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Abstract ThePfaffian structure of the boundarymonomer correlation functions in the dimer-
covering planar graph models is rederived through a combinatorial/topological argument.
These functions are then extended into a larger family of order–disorder correlation func-
tions which are shown to exhibit Pfaffian structure throughout the bulk. Key tools involve
combinatorial switching symmetries which are identified through the loop-gas representation
of the double dimer model, and topological implications of planarity.

1 Introduction

The combinatorial problem of enumeration of dimer covers of graphs (aka domino tilings)
has attracted interest from a diverse range of perspectives. These include statistical mechan-
ics, combinatorics, and algorithm complexity studies. In their groundbreaking papers,
P. W. Kasteleyn, M. E. Fisher and H. V. N. Temperley [9,19,20,26], showed that for planar
graphs the pure dimer problem admits a simple solution in terms of a Pfaffian of what is now
known as the Kasteleyn matrix. The pure dimer partition functions is different in this sense
from its monomer-dimer extension, for which its evaluation is computationally hard and thus
not of simple Pfaffian form [17].

Extensive research has been devoted to various facets of dimer coverings, specially in
the case of planar and bipartite graphs. Examples include the close relation between the
partition functions of the dimer cover and of the Ising model [10,20,24], non-existence
of phase transitions [16], structure of the model’s correlation functions, the arctic circle
phenomenon [7], continuum limits and their description in terms of (conformal) field theory.
More on this may be found in the overviews [4,8,21] and references therein.

B Simone Warzel
warzel@ma.tum.de

1 Departments of Mathematics and Physics, Princeton University, Princeton, USA

2 University of Cantabria, Santander, Spain

3 Zentrum Mathematik, TU München, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-016-1684-8&domain=pdf


Pfaffian Correlation Functions… 1079

Our focus here is on thePfaffian structure seen in someof themodel’s correlation functions.
For operators to which this applies the 2n correlation functions can be determined from just
the corresponding two point function. The proofs bear close similarity to the methods which
have recently been developed for planar Ising spin models [2]. In analogy to the latter, the
method relies on a combinatorial relation, which is valid for general graphs, combined with
topological implications of planarity.

It was already noted that for planar graphs the boundary monomer correlation functions,
whose explicit definition is restated below, are given by Pfaffians of the corresponding 2-point
functions [12,25]. The relation is less simple for the bulk monomer correlation functions,
but it was pointed out that these can be written as products of two Pfaffians [3].

We start by giving an elementary geometric proof of the Pfaffian structure of the boundary
monomer functions. The derivation also explains why these functions do not have the Pfaffian
structure in the bulk. Furthermore,we formulatemore explicitly thanwas done in the literature
the model’s disorder operators, and show that the expectation values of products of order–
disorder operators yield correlation functions which are simultaneously Pfaffian throughout
the bulk and reduce to the simpler monomer correlation functions for sites along a boundary
line.

The disorder operators can be viewed as incomplete implementations of the dimermodel’s
Z2 gauge symmetry. From this perspective, their construction and basic properties are similar
to those of the corresponding concept for the Ising model, as discussed by L. P. Kadanoff
and H. Ceva [18].

The combinatorial and topological arguments presented here parallel the analogous dis-
cussion of planar Ising model in the introductory sections of [2]. An essential tool is a path
integral representation of a duplicated system, which is referred to as the double dimermodel.
The latter has been studied by R. Kenyon and D. Wilson (cf. [22,23] and references therein)
and is related to the monopole-dimer model recently studied in [5].

2 Dimer Covers and Monomer Correlations

Given a finite graph G = (V, E) of vertex set V , a perfect matching or dimer cover is a subset
of the edge set, ω ⊂ E , such that every vertex is covered by exactly one edge. The set of
perfect matchings is denoted �G . The dimer-cover partition function counts the number of
the graph’s perfect matchings.

Perfect matchings can also be weighted through a complex-valued edge function K :
E �→ C. Given such an edge weight, the weighted dimer-cover partition function is

ZG,K :=
∑

ω∈�G

χK (ω) (2.1)

with

χK (ω) :=
∏

b∈ω

Kb .

