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Abstract We study the long-range directed polymer model on Z in a random environment,
where the underlying random walk lies in the domain of attraction of an α-stable process for
some α ∈ (0, 2]. Similar to the more classic nearest-neighbor directed polymer model, as
the inverse temperature β increases, the model undergoes a transition from a weak disorder
regime to a strong disorder regime. We extend most of the important results known for
the nearest-neighbor directed polymer model on Zd to the long-range model on Z. More
precisely, we show that in the entire weak disorder regime, the polymer satisfies an analogue
of invariance principle, while in the so-called very strong disorder regime, the polymer end
point distribution contains macroscopic atoms and under some mild conditions, the polymer
has a super-α-stable motion. Furthermore, for α ∈ (1, 2], we show that the model is in the
very strong disorder regime whenever β > 0, and we give explicit bounds on the free energy.

Keywords Long-range directed polymer · Free energy · Strong disorder · Weak disorder ·
Invariance principle · Coarse graining · Localization · Super-α-stable motion

Mathematics Subject Classification 60K35 · 82D60 · 82B44

1 Introduction

The directed polymer model was first introduced by Huse and Henley [23] in the study of
the Ising model. A later motivation for studying the model and generalize it in arbitrary
dimension was the observation that when a polymer chain stretches in some media with
impurity or charges, the behavior of the polymer chain will be influenced by the interaction
between the polymer chain and the environment. The polymer chain is modelled by a directed
random walk, and a family of random variables in space represents the random environment.
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The first mathematical study of the directed polymer model was due to Imbrie and Spencer
[24], which was then followed by many other authors e.g. [3,8,11,14,16,17,26,32]. For an
early review, see [15], and for a comprehensive introduction to directed polymer in random
environment and other related polymer models, see [18].

So far, most of the results achieved in the study of directed polymer are based on the
assumption that the polymer chain performs a simple symmetric random walk. In that case,
we call the model the nearest-neighbor directed polymer. It is natural to consider replacing
the simple random walk by more complicated random walks to reflect a variety of physical
phenomena. In [13], Comets considered long-range random walks, whose increment dis-
tribution is in the domain of attraction of some α-stable law. The reason that we consider
the long-range model is that it models superdiffusive motions, unlike the nearest-neighbor
model, which only models the diffusive motion. Another reason that motivates the study of
long-range directed polymer is that in recent years, long-range random walks have played
an increasingly important role in related fields, such as mathematical finance and statistics.
It is likely that the directed polymer model may be applied to the study of other subjects.

In [13], the author extended some early results for the nearest-neighbor directed polymer
to the long-range case. Since then, much progress has been made for the nearest-neighbor
model. The goal of this paper is to investigate whether these newer results can also be
extended to the long-range model and what are the important differences between the two
cases. We will see later that there are indeed some differences between the long-range model
and the nearest-neighbor model due to the heavy-tailed increments, which will result in some
technical difficulties.

Remark 1.1 In [28], Miura, Tawara, and Tsuchida also studied a long-range model. They
considered a continuous case in which the polymer chains are modelled by symmetric Lévy
processes and the random environment is given by a time-space Poisson point process. The
continuous model is worth investigating so we mention this reference here for literature
completeness but we will focus on discrete model in this paper.

1.1 Long-Range Directed Polymer Model

Let S = (Sn)n≥0 be a heavy-tailed random walk on Z with i.i.d. increments, starting at 0.
The law of S is denoted by P and the corresponding expectation is denoted by E. We assume
that the increment distribution of S is in the domain of attraction of some stable law, which
is equivalent to

P(|S1| ≥ n) = n−αL(n), ∀n ≥ 1, for some α ∈ (0, 2), (1.1)

or

E
[
(S1)

21{|S1|≤n}
] = L(n), ∀n ≥ 1, for α = 2, (1.2)

where L(·) is some positive function slowly varying at infinity (see [21, Theorem 3.2] and
[7, Chapter 1]). Under the condition (1.1) or (1.2), the random walk S converges to some
α-stable law after centering and scaling, that is, we can find a sequence of centering factors
{bn}n∈N and a sequence of scaling factors {an}n∈N, such that

Sn − bn
an

⇒ Xα weakly as n → ∞, (1.3)

where Xα is some stable law with stable exponent α ∈ (0, 2]. The scaling factor an is
determined by the stable exponent α and the slowly varying function L(x), and can be
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expressed as n
1
α l(n) for some slowly varying function l(n). When α ∈ (0, 1), the centering

factors bn can be chosen as 0. When α ∈ (1, 2], E[S1] exists and bn can be chosen as nE[S1].
For simplicity, we just assume E[S1] = 0 and we will see that all proof can be adapted in a
straight-forward manner for the non-zero mean case. When α = 1, bn can be computed, but
we set bn = 0 for technical reason. For details, see [29, Chapter 7]. Therefore, throughout
this paper, we assume bn = 0.

We assume from now on that the random environment is described by a family of i.i.d.
random variables ω = (ωi,x )(i,x)∈N×Z, which is independent of the random walk S. The law
of ω is denoted by P and the corresponding expectation is denoted by E. We also assume
that the random environment has a finite logarithmic moment generating function, at least
for small enough |β|,

λ(β) := logE[exp(βωi,x )] < ∞, ∀β ∈ [−c, c], for some c > 0. (1.4)

Without loss of generality, we can further assume that E[ωi,x ] = 0 and E[(ωi,x )
2] = 1.

Given the random environment ω, for any N ≥ 0, and β > 0, we can define the polymer
measure through Gibbs transformation of the law P of the random walk up to time N by

dPω
N ,β

dP
(S) := 1

Zω
N ,β

exp

(
N∑

n=1

βωn,Sn

)

, (1.5)

where

Zω
N ,β = E

[

exp

(
N∑

n=1

βωn,Sn

)]

(1.6)

is the partition function which makes Pω
N ,β a probability measure and β is the inverse tem-

perature. We also denote the Hamiltonian of the system by

Hω
N (S) := −

N∑

n=1

ωn,Sn , (1.7)

which represents the energy of the path of the random walk. It can be seen from (1.5) that
under the polymermeasurePω

N ,β , the randomwalk pathswith low energy carrymoreweights.

