
J Stat Phys (2017) 167:636–655
DOI 10.1007/s10955-016-1672-z

Unstable Manifolds of Relative Periodic Orbits
in the Symmetry-Reduced State Space
of the Kuramoto–Sivashinsky System

Nazmi Burak Budanur1 · Predrag Cvitanović2
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Abstract Systems such asfluidflows in channels andpipes or the complexGinzburg–Landau
system, defined over periodic domains, exhibit both continuous symmetries, translational and
rotational, as well as discrete symmetries under spatial reflections or complex conjugation.
The simplest, and very common symmetry of this type is the equivariance of the defining
equations under the orthogonal groupO(2).We formulate a novel symmetry reduction scheme
for such systems by combining the method of slices with invariant polynomial methods, and
show how it works by applying it to the Kuramoto–Sivashinsky system in one spatial dimen-
sion. As an example, we track a relative periodic orbit through a sequence of bifurcations
to the onset of chaos. Within the symmetry-reduced state space we are able to compute and
visualize the unstable manifolds of relative periodic orbits, their torus bifurcations, a tran-
sition to chaos via torus breakdown, and heteroclinic connections between various relative
periodic orbits. It would be very hard to carry through such analysis in the full state space,
without a symmetry reduction such as the one we present here.

Keywords Kuramoto–Sivashinsky equation · Equivariant systems · Relative periodic
orbits · Unstable manifolds · Chaos · Symmetries

1 Introduction

…of course, the motion of the system tends to move away from repellers. Nonetheless
a repeller might be important because, for example, it might describe a separatrix that
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serves to divide two different attractors or two different types of motion. Kadanoff and
Tang [36].

The 1984 Kadanoff and Tang investigation of strange repellers was prescient in two ways.
First, at the time it was not obvious why anyone would care about “repellers,” as their
dynamics would be transient. Today, much of the research in turbulence focuses on repellers.
In particular, significant effort is invested in understanding the state space regions of shear-
driven fluid flows that separate laminar and turbulent regimes [5,21,56,60,63], and these
“separatrices” indeed often appear to be strange repellers. Kadanoff and Tang’s study was
quantitative, and modest by today’s standards: they computed escape rates for a family of
3-dimensional mappings in terms of their unstable periodic orbits (‘repulsive cycles’), while
today corresponding computations are carried out for very high-dimensional (∼100,000
computational degrees of freedom), numerically accurate discretizetions of Navier–Stokes
flows [26,27,65]. In light of the heuristic nature of their investigation, their second insight
was remarkable: theywere the first to posit the exactweight for the contribution of an unstable
periodic orbit p to an average computed over a strange repeller (or attractor):

1
/∣
∣det

(
1 − Jp(x)

)∣∣

(here Jp(x) is the Jacobian matrix of linearized flow, computed along the orbit of a periodic
point x). While, at the time, they were aware only of Bowen’s work [7], today this formula is
a cornestone of the modern periodic orbit theory of chaos in deterministic flows [19], based
on zeta functions of Smale [61], Gutzwiller [30], Ruelle [53,54] and their cycle expansions
(1987) [3,4,16,43]. Much has happened since—in particular, the formulas of periodic orbit
theory for 3-dimensional dynamics that they had formulated in 1983 are today at the core
of the challenge very dear to Kadanoff, a dynamical theory of turbulence [14,27]. For that
to work, many extra moving parts come into play. We have learned that the convergence of
cycle expansions relies heavily on the flow topology and the associated symbolic dynamics,
and that understanding the geometry of flows in the state space is the first step towards
extending periodic orbit theory to systems of high or infinite dimensions, such as fluid flows.
It turns out that taking care of the symmetries of a nonlinear fluid flow is also a difficult
problem.While one can visualize dynamics in 2 or 3 dimensions, the state space of these flows
is high-dimensional, and symmetries—both continuous and discrete—complicate the flow
geometry as each solution comes along with all of its symmetry copies. In this contribution to
Leo Kadanoff memorial volume, we develop new tools for investigating geometries of flows
with symmetries, and illustrate their utility by applying them to a spatiotemporally chaotic
Kuramoto–Sivashinsky system.

Originally derived as a simplification of the complex Ginzburg–Landau equation [40]
and in study of flame fronts [59], the Kuramoto–Sivashinsky is perhaps the simplest spa-
tially extended dynamical system that exhibits spatiotemporal chaos. Similar in form to
the Navier–Stokes equations, but much easier computationally, the Kuramoto–Sivashinsky
partial differential equation (PDE) is a convenient sandbox for developing intuition about
turbulence [33]. As for the Navier–Stokes, a state of the Kuramoto–Sivashinsky system is
usually visualized by its shape over configuration space (such as states shown in Fig. 1). How-
ever, the function space of allowable PDE fields is an infinite-dimensional state space, with
the instantaneous state of the field a point in this space. In spite of the state space being of high
(and even infinite) dimension, evolution of the flow can be visualized, as generic trajectories
are 1-dimensional curves, and numerically exact solutions such as equilibria and periodic
orbits are points or closed loops, in any state space projection. There are many choices of a
“state space.” Usually one starts out with the most immediate one: computational elements
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used in a finite-dimensional discretization of the PDE studied. As the Kuramoto–Sivashin-
sky system in one space dimension, with periodic boundary condition, is equivariant under
continuous translations and a reflection, for the case at hand the natural choice is a Fourier
basis, truncated to a desired numerical accuracy. This is still a high-dimensional space: in
numerical work performed here, 30-dimensional. For effective visualizations, one thus needs
to carefully pick dynamically intrinsic coordinate frames, and projections on them [17,27].

Suchdynamical systemsvisualisations of turbulent flows, complementary to the traditional
spatio-temporal visualizations, offer invaluable insights into the totality of possible motions
of a turbulent fluid. However, symmetries, and especially continuous symmetries, such as
equvariance of the defining equations under spatial translations, tend to obscure the state
space geometry of the system by their preference for higher-dimensional invariant N -tori
solutions, such as relative equilibria and relative periodic orbits.