Of particular interest is the effect on the dimer-cover partition function of the removal
of a collection of sites, M ⊂ V , which are regarded as covered by separate monomers. The
collection of perfect matchings of the remaining vertices is denoted by �G(M) and

ZG,K (M) :=
∑

ω∈�G (M)

χ(ω) (2.2)
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stands for the weighted partition function of the monomer-depleted graph. It should be noted
that not all graphs admit a perfect matching. In particular if M is of odd cardinality, then at
least one of the factors in ZG,K × ZG,K (M) vanishes. For simplicity, we shall concentrate
in this paper on the case ZG,K �= 0 for which the monomer correlation function for an even
collection of disjoint sites {x1, ..., x2n} ⊂ V is well-defined as

S2n(x1, ..., x2n) := 〈
n∏

j=1

ηx j 〉G,K := ZG,K ({x1, ..., x2n})
ZG,K

(2.3)

The variables ηx j should be thought of an operator in the functional integral representing the
average 〈·〉G,K corresponding to the dimer partition function ZG,K . These variables take a
similar role as the spin variables in the related Ising model.

In the planar set-up, monomer correlations have been studied early on by M. E. Fisher
and J. Stephenson [11], who determined the fall-off of S2(x1, x2) on the square lattice Z2 for
K ≡ 1 and two monomers in the bulk to behave asymptotically as |x1 − x2|−1/2 for large
separation (making the similarity to the Ising model even more apparent [24]). The values of
other special placements of momomer pairs on a square lattice are also known (cf. [4,11,15]).
In case of the infinite half-lattice Z×Z+, the monomer boundary correlations in case K ≡ 1
have been computed not long ago by V. B. Priezzhev and P. Ruelle [25]. They turned out to
be Pfaffians with two-point function given by

S2((ξ, 0), (η, 0)) =
{

− 2
π |ξ−η| if |ξ − η| is odd

0 otherwise.
(2.4)

3 The Double Dimer Model and Its Loop Gas Representation

The removal of a site in a finite graph, or equivalently its cover by a monomer, has a drastic
effect on the graph’s dimer covers: if Z�,K �= 0 then for parity reasons the modified graph
has no dimer cover. The removal of an even number of sites does not automatically invalidate
the existence of a cover. Its effect on the distribution of the dimer covers may be localized to
a collection of random paths linking pairwise the affected sites. A convenient way to arrive
at such a stochastic geometric picture of correlations is to consider the overlay of two sets
of dimer covers, one of the original graph and the other of its depleted version resulting
in the double dimer model. This technique is reminiscent of the duplication which is an
effective tool in the study of the Ising model’s correlation functions in its random current
representation [1,13].

The configurations of doubled dimer covers of a graph G = (V, E), depleted by corre-
sponding sets of monomers M1, M2 ⊂ V will be denoted here as:

ω(2) = (ω1, ω2) ∈ �G(M1) × �G(M2) =: �
(2)
G (M1, M2) . (3.1)

Clearly, each such configuration ω(2) is in one-to-one correspondence with a 2-multigraph
with vertex set V and the collection of edges in ω(2). The following deterministic statement
concerning such pairs of matchings relates the duplicated dimer cover model with a system
of loops and paths with prescribed boundaries given by the monomers, cf. Fig. 1.

Lemma 3.1 (Double matching as a loop/path system) For any finite graph G = (V, E), let
ω(2) ∈ �

(2)
G (M1, M2) be a pair of dimer covers of G depleted by a disjoint pair of monomers,
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Fig. 1 A double dimer configuration ω(2) = (ω1, ω2) on a finite graph (whose edges are indicated in grey)
with disjoint sets of monomers covering selected sites in one or the other copy of the graph. The edges of
ω1 and ω2, are marked in solid and dashed lines, correspondingly. The overlay results in a configuration of
alternatingly marked paths connecting the monomers and alternatingly marked loops, as described in Lemma
3.1

M1, M2 ⊂ G. Then the multiplicity with which the edges are covered by ω(2) coincides with
that of a collection 	 = 	(ω(2)) of edge-disjoint loops and paths where each γ ∈ 	 is either

i. a double loop covering a single edge,
ii. a simple loop of an even number of non-repeated edges,
iii. a simple path with boundary set ∂γ ⊂ M1 
 M2.