Remark 1.2 Unlike many other papers concerning the nearest-neighbor model, in this paper,
we only consider the model on Z1+1 instead of Zd+1. The reason is that when we later
consider the significant classification of the strong disorder regime and the weak disorder
regime, whether the random walk is recurrent or transient plays a key role, see [13,14]. It is
known that for heavy-tailed random walks on Z satisfying (1.1) or (1.2), the random walk
is recurrent for α ∈ (1, 2] and transient for α ∈ (0, 1), and for the critical case α = 1,
whether the random walk is recurrent or transient depends on the slowly varying function
L(x). In dimension 2, the random walk is transient for α ∈ (0, 2). And in higher dimension,
the random walk is transient for all α ∈ (0, 2]. As we can see, the phase transition mostly
occurs in dimension 1. Therefore, most of the interesting behaviors are contained in one
dimensional model as we vary α ∈ (0, 2]. We also mention that our Proposition 1.13 can
adapts the case d = 2, α = 2, which might be of interest.

Denote the σ -field generated by the random environment up to time N by GN =
σ((ωn,x )0≤n≤N ,x∈Z). It is easy to see that the normalized partition function

Ẑω
N ,β := Zω

N ,β

exp(Nλ(β))
(1.8)
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is a P-martingale with respect to the filtration (GN )N≥0. Since Ẑω
N ,β is nonnegative, it con-

verges to some random variable Ẑω∞,β almost surely by the martingale convergence theorem.

It can be seen that the event {Ẑω∞,β = 0} is in the tail σ -field
∞⋂
N=0

σ((ωn,x )n≥N ,x∈Z). By

Kolmogorov’s 0-1 law, either P(Ẑω∞,β = 0) = 0 or P(Ẑω∞,β = 0) = 1. We call the first
case the weak disorder regime and the second one the strong disorder regime. This simple
but significant observation was first made by Bolthausen for a binary random environment
(see [8]).

It is believed that in the weak disorder regime, under the polymer measure Pω
N ,β , the

random walk’s behavior is comparable to that under P, i.e., the random walk fluctuates on

the scale N
1
α (up to some extra slowly varying function) as N → ∞. While in the strong

disorder regime, under the polymer measure Pω
N ,β , there will be some narrow corridors at

a distance 	N
1
α from the origin, in which the random walk falls with high probability. In

particular, the random walk’s end-point distribution contains macroscopic atoms. We call
this expected phenomenon in the weak disorder regime delocalization, and the one in the
strong disorder regime localization.

One important result that connects strong disorder with localization is [14, Theorem 2.1],
for the nearest-neighbor model which is then extended to the long-range case model in [13].
We cite that result here:

Theorem 1.3 (Comets [13]) Denote

IN := (Pω
N−1,β)

⊗
2(S1N = S2N

)
, (1.9)

where S1, S2 are two independent copies of the random walk S satisfying (1.1) or (1.2)
and (Pω

N−1,β)
⊗

2 can be viewed as the distribution of the couple (S1, S2) with the same
environment ω. Let β > 0. Then,

P
(
Ẑω∞,β = 0

) = P

( ∞∑

N=1

IN = ∞
)

. (1.10)

Moreover, if P(Ẑω∞,β = 0) = 1, then P-a.s., there exist c1, c2 ∈ (0,∞), such that

− c1 log Ẑ
ω
N ,β ≤

N∑

n=1

In ≤ −c2 log Ẑ
ω
N ,β for N large enough. (1.11)

The quantity IN can be considered as the end-point overlap of two i.i.d. copies of the polymer
at time N . For technical reasons, we consider the probability of {S1N = S2N } under the product
measure (Pω

N−1,β)
⊗

2, where the increment SN − SN−1 is distributed as the original random
walk. This theorem heuristically indicates that trajectories should intersect infinitely often in
strong disorder.

The free energy of the system is defined by

F(β) := lim
N→∞

1

N
log Zω

N ,β . (1.12)

This limit is known to exist and to be deterministic P-a.s. One can refer to [13,14] to see
that

F(β) = lim
N→∞

1

N
E[log Zω

N ,β ]. (1.13)
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We set

p(β) := lim
N→∞

1

N
log Ẑω

N ,β = F(β) − λ(β) ≤ 0, (1.14)

where the inequality is due to Jensen’s inequality. It can be seen that if p(β) < 0, then Ẑω
N ,β

has exponential decay, which implies that strong disorder holds, but not the converse. Thus,
the case p(β) < 0 is called the very strong disorder regime.

Since we have the dichotomy between weak disorder and strong disorder, we can draw the
phase diagram of the system, which was first established for the nearest-neighbor directed
polymer in [17] and then extended to the long-range case in [13]. We summarize their results
as follows.

Theorem 1.4 (Comets-Yoshida [17], Comets [13])For any α ∈ (0, 2], there exist 0 ≤ β1
c :=

β1
c (α) ≤ β2

c := β2
c (α) ≤ ∞, such that

P(Ẑω∞,β = 0) =
{
0, if β ∈ {0} ∪ (0, β1

c ),

1, if β > β1
c .

(1.15)

And

p(β)

{
= 0, if β ∈ [0, β2

c ]
< 0, if β > β2

c .
(1.16)

Remark 1.5 The reason that p(β2
c ) = 0 is that p(β) is continuous in β, since 1

N log Ẑω
N ,β

is convex in β. It is conjectured that there is no intermediate phase between weak disorder
and very strong disorder (except at the critical point β = β2

c ), i.e., β
1
c = β2

c . But so far this
conjecture has only been proved for the nearest-neighbor directed polymer on Z1+1 in [16]
and on Z2+1 in [26]. A recent more refined result for the nearest-neighbor polymer on Z2+1

is achieved in [3], which gives the exact asymptotic behavior of p(β) at high temperature.
Another open question is to determine whether there is weak disorder or strong disorder at
critical point β = β1

c .

To close this subsection, we cite two quantitative results which give sufficient conditions
for the existence of a weak disorder regime, respectively a strong disorder regime.

Theorem 1.6 (Comets [13]) If the heavy-tailed random walk S is transient, and denote

πp := P
⊗

2(∃n ≥ 1, s.t. Sn − S̃n = 0) < 1, (1.17)

where S̃ is an i.i.d. copy of S, then for all β such that

λ(2β) − 2λ(β) < − logπp, (1.18)

weak disorder holds.

Theorem 1.7 (Comets [13]) For any α ∈ (0, 2], if
βλ′(β) − λ(β) > −

∑

x∈Z
q(x) log q(x), (1.19)

then p(β) < 0, where q(x) := P(S1 = x).