In order to avoid dealingwith such effects of continuous symmetry, a number of papers [14,
41,50–52] study the Kuramoto–Sivashinsky equation within the flow-invariant subspace of
solutions symmetric under reflection. However, such restrictions to flow-invariant subspaces
miss the physics of the problem: any symmetry invariant subspace is of zero measure in
the full state space, so a generic turbulent trajectory explores the state space outside of it.
Lacking continuous-symmetry reduction schemes, earlier papers on the geometry of the Ku-
ramoto–Sivashinsky flow in the full state space [1,17,29,37] were restricted to the study of
the smallest invariant structures: equilibria, their stable/unstable manifolds, their heteroclinic
connections, and their bifurcations under variations of the domain size.

Stationary solutions are important for understanding the state space geometry of a chaotic
attractor, as their stable manifolds typically set the boundaries of the strange set. The Lorenz
attractor is the best known example [64] and Gibson et al. [27] visualizations for the plane
Couette flow are so far the highest-dimensional setting, where this claim appears to hold. In
this paper we turn our attention to (relative) periodic orbits, which –unlike unstable equi-
libria– are embedded within the strange set, and are expected to capture physical properties
of an ergodic flow. References [14,41], restricted to the reflection-invariant subspace of the
Kuramoto–Sivashinsky flow, have succeeded in constructing symbolic dynamics for several
system sizes. In these examples, short periodic orbits have real Floquet multipliers, with very
thin unstable manifolds, around which the longer periodic orbits are organized by means of
nearly 1-dimensional Poincaré return maps.

In this paper we study the unstable manifolds of relative periodic orbits of Kuramoto–
Sivashinsky system in full state space, with no symmetry restrictions. In contrast to the
flow-invariant subspace considered in refs. [14,41], the shortest relative periodic orbit of the
full system that is stable for small system sizes (L < 21.22) has a complex leading Floquet
multiplier. This renders the associated unstable manifold 2-dimensional. Elimination of the
marginal directions, the space and time translation symmetries, by a ‘slice’ and a Poincaré
section conditions, together with a novel reduction of the spatial reflection symmetry, enables
us to study here this 2-dimensional unstable manifold.We compute and visualize the unstable
manifold of the shortest periodic orbit as we increase the system size towards the system’s
transition to chaos.

Summary of our findings is as follows: At the system size L ≈ 21.22, the shortest
periodic orbit undergoes a torus bifurcation [34] (also sometimes referred to as the Neimark-
Sacker bifurcation [46,55], if the flow is studied in a Poincaré section), which gives birth
to a stable 2-torus. As the system size is increased, this torus first goes unstable, and is
eventually destroyed by the bifurcation into stable and unstable pair of period-3 orbits, to
which the unstable manifold of the parent orbit is heteroclinically connected. As the system
size is increased further, the stable period-3 orbit goes unstable, then disappears, and the
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dynamics becomes chaotic. Upon a further increase of the system size, the unstable period
3 orbit undergoes a symmetry-breaking bifurcation, which introduces richer dynamics as
the associated unstable manifold has connections to both drifting (relative) and non-drifting
periodic orbits.

We begin by a short review of the Kuramoto–Sivashinsky system in the next section,
and review continuous symmetry reduction by first Fourier mode slice method in Sect. 3.1.
The main innovation introduced in this paper is the invariant polynomial discrete symmetry
reduction method described in Sect. 3.2. The new symmetry reduction method is applied
to and tested on the Kuramoto–Sivashinsky system in Sect. 4, where the method makes it
possible to track the evolution of the periodic orbits’ unstable manifolds through the system’s
transition to chaos. We discuss the implications of our results and possible future directions
in Sect. 5.

2 Kuramoto–Sivashinsky System and Its Symmetries

We study the Kuramoto–Sivashinsky equation in one space dimension

uτ = −u ux − uxx − uxxxx , (1)

with periodic boundary condition u(x, τ ) = u(x + L , τ ). The real field u(x, τ ) is the “flame
front” velocity [59]. The domain size L is the bifurcation parameter for the system, which
exhibits spatiotemporal chaos for sufficiently large L: see Fig. 1e for a typical spatiotempo-
rally chaotic trajectory of the system at L = 22.

We discretize the Kuramoto–Sivashinsky system by Fourier expanding the field u(x, τ ) =∑
k ũk(τ )eiqk x , and expressing (1) in terms of Fourier modes as an infinite set of ordinary

differential equations (ODEs)

˙̃uk = (q2k − q4k ) ũk − i
qk
2

+∞∑

m=−∞
ũmũk−m , qk = 2πk

L
. (2)

Kuramoto–Sivashinsky equation is Galilean invariant: if u(x, τ ) is a solution, then
v + u(x − vτ, τ ), with v an arbitrary constant velocity, is also a solution. In the Fourier
representation (2), the Galilean invariance implies that the zeroth Fourier mode ũ0 is decou-

(a) (b) (c) (d) (e)

Fig. 1 Examples of invariant solutions of the Kuramoto–Sivashinsky system and the chaotic flow visualized
as the color coded amplitude of the scalar field u(x, τ ): a Equilibrium E1, b Relative equilibrium TW1, c
Pre-periodic orbit with period T = 32.4, d Relative periodic orbit with period T = 33.5 . e Chaotic flow.
Horizontal and vertical axes correspond to space and time respectively. System size L = 22. The invariant
solutions and their labels are taken from Ref. [17]
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pled from the rest and time-invariant. Hence, we exclude ũ0 from the state space and represent
a Kuramoto–Sivashinsky state u = u(x, τ ) by the Fourier series truncated at k = N , i.e., a
2N -dimensional real valued state space vector

a = (b1, c1, b2, c2, . . . , bN , cN ) , (3)

where bk = Re[ũk], ck = Im[ũk]. One can rewrite (2) in terms of this real valued state space
vector, and express the truncated set of equations compactly as

ȧ = v(a) . (4)

In our numerical work we use a pseudo-spectral formulation of (4), described here in Appen-
dix, and in detail in the appendix of Ref. [17].

