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Abstract The nonequilibrium dynamics of anharmonic chains is studied by imposing an
initial domain-wall state, in which the two half lattices are prepared in equilibrium with
distinct parameters. We analyse the Riemann problem for the corresponding Euler equations
and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of
time-integrated currents are investigated. In analogy with the KPZ equation, their typical
fluctuations should be of size t1/3 and have a Tracy–Widom GUE distributed amplitude. The
proper extension to anharmonic chains is explained and tested through molecular dynamics.
Our results are calibrated against the stochastic LeRoux lattice gas.

Keywords Fluid dynamics · Hydrodynamic waves · Statistical mechanics of classical
fluids · Nonequilibrium thermodynamics

1 Introduction

The cold atom community has revived the study of the approach to thermal equilibrium for
large isolated quantum systems. We refer to [1,2] and references therein on previous work.
Most accessible, both numerically and experimentally, are lattice systems in one dimension.
One dimension is peculiar, since there are models with an extensive number of locally con-
served fields. Examples of such quantum integrable systems are the XXZ spin chain and
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the continuum Lieb–Liniger δ-Bose gas. Obviously the pathway to equilibrium will depend
crucially on whether the system is integrable or not [3–5]. But in addition there is also the
dependence on initial conditions which is potentially overwhelming. One could prepare the
system already in thermal equilibrium and study the response to small initial perturbations
[6]. These are the much investigated time response and correlation functions in equilibrium.
The initial state could be translation invariant, to some extent thereby suppressing the mostly
slow spatial variations [3]. Recently initial domain-wall states have become very popular
[7,8]. Such a state is obtained by joining two distinct thermal states at a single point (and
at two points in case of periodic boundary conditions). Domain-wall states will be the main
focus of our contribution.

Browsing the introductions to the papers mentioned above, one might have the impression
that the approach to equilibrium for classical systems in one dimension is a well-covered
topic. We study here Fermi–Pasta–Ulam type anharmonic chains with domain-wall initial
conditions and are not aware of any previous systematic study. The structure of equilibrium
time-correlations for such chains has been elucidated only recently [9,10]. In particular one
now understands the link to anomalous transport which is most directly observed when
coupling the chain to thermal reservoirs at distinct temperatures, see [11]. As in the quantum
world, there are integrable chains, in our context the most famous one being the Toda chain.
But the KAM theorem signals in addition the possibility that, as a function of the energy, the
structure may change from integrable to chaotic. This energy threshold is fascinating from
the perspective of nonlinear dynamics and has attracted considerable attention [12]. We hope
that a better understanding of classical models also serves as an incentive to look for related
phenomena in quantum systems.

The parameters of the initial domain-wall state will be chosen such that in the accessible
part of phase space the chain dynamics is sufficiently chaotic. Then one would expect that the
conserved fields as computed from the chain dynamics are approximated by the respective
solution of the macroscopic Euler equations, for times limited by diffusive effects. How well
such expectations work out will have to be studied. The Euler equations are based on the
notion of local thermodynamic equilibrium. The microscopic local conservation laws are
deduced from the chain dynamics and are then averaged in the stipulated local equilibrium
state so to arrive at a closed set of equations for the conserved fields. In particular, to reach
non-trivial predictions, the thermal average of the microscopic currents is not allowed to
vanish. This is ensured if the interaction potential depends only on positional differences, as
V (q j+1−q j ), implying momentum conservation. Upon adding an on-site potential, Vos(q j ),
momentum conservation would be broken, all Euler currents would vanish, and the evolution
of the initial step profile is determined by diffusive effects only.

The Euler equations are a system of n hyperbolic conservation laws, n = 3 for our case
of anharmonic chains. They are of the generic form

∂t uα + ∂x jα(�u) = 0, (1.1)

α = 1, . . . , n, �u = (u1, . . . , un), with given current functions�j. In themathematical literature
the domain-wall initial data are known as Riemann problem for Eq. (1.1), which means

�u(x, 0) = �u� for x < 0, �u(x, 0) = �ur for x > 0. (1.2)

For a wide class of current functions, there is a unique entropy solution to (1.1) with initial
conditions (1.2), see the exposition [13, Sects. 4–8]. This solution scales ballistically as

�u(x, t) = �udw(x/t), (1.3)
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where �udw is bounded and continuous except for isolated jumps, possibly. There is a well
developed theory of how to compute �udw, at least in principle [13, Sects. 1–3]. In our case
the current functions are determined through the microscopic particle model, and hence of
a very particular form. Thus our task is twofold. Firstly we have to investigate the solution
to the Riemann problem. Secondly such predictions should be compared with numerical
simulations of the dynamics.

Let us return for a moment to the distinction between integrable and non-integrable sys-
tems, both starting from a domain-wall initial state. As supported by a variety of studies on
quantum integrable models [3,4], one expects that (1.3) still holds in the integrable case.
Thus at first sight there seems to be little difference. Of course, the macroscopic profiles
are computed by using completely different methods for the two cases. But the real distin-
guishing feature is the appearance of shocks. An ideal gas with step-initial conditions shows
ballistic spreading but no shocks. The entropy solution for the Euler equations (1.1) is a
mathematical shorthand for the limit of small dissipation, which is meaningful only if the
underlying dynamics is sufficiently chaotic.Merely invoking the conservation laws, the Euler
equations admit stable and unstable shocks. Such unphysical solutions to (1.1) are removed
by requiring a positive entropy production at the shock, as will be illustrated in the examples
below. In a local region away from the shock, the local state is (to very good approximation)
in thermal equilibrium.

Our study adds current fluctuations as an item, which can no longer be based on the Euler
equations (1.1). Most simple-mindedly, one would consider the fluctuations of the time-
integrated current across the origin. For anharmonic chains the current is a three-vector. In
most cases one would find Gaussian fluctuations of size

√
t , thus not so interesting from a

theoretical perspective. A more global picture emerges by considering the current integrated
along the ray {x = vt} for some prescribed velocity v. The ray is chosen to lie in the
interior of a rarefaction wave. In addition, one has to consider a computable but particular
linear combination of the three currents. As will be discussed, then the integrated current
fluctuations are of size t1/3, smaller as for all other linear combinations, and the statistics is
given by the Tracy–Widom distribution known from random matrix theory.

Our paper consists of three, at first sight somewhat unrelated parts. We start with a sto-
chastic model with two conserved fields, as always with domain-wall initial conditions. For
our particular system the validity of the Euler equations has been established mathematically
[14]. Thus the model is used to explain the method by which one obtains the solution of the
Riemann problem and as a numerical benchmark. We proceed to anharmonic chains, first
with a general interaction potential. Analytically and numerically we then consider two spe-
cific choices for the potential, which generate sufficiently chaotic dynamics (as known from
previous studies). In the third part we discuss the fluctuations of time-integrated currents.

2 Riemann Problem for the LeRoux Lattice Gas

A prototypical stochastic lattice gas is the totally asymmetric simple exclusion process
(TASEP). Particles are located on Z, at most one particle per site. Independently, after an
exponentially distributed waiting time, a particle hops one step to the right, provided the
target site is empty. Clearly, the particle number is the only conserved field.

Tomove towards several conservation laws, we look for aminimal extension of the TASEP
to a model with two conserved fields. In the literature a standard generalization is known as
LeRoux stochastic lattice gas. (This name goes back to Fritz and Tóth [14], who prove the
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hydrodynamic limit globally in time. Apparently, LeRoux first wrote down this particular
system of conservation laws [15,16].) The LeRoux lattice gas has two types of particles with
label ±1. Subject to the exclusion rule, the 1 particles jump to the right and the −1 particles
to the left, both according to the TASEP rule. Furthermore, a neighboring pair 1,−1 is
exchanged to−1, 1 with rate 2, which leads to the simplification that the stationary measures
are Bernoulli. A generalization of LeRoux is the Arndt–Heinzel–Rittenberg (AHR) model
[17,18].

More formally, we introduce occupation variables η j = −1, 0, 1, j ∈ Z. The only allowed
exchanges are

1, 0 → 0, 1 at rate 1,
0, −1 → −1, 0 at rate 1,
1,−1 → −1, 1 at rate 2.

Note that in our convention the labels of the components are interchanged in comparison to
[14]. Clearly, the only conserved fields are the two particle numbers. The invariant Bernoulli
measures are parametrized by the average densities ρ1 and ρ−1. The hydrodynamic equations
simplify when written in terms of the average number of holes and the average velocity, i.e.,

ρ = 1 − ρ1 − ρ−1, v = ρ1 − ρ−1 (2.1)

with

|v| ≤ 1, 0 ≤ ρ ≤ 1 − |v|. (2.2)

We refer to (ρ, v) as states, more appropriately, but alsomore lengthy, as steady state parame-
ters, resp. as thermodynamic states in case of anharmonic chains. The single-site probabilities
of the steady states are

Pρ,v(η j = 0) = ρ, Pρ,v(η j = ±1) = 1
2 (1 − ρ ± v). (2.3)

Averages will be denoted by 〈·〉ρ,v , the subscripts being omitted when obvious from the
context. Since the steady states are of product form, their average current is easily computed.
Thus, on a large space-time scale the conserved fields are governed by the entropy solution
of

∂t �u + ∂x�j(�u) = 0, �u = (ρ, v) (2.4)

with the current vector

�j(�u) = −(ρ v, ρ + v2 − 1). (2.5)

To discuss the solution to the Riemann problem, we follow fairly closely the conventions
of Ref. [13]. One rewrites (2.4) in semilinear form as

∂t �u + A(�u)∂x �u = 0, (2.6)

where

A = ∂�j(�u)

∂ �u = −
(

v ρ

1 2v

)
. (2.7)

The eigenvalues of A are

cσ = − 3
2v + 1

2σ
√
4ρ + v2, σ = ±1, (2.8)

123



Shocks, Rarefaction Waves, and Current Fluctuations… 845

and the corresponding right and left eigenvectors, Aψσ = cσ ψσ , ATψ̃σ = cσ ψ̃σ , are given
by

ψσ = Z−1
σ

(
2σρ

σv −√
4ρ + v2

)
, ψ̃σ = Z̃−1

σ

(
2σ

σv −√
4ρ + v2

)
. (2.9)

Here Zσ and Z̃σ are positive normalization constants. For the Riemann problem their explicit
form is not needed. Setting D = (∂ρ, ∂v), one obtains for the change of cσ along the vector
fields ψσ ,

ψσ · Dcσ = 2 Z−1
σ

(√
4ρ + v2 − σv

) ≥ 0, (2.10)

and strictly positive for ρ > 0.

