0

B ′
nG(η)eα|η|eλ(ρ; η)dλ(η) ≤ an(α)

∫

�2
0

Mn(η)G(η)eα|η|eλ(ρ; η)dλ(η), 0 ≤ G ∈ D (An) ,

where B ′
n is defined analogously to B ′. Hence (L̂n,ren, D(An)) is a well-defined operator on

Lα. The next statement follows by the same arguments as Proposition 1 and Theorem 2.

Proposition 4 Let n ∈ N be arbitrary and fixed. The following assertions are satisfied.

(1) (L̂n,ren, D(An)) is the generator of an analytic semigroup (T̂n,ren(t))t≥0 of contractions
on Lα. Moreover, Bbs(Γ

2
0 ) is a core.

(2) Let (T̂n,ren(t)∗)t≥0 be the adjoint semigroup. For any k0 ∈ Kα there exists a unique weak
solution to

d

dt

〈
G, kt,n

〉 = 〈
L̂n,renG, kt,n

〉
, kt,n |t=0 = k0, G ∈ Bbs

(
Γ 2
0

)
.

This solution is given by kt,n = T̂n,ren(t)∗k0.

In the next step we consider the limiting operators, as n → ∞. These operators are formally
given by L̂V = AV + BV , where AVG(η) = −MV (η)G(η) and

MV (η) = 2
∣∣η+∣∣+ 2

∣∣η−∣∣

(BVG) (η) = z+
∑
ξ⊂η

∫

Rd

eλ

(−φ−(x − ·); η−\ξ−) eλ

(−ψ+(x − ·); η+\ξ+)

× G
(
ξ+ ∪ x, ξ−) dx

+ z−
∑
ξ⊂η

∫

Rd

eλ

(−φ+(x − ·); η+\ξ+) eλ

(−ψ−(x − ·); η−\ξ−)G (ξ+, ξ− ∪ x
)
dx

+ q+∑
ξ⊂η

∑
x∈ξ+

eλ

(−κ+(x − ·); η+\ξ+) eλ

(−τ+(x − ·); η−\ξ−)G (ξ+\x, ξ− ∪ x
)

+ q−∑
ξ⊂η

∑
x∈ξ−

eλ

(−κ−(x − ·); η−\ξ−) eλ

(−τ−(x − ·); η+\ξ+)G (ξ+ ∪ x, ξ−\x)

− q+∑
ξ⊂η
ξ �=η

∑
x∈ξ+

eλ

(−κ+(x − ·); η+\ξ+) eλ

(−τ+(x − ·); η−\ξ−)G(ξ)

− q−∑
ξ⊂η
ξ �=η

∑
x∈ξ−

eλ

(−κ−(x − ·); η−\ξ−) eλ

(−τ−(x − ·); η+\ξ+)G(ξ).
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As before, it can be shown that for any 0 ≤ G ∈ D(L̂V ) with

D
(
L̂V
) := {G ∈ Lα|MV · G ∈ Lα} ,

we have
∫

Γ 2
0

B ′
V G(η)eα|η|eλ(ρ; η)dλ(η) ≤ a(α)

∫

Γ 2
0

MV (η)G(η)eα|η|eλ(ρ; η)dλ(η),

for some constant aV (α) ∈ (0, 1). Here B ′
V is defined analogously to B ′. Hence L̂V is a

well-defined operator on Lα with domain D(L̂V ).

Theorem 6 The following assertions are satisfied:

(1) The operator (L̂V , D(L̂V )) is the generator of an analytic semigroup (T̂ V (t))t≥0 of
contractions on Lα. Moreover, Bbs(Γ

2
0 ) is a core for the generator.

(2) Let (T̂ V (t)∗)t≥0 be the adjoint semigroup on Kα. Then, for any r0 ∈ Kα there exists a
unique solution to

d

dt
〈G, rt 〉 = 〈

L̂V G, rt
〉
, rt |t=0 = r0, G ∈ Bbs

(
Γ 2
0

)
. (51)

The solution is given by rt = T̂ V (t)∗r0.
(3) Let r0(η) = ∏

x∈η+ ρ+
0 (x)

∏
x∈η− ρ−

0 (x) with

ρ±
0 (x) ≤ eα±

ρ(x), x ∈ R
d .