Spatial translations u(x, τ ) → u(x + δx, τ ) on a periodic domain correspond to SO(2)
rotations a → D(g(θ)) a in the Kuramoto–Sivashinsky state space, with the matrix repre-
sentation

D(g(θ)) = diag [ R(θ), R(2θ), . . . , R(Nθ) ] , (5)

where θ = 2πδx/L and

R(kθ) =
(
cos kθ − sin kθ
sin kθ cos kθ

)

are [2×2] rotation matrices. Kuramoto–Sivashinsky dynamics commutes with the action of
(5), as can be verified by checking that (4) satisfies the equivariance relation

v(a) = D−1(g(θ))v(D(g(θ))a) . (6)

By the translation symmetry of the Kuramoto–Sivashinsky system, each solution of PDE
(1) has infinitely many dynamically equivalent copies that can be obtained by translations
(5). Systems with continuous symmetries thus tend to have higher-dimensional invariant
solutions: relative equilibria (traveling waves) and relative periodic orbits. A relative equi-
librium evolves only along the continuous symmetry direction

atw(τ) = D(g(τ θ̇tw)) atw(0) ,

where θ̇tw is a constant phase velocity, and the suffix tw indicates that the solution is a
“traveling wave.” A relative periodic orbit recurs exactly at a symmetry-shifted location
after one period

arp(0) = D(g(−θrp)) arp(Trp) . (7)

Figure 1b, d show space-time visualizations of a Kuramoto–Sivashinsky relative equilibrium
and a relative periodic orbit. The sole dynamics of a relative equilibrium is a constant drift
along the continuous symmetry direction, while a relative periodic orbit shifts by amount θrp
for each repeat of its period, and traces out a torus in the full state space.

The Kuramoto–Sivashinsky equation (1) has no preferred direction, and is thus also
equivariant under the reflection symmetry u(x, τ ) → −u(−x, τ ): for each solution drifting
left, there is a reflection-equivalent solution which drifts right. In terms of Fourier compo-
nents, the reflection σ acts as complex conjugation followed by a negation, whose action on
vectors in state space (3) is represented by the diagonal matrix

D(σ ) = diag [−1, 1, −1, 1, . . . , −1, 1] , (8)

which flips signs of the real components bi . Due to this reflection symmetry, the Kuramoto–
Sivashinsky system can also have strictly non-drifting equilibria and (pre-)periodic orbits.
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An equilibrium is a stationary solution aeq(τ ) = aeq(0) . A periodic orbit p is periodic with
period Tp , ap(0) = a(Tp) , and a pre-periodic orbit is a relative periodic orbit

app(0) = D(σ ) app(Tpp) (9)

which closes in the full state space after the second repeat, hence we refer to it here as
‘pre-periodic’.

In Fig. 1a we show equilibrium E1 of Kuramoto–Sivashinsky equation (so labelled in
Ref. [17]). If we were to take the mirror image of Fig. 1a with respect to x = 0 line, and then
interchange red and blue colors, we would obtain the same solution; all equilibria belong
to the flow-invariant subspace of solutions invariant under the reflection symmetry of the
Kuramoto–Sivashinsky equation. Similar to equilibria, time-periodic solutions of the Kura-
moto–Sivashinsky equation that are not repeats of pre-periodic ones (9) also belong to the
reflection-invariant subspace. See [14,41,50–52] for examples of such solutions. Figure 1b
shows a pre-periodic solution of the Kuramoto–Sivashinsky system: dynamics of the second
period can be obtained from the first one by reflecting it. Both equilibria and pre-periodic
orbits have infinitely many copies that can be obtained by continuous translations, symmetric
across the shifted symmetry line, g(θ)σg(−θ). Note that reflection σ and translations g(θ) do
not commute: σ g(θ) = −g(θ) σ , or, in terms of the generator of translations, the reflection
reverses the direction of the translation, σ T = −T σ . Let f τ (a) denote the finite-time flow
induced by (4), and let app belong to a pre-periodic orbit defined by (9). Then the shifted
point a′

pp = D(g(θ)) app satisfies

f Tp (a′
pp) = D(g(θ))D(σ )D(g(−θ)) a′

pp .

In contrast, a relative periodic orbit (7) has a distinct reflected copy a′
rp = D(σ )arp with the

reverse phase shift:

a′
rp(0) = D(g(θp)) a

′
rp(Tp) .

In order to carry out our analysis, we must first eliminate all these degeneracies. This we do
by symmetry reduction, which we describe next.

3 Symmetry Reduction

A group orbit of state a is the set of all state space points reached by applying all symmetry
actions to a. Symmetry reduction is any coordinate transformation that maps each group orbit
to a unique state space point ã in the symmetry-reduced state space. For the O(2) symmetry
considered here,we achieve this in two steps:Wefirst reduce continuous translation symmetry
of the system by method of slices, and then reduce the remaining reflection symmetry by
constructing an invariant polynomial basis.

To the best of our knowledge, Cartan [12] was first to use method of slices in purely
differential geometry context and early appearances of slicing methods in dynamical systems
literature are works of Field [24] and Krupa [39]. Our implementation of the method of slices
for SO(2) symmetry reduction followsRef. [11]. For amore exhaustive reviewof the literature
we refer the reader to Ref. [19].