2.1 Rarefaction Waves

The rarefaction curves, Rσ , are obtained by solving the Cauchy problem in �u-space,
∂τ �u = ψσ (�u) (2.11)

for σ = ±1, with ψσ the right eigenvectors of A, see (2.9). The normalization has been
absorbed into the τ -parameter. The integral curves are then determined by

∂τ ρ = 2σρ, ∂τ v = σv −
√
4ρ + v2. (2.12)

It follows that

dv

dρ
= − 1

2σρ

(√
4ρ + v2 − σv

)
, (2.13)

which is negative for R1 and positive for R−1. The solution of (2.13) is

vσ = σ
(
bσ − b−1

σ ρ
)
, 0 < bσ ≤ 1, (2.14)

as visualized in Fig. 1. Maximally, R1 starts at �u1,� = (0, b1) and ends at �u1,r = (b1, b1 −1),
whereas R−1 starts at �u−1,� = (b−1, 1 − b−1) and ends at �u−1,r = (0,−b−1). The local
eigenvalue is

cσ = − 3
2v + 1

2σ
√
4ρ + v2 = σ

(
b−1
σ 2ρ − bσ

)
. (2.15)

To convert the solution from �u-space to position space, we set cσ = x/t . The solution is
self-similar and we may assume t = 1. Then

ρσ (x) = 1
2bσ (bσ + σ x), vσ (x) = 1

2 (bσ − σ x). (2.16)

The boundary speeds of R1 are

c1,� = c1(�u1,�) = −b1, c1,r = c1(�u1,r) = 2 − b1, (2.17)

and of R−1

c−1,� = c−1(�u−1,�) = b−1 − 2, c−1,r = c−1(�u−1,r) = b−1. (2.18)

Eq. (2.16) as a function of x/t describes solutions of the Euler equation (2.4). The two
solutions with σ = ±1 are mirror images of each other.
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Fig. 1 Rarefaction and shock curves through a point �u0 in state space for the LeRoux system according to
Eqs. (2.14) and (2.26). Traversal in arrow direction corresponds to a rarefaction wave and increasing cσ , and
traversal in opposite arrow direction to a shock curve

2.2 Shock Curves

Shock curves are determined by the Rankine–Hugoniot jump condition

λ(�u − �u0) =�j(�u) −�j(�u0). (2.19)

Hence in our case

−λ(ρ − ρ0) = ρv − ρ0v0, (2.20)

−λ(v − v0) = ρ − ρ0 + v2 − v20 . (2.21)

According to the first equation the shock speed is

λ = −ρv − ρ0v0

ρ − ρ0
. (2.22)

We eliminate λ with the result

(ρ − ρ0)
2 = (v − v0)(vρ0 − v0ρ). (2.23)

If ρ0 > 0, the two solutions for v are

vσ = v0 + (1 − ρ̂)(cσ,0 + v0), ρ̂ = ρ/ρ0 (2.24)

with σ = ±1 and cσ,0 = cσ (�u0) the sound speed (2.8) on the left side of the shock. In
particular, one recovers vσ = v0 for ρ̂ = 1. In fact, the rarefaction curves (2.14) coincide
with the solution to the Rankine–Hugoniot equations (2.24). This can be seen by defining bσ

implicitly via
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vσ,0 = σ
(
bσ − b−1

σ ρ0
)
, (2.25)

then

vσ = σ
(
bσ − b−1

σ ρ
)
. (2.26)

Inserting into (2.22) one arrives at the shock speed

λσ = 1
2 (cσ,0 + cσ ) = σ

(
b−1
σ (ρ + ρ0) − bσ

)
. (2.27)

The coincidence of rarefaction and shock curves is the defining property of the Temple
class [19]. The LeRoux system is a further member of this class. In our context the interest
results from a maximally simple underlying particle dynamics.

TheLax admissibility condition states that characteristicsmustmove “towards” the shock:

cσ,0 ≥ λ ≥ cσ . (2.28)

Since λ is the mean value of the sound speeds, the condition simplifies to cσ ≤ cσ,0. Together
with cσ = σ(b−12ρ − b), this is equivalent to ρ ≤ ρ0 for σ = 1 and ρ ≥ ρ0 for σ = −1.
The stable, physically admissible part of the Rankine–Hugoniot curve are the shock curves
S1 and S−1 as displayed in Fig 1.

2.3 General Solution

The construction of the general solution is illustrated in Fig. 2. Starting from the asymptotic
left value �u� = �u0, one first follows either the rarefaction curve R−1 or the stable part of
the shock curve S−1 (shown as linear orange-red line in Fig. 1) up to a unique intermediate
state �u1. Then �u1 is connected by either a rarefaction curve R1 or shock curve S1 (blue-green
in Fig. 1) to the asymptotic right value �u2 = �ur . Rarefaction curves correspond to traversal
in arrow direction in Fig. 1, equivalently increasing eigenvalue cσ . This procedure splits
the parameter domain into four distinct pieces according to rarefaction–rarefaction, shock–
rarefaction, rarefaction–shock, and shock–shock. The two domain boundaries correspond to
either a single rarefaction or a single shock, with no intermediate value �u1. In Fig. 2b we
show the space–time plot corresponding to the case shock–rarefaction of Fig. 2a.

u0

u1

u2

1

−1

−0.5

0

0.5

1
v

(a)

S−1 R1

u0

u1

u2

−1 0 1
x

0.5

1

t

(b)

Fig. 2 a Path in state space from initial state �u0 via �u1 to the final state �u2, traversing along the red shock
curve S−1 first and then along the blue rarefaction curve R1. b Corresponding shock and rarefaction waves
in a x-t diagram (Color figure online)
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Fig. 3 Density and velocity profiles at various times for the LeRouxmodel with domain-wall initial conditions
�u� = (0, b1) and �ur = (b1, b1 − 1), b1 = 3

4 and L = 4096 sites. The orange dots are molecular dynamics
results and the black line shows the theoretically predicted profile. The sharp jump on the left is a shock
resulting from the periodic boundary conditions, and the sloped linear segment is a rarefaction wave (Color
figure online)

2.4 Monte Carlo Simulations

We performMonte Carlo simulations of the LeRoux model for L = 4096 sites with periodic
boundary conditions. To obtain an initial domain wall state, we sample the single-site prob-
ability distribution (2.3) on the left half j = − L

2 , . . . ,−1 using parameters �u� = (ρ�, v�),
and on the right half j = 0, . . . , L

2 − 1 using parameters �ur = (ρr, vr). The dynam-
ics is simulated by random exchanges at exponentially distributed waiting times up to
tmax = 1024. This procedure is realized 106 times to compute average profiles, as shown
below.

First, we illustrate the special case of a single rarefaction wave R1 connecting �u� to �ur ,
which are chosen maximally as �u� = (0, b1) and �ur = (b1, b1 − 1) with b1 = 3

4 . This is
the particular choice in [20], and corresponds to the extremal points of the green-blue line
segment in Fig. 1. Besides the �u�|�ur Riemann problem centered at j = 0 and generating
rarefaction R1, the periodic boundary condition translates to an additional �ur|�u� Riemann
problem centered at j = L

2 . Since the solutions of the rarefaction and shock curves coincide
except for orientation, one concludes that the solution of the �ur|�u� Riemann problem is a
single shock curve S1. In other words, one traverses the green–blue line segment in Fig. 1
in opposite direction. The numerical Monte Carlo profiles, shown as orange dots in Fig. 3,
agree very well with the theoretical prediction (solid black lines). In particular, note the sharp
jump at the shock. This shock curve is located at j = − L

2 +λ1t and moves to the right, with
shock speed λ1 = 1 − b1.

Next, we perform molecular dynamics simulations corresponding to the general case in
Fig. 2. Specifically, the left �u� = �u0 = ( 1364 ,

1
6 ), the intermediate �u1 = ( 9

32 ,
3
8 ) and the

right �ur = �u2 = ( 12 ,
1
12 ). Figure 4 shows the molecular dynamics profiles, with the shock

curve S−1 indicated in red and the rarefaction wave R1 in blue. One observes that the MC
profile of S−1 is less sharp than the shock in Fig. 3, presumably due to the higher shock
speed.
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Fig. 4 Density and velocity profiles at various times for the LeRoux model with domain-wall initial condi-
tions corresponding to Fig. 2. The shock wave S−1 and rarefaction wave R1 are indicated in red and blue,
respectively. The theoretical prediction (black lines) refers only to the Riemann problem centered at the origin.
The outer features of the MC profiles arise from periodic boundary conditions (Color figure online)

2.5 Entropy

The thermodynamic entropy for the probability distribution of (2.3) is

S(ρ, v) = −
1∑

η=−1

Pρ,v(η) logPρ,v(η), (2.29)

using the standard physics convention for the sign. The definition in [13] uses a convex
function which has the opposite sign.