In case iii., the numbers of edges of γ is odd if and only if its two boundary sites are in the
same monomer set (i.e. either both in M1 or both in M2).

The loop-path characterisation of double covers ω(2) in terms of 	 partitions their col-
lection �

(2)
G (M1, M2) into equivalence classes, each of 2ns (	) elements, where ns(	) is the

number of simple loops in 	.

Proof In the case of disjoint monomer sets, the degree of each site x ∈ V in the multigraph
formed from the edge set of ω(2) is either 1 or 2, and given by

degω(2) (x) = degω1
(x) + degω2

(x) =
{
2, if x ∈ V\[M1 
 M2]
1, if x ∈ M1 
 M2

. (3.2)

It follows that the collection of edges with multiplicity 1 is the disjoint union of loops (of
no boundary) and paths with end points in M1 
 M2, each made of simple edges in ω j , at
alternating values of j = 1, 2. The stated constraints on the parity of the number of edges in
the loops and paths readily follow from the constraint that the path’s edges alternate between
the two dimer covers. In case of the open paths, the identity of the cover to which an edge
of γ belongs can be determined successively starting from the end points. There is no such
constraint for the ns(	) simple closed loops, and hence for each of these there are exactly
two choices (independent among the loops) for the alternating values of j ∈ {1, 2}. �


The above representation of �
(2)
G (M1, M2) in terms of loops and paths may be extended

by allowing the two sets of monomers to overlap, or coincide. The corresponding pure loop
gas was recently studied in [5].

The loop gas picture of the double-dimer partition functions

Z (2)
G,K (M1, M2) := ZG,K (M1) ZG,K (M2) =

∑

ω(2)∈�(2)(M1,M2)

χK (ω1) χK (ω2) , (3.3)

is particularly convenient in revealing switching symmetries of the double dimer model’s
connection amplitudes. Similar symmetries have been noted for the correlation functions of
the Ising model, revealed there through its random current representation.
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The connection amplitudes are defined as restricted sums such as

Z (2)
G,K

(
M1, M2; x j ↔ y j for j = 1, . . . , N

) :=
∑

ω(2)∈�(2)(M1,M2)

χK (ω1) χK (ω2)

N∏

j=1

1
[
x j←→ ω(2)y j

]
. (3.4)

where {x j , y j } j=1,...,N are pairs of sites in M1 
 M2, and 1
[
x j←→ ω(2)y j

]
is an indicator

function corresponding to the condition that the monomers x j , y j are connected by a path
γ ∈ 	(ω(2)).

Lemma 3.2 (Switching principle I) For any finite graph G = (V, E), pair of disjoint
monomer sets M1, M2 and {x, y} ⊂ V\(M1 
 M2):

Z (2)
G,K (M1 
 {x, y}, M2; x ↔ y,C) = Z (2)

G,K (M1, M2 
 {x, y}; x ↔ y,C) , (3.5)

Z (2)
G,K (M1 
 {x}, M2 
 {y}; x ↔ y,C) = Z (2)

G,K (M1 
 {y}, M2 
 {x}; x ↔ y,C) (3.6)

where C stands for any collection of other connection conditions among monomers in M1 

M2.

Proof Considering first the case C = ∅ (i.e. no other conditions), let �(2)(M1 

{x, y}, M2; x ↔ y) be the set of double dimer covers for which there is a path γ (x,y) ∈ 	

with ∂γ (x,y) = {x, y}. The first assertion is based on the bijection

�(2)(M1 
 {x, y}, M2; x ↔ y) → �(2)(M1, M2 
 {x, y}; x ↔ y)

implemented by the symmetric difference � of sets:

(ω1, ω2) �→
(
ω1�γ (x,y), ω2�γ (x,y)

)
. (3.7)

This map reverses the “edge coloring” along the path γ (x,y) connecting x and y with the color
indicating to which of the two dimer covers the edge belongs. The first identity thus follows
immediately from the fact that the path weights are unchanged under a color-flip operation.

The same switching argument implies also the second identity, and the generalization to
more general condition C . �


The loop gas formulation of the double dimer model casts its correlation functions in
terms of (discrete) path integrals, thereby bringing it closer to a broad range of physics
models. A more explicit version of this representation, which could be used for an alternative
presentation of the analysis which follows, is stated in Appendix.