Assume that (ρ+
t , ρ−

t ) is a classical solution to

∂ρ+
t (x)

∂t
= −ρ+

t (x) + z+e−(ψ+∗ρ+
t )(x)e−(φ−∗ρ−

t )(x)

− q+e−(κ+∗ρ+
t )(x)e−(τ+∗ρ−

t )(x)ρ+
t (x) + q−e−(τ−∗ρ+

t )(x)e−(κ−∗ρ−
t )(x)ρ−

t (x),
(52)

∂ρ−
t (x)

∂t
= −ρ−

t (x) + z−e−(φ+∗ρ+
t )(x)e−(ψ−∗ρ−

t )(x)

− q−e−(κ−∗ρ−
t )(x)e−(τ−∗ρ+

t )(x)ρ−
t (x) + q+e−(κ+∗ρ+

t )(x)e−(τ+∗ρ−
t )(x)ρ+

t (x),
(53)

such that

ρ±
t (x) ≤ eα±

ρ(x), x ∈ R
d , t ≥ 0.

Then rt (η) := ∏
x∈η+ ρ+

t (x)
∏

x∈η− ρ−
t (x) is a weak solution to (51).

Proof The first two assertions follow by a modification of the arguments given in the proof
of Proposition 1 and Theorem 2. For the last assertion, observe that rt (η) is continuous w.r.t.
σ(Kα, Lα). Since ‖rt‖Kα ≤ 1 for all t ≥ 0, it follows that rt is continuous w.r.t. C. The
adjoint operator to L̂V is given by
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(
LΔ
V k
)
(η) = −|η|k(η) − q+ ∑

x∈η+
QV

x

(
κ+, τ+) k(η) − q− ∑

x∈η−
QV

x

(
τ−, κ−) k(η)

+ z+
∑
x∈η+

QV
x

(
ψ+, φ−) k (η+\x, η−)+z−

∑
x∈η−

QV
x

(
φ+, ψ−) k (η+, η−\x)

+ q+ ∑
x∈η−

QV
x

(
κ+, τ+) k (η+ ∪ x, η−\x)

+ q− ∑
x∈η+

QV
x

(
τ−, κ−) k (η+\x, η− ∪ x

)
,

defined on its maximal domain D(LΔ
V ) = {k ∈ Kα|LΔ

V k ∈ Kα} and

QV
x (g0, g1) k(η) =

∫

Γ 2
0

eλ

(−g0(x − ·); ξ+) eλ

(−g1(x − ·); ξ−) k(η ∪ ξ)dλ(ξ).

We have

∂rt (η)

∂t
=
∑
x∈η+

rt
(
η+\x, η−) ∂ρ+

t (x)

∂t
+
∑
x∈η−

rt
(
η+, η−\x) ∂ρ−

t (x)

∂t
.

An easy computation (see, e.g., [8]) shows that rt is (formally) a solution to

∂rt (η)

∂t
= LΔ

V rt (η), rt |t=0 = r0,

provided (ρ+
t , ρ−

t ) solve (52) and (53). By (2) it follows that

d

dt
〈G, rt 〉 = 〈

G, LΔ
V rt
〉 = 〈

L̂V G, rt
〉
,

which implies (51). ��
The next statement establishes convergence of the scaled evolution to the limiting solutions.

Theorem 7 Let G ∈ Lα, then, T̂n,ren(t)G −→ T̂ V (t)G as n → ∞. In particular, for any
r0 we have

〈
G, T̂n,ren(t)

∗r0
〉 −→ 〈

G, T̂V (t)∗r0
〉
, n → 0, G ∈ Lα.

Proof Since Bbs(Γ
2
0 ) is a core for L̂n,ren and L̂V , it suffices to show that

L̂n,renG −→ L̂V G, n → ∞
holds in Lα, for any G ∈ Bbs(Γ

2
0 ). But this follows, by dominated convergence, similarly to

[8]. ��

6 Examples

6.1 Dynamical Widom–Rowlinson Model

The model with ψ± = 0 and q± = 0 is known as the dynamical Widom–Rowlinson
model. It was introduced in [30] and an extension is provided in [19,20]. It has been recently
studied in [11] where a local evolution of correlation functions was constructed. Moreover,
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its kinetic limit was derived and for the solution (one particle density) of the kinetic equation
the dynamical phase transition was shown. In contrast to [11] we obtain a global evolution
of states and show that in a certain regime there exists only one invariant state and the non-
equilibrium evolution of states is ergodic. Below we consider an extension of this model with
additional mutations.