The corresponding entropy flux q(�u) has to satisfy

DS(�u) A = Dq(�u) (2.30)

with �u = (ρ, v) and D = (∂ρ, ∂v). Up to a constant the solution for q(�u) is

q(ρ, v) = v +
1∑

η=−1

(v − η)Pρ,v(η) logPρ,v(η). (2.31)

Note that q(ρ, v) is an odd function in v. Figure 5 visualizes both entropy and entropy flux.
The entropy inequality admissibility condition states that

∂t S(�u) + ∂xq(�u) = �S(�u) ≥ 0 (2.32)

in the sense of distributions. For continuously differentiable solutions due to (2.30) one has
�S(�u) = 0 and

∂t S(�u) + ∂xq(�u) = 0. (2.33)

In particular, no entropy is produced at a rarefaction wave. On the other side, at shocks one
can follow the same steps as for the Rankine–Hugoniot jump condition to derive from (2.32)
that

−
∫

dt
(
λ(S − S0) − (q − q0)

)
φ(λt, t) =

∫
dt �S φ(λt, t) (2.34)
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Fig. 5 Entropy according to Eq. (2.29) and entropy flux according to Eq. (2.31) of the LeRoux model

for any continuously differentiable test functionφ(x, t)with compact support. The integration
in (2.34) proceeds along the shock curve, and S0, q0 are the values on the left side of the
shock. Inserting the shock speed (2.27) and the shock solution into (2.29) and (2.31), one
obtains (with b = bσ )

�Sσ = σ

(
1

b

(
ρ0 − ρ + ρ ρ0 log

[ ρ

ρ0

])

+1

b

(
1 − b2 − (1 − ρ)(1 − ρ0)

) 1
2
log

[
1 − (ρ/b)2

1 − (ρ0/b)2

]

−
(
1 − ρ − ρ0 + ρ ρ0

b2

) (
arctanh

(ρ0

b

)
− arctanh

(ρ

b

)))
. (2.35)

Note that this expression is invariant under the interchange ρ ↔ ρ0 and simultaneously
σ ↔ −σ , as expected from symmetry of the shock curves moving to the right and left. As
required, the solution of the Riemann problem satisfies �Sσ ≥ 0.

3 Riemann Problem for Anharmonic Chains

With the LeRoux lattice gas as guiding example, we turn to our central theme which is the
time evolution for domain-wall initial conditions of a system of anharmonically coupled
mechanical point particles. The j-th particle has mass m, position q j , momentum p j , and is
coupled to its neighbors j − 1 and j + 1 through the potential V . Then Newton’s equations
of motion are given by

m d2

dt2
q j = V ′(q j+1 − q j ) − V ′(q j − q j−1). (3.1)

We read this equation as a discretized wave equation with q j ∈ R the displacement of the
wave field at lattice site j . The hamiltonian of the chain is

H =
∑
j∈Z

(
1
2m p2j + V (q j+1 − q j )

)
. (3.2)

For the harmonic potential, V (x) = x2, Eq. (3.1) reduces to a discrete linear wave equation.
In the theoretical analysis we use j ∈ Z. Numerically, j ∈ [− L

2 , . . . , L
2 − 1

]
with periodic

boundary conditions.
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In contrast to the LeRoux lattice gas, the dynamics is deterministic. The initial conditions
are however random, specifically to have a domain-wall state. As before, we expect the Euler
equations to provide an accurate description on a macroscopic scale, provided the times are
not too long. The validity of the Euler equations is based on maintaining local stationarity
away from shocks. For a stochastic system the local approach to stationarity is in a certain
sense build into the dynamics. For mechanical systems one relies on sufficiently strong
dynamical chaos. Thereby integrable systems, as the harmonic and Toda chain are ruled out.
In the LeRoux lattice gas the jumps are asymmetric. The steady states are non-equilibrium
and the dynamics does not satisfy the principle of detailed balance. In contrast, for the
anharmonic chain the domain-wall state is manufactured by joining two thermal equilibrium
states. Because of momentum conservation, the thermal average defining the Euler currents
does not vanish. If one broke this conservation law by adding in (3.2) an on-site potential,
then the Euler currents would vanish identically, no Riemann problem ensues, and the first
macroscopic time-scale is diffusive.

It is convenient to introduce the stretch r j = q j+1 − q j . Then the equations of motion
turn into

d
dt r j = 1

m (p j+1 − p j ),
d
dt p j = V ′(r j ) − V ′(r j−1), (3.3)

fromwhich one concludes that stretch andmomentum are conserved. The respective currents
are − 1

m p j and −V ′(r j−1). In addition, we define the local energy

e j = 1
2m p2j + V (r j ), (3.4)

which changes in time as

d
dt e j = 1

m p j+1V
′(r j ) − 1

m p j V
′(r j−1). (3.5)

As anticipated, the energy is locally conserved. Its current equals − 1
m p j V ′(r j−1). More

precisely than before, in our context non-integrable means that there are no further locally
conservedfields.Unfortunately, this property is difficult to check.Besides the harmonic chain,
the only known integrable system is the Toda chain with V (x) = e−x . [The Calogero-Moser
chain has a two-sided decaying potential, which is not allowed in our context.]

The thermodynamic fields conjugate to stretch, momentum, and energy are the pressure
P , the mean momentum, mv, and the inverse temperature, β > 0, respectively. From (3.2)
we conclude that in thermal equilibrium the p j ’s and r j ’s are independent. The probability
density function for p j is the shifted Maxwellian

1√
2πm/β

e−β 1
2m (p j−mv)2 (3.6)

and the one for r j is given by

Z−1 e−β(V (r j )+Pr j ), Z(P, β) =
∫
R

dx e−β(V (x)+Px). (3.7)

To obtain a finite spatial partition function Z , we require that V (x) is bounded from below
and has at least a one-sided linearly growing lower bound as |x | → ∞. Then Z < ∞ for
P in a suitably chosen interval. Equilibrium averages are denoted by 〈·〉P,v,β , the subscripts
being omitted if obvious from the context. To assemble a domain-wall initial state, we set
(P, v, β) = (P�, v�, β�) for j < 0 and (P, v, β) = (Pr, vr, βr) for j ≥ 0 in (3.6) and (3.7).
By construction these initial data are in thermal equilibrium except for the jump at the origin.
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A little bit more of thermodynamics will be needed. The average stretch is given by

r(P, β) = 〈r j 〉P,v,β = Z−1
∫
R

dx x e−β(V (x)+Px), (3.8)

the average momentum is 〈p j 〉 = mv, and the average internal energy is

e(P, β) =
〈

1
2m p2j + V (r j )

〉
P,v=0,β

= 1
2β

−1 + Z−1
∫
R

dx V (x) e−β(V (x)+Px). (3.9)

The average total energy is then e = 〈e j 〉P,v,β = e+ 1
2mv2. Later onwewill need P(r, e) and

β(r, e) as the inverse to Eqs. (3.8) and (3.9). By convexity of the respective thermodynamic
potential this inverse is uniquely defined.

The Euler equations are obtained by assuming that the conserved fields are slowly varying
on the scale of the lattice. They thus become functions of space-time (x, t). We now drop the
prefix “average” and call the space-time fields simply stretch, momentum, and energy. Since
all particles have the same mass, we will follow the standard convention in using velocity
instead of momentum as hydrodynamic field. If local equilibrium is propagated, then the
macroscopic Euler currents are the thermal average of the microscopic currents, explicitly,

�j = (− 1
m

〈
p j
〉
,− 1

m

〈
V ′(r j−1)

〉
,− 1

m

〈
p j V

′(r j−1)
〉 ) = (−v, 1

m P, vP
)
. (3.10)

Through Eq. (3.10) the currents become functions of the local fields, where the pressure is
evaluated as

P = P
(
r, e − 1

2mv2
)
. (3.11)

Then the Euler equations read

∂t r − ∂xv = 0, m∂tv + ∂x P
(
r, e − 1

2mv2
) = 0, ∂t e + ∂x

(
vP

(
r, e − 1

2mv2
)) = 0.

(3.12)

We combine the conserved fields as 3-vector �u(x, t) = (
r(x, t), v(x, t), e(x, t)

)
. Then the

Euler equations take the canonical form

∂t �u + ∂x�j(�u) = 0. (3.13)

Since the total energy e (instead of internal energy e) is locally conserved, e has to be used
when applying the theory of hyperbolic conservation laws. But for the Riemann problem, it
will turn out to be more concise to use the internal e as parameter.

In fact, Eq. (3.12) is identical to the Euler equations of a one-dimensional fluid in
Lagrangian coordinates. Its Riemann problem has been studied in great detail starting with
the pioneering work of Bethe [21]. The interest in one-dimensional fluids also served as a
strong motivation to develop a mathematical theory of hyperbolic conservation laws with
several components [22,23]. For the physics perspective we refer to the excellent review by
Menikoff and Plohr [24]. The tutorial by Bressan [13] provides the necessary mathematical
background. So it appears that we only have to point at the relevant literature. From the
physics side the main goal is to understand the qualitative link between the equation of state
and the solution to the Riemann problem, in particular in case the equation of state allows
for a phase transition. On the other hand, we plan to quantitatively compare the microscopic
dynamics with the solution of the Riemann problem and thus need shock and rarefaction pro-
files in a fairly explicit form. Compared to one-dimensional fluids, anharmonic chains have
the advantage that the grand-canonical potential is given in terms of a single one-dimensional
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integral. Static correlations of the conserved fields vanish except for coinciding points. No
phase transition is possible.