4 Pfaffian Structure of Boundary Monomer Correlation Functions

The switching principle allows a simple proof of the fact that boundary monomer correlation
functions have a Pfaffian nature on all planar graphs. The corresponding result for Ising
model’s boundary spin–spin correlation functions goes back to [14]. Our proof parallels the
more recent rederivation of that relation in [2].

For the dimer model the following statement was derived in [25] in case of the infinite
planar half-lattice for which the two-point function is given by (2.4). For other planar graphs,
the theorem was recently established by different means in [12].
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Theorem 4.1 (Pfaffian boundary correlations) For any finite planar graph G = (V, E) the
boundary values of the monomer correlation functions satisfy

S2n(x1, ..., x2n) =
∑

π∈�2n

sgn(π)

n∏

j=1

S2(xπ(2 j−1), xπ(2 j)) ≡ Pfn
(
S2(xi , x j )

)
(4.1)

where M := {x1, ..., x2n} ranges over sequences of disjoint vertices positioned in a cyclic
order along any boundary of G. Moreover, �2n is the collection of pairings of {1, ..., 2n},
and sgn(π) is the pairing’s parity.

Proof Through a known characterization of Pfaffians (provable by an induction argument)
it suffices to show that for each n > 1 and any cyclicly ordered sequence of boundary sites

S2n(x1, ..., x2n) = Q2n(x1, ..., x2n) (4.2)

with Q2n defined as:

Q2n(x1, ..., x2n) :=
2n∑

k=2

(−1)k S2(x1, xk) S2(n−1) .(��x1, x2, ...,��xk, ..., x2n) (4.3)

Atfixed k the term S2(x1, xk) S2(n−1) (��x1, x2, ...,��xk , ..., x2n) is a sumofover configurations of
the duplicated system, ω(2) ∈ �(2)({x1, xk}, {��x1, x2, ...,��xk, ..., x2n}), which may be grouped
according to the paths of 	(ω(2)) which connect to x1 and xk . These fall into two classes:
the monomers x1 and xk may be connected to each other by some γ ∈ 	, or else each is
connected to another monomer:

Q2n(x1, ..., x2n)
(
ZG,K

)2

=
2n∑

k=2

(−1)k Z (2)
G,K ({x1, xk}, {��x1, x2, ...,��xk, ..., x2n}; x1 ↔ xk)

+
2n∑

k=2

(−1)k
2n∑

l,m=2
k �=l �=m �=k

Z (2)
G,K

({x1, xk}, {��x1, x2, ...,��xk , ..., x2n}; x1↔xm
xk↔xl

)
. (4.4)

Being based on combinatorial arguments, the above relation holds for arbitrary graphs.
It will now be combined with the following topological implication of planarity. For any
planar graph, a pair of monomers {xi , x j } located along the boundary can be linked by one of
the non-intersecting simple paths of 	(ω(2)) only if the two are either consecutively placed
along the boundary or separated by an even number of other monomers. In other words, in
the cases considered here:

xi ↔ x j �⇒ (−1)i− j = −1 . (4.5)
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For the pair of sums on the right side of (4.4) this implies:

i. In the first sum (−1)k−1 = −1, and hence

2n∑

k=2

(−1)k Z (2)
G,K ({x1, xk}, {��x1, x2, ...,��xk, ..., x2n}; x1 ↔ xk)

=
2n∑

k=2

(−1)k Z (2)
G,K (∅, M; x1 ↔ xk) =

2n∑

k=2

Z (2)
G,K (∅, M; x1 ↔ xk)

= ZG,K (M) ZG,K = S2n(x1, . . . , x2n)
(
ZG,K

)2
. (4.6)

Here the first step is a consequence of the switching principle of Lemma 3.2.
ii. In the second sum (−1)k−l = −1, and thus

2n∑

k,l=2
m �=k �=l �=m

(−1)k Z (2)
G,K

({x1, xk}, {��x1, x2, ...,��xk , ..., x2n}; x1↔xm
xk↔xl

) = 0 (4.7)

due to the antisymmetry of the summands under the exchange of k with l as is apparent
from the switching principle of Lemma 3.2.