Invariant polynomial or ‘integrity’ bases [13,25] are a standard tool [31,47] for orbit space
reduction. They work very well in low dimensions [10,13,28,58], but in high dimensions
integrity bases are high-order polynomials of the original state space coordinates, accompa-
nied by large numbers of nonlinear syzygies that confine the symmetry-reduced dynamics
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to lower-dimensional manifolds. These make the geometry of the reduced state space com-
plicated and hard to work with for applications we have in mind here, such as visualizations
of unstable manifolds of invariant solutions. Even with the use of computer algebra [25],
constructing an O(2)-invariant integrity basis becomes impractical for systems of dimension
higher than ∼12. In spatio-temporal and fluid dynamics applications the corresponding n
(Fourier series truncation) is easily of order 10–100. The existing methods for construction
of such integrity bases are neither feasible for higher-dimensional state spaces [57] (we need
to reduce symmetry for 105–106-dimensional systems [27,66]), nor helpful for reduced state
space visualizations (m-th Fourier coefficient is usually replaced by a polynomial of order
m).

Here we avoid constructing such high-order O(2) polynomial integrity bases by a hybrid
approach.We reduce the continuous symmetry by the first Fourier mode slice in Sect. 3.1, and
then reduce the remaining reflection symmetry by a transformation to invariant polynomials
in Sect. 3.2. The resulting polynomials are only second order in the original state space
coordinates, with no syzygies.

3.1 SO(2) Symmetry Reduction

Following Ref. [11], we reduce the SO(2) symmetry of the Kuramoto–Sivashinsky equation
by implementing the first Fourier mode slice method, i.e., by rotating the Fourier modes as

â(τ ) = D(g(φ(τ))−1) a(τ ) , (10)

where φ(τ) = arg(ũ1(τ )) is the phase of the first Fourier mode. This transformation exists
as long as the first mode in the Fourier expansion (10) does not vanish, b21 + c21 > 0, and
its effect is to fix the phase of the first Fourier mode to zero for all times, as illustrated in
Fig. 2. The SO(2)-reduced state space is one dimension lower than the full state space, with
coordinates

â = (b̂1, 0, b̂2, ĉ2, . . . b̂N , ĉN ) . (11)

a(τ2)

a(τ1) φ(τ1)

b1â(τ1) â(τ2)

c1

φ(τ2)

a(τ0)

Fig. 2 A sketch of the full state space trajectory a(τ ) (blue and red) projected onto the first Fourier mode
subspace (b1, c1), with rotation phases φ(τ1), φ(τ2) at times τ1 and τ2, see (10). In this 2-dimensional
projection we are looking at the symmetry-reduced state space “from the top”; the symmetry-reduced orbit is
confined to the horizontal half-axis (b̂1 > 0, ĉ1 = 0) , and the remaining 2N−2 coordinates are all projected
onto the origin (Color figure online)
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The dynamics within the first Fourier mode slice is given by

˙̂a = v̂(â) = v(â) − ċ1

b̂1
T â , (12)

where T is the generator of infinitesimal SO(2) transformations, D(g(θ)) = exp T θ , and
ċ1 is full state space orbit’s out-of-slice velocity, the second element of the velocity field
(4). Symmetry-reduced state space velocity (12) diverges when the amplitude b̂1 of the first
Fourier mode tends to 0. If b̂1 were 0, then the transformation (10) would no longer be
uniquely defined. However, our experience had been such that this does not happen for
generic trajectories of a chaotic system; and the singularity in the vicinity of b̂1 = 0 can be
regularized by a time-rescaling transformation [11]. For further details we refer the reader to
refs. [10,11,19].

3.2 O(2) Symmetry Reduction

Our next challenge is to devise a transformation from (11) to discrete-symmetry-reduced
coordinates, where the equivariance under reflection is also reduced. Consider the action
of reflection on the SO(2)-reduced state space. In general, a slice is an arbitrarily oriented
hyperplane, and action of the reflection σ can be rather complicated: it maps points within
the slice hyperplane into points outside of it, which then have to be rotated into the slice.
However, the action of σ on the first Fourier mode slice is particularly simple. Reflection
operation D(σ ) of (8) flips the sign of the first SO(2)-reduced state space coordinate in (11),
i.e., makes the phase of the first Fourier mode π . Rotating back into the slice by (10), we find
that within the first Fourier mode slice, the reflection acts by alternating the signs of even
(real part) and odd (imaginary part) Fourier modes:

D̂(σ ) = D(g(−π))D(σ )

= diag [ 1, −1, −1, 1, 1, −1, −1, 1, 1, . . .] . (13)

The action on the slice coordinates (where we for brevity omit all terms whose signs do not
change under reflection) is thus

D̂(σ ) (b̂2, ĉ3, b̂4, ĉ5, b̂6, ĉ7, . . .)

= (−b̂2,−ĉ3,−b̂4,−ĉ5,−b̂6,−ĉ7, . . .) . (14)

Our task is now to construct a transformation to a set of coordinates invariant under (14).
One could declare a half of the symmetry-reduced state space to be a ‘fundamental domain’
[19], with segments of orbits that exit it brought back by reflection, but this makes orbits
appear discontinuous and the dynamics hard to visualize. Instead, here we shall reduce the
reflection symmetry by constructing polynomial invariants of coordinates (14). Squaring
(or taking absolute value of) each sign-flipping coordinate in (14) is not an option, since
such coordinates would be invariant under every individual sign change of these coordinates,
and that is not a symmetry of the system. We are allowed to impose only one condition
to reduce the 2-element group orbit of the discrete reflection subgroup of O(2). How that
can be achieved is suggested by Miranda and Stone [28,45] reduction of C2 symmetry
(x, y, z) → (−x,−y, z) of the Lorenz flow. They construct the symmetry-reduced “proto-
Lorenz system” by transforming coordinates to the polynomial basis

u = x2 − y2 , v = 2xy , z = z . (15)
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The x coordinate can be recovered from u and v of (15) up to a choice of sign, i.e., up to
the original reflection symmetry. We extend this approach in order to achieve a 2− to−1
symmetry reduction for Kuramoto–Sivashinsky system: we construct the first coordinate
from squares, but then ‘twine’ the successive sign-flipping terms (b̂2, ĉ3, b̂4, ĉ5, b̂6, ĉ7, . . .)
into second-order invariant polynomials basis set

(p2, p3, p4, p5, p6, . . .)