Before turning to our concrete examples, we have to recall a few general properties. The
linearization matrix is given by

A = ∂�j(�u)

∂ �u =
⎛
⎝ 0 −1 0

1
m ∂r P −v∂e P

1
m ∂e P

v∂r P P − mv2 ∂e P v∂e P

⎞
⎠ . (3.14)

The eigenvalues of A are (−c, 0, c), with the adiabatic sound speed c, c > 0, defined by

c2 = 1
m (−∂r P + P ∂e P). (3.15)

The right eigenvectors of A corresponding to the eigenvalues 0 and σc, σ = ±1, read

ψ0 = Z−1
0

⎛
⎝ ∂e P

0
−∂r P

⎞
⎠ , ψσ = Z−1

σ

⎛
⎝ −σ

c
σ P + mvc

⎞
⎠ , (3.16)

and the left eigenvectors of A are

ψ̃0 = Z̃−1
0

⎛
⎝ P

−mv

1

⎞
⎠ , ψ̃σ = Z̃−1

σ

⎛
⎝ σ∂r P
m
(
c − σv∂e P

)
σ∂e P

⎞
⎠ . (3.17)

By construction 〈ψ̃α|ψβ〉 = 0 for α 
= β. For the solution of the Riemann problem, the
positive normalization constants are not needed. As explained in Appendix “General Anhar-
monic Chain” section, they are fixed by requiring that normal modes are orthonormal with
respect to the equilibrium measure.

3.1 Entropy

Since in equilibrium the p j ’s and r j ’s are independent, we can use the generalisation of (2.29)
to probability densities in order to obtain the physical entropy, S, per volume. Inserting from
(3.6), (3.7) yields

S(r, e) = β(r P + e) + 1
2 log(2πm) − 1

2 logβ + log Z(P, β) (3.18)

with P = P(r, e), β = β(r, e). Denoting by D = (∂r , ∂v, ∂e) the gradient in state space, one
obtains

DS
(
r, e − 1

2mv2
) = β(r, e)

(
P(r, e),−mv, 1

)
(3.19)

and for a smooth solution

∂t S = DS · ∂t �u = −DS · ∂x�j = −β
(− P ∂xv − v∂x P + ∂x (vP)

) = 0. (3.20)

Anharmonic chains are special in the sense that the entropy current vanishes. Entropy may be
produced at shock discontinuities, but is not propagated. This behavior should be contrasted
with the LeRoux lattice gas, which has a non-zero entropy current, compare with (2.31).
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3.2 Rarefaction Curves

The rarefaction curves are obtained by solving the following Cauchy problem in state space

∂τ �u = ψα(�u), (3.21)

α = 0,±1, where ψα are the right eigenvectors of A, see [13] for details,
Eigenvalue 0 This is a contact discontinuity, which can be thought of as a rarefaction wave

in the limit of zero extension with a non-zero jump. Eq. (3.21) for α = 0 reads

∂τ

⎛
⎝r

v

e

⎞
⎠ =

⎛
⎝ ∂e P

0
−∂r P

⎞
⎠ (3.22)

with P evaluated at (r, e − 1
2mv2). The normalization constant has been absorbed into τ .

Since for the velocity v(τ) = v0 and ∂τ e = ∂τ e − mv ∂τ v = ∂τ e, one obtains the closed
system

∂τ r = ∂e P(r, e), ∂τ e = −∂r P(r, e), (3.23)

which is of hamiltonian form with P(r, e) as hamiltonian function. Across a contact discon-
tinuity both pressure and velocity are conserved. By (3.19) and (3.23) the entropy changes
as

∂τ S = β (P∂e P − ∂r P) = βmc2. (3.24)

Thus, the change of entropy across the contact discontinuity equals

S − S0 =
∫ τmax

0
dτ β(τ)mc(τ )2 > 0, (3.25)

where β(τ) = β(r(τ ), e(τ )) and c(τ ) = c(r(τ ), e(τ )).
Eigenvalue σc Eq. (3.21) for σ = ±1 reads

∂τ

⎛
⎝r

v

e

⎞
⎠ =

⎛
⎝ −σ

c
σ P + mvc

⎞
⎠ . (3.26)

The first equation of (3.26) is solved by r(τ ) = r0 − στ . For the internal energy it follows
that

∂τ e = ∂τ

(
e − 1

2mv2
) = σ P + mvc − mvc = σ P. (3.27)

However, instead of the energy equation it is more convenient to use the conservation of
entropy

S(r0 − στ, e(τ )) = S0. (3.28)

Inserting e(τ ) into (3.26), the velocity is then determined by

∂τ v = c(r0 − στ, e(τ )). (3.29)

The rarefaction curves can be obtained without actually solving differential equations.
The gradient of σc along trajectories of the vector field ψσ , for σ = ±1, is

σψσ · Dc = Z−1
σ

(
P ∂ec − ∂r c

)
. (3.30)
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A common simplifying assumption for hyperbolic conservation laws is genuine nonlinearity,
i.e., σψσ · Dc > 0 for any r , e. On general grounds, there is no reason why genuine
nonlinearity should hold. A point in case are hard-point particles with alternating masses,
discussed inSect. 4 below.But genuinenonlinearity does not hold for a square-well interaction
potential, see Sect. 5.

3.3 Shock Curves

According to the Rankine–Hugoniot jump condition, we search for nontrivial solutions of

λ(�u − �u0) =�j(�u) −�j(�u0). (3.31)

Using the shorthand notation P0 = P(r0, e0 − 1
2mv20), more explicitly Eq. (3.31) reads

λ(r − r0) = −(v − v0), (3.32)

λ(v − v0) = 1
m

(
P − P0

)
, (3.33)

λ(e − e0) = vP − v0P0. (3.34)

According to Eq. (3.32), the shock speed is

λ = −v − v0

r − r0
. (3.35)

Eqs. (3.33), (3.34) and the relation e = e + 1
2mv2 lead to

λ(e − e0) = 1
2 (v − v0)(P + P0), (3.36)

and inserting Eq. (3.32), one arrives at

e − e0 = − 1
2 (r − r0)(P + P0). (3.37)

Multiplying Eqs. (3.32) and (3.33) leads to the condition

− m(v − v0)
2 = (r − r0)(P − P0). (3.38)

There is no general procedure to solve the Rankine–Hugoniot equations. Also the issue of
stability can be discussed only once the solution is of a more explicit form.

4 Hard-Point Particles with Alternating Masses

A widely studied anharmonic chain is the Fermi–Pasta–Ulam lattice with potential V (x) =
1
2 x

2 + 1
3αx

3 + 1
4βx

4 in the historical notation [25]. As follows from (3.8) and (3.9), r(P, β)

and e(P, β) are given by simple integrals. But one still has to invert the pair of functions.
To our knowledge, the corresponding Riemann problem has never been studied. To simplify
one looks for the factorized ideal gas ansatz P(r, e) = 2eh(r), which holds if the potential
takes only the values 0, ∞. This leaves the choice V (x) = 0 for b ≤ x ≤ a and V (x) = ∞
for x < b and a < x . The parameter b describes a hard core at which particles are specularly
reflected from each other. The limiting hard-point, b = 0, is also allowed. There is an inward
collision at separation a. Physically one can imagine that neighboring particles are connected
by amassless string ofmaximal length a. From the simulation perspective such a potential has
the advantage that no differential evolution equation has to be solved. One can simply proceed
from collision to collision. At a collision, the momenta are exchanged. Thus

∑
j g(p j ) with
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general g is conserved. The dynamics is integrable. The standard resolution is to prescribe
alternating masses, m0 for even labels and m1 for odd labels. Thereby the collisions become
nontrivial and seem to generate sufficient chaos. Now the unit cell contains two particles.
But, as discussed in [9], the Euler equations still retain their form (3.12) upon substituting
for m the average mass 1

2 (m0 + m1), again denoted by m.
We specialize the results from Sect. 3 to the case of a hard-point potential, Vhp(x) = ∞

for x < 0 and Vhp(x) = 0 for x ≥ 0. Then the inverse temperature is β = 1/(2e), the
pressure is given by

Php(r, e) = 2e

r
, (4.1)

and the sound speed is obtained as

chp = 1

r

√
6e/m. (4.2)

The right eigenvectors of A are

ψ0,hp = √
2/3

⎛
⎝r0
e

⎞
⎠ , ψσ,hp =

⎛
⎜⎝

− 1√
6

σr√
e/m

v
√
em + σ

√
2
3 e

⎞
⎟⎠ (4.3)

and the left eigenvectors

ψ̃0,hp = 1√
6

⎛
⎝ 2/r

−mv/e
1/e

⎞
⎠ , ψ̃σ,hp = 1√

6

⎛
⎝ −σ/r
m
( 1
2r chp − σv

)
/e

σ/e

⎞
⎠ . (4.4)

4.1 Rarefaction Curves

Eigenvalue 0 For hard-point particles Eq. (3.22) reads

∂τ

⎛
⎝r

v

e

⎞
⎠ =

⎛
⎝ 2/r

0
2e/r2

⎞
⎠ (4.5)

with initial state (r0, v0, e0). Note that ∂τ e = ∂τ e, since ∂τ v = 0, and the solution obeys

e(τ ) = e0
r0
r(τ ). (4.6)

In particular the pressure is conserved, as required.
Eigenvalue σc For hard-point particles, Eqs. (3.26) and (3.27) lead to

e(τ ) = e0

(
r(τ )

r0

)−2

(4.7)

and

v(τ) = v0 + σ
√
6e0/m

(
1

r(τ )/r0
− 1

)
. (4.8)

In particular,

chp(τ ) = chp,0

(
r(τ )

r0

)−2

. (4.9)
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The gradient of σc along trajectories of the vector field ψσ , Eq. (3.30), becomes then

σψσ,hp · Dchp = √
2/3 chp > 0, (4.10)

i.e., genuine nonlinearity holds.