Assume that ψ+ = ψ− = 0 and κ+ = κ− = 0. The (formal) Markov generator is for
F ∈ FP(Γ 2) given by

(LF)(γ ) =
∑
x∈γ +

(
F
(
γ +\x, γ −)− F(γ )

)+
∑
x∈γ −

(
F
(
γ +, γ −\x)− F(γ )

)

+ z+
∫

Rd

e−Eφ− (x,γ −) (F (γ + ∪ x, γ −)− F(γ )
)
dx

+ z−
∫

Rd

e−Eφ+ (x,γ +) (F (γ +, γ − ∪ x
)− F(γ )

)
dx

+ q+ ∑
x∈γ +

e−Eτ+ (x,γ −)
(
F
(
γ +\x, γ − ∪ x

)− F(γ )
)

+ q− ∑
x∈γ −

e−Eτ− (x,γ +)
(
F
(
γ + ∪ x, γ −\x)− F(γ )

)
.

Let ρ ≥ 1 be a locally bounded function, α = (α+, α−) ∈ R
2 and assume that the potentials

are such that condition (A) is fulfilled. Concerning condition (B) we obtain

β(α; η) = e−α+
z+

∑
x∈η+

e−Eφ− (x,η+\x)Cφ−
(
x, α+)

+ e−α−
z−

∑
x∈η−

e−Eφ+ (x,η−\x)Cφ+
(
x, α−)

+ q+eα+−α− ∑
x∈η−

e−Eτ+ (x,η−\x)Cτ+
(
x, α−)

+ q−eα−−α+ ∑
x∈η+

e−Eτ− (x,η+\x)Cτ−
(
x, α+)

+ q+ ∑
x∈η+

e−Eτ+ (x,η−)
(
Cτ+

(
x, α−)− 1

)

+ q− ∑
x∈η−

e−Eτ− (x,η+)
(
Cτ−

(
x, α+)− 1

)

≤
∑
x∈η+

(
e−α+

z+Cφ−
(
x, α+)+ q−eα−−α+

Cτ−
(
x, α+))

+
∑
x∈η−

(
e−α−

z−Cφ+
(
x, α−)+ q+eα+−α−

Cτ+
(
x, α−))

+ q+ ∑
x∈η+

e−Eτ+ (x,η−)
(
Cτ+

(
x, α−)− 1

)

+ q− ∑
x∈η−

e−Eτ− (x,η+)
(
Cτ−

(
x, α+)− 1

)
.
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Note that we have

M(η) = ∣∣η+∣∣+ ∣∣η−∣∣+ q+ ∑
x∈η+

e−Eτ+ (x,η−) + q− ∑
x∈η−

e−Eτ− (x,η+).

Hence there exists a(α) ∈ (0, 1) such that

β(α; η) ≤ a(α)M(η), η ∈ Γ 2
0 ,

provided the following conditions are fulfilled

sup
x∈Rd

(
e−α+

z+Cφ−
(
x, α−)+ q−eα−−α+

Cτ−
(
x, α+)) < 1,

sup
x∈Rd

(
e−α−

z−Cφ+
(
x, α+)+ q+eα+−α−

Cτ+
(
x, α−)) < 1,

sup
x∈Rd

Cτ+
(
x, α−) <

1 + q+

q+ ,

sup
x∈Rd

Cτ−
(
x, α+) <

1 + q−

q− .

The second pair of conditions is satisfied, provided

sup
x∈Rd

∫

Rd

(
1 − e−τ±(x−y)

)
ρ(y)dy < e−α∓

ln

(
1 + q±

q±

)
,

i.e., α± are large enough. The first two conditions are satisfied, if the activities z±, q± are
small enough. In such a case conditions (V1) and (V2) are fulfilled. The kinetic equations
are given by

∂ρ+
t (x)

∂t
= −ρ+

t (x) + z+e−(φ−∗ρ−
t )(x) − q+e−(τ+∗ρ−

t )(x)ρ+
t (x) + q−e−(τ−∗ρ+

t )(x)ρ−
t (x),

∂ρ−
t (x)

∂t
= −ρ−

t (x) + z−e−(φ+∗ρ+
t )(x) − q−e−(τ−∗ρ+

t )(x)ρ−
t (x) + q+e−(τ+∗ρ−

t )(x)ρ+
t (x).