= (b̂22 − ĉ23, b̂2ĉ3, b̂4ĉ3, b̂4ĉ5, b̂5ĉ6, . . .) . (16)

The original coordinates can be recovered recursively by the 1 to 2 inverse transformation

b2 = ±

√√
√
√ p2 +

√
p22 + 4p23
2

c3 = p3/b2, b4 = p4/c3, c5 = p5/b4, . . . .

To summarize: we first reduce the group orbits generated by the continuous SO(2) sym-
metry subgroup by implementing the first Fourier mode slice (10), and then reduce the group
orbits of the discrete 2-element reflection subgroup by replacing the sign-changing coordi-
nates (14) with the invariant polynomials (16). The final O(2) symmetry-reduced coordinates
are

ã = (b̂1, 0, b̂
2
2 − ĉ23, ĉ2, b̂3, b̂2ĉ3, b̂4ĉ3, ĉ4, b̂5, . . .) . (17)

Here pairs of orbits related by reflection σ are mapped into a single orbit, and ĉ1 is identically
set to 0 by continuous symmetry reduction, thus the symmetry-reduced state space has one
dimension less than the full state space.

The symmetry-reduced state space (17) retains all physical information of the Kuramo-
to–Sivashinsky system: relative equilibria and relative periodic orbits of the original system
become equilibria and periodic orbits in the symmetry-reduced state space (17), and pre-
periodic orbits close after one period. For this reason, in what follows we shall refer to both
relative periodic orbits and pre-periodic orbits as ‘periodic orbits’, unless we comment on
their specific symmetry properties.

4 Unstable Manifolds of Periodic Orbits

In order to demonstrate the utility, and indeed, the necessity of the O(2) symmetry reduction,
we now investigate the transition to chaos in the neighborhood of a short Kuramoto–Siva-
shinsky pre-periodic orbit, focusing on the parameter range L ∈ [21.0, 21.7]. Our method
yields a symmetry-reduced velocity field ṽ(ã) = ˙̃a and a finite-time flow f̃ τ (ã(0)) = ã(τ ) in
the symmetry-reduced state space (17). Although we can obtain ṽ(ã) by chain rule, we find
its numerical integration unstable, hence in practice we obtain ṽ(ã) and f̃ τ (ã) from the first
Fourier mode slice by applying the appropriate Jacobian matrices, as described in Appendix.

At L = 21.0, the Kuramoto–Sivashinsky system has a stable periodic orbit p0, which
satisfies ãp0 = f̃ Tp0 (ãp0) for any point ãp0 on the periodic orbit p0. Linear stability of a
periodic orbit is described by the Floquet multipliers �i and Floquet vectors Ṽi , which are
the eigenvalues and eigenvectors of the Jacobian matrix J̃p of the finite-time flow f̃ Tp (ãp)

J̃p Ṽi = �i Ṽi .
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Each periodic orbit has at least one marginal Floquet multiplier �v = 1, corresponding
to the velocity field direction. When L < 21.22, all other Floquet multipliers of p0 have
absolute values less than 1. At L ≈ 21.22, leading complex pair of Floquet multipliers �1,2

crosses the unit circle, and the corresponding eigenplane spanned by the real and imaginary
parts of Ṽ1 develops ‘spiral out’ dynamics that connects to a 2-torus.

In order to study dynamics within the neighborhood of p0, we define a Poincaré section
as the hyperplane of points ãP in an open neighborhood of ãp0 , orthogonal to the tangent
ṽ(ãp0) of the orbit at the Poincaré section point,

(ãP − ãp0) · ṽ(ãp0) = 0 and ||ãP − ãp0 || < α , (18)

where ||.|| denotes the Euclidean (or L2) norm, and the threshold α is empirically set to
α = 0.9 throughout. The locality condition in (18) is a computationally convenient way
to avoid Poincaré section border [18,19], defined as the set of points ã∗

P that satisfy the
hyperplane condition (ã∗

P −ãp0)· ṽ(ãp0) = 0 , but their orbits do not intersect this hyperplane
transversally, i.e. ṽ(ã∗

P ) · ṽ(ãp0) = 0.
From here on, we study the discrete time dynamics induced by the flow on the Poincaré

section (18), as visualized in Fig. 3a.
In Fig. 3 and the rest of the state space projections of this paper, projection bases

are constructed as follows: Real and imaginary parts of the Floquet vector Ṽ1 define an
ellipse Re[Ṽ1] cosφ + Im[Ṽ1] sin φ in the neighborhood of ãp0 , and we pick as the first two
projection-subspace spanning vectors the principal axes of this ellipse. As the third vector
we take the velocity field ṽ(ãp0), and the projection bases (e1, e2, e3) are found by orthonor-
malization of these vectors via the Gram-Schmidt procedure. All state space projections are
centered on ãp0 , i.e., ãp0 is the origin of all Poincaré section projections.