4.2 Shock Curves

For hard-point particles the condition (3.37) reads

e − e0 = − 1
2 (r − r0)

(
2e

r
+ 2e0

r0

)
, (4.11)

implying that

e

e0
= r̂(2 − r̂)

2r̂ − 1
, r̂ = r/r0 (4.12)

for 1
2 < r̂ ≤ 2. Inserted into Eq. (3.38) leads to

v = v0 − σ
√
6e0/m

r̂ − 1√
2r̂ − 1

, r̂ = r/r0 (4.13)

with σ = ±1. The shock speed is then

λhp = −v − v0

r − r0
= σchp,0√

2r̂ − 1
(4.14)

with chp,0 = 1
r0

√
6e0/m the sound speed of the initial state.

The Lax admissibility condition states that characteristics must run “towards” the shock,

σchp,0 ≥ λhp ≥ σchp. (4.15)

Inserting the relation (4.12) gives

chp = 1

r

√
6e/m = 1√

2r̂ − 1

√
(2 − r̂)/r̂ chp,0, (4.16)

such that the Lax admissibility condition becomes

σ ≥ σ√
2r̂ − 1

and σ ≥ σ
√

(2 − r̂)/r̂ . (4.17)

For σ = 1, this is equivalent to r̂ ≥ 1, and for σ = −1 equivalent to r̂ ≤ 1.
Figure 6a displays the internal energy in dependence of the stretch, both for the rarefaction

and shock curves, denoting by Ri the i-th rarefaction curve and by Si the i-th shock curve.
Analogously, Fig. 6b displays the change of velocity in dependence of the stretch. These
figures should be comparedwithFig. 1.Considering only rarefactions and shocks, the solution
to both Riemann problems are qualitatively the same. The contact discontinuity is merely an
independent additional feature.

4.3 Entropy

The entropy (3.18) for the hard-point particles is

Shp(r, e) = log(r) + 1
2 log(e), (4.18)
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Fig. 6 Integral curves for hard-point particles. a Internal energy in dependence of stretch for rarefaction and
shock curves, see Eqs. (4.6), (4.7) and (4.12), respectively. The black line is the identity function, and the red
curve S−1 diverges at r/r0 = 1/2. b Velocity in dependence of stretch, see Eqs. (4.8) and (4.13), for m = 1
and e0 = 1
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Fig. 7 Schematic illustration of a shock curve with speed λ > 0 and corresponding time evolution of the
entropy

up to a constant shift by 3
2 + 1

2 log(4πm). For a jump along a shock curve with speed λ, the
entropy admissibility condition ∂t S(�u) ≥ 0 becomes

λ
(
S(r1, e1) − S(r0, e0)

) ≤ 0, (4.19)

compare to Eq. (47) in [13] with opposite sign.We follow the physics convention of a concave
entropy function, while [13] prefers a convex function. In other words, at a shock a region
with higher entropy invades a region with lower entropy. Figure 7 schematically visualizes
the time evolution of the entropy across a shock with speed λ > 0.

4.4 Molecular Dynamics

For a molecular dynamics simulation we use a box of size L with periodic boundary condi-
tions, for which we adopt the domain

[− L
2 , L

2 − 1
]
. Imposing domain-wall initial conditions

as �u0|�u1 at the origin implies that somewhere else one has the reversed initial condition
�u1|�u0. We call this the periodic Riemann problem. The Riemann problem centered at 0 is
of key interest. But numerically we automatically realize two distinct Riemann problems.
The longest time of simulation is limited by collisions between the two solution branches.
A conventional choice for the masses is m = 2, corresponding to alternating masses with
m0 = 1 and m1 = 3. As in [20], we prescribed �u1 = (r1, v1, e1) = (1, 0, 1) and determine
the entries of �u0 such that the rarefaction waves and shocks as shown in Fig. 8 arise. In [20]
the goal was to have a wide rarefaction wave. Here we explain in detail how the solution of
the periodic Riemann problem is constructed.
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Fig. 8 Visualization of the theoretically predicted rarefaction and shock curves for a system of size L with
periodic boundary conditions and domain-wall initial conditions. The largest time corresponds to L/4

For conciseness, we denote the quotients of the stretches by μ = r1/r3, φ = r3/r2,
ω = r2/r0 and ξ = r0/r1. Considering the right rarefaction R1, condition (4.7) for the
internal energy reads e1 = μ−2e3, and (4.8) for the velocity

v1 = v3 + σ
√
6e3/m

(
1

μ
− 1

)
, σ = 1. (4.20)

We can still choose μ, which we set to μ = 4
5 in Fig. 8. Accordingly, r3 = 5

4 , v3 = − 1
5

√
3

and e3 = 16
25 . It remains to show that �u0 and �u2 can be chosen in accordance with Fig. 8. The

contact discontinuity R0 at the origin implies that the velocity is conserved, i.e., v2 = v3.
Furthermore e3/e2 = r3/r2 = φ. Considering the shock curve S−1, according to (4.12),

e2 = ω(2 − ω)

2ω − 1
e0, (4.21)

since r2 = ωr0 as defined above, and according to (4.13),

v2 = v0 +√
6e0/m

ω − 1√
2ω − 1

. (4.22)

Finally, (4.12) for the shock curve S1 implies that

e0 = e1
ξ(2 − ξ)

2ξ − 1
(4.23)

and (4.13) that

v0 = v1 −√
6e1/m

ξ − 1√
2ξ − 1

. (4.24)

In summary, it holds that r1 = μ r3 = μφ r2 = μφ ω r0 = μφ ω ξ r1, i.e.,

μφ ω ξ = 1. (4.25)
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(a) stretch, t = 0 (b) stretch, t = 256 (c) stretch, t = 512 (d) stretch, t = 1024

(e) velocity, t = 0 (f) velocity, t = 256 (g) velocity, t = 512 (h) velocity, t = 1024
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Fig. 9 Hard-point particle stretch, velocity and internal energy profiles at various time points, corresponding
to the periodic Riemann problemof Fig. 8with system size L = 4096. The orange dots aremolecular dynamics
results and the black thin lines show the theoretically predicted profiles (Color figure online)

Similarly,

e1
r1

= 1

μ3

e3
r3

= 1

μ3

e2
r2

= 1

μ3

2 − ω

2ω − 1

e0
r0

= 1

μ3

2 − ω

2ω − 1

2 − ξ

2ξ − 1

e1
r1

, (4.26)

which enforces that

1

μ3

2 − ω

2ω − 1

2 − ξ

2ξ − 1
= 1. (4.27)

The analogous procedure for the velocity leads to

− ξ − 1√
2ξ − 1

− 1√
φ

μ
ω − 1√
ω(2 − ω)

+ (1 − μ) = 0. (4.28)

Solving (4.25), (4.27), and (4.28) for φ, ω and ξ with the help of a computer algebra program
leads to rather lengthy expressions in terms of roots of certain polynomials, which we do
not write down explicitly. Instead, we report the numerical values for μ = 4

5 , namely φ =
1.00728,ω = 0.99875 and ξ = 1.2425.Note thatφ andω are close to 1. The numerical values
for �u2 are (r2, v2, e2) = (1.241,−0.3464, 0.63537), and for �u0 the values read (r0, v0, e0) =
(1.2425,−0.34469, 0.63379). The shock S−1 is hardly visible, while R1 and S1 are well-
developed. The rounding of the edges is presumably a finite size effect. A similar feature
is noted in Fig. 4 for the LeRoux lattice gas. An alternative explanation would be rounding
because of diffusion. But then this should show also in Fig. 3. To decide larger size systems
would have to be simulated.

Figure 9 shows stretch, velocity, and internal energyprofiles obtained bymolecular dynam-
ics simulations, after averaging over 106 simulation runs with initial states chosen according
to �u0 and �u1 in Fig. 8. A shock generated through rapid compression is studied in [26].
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Fig. 10 Inverse function to y �→ y−1 − (ey − 1)−1, defining the pressure 2eh(r)

5 Square-Well Potential

Hard-point particles are an example of a genuinely nonlinear hyperbolic conservation law.
As discussed in [24], in general, one-dimensional fluids do not have such a property and the
structure of solutions to the Riemann problem is considerably richer than for hard-points. A
similar observation is well known for stochastic dynamics. For a single component genuine
nonlinearity corresponds to a convex flux function, which imposes an additional constraint.
A two-component stochastic system is studied in [27]. For anharmonic chains we still want
to comply with the factorized ideal gas law P(r, e) = 2eh(r), we consider the hard-core
potential with core diameter b = 0 and inward reflection at a. This defines the square-well
interaction potential (see also [28])

Vsw(x) = 0 for 0 ≤ x ≤ a , Vsw(x) = ∞ otherwise. (5.1)

Since the potential is zero within the well,

e = 1

2β
(5.2)

and the pressure factorizes as

aβP = h(r/a) , (5.3)

where h is the inverse function of y �→ y−1 − (ey − 1)−1. The unit length can be chosen
such that a = 1, which we adopt in the following. Then (5.3) is rewritten as

P(r, e) = 2eh(r). (5.4)

Hard-point particles are obtained in the limiting case a → ∞, which corresponds to setting
h(r) = 1/r . h(r) is visualized in Fig. 10.