Let us consider, for simplicity, the case where the dynamics for the ± particles is deter-
mined by the same parameters, i.e., z± = z, q± = q, τ± = τ and φ± = φ. In such a case
let α± = α. Above conditions reduce to the pair of conditions

sup
x∈Rd

(
ze−αCφ(x, α) + qCτ (x, α)

)
< 1,

sup
x∈Rd

∫

Rd

(
1 − e−τ(x−y)

)
ρ(y)dy < e−α ln

(
1 + q

q

)
.

Then again conditions (V1) and (V2) are fulfilled and the kinetic equations take the simple
form

∂ρ+
t (x)

∂t
= −ρ+

t (x) + ze−(φ∗ρ−
t )(x) − qe−(τ∗ρ−

t )(x)ρ+
t (x) + qe−(τ∗ρ+

t )(x)ρ−
t (x),

∂ρ−
t (x)

∂t
= −ρ−

t (x) + z−e−(φ+∗ρ+
t )(x) − qe−(τ∗ρ+

t )(x)ρ−
t (x) + qe−(τ∗ρ−

t )(x)ρ+
t (x).
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6.2 Pure Mutation Dynamics

Suppose that particles are only allowed to change their type, i.e., consider the dynamics for
the operator V from the introduction. Moreover, assume that κ+ = τ− and κ− = τ+. The
Markov (pre-)generator is therefore given by

(V F)(γ ) = q+ ∑
x∈γ +

e−Eκ+ (x,γ +\x)e−Eκ− (x,γ −)
(
F
(
γ +\x, γ − ∪ x

)− F(γ )
)

+ q− ∑
x∈γ −

e−Eκ− (x,γ −\x)e−Eκ+ (x,γ +)
(
F
(
γ + ∪ x, γ −\x)− F(γ )

)
.

The corresponding dynamics describes the time evolution of spins associated with randomly
distributed particles. We suppose that the potentials κ± ≥ 0 are measurable and symmetric.
Moreover, assume that there exists ameasurable, locally bounded functionρ:Rd −→ [1, ∞)

such that (1−e−κ±(x−·)) ·ρ are integrable for any x ∈ R
d , i.e., condition (A) holds. Suppose

that there exists α ∈ R such that

sup
x∈Rd

Cκ+(x, α)Cκ−(x, α) <
1 + q±

q+ + q− .

Then assumption (B) holds for α+ = α− = α. Moreover, conditions (V1) and (V2) are
satisfied, provided

sup
x∈Rd

(
κ+ ∗ ρ

)
(x)

(
κ− ∗ ρ

)
(x) <

1 + q±

q+ + q− .

Let μ0 be an initial state and μt be its time evolution on Γ 2. It is not difficult to see that

∫

Γ 2

H
(
γ + ∪ γ −)μ0

(
dγ +, dγ −) =

∫

Γ 2

H
(
γ + ∪ γ −)μt

(
dγ +, dγ −) , t ≥ 0,

holds for any H polynomially bounded cylinder function on the one-component configuration
space Γ := Γ +. This relation shows that the distribution of the particles in the space R

d is
conserved in the time evolution. The kinetic equation is given by

∂ρ+
t (x)

∂t
= −q+e−(κ+∗ρ̂t )(x)ρ+

t (x) + q−e−(κ−∗ρ̂t )(x)ρ−
t (x),

∂ρ−
t (x)

∂t
= −q−e−(κ−∗ρ̂t )(x)ρ−

t (x) + q+e−(κ+∗ρ̂t )(x)ρ+
t (x),

where ρ̂ := ρ+
t +ρ−

t is the total particle density. Note that ρ̂ is preserved in the time evolution.

Acknowledgements Financial support through CRC701, Project A5, at Bielefeld University is gratefully
acknowledged. The author would like to thank the anonymous referees for many critical remarks.

123



350 M. Friesen

Appendix

Proof of Lemma 1

Let G ≥ 0, then (for the notation see [22])

∫

Γ0

∫

Γ0

G(ξ, η, η ∪ ξ)dλ(η)dλ(ξ)

=
∞∑
n=1

∞∑
m=1

1

n!
1

m!
∫

(Rd )n

∫

(Rd )m

G
({x}n1, {x}n+m

n+1 , {x}n+m
1

)
dxn+m

1

=
∞∑
n=1

1

n!
n∑

m=1

(
n

m

) ∫

(Rd )l

G
({x}m1 , {x}nm+1, {x}n1

)
dxn1

=
∫

Γ0

∑
ξ⊂η

G(ξ, η\ξ, η)dλ(η).