Upon insertion in (4.4) these relations prove (4.2), and through it the claimed Pfaffian
structure. �


5 Disorder Operators for the Dimer Model

In the context of planar Ising spin systems order–disorder correlation functions have a Pfaffian
structure throughout the bulk and reduce to simple correlations functions in case of sites
along the boundary. They have been recently discussed, from a pair of somewhat different
perspectives, in [6] and [2]. To present a related concept for the dimer model’s correlation
functions we turn now to the dimer analog of disorder operators.

The definition of the disorder operators may be placed in the broader context of gauge
symmetries. For that let us first recall Kasteleyn’s observation [20] that the dimer model has
the following Z2 gauge symmetry in the dependence of the partition function ZG,K on the
kernel K .

For subsets B ⊂ V let us denote

∂B := {[x, y] ∈ E | if exactly one of the two points is in B} (5.1)

which forms the edge boundary of B.
Next, for any edge set E ⊂ E let TE : CE → C

E be the transformation of K which flips
its signs over the edges in E ,

(TE K )b =
{

−Kb if b ∈ E

Kb otherwise.
(5.2)

The key observation now is that if E = ∂B for a set B ⊂ V then

Z�,T∂B K = (−1)|B| Z�,K , (5.3)
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where |B| is the number of sites in B. For B containing a single site the relation (5.3) holds
since in each dimer cover exactly one dimer is affected by the sign flip T∂B . The general case
follows by noting the commutative product relation

T∂B =
∏

x∈B
T∂{x} (5.4)

and taking the corresponding product of the single site case of (5.3).
In view of the simplicity of the effect of T∂B on the partition function (and also on

the expectations defined below), such mappings may be regarded as the model’s gauge
transformations.

The disorder operators which are defined next may be viewed as partial gauge transfor-
mations, given by TE where E is the collection of edges which are traversed by a line 


which has only transversal intersections with the edges of E and in the general case has a
non-empty boundary set ∂
. The end-points of 
 are associated with sites of the dual graph
G∗, namely the faces of G in which the end points of 
 lie. One may note that away from ∂


the transformation locally acts as if it could be associated with a gauge transformation—but
it is not (unless ∂
 = ∅).
Definition 5.1 For a planar graph G = (V, E) with edge weights K : E �→ C:

i. The disorder operators τ
 are associated with site-avoiding, lines 
1, . . . , 
n in the plane
in which G is embedded. To each such line we associate the transformation K �→ T
∗K
where 
∗ is the set of edges in E which are crossed by 
 an odd number of times.

ii. The expectation values of products of such disorder operators is defined as:

〈
n∏

j=1

τ
 j 〉G,K :=
ZG,T
∗1 ◦···◦T
∗n K

ZG,K
. (5.5)

As an expression of the above mentioned gauge symmetry, the expectation value
〈∏N

j=1 τ
 j 〉G,K is a homotopy invariant under deformations of any 
 j in the plane which
preserve the line’s endpoints. More precisely, as a simple consequence of (5.3) we have:

Proposition 5.2 (Homotopy invariance) For any finite planar graph G = (V, E), edge
weights K : E �→ C and lines 
 j , j ∈ {1, . . . , n}, as in Definition 5.1, under deformations
of each 
 j in the plane which preserve the line’s endpoints the expectation value functional
(
1, . . . , 
N ) �→ 〈∏n

j=1 τ
 j 〉G,K is multiplied by (−1) each time one deformed line is moved
over a site of the planar graph.

The above construction parallels the definition of disorder operators for the Ising
model [18]. Disorder lines for the dimer-monomer model appear also in the recent discussion
of the dimer model’s partition function in terms of Grassmann integrals [3].

6 Pfaffian Structure of the Correlation Functions of the Order–Disorder
Operators

Our main concern in this paper will be canonical pairs of order–disorder variables, cf. Fig. 2.