Note that derivatives and indefinite integrals can be expressed through h itself, for example

h′(r) = −
(
h(r)2 − 1

4 sinh
( 1
2h(r)

)−2
)−1

(5.5)

and ∫
dr h(r) = h(r) + h(r)

eh(r) − 1
+ log

( h(r)

eh(r) − 1

)
− 1. (5.6)
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It is more transparent to keep for a while a general h, specializing to the square-well
potential at the end. The only constraint is h′(r) < 0, ensuring thermodynamic stability.
Wendroff [29] discusses a two component model, which in essence corresponds to such
a choice upon dropping the contact discontinuity. Inserting (5.4) into (3.14) results in the
linearized currents

Ah =
⎛
⎝ 0 −1 0

2
m eh

′ −2vh 2
m h

2veh′ 2
(
e − mv2

)
h 2vh

⎞
⎠ (5.7)

and the square of the sound speed

c2h = 1
m (−∂r P + P ∂e P) = 1

m 2e(2h
2 − h′). (5.8)

The right eigenvectors of A are

ψ0,h = Z−1
0,h

⎛
⎝ 2h

0
−2eh′

⎞
⎠ , ψσ,h = Z−1

σ,h

⎛
⎝ −σ

ch
σ2eh + mvch

⎞
⎠ . (5.9)

The gradient of σch along trajectories of the vector field ψσ,h for σ = ±1, i.e., (3.30) for
the special case (5.4), is

σψσ,h · Dch = 1
2

√
e/m

4h3 − 6hh′ + h′′

2h2 − h′ . (5.10)

For the hard-point case, h(r) = 1/r , this simplifies to (4.10). Note that the right hand side of
(5.10) is independent of σ , which is achieved by an appropriate choice of the sign ofψσ,h . The
square-well potential turns out to violate genuine nonlinearity, since the expression (5.10)
changes sign at r = 1

2 . By a suitable choice of h, presumably one can generate shocks and
rarefactions of the same richness as in [29]. Compared to the genuinely nonlinear case the
main novel feature is to have a shock at the borderline of a rarefaction wave. For the square-
well potential only the case of a left bordering shock is realized. In principle, the shock could
also switch to the opposite side, but it cannot lie in the interior of the rarefaction wave.

5.1 Rarefaction Curves

Eigenvalue 0 According to Eq. (3.22)

∂τ

⎛
⎝r

v

e

⎞
⎠ =

⎛
⎝ ∂e P

0
−∂r P

⎞
⎠ (5.11)

with the pressure P(r, e) conserved. Thus from (5.4), it follows that

e(τ ) = e0
h(r0)

h(r(τ ))
. (5.12)

Eigenvalue σc According to Eqs. (3.26), (3.27), the stretch obeys r(τ ) = r0 −στ and the
internal energy ∂τ e = σ P . Together with (5.4), one obtains

e(τ ) = e0 exp
[

− 2
∫ r(τ )

r0
dρ h(ρ)

]
, (5.13)
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Fig. 11 Integral curves for the square-well potential (5.1) with m = 1, r0 = 0.35, e0 = 1. a Internal energy
in dependence of stretch for the rarefaction and shock curves, according to Eqs. (5.12), (5.13) and (5.16),
respectively. b Velocity in dependence of stretch, see Eqs. (5.15) and (5.17)

which only depends on τ via r(τ ). Inserting this relation into the differential equation ∂τ v =
ch , the sound speed depending on r(τ ) and e(τ ) via (5.8), leads to

∂τ v = −σ
√
2e0/m exp

[
−
∫ r(τ )

r0
dρ h(ρ)

]√
2h(r(τ ))2 − h′(r(τ )) r ′(τ ) (5.14)

and integrates to

v(τ) = v0 − σ
√
2e0/m

∫ r(τ )

r0
ds exp

[
−
∫ s

r0
dρ h(ρ)

]√
2h(s)2 − h′(s). (5.15)

5.2 Shock Curves

For P as in (5.4), Eq. (3.37) leads to

e

e0
= 1 − h(r0)(r − r0)

1 + h(r)(r − r0)
(5.16)

for r ≤ r0 + 1/h(r0) if h(r0) > 0 and r ≥ r0 + 1/h(r0) if h(r0) < 0. The condition (3.38)
leads to

v = v0 − σ sign(r − r0)
√
2e0/m

√
−(r − r0)

(
h(r)e/e0 − h(r0)

)
. (5.17)

For the hard-point particles with h(r) = 1/r , Eq. (5.17) simplifies to the expression (4.13).
Inserting (5.17) into (3.35) results in the shock speed

λh = σ
√
2e0/m

√
−h(r)e/e0 − h(r0)

r − r0
. (5.18)

For the square-well potential Fig. 11a visualizes an integral curve of the internal energy in
dependence of the stretch, both for the rarefaction and shock curves. Analogously, Fig. 11b
visualizes the velocity in dependence of the stretch.

The Lax admissibility condition

σch,0 ≥ λh ≥ σch (5.19)

can be tested numerically for the square-well h(r). Figure 12 shows an example with r0 =
0.35 where the condition is satisfied within an interval r0 ≤ r ≤ 0.59. For larger r , the sound
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Fig. 12 Illustration of the Lax
admissibility condition
ch,0 ≥ λh ≥ ch for the
square-well potential with m = 1,
r0 = 0.35, e0 = 1. The green
curve shows the shock speed
(5.18) in dependence of the
stretch; the condition only holds
within the thick curve segment
(Color figure online)
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Fig. 13 A solution of the Euler
equation with square-well
interaction potential, where a
shock wave is followed
immediately by a rarefaction
wave
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speed [evaluated along the shock solution (5.16)] becomes larger than λh . Thus a shock wave
is followed immediately by a rarefaction wave, as shown in Fig. 13 with L = 18t . The state
to the left of the shock curve is �u0 = (r0, v0, e0) = (0.35, 0, 1), and the transition from
shock to rarefaction wave appears at r1 = 0.59 with �u1 = (0.59,−1.15, 0.74). The state �u1
is connected by a rarefaction wave to �u2 = (0.7,−1.82, 1.108).

5.3 Entropy

Specifically for the square-well interaction potential, the entropy equals

Sh(r, e) = rh(r) − 1 + 1
2 log(e) − log

(
1 + (1 − r)h(r)

)
, (5.20)

up to a constant shift by 3
2 + 1

2 log(4πm). As expected, for the hard-point case h(r) = 1/r ,
this expression simplifies to (4.18).

5.4 Molecular Dynamics

Figure 14 shows stretch, velocity, internal and total energy profiles obtained by molecular
dynamics simulations with square-well interaction potential, after averaging over 106 simu-
lation runs and initial states chosen according to �u0 and �u2 in Fig. 13. The alternating masses
are set as m0 = 1/2 and m1 = 3/2, such that the average mass m = 1. For stretch and
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Fig. 14 Stretch, velocity, internal energy and total energy profiles for the hard-point particle chainwith square-
well interaction potential, corresponding to the Riemann problem in Fig. 13 with system size L = 4096. To
increase visibility, only a lattice interval around the origin is shown

velocity the shock followed by a rarefaction wave is well reproduced. For the total energy
the shock is not so strong and hence hardly visible. The internal energy is not conserved.
Our prediction is based on local equilibrium which apparently is not so accurate close to the
shock. The entire system shows still further shocks and rarefaction waves due to periodic
boundary conditions. The maximum time t = 64 in Fig. 14 is chosen prior to their collision
with the structure shown in Fig. 13.

6 Fluctuations of the Time-Integrated Current

In a famous contribution Johansson [30] considered theTASEPwith 0|1 step initial conditions
and particles hopping only to the left. He proved that the time-integrated current along a given
ray {x = vt} with |v| < 1 behaves for large t as

�(vt, t) � cvt + κv(�vt)
1/3ξGUE. (6.1)

Following standard conventions, the time scale is denoted by� > 0, in our particular case�v.
κ = ±1 is the overall sign of the amplitude. The amplitude itself, ξGUE, is a Tracy–Widom
GUE distributed random variable, which was originally obtained as the distribution of the
largest eigenvalue of a GUE random matrix [31,32]. In formulas,
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P(ξGUE ≤ s) = det(1 − Ks)|L2(R+) (6.2)

with the Airy kernel

Ks(x, x
′) =

∫ ∞

0
dλAi(x + s + λ)Ai(x ′ + s + λ), (6.3)

Ai denoting the standard Airy function. cv, κv, and �v are computed, model-dependent
parameters, while the exponent 1/3 and ξGUE are universal. Using distinct methods, later the
result was extended to a general initial step [33,34] and also to the ASEP [35].

The Euler equation for the TASEP reads

∂t u − ∂x
(
u(1 − u)

) = 0, (6.4)

u the particle density. To have Tracy–Widom fluctuations the solution to the u�|ur Riemann
problem for (6.4) has to develop a rarefaction wave and the ray of integration must lie in the
interior of the wave. In fact, the rarefaction profile happens to be linear, as for the LeRoux
lattice gas. In general the profile will be nonlinear. Still, provided v is properly chosen,
asymptotically the fluctuations of the time-integrated current are expected to have the same
probability law as in (6.2). We regard this observation as a strong indication that also the
LeRoux lattice gas, even more ambitiously anharmonic chains, has Tracy–Widom statistics
for the time-integrated current. There is one immediate difficulty with such a conjecture. The
current is a vector. So which linear combination has a statistics governed by ξGUE?