This shows the assertion in the case G ≥ 0. For the general case, let G = G+ − G− with
G± ≥ 0. Then

∫

Γ0

∫

Γ0

G±(ξ, η, η ∪ ξ)dλ(η) =
∫

Γ0

∑
ξ⊂η

G±(ξ, η\ξ, η)dλ(η).

In particular the left-hand side is finite if and only if the right-hand side is finite. (2) can be
checked by using G = G+ − G− and above equality.

Proof of Lemma 10

It suffices to show that

∫

Γ 2
0

G(η)̃k(η)dλ(η) ≥ 0,

for any G ∈ Bbs(Γ
2
0 ) such that KG ≥ 0. By approximation it suffices to consider G of the

form

G(η) =
N∑
i=1

bi eλ

(
g+
i ; η+) eλ

(
g−
i ; η−) , N ∈ N, bi ∈ C, g±

i ∈ Cc

(
R
d ; C

)
,

with KG ≥ 0. Here Cc(R
d ; C) denotes the space of continuous functions, having compact

support in R
d with values in C. For such functions G we obtain

G(η)eλ

(
f +; η+) eλ

(
f −; η−) =

N∑
i=1

bi eλ

(
g+
i f +; η+) eλ

(
g−
i f −; η−) .
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LetΛ ⊂ R
d be the unions of the supports of g±

i , i = 1, . . . , N and A± := max{‖g±
i ‖∞|i =

1, . . . , N }. Then
∫

Γ 2
0

∣∣eλ

(
g+
i f +; η+) eλ

(
g−
i f −; η−)∣∣ k(η)dλ(η)

≤
∫

Γ 2
0

A|η+|
+ A|η−|

− eλ

(
1Λ; η+) eλ

(
1Λ; η−) k(η)dλ(η) < ∞.

Let μ ∈ P be such that k is its correlation function. Then
∏

x∈γ +(1+ f +(x)g+
i (x))

∏
x∈γ −

(1+ f −(x)g−
i (x)) is integrable w.r.t.μ.Moreover, since g±

i have compact support, it follows
that

∏
x∈γ +

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −

(
1 + f −(x)g−

i (x)
)

=
∏

x∈γ +∩Λ

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −∩Λ

(
1 + f −(x)g−

i (x)
)
,

and hence
∫

Γ 2

∏
x∈γ +

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −

(
1 + f −(x)g−

i (x)
)
dμ(γ )

=
∫

Γ 2
Λ,Λ

∏
x∈γ +

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −

(
1 + f −(x)g−

i (x)
)
dμΛ,Λ(γ ).

We obtain

∫

Γ 2
0

G(η)̃k(η)dλ(η) =
N∑
i=1

bi

∫

Γ 2
0

eλ

(
f +g+

i ; η+) eλ

(
f −g−

i ; η−) k(η)dλ(η)

=
N∑
i=1

bi

∫

Γ 2

∏
x∈γ +

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −

(
1 + f −(x)g−

i (x)
)
dμ(γ )

=
N∑
i=1

bi

∫

Γ 2
Λ,Λ

∏
x∈γ +

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −

(
1 + f −(x)g−

i (x)
)
dμΛ,Λ(γ ).

Introduce the notation eλ(h; β±) := eλ(h+; β+)eλ(h−; β−) for h±:Rd −→ C and β =
(β+, β−) ∈ Γ 2

0 . By 1 + f ±g±
i = (1 − f ±) + f ±(1 + g±

i ) we get for the integrand

∏
x∈γ +

(
1 + f +(x)g+

i (x)
) ∏
x∈γ −

(
1 + f −(x)g−

i (x)
)

=
∑

ξ±⊂γ ±
eλ

(
1 − f ±; ξ±) eλ

(
f ± (1 + g±

i

) ; γ ±\ξ±) .
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This implies
∫

Γ 2
0

G(η)̃k(η)dλ(η) =
∫

Γ 2
Λ,Λ

∑
ξ±⊂γ ±

eλ

(
1 − f ±; ξ±) eλ

(
f ±; γ ±\ξ±)

×
N∑
i=1

bi eλ

(
1 + g±

i ; γ ±\ξ±) dμΛ,Λ(γ )

=
∫

Γ 2
Λ,Λ

∑
ξ±⊂γ ±

eλ

(
1 − f ±; ξ±) eλ

(
f ±; γ ±\ξ±) (KG)(γ \ξ)dμΛ,Λ(γ )

≥ 0.
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