Definition 6.1 For a planar graph G = (V, E) with a set of edge weights K : E �→ C, open-
ended, site-avoiding, non-intersecting lines 
1, . . . , 
2n in the plane in which G is embedded,
together with disjoint sites x1, . . . , x2n ⊂ V are called a collection of canonical pairs of
order–disorder variables in case:
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Fig. 2 Order–disorder variables for a planar graph. Each of the ovals in the figure encircles a pair consisting of
a site x j ∈ G and a point, marked ×, within an adjacent cell of the dual graph x∗

j ∈ G∗. The disorder variables
τ
 j are associated with lines 
 j , each linking the corresponding × marked sites with a point in the grand

central cell x∗
0 . The disorder lines 
1, 
2, . . . are enumerated cyclicly in the order of the lines’ emergence

from the grand central x∗
0 . The correlation function associated with such an array is defined in (5.5)

i. all lines have a common end-point x∗
0 ∈ G∗, called the grand central, and

ii. the other endpoint of 
 j is a face x∗
j ∈ G∗ adjacent to x j for all j ∈ {1, . . . , 2n}.

We call the canonical pairs of order–disorder variables cyclicly ordered if they are labeled
relative to their intersections with the edge boundary of x∗

0 .
The expectation values of products of order–disorder variables operators μ j := ηx j τ
 j

are defined as

〈
2n∏

j=1

μ j 〉G,K :=
ZG,T
∗1 ◦···◦T
∗2n K

({x1, . . . , x2n})
ZG,K

. (6.1)

Our main new result is:

Theorem 6.2 (Pfaffian correlations) For a finite planar graph G = (V, E) with edge weights
K : E �→ C, for any collection of canonical pairs of order–disorder variables p j = (x j , 
 j ),
j ∈ {1, . . . , 2n}, ordered cyclicly relative to the grand central

〈
2n∏

j=1

μ j 〉G,K =
∑

π∈�n

sgn(π)

n∏

j=1

〈μπ(2 j−1) μπ(2 j)〉G,K ≡ Pfn
(〈μ jμk〉G,K

)
. (6.2)

This result includes Theorem 4.1 as a special case. To see that, let us first note that for
sites x j which lie along the boundary of the grand-central x∗

0 , the corresponding disorder
sites may be chosen as x∗

j = x∗
0 . When the lines 
 j do not cross any edge, as in this case,

the operators τ
 j act as identity and may be omitted. Theorem 4.1 then emerges through the
inverted picture of the plane in which the complement of the finite graph is viewed as a single
cell (of potentially large boundary).

In case the monomers {x2 j−1, x2 j } are pairwise adjacent, the disorder lines may be chosen
so that their actions are pairwise equivalent, and thus cancel each other. In that case the pair-
wise product of two order–disorder variables reduces to a an ordinary product of monomers,
i.e., a dimer μ2 j−1μ2 j = ηx2 j−1ηx2 j , so that

〈 2n∏

j=1

τ j
〉
G,K = 〈 n∏

j=1

ηx2 j−1ηx2 j
〉
G,K . (6.3)
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The proof of Theorem 6.2 is organized along the lines used to establish the boundary
case, Theorem 4.1. However, the relevant topological considerations are considerably more
intricate. Defining, in analogy with Q2n of (4.3),

R2n(p1, ...p2n) :=
2n∑

k=2

(−1)k 〈μ1μk〉G,K 〈
∏

j∈{�1,2,..,�k,..,2n}
μ j 〉G,K , (6.4)

(with p j := (x j , 
 j ) standing for an order–disorder variables) the Pfaffian structure will be
shown by proving that for each n and choice of order–disorder pairs:

R2n(p1, ...p2n) = 〈
∏

j∈{1,..,2n}
μ j 〉G,K . (6.5)

At specified k the product of the order–disorder correlators is given by:

〈μ1μk〉G,K 〈
∏

j∈{�1,2,..,�k,..,2n}
μ j 〉G,K × Z2

G,K

=
∑

ω(2)∈�(2)({x1,xk },({�x1,x2,..,�xk ,..,x2n}
χK (ω1) χK (ω2) (−1)(ω1|
1,k )(−1)(ω2|L\
1,k ) (6.6)

where (ω1|
1,k) denotes the number of intersections of the edges of ω1 with two disorder
lines 
1,k := {
1, 
k} and likewise (ω2|L) denotes the number of intersections of the edges
of ω2 with the collection of all disorder lines L := {
1, . . . , 
2n}.