Wewill first study thefluctuations of time-integrated currents abstractly and then specialize
to the LeRoux lattice gas and anharmonic chains with square-well type potential including
the hard-point limit.

6.1 Time-Integrated Currents

To define the time-integrated current, in general, let us start from a conservation law of the
form

∂t u(x, t) + ∂xJ (x, t) = 0. (6.5)

Thus, as a property special for one dimension, the vector field (−u,J ) is curl-free and hence
admits a potential, �(x, t), up to a constant which we fix by �(0, 0) = 0. �(x, t) is then
the current integrated from (0, 0) to (x, t) along an arbitrary integration path. Numerically a
convenient choice, to be used later on, is

�(x, t) =
∫ t

0
dt ′ J (x, t ′) −

∫ x

0
dx ′ u(x ′, 0), (6.6)

assuming x > 0, t > 0. For a system with n components, the same definition applies to each
component separately and we set �� = (�1, . . . , �n). Clearly, the same argument works also
for a spatial lattice with the x ′-integration replaced by a lattice sum.

We now consider an n component hyperbolic conservation law in the form

∂t �u + ∂x�j(�u) = 0 equivalently ∂t �u + A(�u)∂x �u = 0. (6.7)

The linearization matrix A has eigenvalues cσ , left eigenvectors, ψ̃σ , and right eigenvectors,
ψσ , σ = 1, . . . , n. The eigenvalues are assumed to be non-degenerate. We consider the
�u�|�ur Riemann problem such that its solution contains a rarefaction wave across which �u(x)
increases (or decreases) smoothly for xmin < x < xmax. The current is integrated along
the ray {x = vt}, which has to lie inside the rarefaction wave, i.e. xmin < v < xmax. The
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rarefaction wave is associated with a particular eigenvalue, whose label is denoted by σ and
regarded as fixed in the following. The quantity of interest is the distribution of integrated
current ��(vt, t). Along {x = vt} the fields take the value �uv and cσ (�uv) = v. Hence,
averaging (6.6) in local equilibrium to leading order in t ,

��(vt, t) � (�j(�uv) − v�uv
)
t. (6.8)

To access fluctuations we consider a point on {x = vt}, field value �uv, and want to study
small fluctuations with shape function �f (x) which varies on a scale small compared to the
variation of the rarefaction wave. Thus we have to linearize (6.7) relative to a homogeneous
background �uv. The resulting time evolution is given by

(e−A∂x t �f )(x) =
n∑

σ ′=1

|ψσ ′ 〉〈ψ̃σ ′ | �f (x − cσ ′ t)〉, (6.9)

where 〈·|·〉 denotes the scalar product for n-vectors and A = A(�uv). Since cσ (�uv) = v, only
the term with σ ′ = σ propagates along the ray vt , while all other components separate from
it linearly in time. Hence only 〈ψ̃σ | ��(vt, t)〉 can build up anomalous fluctuations. In case of
a single component, the quadratic term is responsible for the t1/3 fluctuations. For several
components, one first has to transform to normal modes. The strength of the self-coupling
is denoted by Gσ

σσ . The slope of the rarefaction profile does not vanish identically, hence
classified to be in the KPZ universality class of curved profiles. For it the time scale of the
anomalous fluctuations is set by �σ = |Gσ

σσ |. Thus we conjecture that for large t
〈
ψ̃σ | ��(vt, t) − t (�j(�uv) − v�uv)

〉 � κσ (�σ t)
1/3ξGUE. (6.10)

Any linear combination of currents other than in Eq. (6.10) encounters to some part almost
independent contributions. Hence, ifχ is not parallel to ψ̃σ , the standard central limit theorem
should apply in the form〈

χ | ��(vt, t) − t (�j(�uv) − v�uv)
〉 � (�χ t)

1/2ξG, (6.11)

where ξG is a standard Gaussian random variable. We have no theoretical prediction for the
value of �χ . Of course it has to vanish as χ tends to ψ̃σ .

As explained in the Appendix, the universal scale factor �σ = |Gσ
σσ | can be computed

from thermal averages. There we also establish that

Gσ
σσ = 1

2σψσ · Dc, σ = ±1. (6.12)

Thus genuine nonlinearity is equivalent to Gσ
σσ having a definite sign for all admissible r , e.

6.2 Monte-Carlo and Molecular Dynamics Simulations

To shorten notation, we define the projected current components in (6.10), with their asymp-
totic value subtracted, as

��
σ (t) = 〈

ψ̃σ | ��(vt, t) − t (�j(�uv) − v�uv)
〉
. (6.13)

These are referred to as normal modes of the current.

6.2.1 LeRoux Model

We record the integrated current ��(vt, t) for the simulation parameters as in Fig. 3 above,
with v = 2

5 and vt marked as purple vertical line in Fig. 3. The integrated current is then
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Fig. 15 a Standard deviation of �
�
1(t) for the LeRoux model as a function of time, compared with the

theoretical prediction σGUE(�1t)
1/3.bThe standard deviation of��

−1(t) shows central limit type fluctuations,

scaling as t1/2 (green dashed). c PDF of (�1t)
−1/3 �

�
1(t) at t = 1024 compared with the Tracy–Widom

distribution (red dashed) and d PDF of (1.34t)−1/2 �
�
−1(t) compared with a normalized Gaussian (green

dashed) (Color figure online)

transformed to normal modes via Eq. (6.13), using the theoretical values for ψ̃σ , �uv and
�j(�uv). The resulting �

�
σ (t) is shown in Fig. 15 and compared with the theoretical predictions

(6.10) and (6.11). The top row shows the standard deviation of��
σ (t) as a function of time, in

comparison with σGUE(�1t)1/3 for σ = 1 and ∼ t1/2 for σ = −1, where σGUE denotes the
standard deviation of the Tracy–Widom distribution. The corresponding probability density
functions of �

�
σ (t) in the bottom row of Fig. 15 are reproduced from [20], and accurately

match the predicted Tracy–Widom and Gaussian distributions, respectively. Note that the
rescaling uses the theoretical value �1 = |G1

11| = 0.539, see also the “LeRoux Model”
section in the Appendix. However there is still a global shift by 0.18. Such a shift is familiar
from one-component models. The higher cumulants have all relaxed, while the mean is still
drifting.

6.2.2 Hard-Point Particles with Alternating Masses

Analogous to the LeRoux model, for the hard-point particle chain with alternating masses
we integrate stretch, velocity, and energy currents in MD simulations along the purple ray
in Figs. 8 and 9, to obtain ��(vt, t). For anharmonic chains there are three normal modes
�

�
σ (t), σ = −1, 0, 1, which we compute from ��(vt, t) via (6.13), again using the theoretical

values for ψ̃σ , �uv and �j(�uv). Only the σ = 1 mode is expected to follow a Tracy–Widom
distribution. Figure 16 shows the simulation results for �

�
σ (t) in comparison with ξGUE for

σ = 1 and normal distributions for σ = 0,−1. As before, a small correction to the mean
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Fig. 16 Top row standard deviation of �
�
σ (t) as a function of time for the hard-point particle chain with

alternating masses. The σ = 1 component in (a) scales as t1/3 (red dashed) and the standard deviations of
the σ = 0, −1 components in (b) and (c) scale as t1/2 (green dashed). Middle and bottom row statistical

distribution of the rescaled �̂
�
σ (t) at t = 1024. The red dashed curve in (d) and (g) is the predicted Tracy–

Widom PDF. The projections for σ = 0, −1 follow a Gaussian distribution (green dashed) (Color figure
online)

values is indicated at the 1-axis labels. The numerical fit uses�1 = 0.86, while the theoretical
prediction is |G1

11| = 0.559.

6.2.3 Square-Well Potential

To also have an example where genuine nonlinearity is violated, we repeat the analogous
analysis for MD simulations with square-well interaction potential, using the parameters as
in Figs. 13 and 14. The current is integrated along the ray {x = vt} with v = 6. To avoid
collisions due to the periodic boundary conditions, the largest simulation time is relatively
short, t = 128. The results for �

�
σ (t) are shown in Fig. 17 in comparison with the theoretical

predictions.Different from the previous two examples,we show the simulation resultswithout
mean value correction. The agreement is slightly less precise as for the alternating masses.
One reason could be due to the mentioned short simulation time. Nevertheless, one clearly
observes that the mean value of �

�
1(t) is close to that of ξGUE, whereas �

�
σ (t) for σ = 0,−1

are approximately centered around zero, in accordance with the theoretical prediction. The
numerically fitted coefficient �1 = 4, whereas the theoretical prediction is |G1

11| = 2.376.
The other two numerical coefficients are �0 = 7.6 and �−1 = 13. In Fig. 17, the sign of
ψ̃1 for the transformation to normal modes is flipped, in accordance with the changing sign
in Eq. (5.10).
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Fig. 17 Top row standard deviation of �
�
σ (t) as a function of time for the square-well interaction potential.

The σ = 1 component in (a) scales as t1/3 (red dashed), while the standard deviations of the σ = 0, −1
components in (b) and (c) scale almost perfectly as t1/2 (green dashed). Middle and bottom row statistical

distribution of the rescaled �̂
�
σ (t) at t = 128. The red dashed curve in (d) and (g) is the predicted Tracy–

Widom PDF. The projections for σ = 0,−1 approximately follow a Gaussian distribution (green dashed)
(Color figure online)

7 Summary and Conclusions

We studied anharmonic chains with nonequilibrium initial conditions, specifically domain-
wall. Two rather distinct theoretical predictions have been tested against molecular dynamics
simulations.