Remark 1.8 By Theorem 1.6 and Remark 1.2, there is always a weak disorder regime for
α ∈ (0, 1), since λ(0) = 0. In Theorem 1.7,

∑

x∈Z
q(x) log q(x) is always finite and for the

random environment satisfying essup|ω1,0| = ∞, we have βλ′(β)−λ(β) → ∞ as β → ∞
(see [13]). Hence, strong disorder holds at low temperature.
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1.2 Main Results

We summarize the results of this paper in this subsection. Unless otherwise specified, the
random walk S and the random environment ω that we consider here are introduced in
Sect. 1.1, from (1.1) to (1.4). In Theorem 1.18, we need some extra but mild conditions on
S and ω, which we will mention there.

We first study the path behavior of the long-range directed polymer chain in the weak
disorder regime. As in [17, Theorem 1.2], we will establish a stable-law version of invari-
ance principle under the polymer measure Pω

N ,β . For heavy-tailed random walks that were
introduced in (1.1), (1.2) and (1.3), define the following càdlàg process

XN
t = Sn

aN
, for t ∈

[
n

N
,
n + 1

N

)
, n = 0, 1, . . . , N . (1.20)

Then (XN
t )t∈[0,1] converges to an α-stable Lévy process (Xt )t∈[0,1] ∈ D[0, 1] in distribution

(see [30, Proposition 3.4]), which we call an analogue of invariance principle for α-stable
process. Here D[0, 1] is the space of all functions on [0, 1] which are right continuous with
left limits equipped with the Skorohod topology induced by the metric

d(x, y) = inf
λ∈�

{

sup
0≤t≤1

|λ(t) − t | ∨ sup
0≤t≤1

|x(t) − y(λ(t))|
}

, (1.21)

where � is the set of all the strictly increasing functions λ(t) on [0, 1] with λ(0) = 0 and
λ(1) = 1 (see [6, Chapter 3]).

Following the notations above, our first result is

Theorem 1.9 For the long-range directed polymer model defined in Sect. 1.1, assume that
α ∈ (0, 1] and weak disorder holds. Then for all bounded continuous functions F on the
path space D[0, 1], we have

Eω
N ,β [F((XN

t )t∈[0,1])] P→ EX [F((Xt )t∈[0,1])] as N → ∞, (1.22)

where EX denotes the expectation for the α-stable Lévy process X.

This theorem says that in the weak disorder regime and under the polymer measure Pω
N ,β ,

the polymer chain converges to the same α-stable Lévy process as S under the measure P. It
is expected that the “in probability” convergence (1.22) can be improved to an “almost sure”
version, but we cannot prove it for the moment.

Remark 1.10 In [13], Comets proved a scaling limit result for the long-range directed poly-
mer under a stronger condition (1.18), which implies weak disorder. Here by applying the
procedure developed in [17], we can weaken the condition (1.18) and improve the scaling
limit result to the analogue of invariance principle for α-stable process in the entire weak
disorder regime.

Our second result concerns the phase diagram. We can characterize the phase diagram in
Theorem 1.4 in more detail. More precisely, we prove

Theorem 1.11 Following the same notations and assumptions as in Theorem 1.4, we have

(i) β1
c = 0 if and only if S is recurrent.

(ii) β1
c = β2

c = 0 for α ∈ (1, 2].
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Remark 1.12 For the nearest-neighbor directed polymer model, (i) has been proved in [14,
Theorem 2.3]. Our result is the analogue for long-range directed polymer.

It can be seen from Theorem 1.6 that transience of S implies the existence of a weak disorder
regime. Therefore, to complete the statement of Theorem 1.11 (i), what we need to prove is
the following result.

Proposition 1.13 If the heavy-tailed random walk S is recurrent, then only strong disorder
holds, i.e., β1

c = 0.

Remark 1.14 As we have mentioned in Remark 1.2, recurrence holds for α ∈ (1, 2] and
transience holds for α ∈ (0, 1). For the critical case α = 1, β1

c can be either 0 or positive,
which depends on the slowly varying function L(·).

Theorem 1.11 (ii) will be proved by showing p(β) < 0 for any β > 0 if α ∈ (1, 2]. In fact, we
can give an upper bound for the free energy that we believe to be sharp up to multiplication
by a constant.

Theorem 1.15 If α ∈ (1, 2], then there exists a slowly varying function ϕ, which can be
expressed by α and L(·), an inverse temperature β0 > 0 and a constant C > 0 (all depend
on α and on L(·)), such that for 0 < β ≤ β0,

p(β) < −Cβ
2α

α−1 ϕ

(
1

β

)
. (1.23)

Remark 1.16 It is conjectured that the asymptotic behavior of the free energy of long-range

directed polymer is p(β) ∼ −Fβ
2α

α−1 ϕ( 1
β
), where F is the free energy of a continuum model

and ϕ is some function slowly varying at infinity, although the existence of F is still an open
question. For more information, see [9, Conjectures 3.5, 3.11], where the authors consider the
scaling limits of disordered systems, including the long-range directed polymer. Although in
that paper the slowly varying function is ignored in long-range directed polymer models, it
can be easily included as done in the conjecture on the critical curve of the pinning models.
It is also natural to conjecture that for α = 1, β1

c = 0 can imply β2
c = 0, which we are now

trying to prove. However, there is still some technical difficulty to deal with the critical case.
We will shortly discuss that in Remark 3.7 after the proof of Theorem 1.15.

Our next result concerns the phenomenon of localization in the very strong disorder
regime. A strong result for localization was given by Vargas, in [32, Theorem 3.6], who
considered ε-atoms of polymer measure Pω

N ,β for the nearest-neighbor directed polymer. By
some modifications in the proof of his key lemma [32, Lemma 5.3], we can extend his result
to the long-range model.

Theorem 1.17 Denote

Aε,ω
N ,β = {

x ∈ Z : Pω
N−1,β(SN = x) > ε

}
. (1.24)

If p(β) < 0, i.e., very strong disorder holds, then forP-a.s., there exists an ε > 0, such that

lim
N→∞

1

N

N∑

n=1

1Aε,ω
n,β �=∅ > 0. (1.25)
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This theorem says that in the very strong disorder regime, as the random walk moves in
the random environment, there will be atoms carrying mass bigger than ε in the polymer’s
end-point distribution under Pω

N ,β for arbitrarily large N .
Our last result concerns the fluctuation of the polymer in the very strong disorder regime.

It has been shown in [5,27] that under the polymer measure, a Brownian polymer Bt in a

continuous Gaussian field will fluctuate on a scale which is not less than t
3
5 as t → ∞, if

the Gaussian field has weak coorelation. Since t
3
5 is larger than the underlying scale t

1
2 , it

reflects a superdiffusive phenomenon. By adapting the methods in [5,27], we can establish a
similar result for the long-range model. For some technical reason, we will consider a family
of heavy-tailed randomwalks with more regular tails in a Gaussian random environment. We

show that for any stable exponent α ∈ (1, 2], the random walk fluctuates on a scale 	 N
1
α

under Pω
N ,β as N → ∞. In such case, we say that the random walk has a super-α-stable

motion.