As an example, we follow a single trajectory starting from ãp0 + 10−1 Re[Ṽ1] as it
connects to the 2-torus surrounding the periodic orbit in Fig. 3b. For Fig. 3b and all figures
to follow, the two leading non-marginal Floquet multipliers of p0, p1 and p2 are listed in
Table 1. For system size L = 21.25 the complex unstable Floquet multiplier pair is nearly

(a) (b)

Fig. 3 a Pre-periodic orbit p0 (red), its velocity field ṽ(ã p0 ) at the starting point (green), orthogonal vectors
that span the eigenplane corresponding to the leading Floquet vectors (blue) and the Poincaré section hyper-
plane (gray, transparent). b Spiral-out dynamics of a single trajectory in the Poincaré section projected onto
(e1, e2) plane, system size L = 21.25 (Color figure online)
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Table 1 The two leading non-marginal Floquet multipliers � = exp(Tμ + iθ) of periodic orbits p0, p1, p2
for system sizes L studied here

L p0 p1 p2
μ θ μ θ μ θ

21.25 6.443 × 10−4 ±2.177 – –

21.30 1.839 × 10−3 ±2.158 – –

21.36 1.839 × 10−3 ±2.158 5.854 × 10−3 0 −1.623 × 10−3 ±0.3098

−8.357 × 10−3 0

21.48 7.638 × 10−3 ±2.097 1.307 × 10−2 0 –

−1.234 × 10−2 0

21.70 1.739 × 10−2 ±2.044 2.521 × 10−2 0 –

4.157 × 10−3 π

Dash indicates that the orbit is not found for the corresponding system size

marginal, |�1,2| = 1.00636, hence the spiral-out is very slow. Assume that δã(0) is a small
perturbation to ãp0 that lies in the plane spanned by (Re[Ṽ1], Im[Ṽ1]). Then there exists a
coefficient vector c = (c1, c2)T , with which we can express δã(0) in this plane as

δã(0) = Wc , (19)

where W = [Re[Ṽ1], Im[Ṽ1]] has real and imaginary parts of the Floquet vector Ṽ1 on
its columns. Without a loss of generality, we can rewrite c as c = δr R(θ)c(1), where
c(1) = (1, 0)T and R(θ) is a [2× 2] rotation matrix. Thus (19) can be expressed as
δã(0) = δrW R(θ)c(1). In the linear approximation, discrete time dynamics δã(nTp0) is
given by

δã(nTp0) = |�1|nδrW R(θ − n arg�1)c
(1) , (20)

which can then be projected onto the Poincaré section (18) by acting from the left with the
projection operator

P(ãP ) = 1 − ṽ(ãP ) ⊗ ṽ(ãp0)

〈ṽ(ãP ), ṽ(ãp0)〉
, (21)

computed at ãP = ãp0 . In (21), ⊗ denotes the outer product. Defining δãP ≡ P(ãP )δã for
a small perturbation δã to the point ãP on the Poincaré section, discrete time dynamics of
δãP in the Poincaré section is given by

δãP [n] = |�1|nδrWP R(θ − n arg�1)c
(1) , (22)

whereWP = [Re[Ṽ1,P ], Im[Ṽ1,P ]] = P(ãp0)W , and n is the discrete time variable counting
returns to the Poincaré section. In the Poincaré section, the solutions (22) define ellipseswhich
expand and rotate respectively by factors of |�1| and arg�1 at each return. In order to resolve
the unstable manifold, we start trajectories on an elliptic band parameterized by (δ, φ), such
that the starting point in the band comes to the end of it on the first return, hence totality of
these points cover the unstablemanifold in the linear approximation. Such set of perturbations
are given by

δãP (δ, φ) = ε|�1|δWP R(φ)c(1) , where δ ∈ [0, 1) , φ ∈ [0, 2π) , (23)

and ε is a small number. We set ε = 10−3 and discretize (23) by taking 12 equidistant points
in [0, 1) for δ and 36 equidistant points in [0, 2π) for φ and integrate each ãp0 + δãP (δ, φ)
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Fig. 4 Unstable manifold (gray) of p0 on the Poincaré section (18) and an individual trajectory (red) within,
system size L = 21.30 (Color figure online)

forward in time. Figure 4 shows the unstable manifold of p0 resolved by this procedure
at system size L = 21.30, for which the torus surrounding p0 appears to be unstable as
the points approaching to it first slow down and then leave the neighborhood in transverse
direction. In order to illustrate this better, we marked an individual trajectory in Fig. 4 color
red. In Fig. 5 we show initial points that go into the calculation, and their first three returns
in order to illustrate the principle of the method.

As we continue increasing the system size, we find that at L ≈ 21.36, trace of the invariant
torus disappears and two new periodic orbits p1 and p2 emerge in the neighborhood of p0.
Both of these orbits appear as period 3 periodic orbits in the Poincaré map. While p1 is
unstable (found by a Newton search), p2 is initially stable with a finite basin of attraction.
The unstable manifold of p0 connects heteroclinically to the stable manifolds of p1 and
p2. As we show in Fig. 6, resolving the unstable manifold of p0 enables us to locate these
heteroclinic connections between periodic orbits. Note that 1-dimensional stable manifold
of p1 separates the unstable manifold of p0 in two pieces. Green and blue orbits in Fig. 6
appear to be at two sides of this invariant boundary: while one of them converges to p2, the
other leaves the neighborhood to explore other parts of the state space that are not captured
by the Poincaré section, following the unstable manifold of p1.

As the system size is increased, p2 becomes unstable at L ≈ 21.38. At L ≈ 21.477 the
two complex unstable Floquet multipliers collide on the real axis and at L ≈ 21.479 one of
them crosses the unit circle. After this bifurcation, we were no longer able to continue this
orbit. At L = 21.48, the spreading of the p0’s unstable manifold becomes more dramatic,
and its boundary is set by the 1-dimensional unstable manifold of p1, as shown in Fig. 7. We
compute the unstable manifold of p1 similarly to (23), by integrating

ãP (δ) = ãp1,P ± ε�δ
1Ṽ1,P , where δ ∈ [0, 1) . (24)
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Fig. 5 Initial points (black) on the Poincaré section for unstable manifold computation and their first (red),
second (green), and third (blue) returns. Inset zoomed out view of the initial points and their first three returns
(Color figure online)

Fig. 6 Unstable manifold (gray) of p0 on the Poincaré section (18) at L = 21.36. Colored dots correspond to
different individual trajectories within the unstable manifold, with qualitatively different properties. Diamond
shaped markers correspond to the period-3 orbits p1 (magenta) and p2 (cyan) (Color figure online)
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Fig. 7 Unstable manifold of p0 (gray) and two orbits (black and green) within at L = 21.48. Red points lie
on the 1-dimensional unstable manifold of p1 (magenta) (Color figure online)

�1 and Ṽ1 in (24) are the unstable Floquet multiplier and the corresponding Floquet vec-
tor of ãp1 , and the initial conditions (24) cover the unstable manifold of ãp1 in the linear
approximation.

