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Abstract LeoKadanoff hasworked inmany fields of statisticalmechanics. His contributions
had an enormous impact. This holds in particular for critical phenomena, where he explained
Widom’s homogeneity laws by means of block-spin transformations and laid the basis for
Wilson’s renormalization group equation. I had the pleasure to work in his group for 1 year.
A short historical account is given.
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1 Introduction

Leo Kadanoff has worked in many fields of Statistical Mechanics.
He started out in working on superconductivity in a thesis under the supervision of Paul

Martin at Harvard. Leo and Gordon Baym developed self-consistent approximations which
preserved the conservation laws [4]. They published the widely used book Conservation
laws and correlation functions [34]. Gordon Baym has reviewed his time with Leo in his
contribution Conservation laws and the quantum theory of transport: the early days [3].

After a number of papers related to superconductivity and transport phenomena he became
interested in critical phenomena, where he contributed essentially. Section 2 reviews shortly
the situation in this field in the fifties and sixties of the last century. Section 3 reviews the
contributions of BenWidom and Leo Kadanoff in 1965 and 1966, which were two important
steps in the understanding of this field. This led to a strongly growing interest in this field
(Sect. 4). Finally, in 1971 Ken Wilson developed the tool to calculate explicitly the critical
behavior. In the same year Rodney Baxter solved the eight-vertex model and enriched the
class of two-dimensional exactly solvable critical models (Sect. 5). I had the great pleasure to
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be in Leo Kadanoff’s group in this year. A very short account of Leo’s work in the following
years, which is mainly in critical phenomena, is given in Sect. 6.

2 Critical Phenomena

In the fifties and sixties of the last century a lot of investigations started to understand the
behavior of gas–liquid systems, magnets and other systems close to their critical point.

The theory by Van derWaals [55] for gas–liquid systems and that by Curie andWeiss [65]
for magnetic substances predicted what is called molecular field behavior. In terms of the
paramagnetic-ferromagnetic transition one describes the critical behavior by

m ∝ (−τ)β, χ ∝ |τ |−γ , c ∝ |τ |−α, ξ ∝ |τ |−ν

at zero magnetic field, where m is the magnetization, χ the susceptibility, c the specific heat,
ξ the correlation length, and τ = (T − Tc)/Tc measures the difference of the temperature T
to its critical value Tc. For liquid–gas systems m has to be replaced by the difference ρ − ρc
of the density and its critical value. The exponent α = 0 corresponds to a jump and/or a
logarithmic divergence of the specific heat. Molecular field approximation yields a jump in
the specific heat and critical exponents β = 1/2, γ = 1, ν = 1/2.

Landau [44] formulated a general theory, which enclosed not only gas–liquid systems
and magnetic materials, but many others like binary mixtures and the transition to superfluid
helium. He described the systems in terms of an order parameter which for magnetic systems
is the magnetization and in gas–liquid systems is the difference of the density and the critical
density.

Experimentally one found β ≈ 1/3, γ ≈ 4/3, and values of α between −0.1 and +0.1.
Part of these observations date back to 1900. See the review by Levelt-Sengers [47].

Two exact solutions showed that the critical behavior might differ from molecular field
behavior: The three-dimensional spherical [5] model yields γ = 2 and a kink in the spe-
cific heat, but no jump, corresponding to α = −1; the two-dimensional Ising model yields
β = 1/8 [72] and a logarithmically diverging specific heat [50]. Moreover, Ginzburg [11]
analyzed the fluctuation contributions near the critical point and came to the conclusion that
in three dimensions there is a region where molecular field theory fails, its temperature-range
depending on the range of interaction.

A way to obtain the critical exponents was to perform expansions for lattice models like
the Ising model and classical Heisenberg models in powers of the coupling over temperature.
From these expansions one could estimate the critical temperature and critical exponents.
They came close to experimentally determined exponents. Unfortunately however, one did
not understand the mechanism behind this behavior.

3 Widom 1965 and Kadanoff 1966

There were three important steps to understand critical behavior: The first step was Ben
Widom’s homogeneity law [66] in 1965, according to which the order parameter is a homo-
geneous functions of τ and a second quantity, which for the gas–liquid transition is the
difference μ − μc of the chemical potential and its critical value. For magnets one uses
instead the magnetic field h. This was an extremely useful concept. It explained the relations
between critical exponents, which were already known as equalities or inequalities. Several
experiments were analyzed accordingly and good agreement was found. Examples are the
measurements of the magnetization of CrBr3 by Ho and Litster [16] and of nickel by Kouvel
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and Comly [42], and the equation of state for various gases by Green, Vicentini-Missoni, and
Levelt-Sengers [12].