Theorem 1.18 Let (Xn)n∈N be a sequence of i.i.d. integer-valued random variables with
symmetric distribution

P(X1 = k) =
{

L(|k|)
|k|α+1 , ∀k ∈ Z \ {0},
p0 > 0, for k = 0,

(1.26)

where L(·) : (0,∞) → (0,∞) is some slowly varying function and α is some constant
strictly larger than 1 (not necessarily less than 2). We denote the heavy-tailed random walk
by

SN =
N∑

n=1

Xn . (1.27)

The random environmentω := (ωi,x )(i,x)∈N×Z is a family of i.i.d. standardGaussian random
variables and we define the related polymer measure as in (1.5) and (1.6). Then given α in
(1.26) and β > 0, for any arbitrarily small ε > 0, we have

lim
N→∞E

[
Pω
N ,β

(
max

1≤n≤N
|Sn | ≥ β2N

4(α + 1 + ε)2(log N )2

)]
= 1. (1.28)

Remark 1.19 The condition (1.26) is a bit stronger than (1.1) or (1.2), since by [7, Proposition
1.5.8], (1.26) implies that for α ∈ (1, 2), X1 is in the domain of attraction of the stable law
with stable exponent α, and for α ≥ 2, X1 is in the domain of attraction of the Gaussian law.

In summary, in this paper, we draw amore detailed phase diagram for the long-range directed
polymer model, and we extend the invariance principle in the weak disorder regime and a
localization result in the very strong disorder regime from the nearest-neighbor directed
polymer model to long-range directed polymer model. We also provide an upper bound for
free energy of the model and a lower bound for the fluctuation scale for α ∈ (1, 2]. We
hope that our results lay the foundation for further investigations of the long-range directed
polymer model.

1.3 Organization and Strategy of the Proof

In Sect. 2, we will prove Theorem 1.9. The procedure is the same as that in the proof of
[17, Theorem 5.1] for the nearest-neighbor model. The difference is that we need to do some
estimates for heavy-tailed random walks instead of the simple random walk. We will apply
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some technical lemmas from [17] without stating their proof. Those lemmas can be extended
to the long-range directed polymer model after careful checking.

In Sect. 3, we will prove Proposition 1.13 and Theorem 1.15. For Proposition 1.13, we
will adapt the method used in the proof of [14, Proposition 2.4(b)]. We will also give some
equivalent criterion for the recurrence of long-range random walks. For Theorem 1.15, we
will use the now standard fractional moment/coarse graining/change of measure method,
developed in the pinning model literature, used in [26].

In Sect. 4, we will prove Theorem 1.17, which is based on the techniques developed by
Vargas in [32].

In Sect. 5, we will prove Theorem 1.18. The methods that we will use were developed
in [5,27]. Instead of computing the covariance of the random environment as that in [5], we
will apply the change of measure method as that in [27], which is also used in the proof of
Theorem 1.15.

Each section is independent and can be read separately.

Remark 1.20 One main difficulty in extending results for the nearest-neighbor model to the
long-range ones is that, up to time N , the simple random walk can only reach at most (2d)N

sites on Zd , but the heavy-tailed random walk can reach infinitely many sites in one step.
As we will see, the method in [16], or the greedy lattice animal argument in [32, Sect. 3.1]
cannot be directly applied to the long-range model.

2 Proof of Theorem 1.9

In this section, we will always assume that weak disorder holds, i.e. P(Ẑω∞,β > 0) = 1.
According to the definition of the polymer measure Pω

N ,β , we perform change of measure for
P at time N with respect to the first N steps of the random walk S. First we introduce the
notation

Ẑω
N ,β(i, x) := Ex

[

exp

(
N∑

n=1

(βωn+i,Sn − λ(β))

)]

, (2.1)

where Ex [·] denotes the expectation with respect to Px := P(·|S0 = x), the probability
measure for the random walk starting at x . Then it is not hard to observe that given β and ω,
Pω
N ,β is an inhomogeneous Markov chain and the transition probabilities are given by

Pω
N ,β(Si+1 = y|Si = x) =⎧
⎨

⎩

exp(βωi+1,y−λ(β))Ẑω
N−i−1,β (i+1,y)

Ẑω
N−i,β (i,x)

P(S1 = y|S0 = x), for 0 ≤ i ≤ N − 1,

P(S1 = y|S0 = x), for i ≥ N .

(2.2)

Moreover, we can rewrite

Ẑω
N ,β(0, x) = Ex [ exp(βω1,S1 − λ(β))Ẑω

N−1,β(1, S1)
]
. (2.3)

It can be seen that

Ẑω∞,β(0, x) := lim
N→∞ Ẑω

N ,β(0, x) ≥ Ex [ exp(βω1,S1 − λ(β))Ẑω∞,β(1, S1)
]
, P-a.s., (2.4)

where the first limit exists by martingale convergence theorem, and the inequality is due to
Fatou’s lemma. Notice that (Ẑω∞,β(i, x))i≥0,x∈Z are identically distributed since ω is i.i.d.,
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and ω1,S1 is independent of Ẑ
ω∞,β(1, 0). Hence, by taking expectation on both side of (2.4)

and switch the order of E and Ex , we have

E[Ẑω∞,β(0, x)] ≥ E
[
Ex [exp(βω1,S1 − λ(β))Ẑω∞,β(1, S1)]

] = E[Ẑω∞,β(1, x)]. (2.5)

By the argument from (2.4) to (2.5), notice that Ẑω∞,β(0, x) and Ẑω∞,β(1, x) have the same
distribution, and then it follows that

Ẑω∞,β(0, x) = Ex [exp(βω1,S1 − λ(β))Ẑω∞,β(1, S1)], P-a.s. (2.6)

Next, for all A ∈ F∞ = σ

( ∞⋃
N=1

FN

)
, whereFN is the σ -field generated by the first N steps

of the random walk S, the limit

Pω∞,β(A) := lim
N→∞Pω

N ,β(A) = lim
N→∞

E
[
1A exp

(
N∑

n=1
βωn,Sn − Nλ(β)

)]

Ẑω
N ,β

(2.7)

exists P-a.s by applying martingale convergence theorem to both the numerator and the
denominator and the positivity of Ẑω∞,β .