The terms in the above sumcan be split into two classes, according towhether the loop/path
configuration 	(ω(2)) includes a path with ∂γ (1,k) = {x1, xk}, or not. The corresponding
partial sums will be studied through the following quantities:

W (2)
G,K ({M1,L1}, {M2,L2};C) :=

∑

ω(2)∈�(2)(M1,M2)

1
[
ω(2)satisfiesC

]
χK (ω1) (−1)(ω1 |L1) χK (ω2) (−1)(ω2 |L2) (6.7)

in which we specify a set of connections C of the involved monomer sets M1, M2.
A key result here is the corresponding version of the switching lemma:

Lemma 6.3 (Switching principle II) For planar graphs, and the setup of Theorem 6.2, we
have for any m �= k �= l �= m:

W (2)
G,K ({p1, pk}, {��p1, p2, . . . ,��pk, . . . , p2n}; x1 ↔ xk)

= (−1)k W (2)
G,K (∅, {p1, . . . , p2n}; x1 ↔ xk) (6.8)

W (2)
G,K

({p1, pk}, {��p1, p2, . . . ,��pk, . . . , p2n}; x1↔xm
xk↔xl

)

= (−1)k−l−1 W (2)
G,K

({p1, pl}, {��p1, p2, ..., . . . ,��pl , . . . , p2n}; x1↔xm
xk↔xl

)
(6.9)

Proof The relation (6.8), which involves terms for which x1 ↔ xk , will be established
through the switching transformation:

(ω1, ω2) �→ (ω1�γ (1,k), ω2�γ (1,k)) (6.10)
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Expanding the quantities W (2) (defined in (6.7)), which appear in (6.8), into sums over ω(2),
the ratio of the corresponding terms is

χK (ω1�γ (1,k)) χK (ω2�γ (1,k))

χK (ω1) χK (ω2)

(−1)(ω2�γ (1,k)|L)

(−1)(ω1|
1,k )(−1)(ω2|L\
1,k )

= (−1)(γ
(1,k)|L) (−1)(ω

(2)|
1,k ) , (6.11)

where the last step is by an elementary calculation in Z2. The relation (6.8) then follows from
the special case l = 1 through the lemma which is stated next. (This is where the model’s
planarity plays a role.)

The relation (6.9) concerns terms ω(2) for which xk ↔ xl for some l �= 1. For that we
employ the switching transformation

(ω1, ω2) �→ (ω1�γ (k,l), ω2�γ (k,l)) . (6.12)

By a calculation similar to (6.11), the ratio of the corresponding contributions to the sums
which yield the two quantities W (2) in (6.9) is:

(−1)(ω1�γ (k,l)|
1,l ) (−1)(ω2�γ (k,l)|L\
1,l )

(−1)(ω1|
1,k ) (−1)(ω2|L\
1,k ) = (−1)(γ
(k,l)|L) (−1)(ω

(2)|
1,l )

(−1)(ω(2)|
1,k )

= (−1)(γ
(k,l)|L) (−1)(ω

(2)|
k,l ) . (6.13)

The relation (6.9) then again follows from the next lemma. �

The topological statement which was quoted within the above proof is:

Lemma 6.4 (Intersection parities) In the planar graph setup of Proposition 6.3, for any ω(2)

such that xk ↔ xl with respect to the corresponding loop / path configuration 	(ω(2)):

(−1)(γ
(k,l)|L) (−1)(ω

(2)|
k,l ) = (−1)k−l−1 . (6.14)

Proof To establish this relation it is useful to join the open ended paths γ of 	(ω(2))with the
disorder lines corresponding to the paths’ edges into loops with only transversal crossing.
For this purpose, we employ the following construction.

1. Join directly each x j with the endpoint x∗
j of the corresponding disorder line 
 j .

2. Connect pairwise the other endpoints of the disorder lines within the grand central x∗
0 , so

that 
k is connected to 
l and the remaining lines are paired consecutively with respect
to the cyclic ordering.