A negative real Floquet multiplier of p1 crosses the unit circle at L ≈ 21.6 leading to
“drifting” dynamics in the associated unstable direction. Such “symmetry-breaking” bifurca-
tions of relative periodic orbits with C2 symmetry are ubiquitous in many physical settings:
Earlier examples are studies of reduced-order models of convection [38], forced pendulum
[20], and Duffing oscillator [48], which reported that symmetry breaking bifurcations pre-
cede period doubling route to chaos. A key observation was made by Swift and Wiesenfeld
[62], who showed in the context of periodically driven damped pendulum that Poincaré map
associated with the symmetric system is the second iterate of another “reduced” Poincaré
map, which identifies symmetry-equivalent points. They then argue that C2-symmetric peri-
odic orbits generically do not undergo period doubling bifurcations when a single parameter
of the system varied. More recent works [6,44] adapt Ref. [62]’s reduced Poincaré map to
fluid systems in order to study their bifurcations in the presence of symmetries. For a review
of the symmetry-breaking bifurcations in fluid dynamics, see Ref. [15].

As in the previous cases, in order to investigate the dynamics of the system at this stage,
we compute and visualize the unstable manifold of p1.

Similarly to (23) and (24), the 2-dimensional unstable manifold of p1 is approximately
covered by initial conditions

ãP (δ, φ) = ãp1,P + ε
[
|�1|δ cosφ Ṽ1,P + |�2|δ sin φ Ṽ2,P

]
(25)

where δ ∈ [0, 1) , φ ∈ [0, 2π). At system size L = 21.7, we set ε = 10−3 and discretize
(25) by choosing 10 and 36 equally spaced values for δ and φ, respectively. First 38 returns
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Fig. 8 Unstable manifolds of p0 (gray) and p1 (red) on the Poincaré section (18) at L = 21.7. Magenta,
cyan, and yellow diamond markers respectively indicate the Poincaré section points of p1, p3, and p4. Green
and black dots correspond to two individual orbits started on the linear approximation to the unstable manifold
of p1, which visit neighborhoods of p3 and p4 respectively (Color figure online)

of orbits generated according to (25) are shown in Fig. 8 as red points along with the unstable
manifold of p0 (gray). Note that, unlike Fig. 7, in Fig. 8 there is no clear separation on the
unstable manifold of p0. This is because the connection of p0’s unstable manifold to p1 is
no longer captured by the Poincaré section (18) after the unstable manifold of p1 becomes
2-dimensional. Yet, unstable manifold of p1 still shapes that of p0.

Since the leading Floquet exponent μ1 of p1 is approximately an order of magnitude
larger than μ2 (see Table 1), unstable manifold of p1 appears as if it is 1-dimensional in
Fig. 8. However, it is absolutely crucial to study this manifold in 2 dimensions as differ-
ent initial conditions in this 2-dimensional manifold connect to the regions of state space
with qualitatively different dynamics. In order to illustrate this point, we have marked two
individual trajectories on the unstable manifold of p1 with black and green in Fig. 8. After
observing that these orbits have nearly recurrent dynamics, we ran Newton searches in their
vicinity and found two new periodic orbits p3 and p4, marked respectively with cyan and
yellow diamonds on Fig. 8. In the full state space p3 is a pre-periodic orbit (9), whereas p4
is a relative periodic orbit (7) with a non-zero drift. We show a time segment of the orbit
marked green on Fig. 8 without symmetry reduction, as color-coded amplitude of the scalar
field u(x, τ ) in Fig. 9a. For comparison we also show two repeats of p1 (bottom) and p4
(top) in Fig. 9b. Figure 9 suggests that this orbit leaves the neighborhood of p1 following a
heteroclinic connection to p4.

In Fig. 8, some of the red points appear on the unstable manifold of p0. These points
corresponds to trajectories that leave the unstable manifold of p1, come back after exploring
other parts of the state space and follow unstable manifold of p0. We could have excluded
these points by showing shorter trajectories for higher values of δ in (25) in Fig. 8, however
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Fig. 9 a Space-time visualization of a segment of the orbitmarked green onFig. 8 as it leaves the neighborhood
of p1 and enters the neighborhood of p4. b Space–time visualizations of p1 (bottom) and p4 (top) (Color
figure online)

we chose not to do so in order to stress that visualizations of unstable manifolds of periodic
orbits are not restricted to the dynamics within a small neighborhood of a periodic orbit, but
in fact they illuminate the geometry of the flow in a finite part of the strange attractor.

An interesting feature of the bifurcation scenario studied here is the apparent destabiliza-
tion of the invariant torus before its breakdown. Note that in Fig. 4 the trajectories within
the unstable manifold of p0 diverge in normal direction from the region that was inhabited
by a stable 2-torus for lower values of L . This suggest that the invariant torus has become
normally hyperbolic [23]. This torus could be computed by the method of Ref. [42], but our
goal here is more modest, what we have computed already amply demonstrates the utility of
our O(2) symmetry reduction. Note also that the stable period-3 orbit p2 in Fig. 6 has a finite
basin of attraction, and the trajectories which do not fall into it leave its neighborhood. In
typical scenarios involving generation of stable–unstable pairs of periodic orbits within an
invariant torus (see e.g. Ref. [2]), the torus becomes a heteroclinic connection between the
periodic orbit pair. Here the birth of the period-3 orbits appears to destroy the torus.

5 Summary and Future Directions

The two main results presented here are: (1) a new method for reducing the O(2)-symmetry
of PDEs, and (2) a symmetry-reduced state space Poincaré section visualization of 1- and
2-dimensional unstable manifolds of Kuramoto–Sivashinsky periodic orbits.