Motivated by the argument above, we can define a random, inhomogeneousMarkov chain
with transition probabilities

Pω
β,mc(Si+1 = y|Si = x) = exp(βωi+1,y − λ(β))Ẑω∞,β(i + 1, y)

Ẑω∞,β(i, x)
P(S1 = y|S0 = x).

(2.8)

Note that (2.8) is obtained by taking limits in both numerator and denominator in (2.2),
which is well-defined by (2.6). The reason we define Pω

β,mc is that P
ω∞,β is not known to be

countably additive onF∞, while Pω
β,mc is indeed a probability measure onF∞ and coincides

with Pω∞,β on
∞⋃
n=1

Fn . The probability measure Pω
β,mc will play an important role in the proof

of Theorem 1.9.
We cite the following results from [17], which we do not prove and will be used in our

proof.

2.1 Useful Preliminary Result

Proposition 2.1 ([17, Proposition 4.1]) Assume weak disorder.

Pω
β,mc(A) = Pβ,ω∞ (A), P-a.s. for all A ∈

∞⋃

N=1

FN . (2.9)

Moreover,

EPω
β,mc(A) = EPω∞,β(A) ∀A ∈ F∞, (2.10)

P � EPω
β,mc � P on F∞. (2.11)

It is not hard to deduce Proposition 2.1 from [17, Lemma 4.2]. We state a weaker version of
[17, Lemma 4.2] here, which will be helpful later in the proof of Proposition 2.5.

123



330 R. Wei

Lemma 2.2 ([17, Lemma 4.2]) Suppose {AN }N≥1 ⊂ F∞ such that

lim
N→∞P(AN ) = 0. (2.12)

Then

lim
N→∞E

[
Pω
N ,β(AN )

] = lim
N→∞E

[
Pω∞,β(AN )

] = 0. (2.13)

The next proposition we cite concerns the total variation distance between the polymer
measure Pω

N+k,β and the Markov chain Pω
β,mc. We introduce the total variational norm

||μ − ν||FN := 2 sup{μ(A) − ν(A) : A ∈ FN }. (2.14)

Proposition 2.3 ([17, Proposition 4.3]) In the weak disorder regime,

lim
k→∞ sup

N
E

[
||Pω

N+k,β − Pω
β,mc||FN

]
= 0. (2.15)

The last result we cite here is the following lemma, which is a key ingredient to deduce our
main result Theorem 2.7.

Lemma 2.4 ([17, Lemma 5.3]) For all B ∈ F
⊗

2
∞ , the following limits exists P-a.s. in the

weak disorder regime:
(
Pω∞,β

)(2)
(B) := lim

N→∞
(
Pω
N ,β

)⊗ 2
(B), (2.16)

where the definition of (Pω
N−1,β)

⊗
2 is given in Theorem 1.3.

Moreover,

(
Pω∞,β

)(2)
(B) = (

Pω
β,mc

)⊗ 2
(B), ∀B ∈

∞⋃

N=1

F
⊗

2
N (2.17)

E
[(
Pω∞,β

)(2)
(B)

] = E
[(
Pω

β,mc

)⊗ 2
(B)

]
, ∀B ∈ F

⊗
2

∞ (2.18)

E
(
Pω

β,mc

)⊗ 2 � P
⊗

2, on F
⊗

2
∞ . (2.19)

Note that by [17, Remark 5.3], we cannot identify (Pω∞,β)(2) with (Pω∞,β)
⊗

2 because we do
not knowwhether Pω∞,β is a countably additive product measure. Although Lemma 2.4 looks
similar to Proposition 2.1, the proof of Lemma 2.4 is much more technical, involving Doob’s

decomposition of submartingale, since E
⊗

2
[
exp

(
N∑

n=1
β(ωn,S1n

+ ωn,S2n
) − 2Nλ(β)

)]
is

no longer a P-martingale with respect to filtration GN .

2.2 End of the Proof of Theorem 1.9

Now we can prove Theorem 1.9. First, under the probability measure Pω
β,mc, we establish an

analogue of averaged invariance principle for the càdlàg process (XN
t )t∈[0,1] via a second

moment calculation and Proposition 2.1. Since theMarkov chain and the limit of the polymer
measurePω

N ,β coincide on theσ -field generated by the randomwalk S up to anyfinite time,we
can apply Proposition 2.3 to extend the analogue of averaged invariance principle from Pω

β,mc
to the polymer measure Pω

N ,β . Then, by the same procedure above, we can establish the ana-

logue of averaged invariance principle for the i.i.d. couple ((XN
t )t∈[0,1], (X̃ N

t )t∈[0,1]) under
the product measure (Pω

β,mc)
⊗

2 via Lemma 2.4. Finally, since (XN
t )t∈[0,1] and (X̃ N

t )t∈[0,1]
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are i.i.d., Eω
β,mc[F((XN

t )t∈[0,1])] converges in L2 (thus it converges in probability). The con-

vergence in probability of Eω
N ,β [F((XN

t )t∈[0,1])] will then follow by applying Proposition
2.1 again.

More precisely, our first step is to establish the following proposition.

Proposition 2.5 Assume that α ∈ (0, 1] and weak disorder holds. Then the path measures
EPω

N ,β

((
XN
t

)
t∈[0,1] ∈ ·) ⇒ PX ((Xt )t∈[0,1] ∈ ·) weakly as N → ∞, (2.20)

EPω
β,mc

((
XN
t

)
t∈[0,1] ∈ ·) ⇒ PX ((Xt )t∈[0,1] ∈ ·) weakly as N → ∞. (2.21)

Remark 2.6 The analogue of Proposition 2.5 was proved for the nearest-neighbor model in
[17]. To extend it to the long-range model, we use the observation that under the Skorohod
distance, XN

t and XN−k
t are close for fixed k and large enough N .