In 1966 Leo Kadanoff [21] presented the second important step to understand critical
phenomena with his block transformation. He replaced the spins within a block by a new
block spin and introduced an effective interaction between the block spins, which yields the
same behavior for magnetization and spin correlations on distances large in comparison to
the block size. Denote the original coupling and magnetic field by K and h and the block
one by K ′ and h′. The number of spins within the block be bd . Then there is a mapping of
(K , h) → (K ′, h′): K ′ = f (K ), and the magnetic field will effectively change by a factor
one may call bx : h′ = bxh. It is essential that this transformation is not singular, at least
not close to the critical coupling Kc. This critical coupling reproduces itself Kc = f (Kc)

under the block transformation. Small deviations from Kc, which one may call τ = K − Kc

increase under the block transformation by a factor we may call by , τ ′ = byτ . Then the two
exponents x and y determine the critical exponents

α = 2 − d/y, β = (d − x)/y, γ = (2x − d)/y, ν = 1/y.

4 Interest Grows

In 1967 the interest in critical phenomena had strongly grown. Several reviews appeared on
this subject: the reviews by Michael Fisher [10], Peter Heller [15], and Leo Kadanoff [36]
and his coworkers.

In 1970 I participated in the Midwinter Solid State Research Conference on the topic
Critical Phenomena. Among the participants were many prominent workers in this field. I
mention onlyGünter Ahlers, George Baker, Richard Ferrell,Michael Fisher, Robert Griffiths,
BertrandHalperin, PeterHeller, PierreHohenberg, LeoKadanoff, David Landau, J.D. Litster,
Paul Martin, Michael Schulhoff, Johanna Levelt-Sengers, Eugene Stanley, Gerard Toulouse,
Ken Wilson, Michael Wortis, and Peter Young. It was my first travel to the United States and
it was a pleasure to meet many physicists in person, which before I knew only from their
papers. It was also interesting for me, since I had applied for a post-doc position with several
of them.

Laramore [45] wrote a short report on this conference and concerning static critical phe-
nomena he resumed: The two-parameter Kadanoff-Widom scaling laws are in real trouble as
far as predicting the relationships between the static critical exponents in three-dimensional
systems, the deviation from the scaling laws being small, but nevertheless real. Thus at that
time there were doubts on this theory. One should be aware that the effect of dipolar interac-
tions and of anisotropies including crossover effects were not yet sufficiently clear. However,
dipolar effects in uniaxial ferroelectrics were already considered by Larkin and Khmelnit-
skii [46], and crossover effects by Jasnow and Wortis [18] and by Riedel and myself [51].

5 Baxter and Wilson 1971

1971 saw two very important advances in critical phenomena, the solution of the eight-vertex
model by Rodney Baxter and the renormalization group calculation of Ken Wilson on the
basis of Kadanoff’s block spin ideas.

In 1971 I was research-associate in Leo Kadanoff’s group. It turned out that at that time
Leo was engaged in urban planning, but was still interested in critical phenomena. When I
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came to Brown University I had already started with thinking about: How can the idea of
duality as introduced by Kramers and Wannier [43] for the two-dimensional Ising model be
generalized to higher dimensions? Kadanoff and Ceva [35] had introduced the concept of the
disorder variable, which under duality transforms into the Ising spin. This concept was useful
for my considerations. I realized that the dual model to the conventional three-dimensional
Ising model is an Ising model with plaquette interactions. In four dimensions the Ising model
with plaquette interactions is self-dual [56]. Thus its transition temperature, provided there is
only one, can be determined in the same way and with the same result as for the conventional
two-dimensional Ising model. The transition temperature for this model was confirmed later
numerically byCreutz, Jacobs, andRebbi [8] to the precision allowed by the hysteresis effects
at the first-order transition. The model has a local gauge invariance. The products of spins
along loops, calledWilson-loops [69], show different behavior in the two phases. They decay
with increasing loops with either an area law or a perimeter law, depending on the phase

〈∏
loop

S(r)

〉
∝ exp(−a/a(T ))

exp(−p/p(T )),

where a is the area, and p the perimeter of the loop.What I did not realize at that time, was that
this behavior is characteristic for the behavior of confinement and deconfinement of quarks.

1971 saw the solution of the eight-vertex model by Rodney Baxter [1,2]. The model is
equivalent to an Ising model on a square lattice with two-spin interactions and a four-spin
interaction of strength λ. If λ vanishes, then the system decays into two conventional Ising
models. Starting from this limit Leo and myself determined the critical exponents in order
λ [41]. This is only possible, since the system has an operator, which stays marginal, and
creates a line of fixed-points with varying exponents.