Our method for the computation of unstable manifolds is general and can find applications
in many other ODE and PDE settings. The main idea here is a generalization of Gibson et al.
[27] method for visualizations of the unstable manifolds of equilibria, originally applied to
planeCouette flow, a settingmuchmore complex then the current paper. All our computations
are carried out for the full Kuramoto–Sivashinsky equation (1), in 30 dimensions, and it is
remarkable how much information is captured by the 2- and 3-dimensional projections of

123



652 N. B. Budanur, P. Cvitanović

the O(2) symmetry-reduced Poincaré sections—none of that structure is visible in the full
state space.

The Kuramoto–Sivashinsky O(2) symmetry reduction method described here might
require modifications when applied to other problems. For example, for PDEs of space
dimensions larger then one, there can be more freedom in choosing the phase fixing condi-
tion (10). This indeed is the case for shear flows with both homogeneous (streamwise and
spanwise translation invariant) and inhomogeneous (wall-normal) directions.When adapting
the first Fourier mode slice method to such problems, one should experiment with the depen-
dence of the phase fixing condition on the inhomogeneous coordinate such that the slice
fixing phase is uniquely defined for state space regions of interest; see chapter 3 of Ref. [8]
for details. Ref. [67] makes this choice for pipe flow by taking a ‘typical state’ in the turbulent
flow, setting all streamwise Fourier modes other than the first one to zero, and using this state
as a “slice template”. Another point to be taken into consideration for canonical shear flows
is that their symmetry group is SO(2)×O(2). So far, continuous symmetry reduction in pipe
flows [66,67] were confined to settings, where an imposed symmetry in conjugacy class of
spanwise reflection disallows spanwise rotations. When no such restriction is present, one
needs two conditions for fixing both streamwise and spanwise translations. These conditions
must be chosen such that the order at which continuous symmetries are reduced does not
matter. For direct products of commuting SO(2) symmetries, this is a straightforward task
and outlined in Sect. 3 of Ref. [8]. An application of these ideas to the pipe flow is going to
appear in a future publication [9].

Furthermore, while invariant polynomials similar to (16) can be constructed for any
problem with a reflection symmetry, an intermediate step is necessary if the action of reflec-
tion σ symmetry is not the sign flip of a subset of coordinates. In that case, one should
first decompose the state space into symmetric and antisymmetric subspaces by computing
aS = (1/2)[a + D(σ )a] and aA = (1/2)[a − D(σ )a], respectively, and construct invari-
ants analogous to (16) for elements of aA that are not strictly zero. Generalizations of this
approach to richer discrete symmetries, such as dihedral groups, remains an open problem,
with potential application to systems such as the Kolmogorov flow [22,49].

Bifurcation scenarios similar to the one studied here are ubiquitous in high-dimensional
systems. For example, Avila et al. [5] study of transition to turbulence in pipe flow, and
Zammert and Eckhardt’s study of the plane Poiseuille flow [68] both report torus bifurcations
of relative periodic orbits along transitions to chaos. We believe that the methods presented
in this paper can lead to a deeper understanding of these scenarios.

While unstable manifold visualizations of periodic orbits in the symmetry-reduced state
space illustrates bifurcations of these orbits, our motivation for investigating such objects is
not a study of bifurcations, but ultimately a partition of the turbulent flow’s state space into
qualitatively different regions, and construction of the corresponding symbolic dynamics.
Figures 8 and 9 demonstrate our progress in this direction: we are able to identify symmetry
breaking heteroclinic connections from non-drifting solutions to the drifting ones. Such
observations would have been very hard to make without reducing symmetries of the system,
since each relative periodic orbit has a reflection copy, corresponding to a solution drifting in
the other direction; and each such solution has infinitelymany copies obtained by translations.
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1211827. We are grateful to Xiong Ding, Evangelos Siminos, Simon Berman, and Mohammad Farazmand for
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Appendix: Computational Details

Throughout this paper, we used the 16 Fourier mode truncation of Kuramoto–Sivashinsky
equation (2), which renders the state space 30-dimensional. Sufficiency of this truncation
was demonstrated for L = 22 in Ref. [17]. In all our computations, we integrate (12) and
its gradient system numerically, using a general purpose adaptive integrator odeint from
scipy.integrate [35], which is a wrapper of lsoda from ODEPACK library [32]. Note
that (12) is singular if b̂1 = 0, i.e., whenever the first Fourier mode vanishes. This singularity
can be regularized by a time-rescaling if a fixed time step integrator is desired [11].

Transformation of trajectories and tangent vectors to the fully symmetry-reduced state
space (17) is applied as post-processing. For a trajectory â(τ ), we simply apply the reflection
reducing transformation to obtain the trajectory as ã(τ ) = ã(â(τ )). Velocity field (12)
transforms to (17) by acting with the Jacobian matrix

ṽ(ã) = dã(â)

dâ
v̂(â) .

Floquet vectors transform to the fully symmetry-reduced state space similarly, however,
their computations in the first Fourier mode slice requires some care. Remember that the
reflection symmetry remains after the continuous symmetry reduction, and its action is rep-
resented by (13). Thus, denoting finite time flow induced by (12) by f̂ τ (â), pre-periodic orbit
within the slice satisfies

âpp = D̂(σ ) f̂ Tp (âpp) ,

with its linear stability given by the spectrum of the Jacobian matrix

Ĵpp = D̂(σ ) Ĵ Tp (âpp) ,

where Ĵ Tp (âpp) is the Jacobian matrix of the flow function f̂ Tp (âpp). Thus, in order to find
the Floquet vectors in fully symmetry-reduced representation, we first find the eigenvectors
V̂ of the Jacobian matrix Ĵpp and then transform them as Ṽ (ã) = dã(âpp)/dâ V̂ (â) .
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