Applying Proposition 2.5, we will then prove

Theorem 2.7 Assume that α ∈ (0, 1] and weak disorder holds. Then, for all bounded con-
tinuous functions F on the path space D[0, 1],

Eω
N ,β

[
F
((
XN
t

)
t∈[0,1]

)] P→ EX [F((Xt )t∈[0,1])] as N → ∞. (2.22)

Eω
β,mc

[
F
((
XN
t

)
t∈[0,1]

)] P→ EX [F((Xt )t∈[0,1])] as N → ∞. (2.23)

Proof of Proposition 2.5 We first prove (2.21). Since the path space D[0, 1] is separable, by
[19, Theorem 11.3.3], it suffices to show that

lim
N→∞E[Eω

β,mc[F((XN
t )t∈[0,1])] = EX [F((Xt )t∈[0,1])], ∀F ∈ BL(D[0, 1]), (2.24)

where BL(D[0, 1]) is the set of all the bounded Lipschitz functionals on D[0, 1]. To simplify
the notations, we denote F((XN

t )t∈[0,1]) by fN and F((Xt )t∈[0,1]) by f .
Our first statement is that for any sequence (Nk)k≥1, such that for all k ≥ 1, Nk+1

Nk
≥ ρ > 1,

we have

1

n

n∑

k=1

fNk

P→ EX [ f ], as n → ∞. (2.25)

To prove (2.25), we start by observing that

P
(∣∣∣∣

1
n

n∑

k=1
fNk − EX [ f ]

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣
1
n

n∑

k=1

(
fNk − E[ fNk ]

)
∣∣∣∣ > ε

2

)

+P
(∣∣∣∣

1
n

n∑

k=1
E[ fNk ] − EX [ f ]

∣∣∣∣ > ε
2

)
.

(2.26)

The second term on the right-hand side vanishes as n tends to infinity by the analogue of
invariance principle for stable laws. For the first term,

P

(∣∣∣∣∣
1

n

n∑

k=1

(
fNk − E[ fNk ]

)
∣∣∣∣∣
>

ε

2

)

≤ 4

n2ε2
E

∣∣∣∣∣

n∑

k=1

(
fNk − E[ fNk ]

)
∣∣∣∣∣

2

≤ 4

n2ε2

n∑

k=1

E
(
fNk − E[ fNk ]

)2 + 8

n2ε2

n∑

k=1

n∑

j=k+1

∣∣E
[(

fNk − E[ fNk ]
) (

fN j − E[ fN j ]
)]∣∣ .

(2.27)
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The first term on right hand side is bounded byO( 1n ), since F is bounded. For the second term
on the right hand side, by the method that was used in [2, p. 99], each term in the summation

is bounded by C(p)

(
aNk
aN j

)p

for any p < α and then bounded by C(δ)ρ−( 1
α
−δ)( j−k) further

for some 0 < δ < 1
α
(see Potter bounds in [7]), where C(p) and C(δ) are constants only

depending on p and δ respectively (one can find the full details in [25, Theorem 4.18]).
Therefore, the summation in the second term is also bounded by O( 1n ). Combine (2.26)
and (2.27), we obtain (2.25). By (2.11), the convergence in (2.25) also holds in EPω

β,mc-
probability.

Denote EN = E[Eω
β,mc[ fN ]]. For any converging subsequence ENk , we can find a sub-

subsequence ENk j
, such that inf

j
(Nk j+1/Nk j ) = ρ > 1, and then by (2.25) and bounded

convergence theorem, lim
n→∞

1
n

n∑

j=1
ENk j

= EX [ f ]. Therefore we conclude that (2.24) holds.
Next we prove (2.20). The basic idea is the same as the proof of (2.21), we only need to

prove that for all F ∈ BL(D[0, 1]),

lim
N→∞E[Eω

N ,β [F((XN
t )t∈[0,1])]] = EX [F((Xt )t∈[0,1])]. (2.28)

For 0 ≤ k ≤ N ,

∣∣∣E
[
Eω
N ,β

[
fN − EX [ f ]]

]∣∣∣ ≤ E
[
Eω
N ,β | fN − fN−k |

]

+E
∣∣∣Eω

N ,β [ fN−k] − Eω
β,mc[ fN−k]

∣∣∣

+
∣∣∣E

[
Eω

β,mc[ fN−k]
]

− EX [ f ]
∣∣∣ .

(2.29)

For any fixed k, let N tend to infinity, then by (2.24), the last term vanishes. For the first
term, denote d((XN

t )t∈[0,1], (XN−k
t )t∈[0,1]) by d(N , k), where d(·, ·) is the Skorohod metric

on D[0, 1], which was introduced in (1.21). Then for any δ > 0, we have

E
[
Eω
N ,β | fN − fN−k |

]
≤ LE[Eω

N ,β [d(N , k)1d(N ,k)≤δ]]

+ 2

(

sup
x∈D[0,1]

|F(x)|
)

E[Eω
N ,β [1d(N ,k)>δ]], (2.30)

where L is the Lipschitz norm of F . The first term on the right-hand side of (2.30) can be
made sufficiently small by choosing δ sufficiently small. The expectation in the second term
can be bounded by

E

[

Pω
N ,β

({

sup
1≤ j≤N−k

∣∣∣∣
S j

aN
− S j

aN−k

∣∣∣∣ > δ

}
⋃

{

sup
1≤ j≤k

∣∣∣∣
SN−k+ j

aN
− SN−k

aN−k

∣∣∣∣ > δ

})]

,

(2.31)

since Skorokhod distance allows us to align the jumps of two different càdlàg functions. To be
specific here, in (1.21), we can choose λ(t) = N−k

N on
[
0, N−k−1

N

]
and linear on

[ N−k−1
N , 1

]

to make the first N − k−1 jumps of both XN
t and XN−k

t occur at the same time, which gives
an upper bound (2.31). We observe that
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P

({

sup
1≤ j≤N−k

∣
∣
∣
S j
aN

− S j
aN−k

∣
∣
∣ > δ

}
⋃

{

sup
1≤ j≤k

∣
∣
∣
SN−k+ j
aN

− SN−k
aN−k

∣
∣
∣ > δ

})

≤ P

(

sup
1≤ j≤N−k

∣
∣
∣

S j
aN−k

∣
∣
∣ > δ

|1− aN−k
aN

|

)

+ P
(∣
∣
∣ SN−k
aN−k

∣
∣
∣ > δ

2|1− aN−k
aN

|

)

+P

(

sup
1≤ j≤k

∣
∣
∣
SN−k+ j−SN−k

aN

∣
∣
∣ > δ

2

)

.

(2.32)

Note that aN−k
aN

→ 1, as N → ∞. By weak convergence of a−1
N−k SN−k , the continuous

mapping theorem and the fact that sup
0≤t≤1

|Xt | < ∞ a.s., the first two terms on the right-

hand side of (2.32) tend to 0 as N tends to infinity. The last term also tends to 0, since

SN−k+ j − SN−k
d= S j . Denote

{

sup
1≤ j≤N−k

∣
∣
∣
∣
S j

aN
− S j

aN−k

∣
∣
∣
∣ > δ

}
⋃

{

sup
1≤ j≤k

∣
∣
∣
∣
SN−k+ j

aN
− SN−k

aN−k

∣
∣
∣
∣ > δ

}

(2.33)

by AN ,k for N > k. We have lim
N→∞P(AN ,k) = 0. Then by Lemma 2.2, (2.31) tends to 0 as

N tends to infinity. Therefore, the first term on the right-hand side of (2.29) vanishes.