(i) The validity of the macroscopic Euler equations, which predict flat profiles interrupted
by shocks and rarefaction waves. Our system size is moderate, roughly 4000 parti-
cles, which we try to compensate by averaging over order 107 configurations sampled
according to the initial domain-wall state. For times up to the crossing time for a sound
wave, the agreement between the solution of the Euler equations and the simulation is
fairly accurate. Exceptions are shock fronts, where additional oscillatory structures may
appear. Also the borders of rarefaction waves are somewhat rounded.

(ii) We measured currents integrated along a ray in space-time. If this ray lies in a domain
withflat profile, one expects

√
t sizeGaussianfluctuations.Weconfirmed such abehavior

in a related set-up [28,36] anddid not repeat it here.However, for a ray inside a rarefaction
wave we do obtain t1/3 size fluctuations with Tracy–Widom GUE distributed random
amplitude, provided the current is projected onto the respective left eigenvector. Such a
behavior is observed even in case the rarefaction wave does not perfectly approximate
the Euler solution.
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Turning to stochastic particle dynamics with several components, as to be expected, the
precision of the approximation is improved. Our working example is the LeRoux lattice gas.
In this model, even strong shocks are realized by the dynamics with a width of a few lattice
sites. TheTracy–Widomdistribution is confirmed at a precision known for the one-component
ASEP.
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Appendix: Coupling Matrices

Wecompute theG couplingmatrices for theLeRouxmodel and anharmonic chains, following
the derivation in [9].

LeRoux Model

The linearization matrix A and its left and right eigenvectors are stated in Eqs. (2.7) and (2.9).
The transformation to normal modes is accomplished through the matrix R defined by

R =
(〈ψ̃−1|

〈ψ̃1|
)

, R−1 =
(
|ψ−1〉 |ψ1〉

)
. (8.1)

By construction one has

RAR−1 = diag(c−1, c1). (8.2)

As usual, the static susceptibility matrix, C , is given by

C =
(〈1 − |η j |; 1 − |η j |〉 〈1 − |η j |; η j 〉

〈1 − |η j |; η j 〉 〈η j ; η j 〉
)

=
(

ρ(1 − ρ) −ρv

−ρv 1 − ρ − v2

)
. (8.3)

In addition we then require

RCRT = 1, (8.4)

thereby fixing the normalizations Z̃σ , Zσ in (2.9) to

Z̃σ = √
2
(
4ρ(1 − ρ) + v2

(
1 − 5ρ − v2

)+ σ v
(
3ρ + v2 − 1

)√
4ρ + v2

)1/2
, (8.5)

Zσ = 2 Z̃−1
σ

(
4ρ − v

(
σ
√
4ρ + v2 − v

))
. (8.6)

To obtain the nonlinear couplings G, in particular G1
11, we first compute the Hessians of

the current as second derivatives of �j(�u),

Hρ = −
(
0 1
1 0

)
, Hv = −

(
0 0
0 2

)
. (8.7)
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In normal coordinates

〈ψσ |Hρ |ψτ 〉 = ρ v

(
1 0
0 1

)
+ 2ρ√

4ρ + v2

(
1 − ρ − 1

2v
2) (−1 0

0 1

)

+ v√
4ρ + v2

√
ρ
(
(1 − ρ)2 − v2

) (0 1
1 0

)
(8.8)

and

〈ψσ |Hv|ψτ 〉 = −(1 − ρ − v2
) (1 0

0 1

)
+ v√

4ρ + v2

(
1 − 3ρ − v2

) (−1 0
0 1

)

− 2√
4ρ + v2

√
ρ
(
(1 − ρ)2 − v2

) (0 1
1 0

)
. (8.9)

The coupling matrices are thus obtained as

Gσ = 1
2

∑
i={ρ,v}

Rσ i R−THi R−1

= Z−1
σ

(√
4ρ + v2 − σv

) ( 1
2 (1 − σ) 0

0 1
2 (1 + σ)

)

+Z̃−1
σ

√
ρ
(
(1 − ρ)2 − v2

) (0 1
1 0

)
.

(8.10)

In particular, comparison with (2.10) shows that

Gσ
σσ = 1

2ψσ · Dcσ . (8.11)

General Anharmonic Chain

To set the scale for the Tracy–Widom distribution, one has to compute G1
11. For a general

anharmonic chain, in the special case v = 0, the coupling matrices are derived in [9], a result
which should be extended to v 
= 0. In fact, it turns out that the coupling matrices do not
depend on v.

Following the notation of [9], the static susceptibility matrix is given by

C =
⎛
⎝〈r j ; r j 〉 〈r j ; v j 〉 〈r j ; e j 〉

〈r j ; v j 〉 〈v j ; v j 〉 〈v j ; e j 〉
〈r j ; e j 〉 〈v j ; e j 〉 〈e j ; e j 〉

⎞
⎠ =

⎛
⎝ 〈y; y〉 0 〈y; V 〉

0 1/(mβ) v/β

〈y; V 〉 v/β 1
2β

−2 + mv2β−1 + 〈V ; V 〉

⎞
⎠ .

(8.12)

The linearization matrix A in (3.14) and its right and left eigenvectors in (3.16) and (3.17),
respectively, define the transformation to normal modes via

R =
⎛
⎝〈ψ̃−1|

〈ψ̃0|
〈ψ̃1|

⎞
⎠ , R−1 =

(
|ψ−1〉 |ψ0〉 |ψ1〉

)
(8.13)

such that

RAR−1 = diag(−c, 0, c), RCRT = 1. (8.14)

To have RR−1 = 1, the normalization constants of the eigenvectors must satisfy

Z0 Z̃0 = mc2, Zσ Z̃σ = 2mc2 for σ = ±1. (8.15)
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An explicit computation of the diagonal entries of RCRT shows that the velocity terms
cancel. Hence the relations

Z̃0 = √
mϒ c, Z̃σ = √

2m/β c for σ = ±1 (8.16)

from [9] remain valid in general, where ϒ = β
(〈y; y〉〈V ; V 〉 − 〈y; V 〉2)+ 1

2β
−1〈y; y〉.

As in [9], we denote the Hessian matrices of the average current by

Hi
αβ = ∂uα ∂uβ ji (8.17)

with the conserved fields �u = (r, v, e) and the current vector defined in (3.10). The coupling
matrices are then given by

Gσ = 1
2

3∑
i=1

Rσ i R
−THi R−1 (8.18)

for σ = −1, 0, 1. While the Hessian matrices Hi depend on v, the coupling matrices are
actually independent of v. Thus using the formulas in [9] one arrives at

G0 = 1

2β
√
mϒ

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠ (8.19)

and for σ = ±1

Gσ = P ∂ec−∂r c
2
√
2mβ c

⎛
⎝ 1 0 −1

0 0 0
−1 0 1

⎞
⎠− ∂e P√

2mβ

⎛
⎝

1
2 (1 + σ) 0 0

0 0 0
0 0 1

2 (1 − σ)

⎞
⎠

+ ϒ

2
√
2m/β mc2

[
(∂r P)2(∂2e P) − 2(∂r P)(∂r∂e P)(∂e P) + (∂2r P)(∂e P)2

]
⎛
⎝0 0 0
0 1 0
0 0 0

⎞
⎠

+
√

ϒ

2
√
m c

[(∂r P)(∂ec) − (∂e P)(∂r c)]

⎛
⎝0 1 0
1 0 −1
0 −1 0

⎞
⎠ .

(8.20)

The relation (6.12) follows by using on both sides the expressions provided above.
Note that the signs of some entries in Gσ are flipped compared to [9], which is due to

different sign conventions for the eigenvectors of A.

Hard-Point and Square-Well Potential

The coupling constants for these models have been discussed already in Appendix A of [28].
For completeness, here we adapt to the current sign convention for the eigenvectors and using
the velocity (instead of momentum) as field variable. The linearization matrix A and its right
eigenvectors are stated in Eqs. (5.7) and (5.9). The corresponding left eigenvectors of A are

ψ̃0,h = Z̃−1
0,h

⎛
⎝ 2eh

−mv

1

⎞
⎠ , ψ̃σ,h = Z̃−1

σ,h

⎛
⎝ 2eσh′
m(ch − 2σvh)

2σh

⎞
⎠ . (8.21)

Since the interaction potential is either zero or infinite, ϒh = 1
2β

−1〈y; y〉 = −e/h′, and the
normalization constants in (8.16) become

Z̃0,h = √
me ch/

√−h′, Z̃σ,h = 2
√
me ch . (8.22)
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Specializing (8.19) and (8.20) to the square-well interaction potential leads to the coupling
matrices

G0
h =√−h′ e/m

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠ (8.23)

and for σ = ±1

Gσ
h = 1

2

√
e/m

⎡
⎣ 1

2(2h2 − h′)

⎛
⎝ a3 a1 −a3

a1 a2 −a1
−a3 −a1 a3

⎞
⎠− 4h

⎛
⎝

1
2 (1 + σ) 0 0

0 0 0
0 0 1

2 (1 − σ)

⎞
⎠
⎤
⎦

(8.24)

with

a1 = 2(−h′)−1/2
(
hh′′ − h′2 − 2h2h′),

a2 = 4h(−h′)−1
(
hh′′ − 2h′2),

a3 = 4h3 − 6hh′ + h′′.
(8.25)

As above, the signs of some entries in Gσ
h are flipped compared to [28], due to different sign

conventions for the eigenvectors of A.
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