Let σ (k,l) be the loop which includes γ (k,l) concatenated with 
k and 
l in the above
construction, and let �(k,l) stand for the collection of the other loops which the construction
yields. Any two planar loops, simple or not, with transversal crossings can intersect only
even number of times (as can be deduced from the Jordan curve theorem). Thus σ (k,l) has
an even intersection with �(k,l). The intersections within the grand central cell contribute to
this the factor (−1)k−l−1, and the rest is the parity of the intersections of γ (k,l) and 
k,l with
the rest. Hence:

1 = (−1)k−l−1 (−1)
[
(γ (k,l)|L)−(γ (k,l)|
k,l )

]
(−1)

[
(ω(2)|
k,l )−(γ (k,l)|
k,l )

]

= (−1)k−l−1 (−1)(γ
(k,l)|L) (−1)(ω

(2)|
k,l ) , (6.15)

as claimed in (6.14). �
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We are now ready to complete the proof of Theorem 6.2.

Proof of Theorem 6.2. Similarly as in the Proof of Theorem 4.1, it remains to show that

〈
2n∏

j=1

μ j 〉G,K = R2n(p1, ...p2n) . (6.16)

The right side times (ZG,K )2 may be rewritten as

2n∑

k=2

(−1)k W (2)
G,K ({p1, pk}, {��p1, p2, . . . ,��pk, . . . , p2n}; x1 ↔ xk)

+
2n∑

k=2

(−1)k
2n∑

l,m=2
k �=l �=m �=k

W (2)
G,K

({p1, pk}, {��p1, p2, . . . ,��pk , . . . , p2n}; x1↔xm
xk↔xl

)

=
2n∑

k=2

W (2)
G,K (∅, {p1, . . . , p2n}; x1 ↔ xk) . (6.17)

Here the last line results from the switching Lemma 6.3. More precisely, the second sum
on the left vanishes thanks to the antisymmetry in the k �= l summation as is apparent from
(6.9). Applying (6.8) to the first sum on the left yields the sum on the right, which coincides
with 〈∏2n

j=1 μ j 〉G,K × (ZG,K )2. �
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Appendix: A Path Integral Representation

The loop gas formulation of the double dimermodel,which is presented in Section 3, is of help
in relating it to a broad range of physicsmodels, for which related techniques are of relevance.
To highlight this picture, let us just state here the resulting path integral representation (in a
discrete sense) of the model’s correlation function.

Lemma 3.1 allows to classify the double-dimer cover configurations in terms of the loop-
gas configuration 	(ω(2)). Upon partial summation in (3.3) over the equivalence classes of
configurations with common 	(ω(2)) one gets

Z (2)
G,K (M1, M2) =

∑

	∈�
(L)

G (M1,M2)

2ns (	)
∏

γ∈	

χK (γ ) (7.1)

where�
(L)
G (M1, M2) is the collection of loop / path configurations which are consistent with

the conditions listed in Lemma 3.1, and χK (γ ) = ∏
b∈γ Kb for each γ ∈ 	. Next, summing

over the loops of	, while keeping fixed the configuration’s the open-ended paths, one obtains
a path representation of the monomer correlation functions.
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For the monomer correlation function, which is defined in (2.3), this yields

S2(x1, x2) = (ZG,K )−2
∑

	∈�L
G ({x1,x2},∅)

2ns (	)
∏

γ∈	

χK (γ )

=
∑

γ∈�A
1

∂γ={x1,x2}

χK (γ )

(
ZG,K (V(γ ))

ZG,K

)2

1
[
γ is odd

]
, (7.2)

where �A
1 denotes the collection of simple paths on G.

For a more general expression we use 	P to refer to collections of non-intersecting simple
paths on the graph G, and denote by �A

n the set of such path collections of n elements. The
set of vertices which are covered by paths in 	P will be denoted by V(	P ), and the collection
of the paths’ boundary points by ∂	P = 
γ∈	P ∂γ .

In these terms, (7.1) yields the following path representation.

Proposition 7.1 (Path integral for correlations) For any finite graph G = (V, E) and disjoint
sites {x1, . . . , x2n} ⊂ V the monomer correlation function admits the representation

S2n(x1, . . . , x2n) =
∑

	P={γ1,...,γn}⊂�A
n

∂	P={x1,...,x2n}

wK (	P )
∏

γ∈	P

1
[
γ is odd

]
, (7.3)

with the weight function

wK (	P ) :=
(
ZG,K (V(	P ))

ZG,K

)2 ∏

γ∈	P

χK (γ ) . (7.4)
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