Finally, the second term on the right-hand side of (2.29) is bounded by sup
N

E
∣∣∣Eω

N+k,β [ fN ]
−Eω

β,mc[ fN ]
∣∣∣. Note that fN is measurable w.r.t. FN . Hence

sup
N

E
∣∣∣Eω

N+k,β [ fN ] − Eω
β,mc[ fN ]

∣∣∣ ≤
(

sup
x∈D[0,1]

|F(x)|
)

sup
N

E
[
||Pω

N+k,β − Pω
β,mc||FN

]
.

(2.34)

Let k tend to infinity and apply Proposition 2.3. The right-hand side of (2.34) tends to 0. This
completes the proof of (2.20). ��

Proof of Theorem 2.7 By the same procedure as in the proof of (2.21), but using Lemma 2.4
instead of Proposition 2.1, for any G ∈ Cb(D[0, 1] × D[0, 1]), we have

lim
N→∞E

[
(Eω

β,mc)
⊗

2[G((XN
t )t∈[0,1], (X̃ N

t )t∈[0,1])]
]

= (EX )
⊗

2[G((Xt )t∈[0,1], (X̃t )t∈[0,1])].
(2.35)

If we choose G(x, x̃) = (F(x) − EX [ f ])(F(x̃) − EX [ f ]), then it follows that

lim
N→∞E

[(
Eω

β,mc[ fN − EX [ f ]]
)2] = 0, (2.36)

which proves (2.23). To prove (2.18), it suffices to show that for all F ∈ Cb(D[0, 1]),

lim
N→∞E

∣∣∣Eω
N ,β [ fN − EX [ f ]]

∣∣∣ = 0. (2.37)

The proof of (2.37) is the same as that of (2.28). ��
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3 Proof of Proposition 1.13 and Theorem 1.15

3.1 Proof of Proposition 1.13

Wewill first give some equivalent conditions for the recurrence of heavy-tailed randomwalks,
which will be used later.

Proposition 3.1 Suppose that S = (Sn)n≤0 is a heavy-tailed random walk satisfying (1.3)
with bn = 0.

(i) S is recurrent if and only if
∞∑
n=1

1
an

= ∞, where an = n
1
α l(n) for some slowly varying

function l(n), is the scaling factor in (1.3).
(ii) If P is in the domain of attraction of the Cauchy distribution, i.e., α = 1, then S is

recurrent if and only if
∞∑
n=1

1
nL(n)

= ∞, where L(n) is some slowly varying function

defined in (1.1).

Proof (i) For α ∈ (0, 1), the random walk S is always transient (see Remark 1.2), and
∞∑
n=1

an =
∞∑
n=1

1

n
1
α l(n)

< ∞ since 1
α

> 1. Hence, the result is obvious.

For α ∈ [1, 2], S1 should take both positive and negative values.We can set the possible
smallest return time k by the greatest common divisor of {n ∈ N : P(Sn = 0) > 0},
which is finite. By Gnedenko’s local limit theorem (see [7, Theorem 8.4.1]), we have

P(Snk = 0) ∼ gα(0)h

ank
as n → ∞, (3.1)

where h is the largest integer such that {z + hZ} contains all the values of S1 for some
integer z and gα is the density function of the limiting stable distribution Xα . Note that

S is recurrent if and only if
∞∑
n=0

P(Snk = 0) =
∞∑
n=0

P(Sn = 0) = ∞, and
k−1∑

m=0

1
a(n−1)k+m

has the same order of k
ank

as n → ∞ by Uniform Convergence Theorem of slowly
varying function ([7, Theorem 1.2.1]), then the result follows by (3.1).

(ii) Again, by [7, Theorem 1.2.1], for any slowly varying function L(x), there exist two

constantsC1 andC2, such thatC1 <
L(x)
L(n)

< C2, for x ∈ [n, n+1). Hence,
∞∑
n=1

1
nL(n)

=
∞ ⇔ ∫∞

1
dt

t L(t) = ∞.
By [7, Proposition 1.3.4], we can extend an to a regularly varying function a(t) = tl(t)
for t ∈ (0,∞) and further assume that a(t) is non-decreasing and differentiable. By
[7, Proposition 1.5.8], d

dt a(t) ∼ a(t)
t . Note that an ∼ nL(an) since an can be chosen

by nP(|S1| > n) ∼ 1 (see [29, Chapter 7]), we then obtain
∫ ∞

1

dt

a(t)
= ∞ ⇔

∫ ∞

1

dt

t L(a(t))
= ∞ ⇔

∫ ∞

1

ds

sL(s)
= ∞, (3.2)

where the last equivalence follows from the change of variables s = a(t). Now the
result holds by part (i). ��

Remark 3.2 By [12, Theorem 8.3.4], a random walk S whose expectation E[S1] exists is
recurrent if and only if E[S1] = 0. For α ∈ (1, 2], since S1 − E[S1] has expectation 0 and
∞∑
n=1

1
an

= ∞ holds always, hence, setting bn = 0 does not reduce much generality.

123



On the Long-Range Directed Polymer Model 335

To prove Proposition 1.13, we apply the fractional moment method as in the proof of [14,
Theorem 2.3(b)]. We cite two lemmas [14, Lemmas 3.1, 4.2] here without proof.

Lemma 3.3 Let (ξi )i≥1 be positive, non-constant i.i.d. randomvariables such thatE[ξ1] = 1

and E[ξ31 + log2 ξ1] < ∞. For (αi )i≥1 ∈ [0, 1]N such that
∞∑
i=1

αi = 1, define a centered

random variable U > −1 by U =
∞∑
i=1

αiξi − 1. Then there exists a constant c ∈ (0,∞),

independent of (αi )i≥1, such that

1

c

∞∑

i=1

α2
i ≤ E

[
U 2

2 +U

]
. (3.3)

Remark 3.4 In [14], the authors considered sequences (αi )1≤i≤n for any finite n. It can be
seen that the proof for a countable sequence (αi )i≥1 follows the same lines as that for finite
(αi )1≤i≤n . Note thatU is a well defined random variable by monotone convergence theorem.