Later during that year the papers by Wilson [67,68] appeared, in which he derived an
approximate renormalization group equation, which allowed him to determine critical expo-
nents for the three-dimensional Ising model. This was the third important step to understand
critical phenomena. These papers were based on Kadanoff’s block spin picture.

Wilson stated that the space of Hamiltonians ismuch larger than the one used byKadanoff,
but Kadanoff has used all relevant operators necessary to reach the critical point and has thus
obtained the correct picture in the immediate vicinity of the critical point. Doubts on the
Widom-Kadanoff picture soon declined.

Starting from this picture the concept of a fixed point and of universality classes became
clear. Thus all systems whose interactions converge at criticality to the same fixed point,
are governed by the same critical exponents and—as later became clear—also to the same
amplitude ratios. I investigated aspects of the general structure of the flow of the interaction
under renormalization, considering also irrelevant operators and that the renormalization
includes non-linear flows of the couplings [57]. What assured me that Wilson’s approach is
the correct approach was the paper byWilson and Fisher [70] on the ε-expansion in d = 4−ε

dimensions. A theory, which in complete agreement with the Ginzburg [11] criterion gave
molecular field behavior for d > 4 and exponents different frommolecular field behavior for
d < 4 has the expected properties. Wilson’s approximate recursion relation was so good that
it gave the correct critical exponents in order ε. We (Grover, Kadanoff and FJW) used it to
determine the exponents for the three-dimensional classical Heisenberg model [13]. I added
a calculation of the critical exponents for the isotropic n-vector model [58]. It happened
several times that I did not understand an answer by Leo immediately, but only one or two
days later. But his answers were so concise that I remembered them after such a long time.
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It is surprising that Ken Wilson developed first this approximate renormalization group
equation and only later came back to the Landau free-energy functional. The free theory
contains only a two-spin interaction

∑
q u(q)Sq S−q with (i) u(q) ∝ q2 for small wave-

vectors q , and (ii) u(q) → 1 for q large in comparison to the cut-off momentum �. The first
condition is obvious and can be easily incorporated in the transformation, but the formulation
of the transformation for the second condition is less obvious. It can be found in Refs. [71]
and [59].

I became also known to Anthony Houghton at Brown University. A different way which
Anthony Houghton, and myself [64] used, was a sharp momentum cut-off. This procedure
works well in first order in ε, but yields potentials non-analytic in the wave-vector for higher
orders in ε. We also obtained the behavior of the n-component vector model in the limit
n → ∞. It agreed with the spherical model [5] in accordance with Stanley [54]. Our paper
becameknownas functional renormalization, sincewecalculated the interaction as a function.

6 Later Years

After my stay at Brown I met Leo only occasionally at conferences. Once he visited Heidel-
berg for a talk.

Obviously Leo wanted to learn all secrets of two-dimensional and if possible three-
dimensional critical systems. This includes correlation functions [22,24] as well as operator
algebras [23,26] and renormalization group procedures in real space, which are character-
ized by potential moving and variational schemes [9,25,37,38,53]. He studied extensively
the renormalization scheme [27] by Migdal [48,49]. With Jorge Jose, Scott Kirkpatrick, and
David Nelson he investigated the effect of vortices and symmetry-breaking anisotropic fields
on the planar model at low temperatures [20,28].

But he studied also other systems showing critical behavior as turbulence [6], avalanches[7,
39], and the critical behavior of Kolmogorov–Arnold–Moser surfaces [29,30,40], and map-
pings, which create critical boundaries.

Some work of Leo [14,19] together with Halsey, Jensen, Procaccia, and Shraiman on
fractal measures came close to some of our work on the Anderson transition in a random
potential. At the mobility edge, which separates extended and localized eigenstates, the states
approach a fractal behavior. In a block picture one diagonalizes first the interaction within
small blocks. This is continued with larger and larger blocks. This yields a transformation in
real space and energy space [60]. After the mapping of this Anderson model to the nonlinear
sigma-model was found [52,61] it was possible to determine the fractal exponents of the
eigenfunctions in 2 + ε dimensions[17,62,63].

Leo characterized his work at several occasions [31–33].
Unfortunately I missed Leo, when he was in Chicago. I spent a sabattical at the James-

Franck Institute in the summer of 1978, whereas Leo moved from Brown University to the
James-Frank Institute in the winter of 1978. I am glad that I met him in 2015 at the March
meeting of the American Physical Society in San Antonio. He was still intensively interested
in the progress of Physics.
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