Lemma 3.5 Recall the overlap IN from (1.9). For θ ∈ [0, 1] and � ∈ Z,

E[(Ẑω
N−1,β)θ IN ] ≥ 1

|�|E[(Ẑω
N−1,β)θ ] − 2

|�|P(SN /∈ �)θ . (3.4)

Proof of Proposition 1.13 We will show lim
N→∞E[(Ẑω

N ,β)θ ] = 0 for some θ ∈ (0, 1) via a

recursive inequality between E[(Ẑω
N ,β)θ ] and E[(Ẑω

N−1,β)θ ].
We first establish the connection between Ẑω

N ,β and Ẑω
N−1,β by writing

Ẑω
N ,β

Ẑω
N−1,β

= Uω
N ,β + 1, (3.5)

where it can be seen that

Uω
N ,β = Eω

N−1,β [exp(βωN ,SN − λ(β))] − 1. (3.6)

Therefore, conditionally on GN−1, which is the σ -field generated by (ωi,x )0≤i≤N−1,x∈Z,UN

satisfies the definition of U in Lemma 3.3. Then we have

E[(Ẑω
N ,β)θ |GN−1] = (Ẑω

N−1,β)θE[(Uω
N ,β + 1)θ |GN−1]. (3.7)

To deal with the right-hand side of (3.7), we define an auxiliary function. Assume θ ∈ (0, 1).
Set f : (−1,∞) �→ [0,∞) by

f (u) = 1 + θu − (1 + u)θ . (3.8)

It is easy to see that there exist c1, c2 ∈ (0,∞) such that for all u ∈ (−1,∞), we have

c1u2

2 + u
≤ f (u) ≤ c2u

2. (3.9)

Notice that the left-hand side of (3.9) has the form of the right hand side of (3.3).
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Then

(Ẑω
N−1,β)θE[(Uω

N ,β + 1)θ |GN−1]
= (Ẑω

N−1,β)θE[1 + θUω
N ,β − f (Uω

N ,β)|GN−1]
= (Ẑω

N−1,β)θ − (Ẑω
N−1,β)θE[ f (Uω

N ,β)|GN−1]
≤ (Ẑω

N−1,β)θ − (Ẑω
N−1,β)θE

[
c1(Uω

N ,β )2

2+Uω
N ,β

∣
∣GN−1

]

≤ (Ẑω
N−1,β)θ − c3(Ẑω

N−1,β)θ IN ,

(3.10)

where the last inequality is due to Lemma 3.3, with (αx )x∈Z = (Pω
N−1,β(SN = x))x∈Z and

noticing that IN = ∑

x∈Z
(Pω

N−1,β(SN = x))2. Taking expectation on both sides of (3.7) and

(3.10) and using Lemma 3.5, we obtain

E[(Ẑω
N ,β)θ ] ≤

(
1 − c3

|�N |
)
E[(Ẑω

N−1,β)θ ] + 2c3
|�N |P(SN /∈ �N )θ (3.11)

for any sequence of bounded sets (�i )i≥1.

For a recurrent S, by Proposition 3.1 (i), we have
∞∑
n=1

1
an

= ∞. Then we can always find

a sequence (bn)n≥1 such that

lim
n→∞

bn
an

= ∞, and
∞∑

n=1

1

bn
= ∞. (3.12)

Hence, we can choose �N = (−bN , bN ) such that P(SN /∈ �N ) tends to 0, since a−1
N SN

converges in probability to some stable law. For any ε > 0, for large enough N , we have
2P(SN /∈ �N )θ < ε, and then

E[(Ẑω
N ,β)θ ] − ε ≤

(
1 − c3

2bN

)
(E[(Ẑω

N−1,β)θ ] − ε)

≤ exp

(
− c3
2bN

)
(E[(Ẑω

N−1,β)θ ] − ε). (3.13)

Iterating this inequality and using Fatou’s lemma, we obtain

E[(Ẑω∞,β)θ ] − ε ≤ lim
M→∞

E[(Ẑω
M,β)θ ] − ε

≤ lim
M→∞

exp

(

−
M∑

n=N

c3
2bn

)

(E[(Ẑω
N−1,β)θ ] − ε) = 0. (3.14)

Since ε is arbitrary, it follows that E[(Ẑω∞,β)θ ] = 0, i.e., strong disorder holds. ��
3.2 Proof of Theorem 1.15

In this subsection, we prove Theorem 1.15, which gives bounds on the free energy when α ∈
(1, 2]. The technique that is used here has been developed in many articles, see [20,26,31].
We only give a proof for Gaussian environment. It is not hard to deduce the result for general
environment from Gaussian environment, see [26, p. 481].
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Proof of Theorem 1.15 in Gaussian environment We start with a simple observation. By
Jensen’s inequality, for θ ∈ (0, 1),

p(β) = lim
N→∞

1

N
E[log Ẑω

N ,β ] ≤ lim
N→∞

1

θN
logE[(Ẑω

N ,β)θ ]. (3.15)

Hence, we only need to show that the fractional moment of Ẑω
N ,β , for some power θ ∈ (0, 1)

that will be determined later, decays exponentially in N .
To conclude (1.23), it is sufficient to focus on a subsequence of Ẑω

N ,β by (3.15). We use
the coarse-graining method in this step. Consider the sequence N = mn, where m will tend
to infinity and n is fixed once chosen, which will be determined by β later. The idea is that
we will only investigate the heavy-tailed random walk S at time n, 2n, . . . ,mn. For each in,
where i = 1, . . . ,m, we can find a time-space window in N × Z, in which Sin falls with
high probability, thanks to convergence to stable law.

Let (an)n≥1 be the scaling sequence such that a
−1
N SN converges to an α-stable law in dis-

tribution. Notice that we can choose (an)n≥1 to be non-decreasing and integer-valued, which
will simplify our argument. Denote Ik = [kan, (k + 1)an) and we make the decomposition

Ẑω
N ,β =

∑

y1,...,ym∈Z
Ẑβ,ω

(y1,...,ym ), (3.16)

where

Ẑβ,ω

(y1,...,ym ) = E

[

exp

{
N∑

i=1

(
βωi,Si − β2

2

)}

1{Sin∈Iyi ,∀i=1,...,m}

]

. (3.17)

Then

E[(Ẑω
N ,β)θ ] ≤

∑

y1,...,ym∈Z
E[(Ẑβ,ω

(y1,...,ym ))
θ ], (3.18)

since the inequality (
∑

an)θ ≤ ∑
aθ
n holds for any countable sequence for any θ ∈ (0, 1].

Note that the length of each interval Ik is chosen to match the scaling of Sn , and if S ∈ {Sin ∈
Iyi ∀i = 1, . . . ,m}, then (y1, . . . , ym) is called the coarse-grained version of the trajectory
of S.

Next, to estimate E[(Ẑβ,ω

(y1,...,ym ))
θ ], we use a change of measure procedure, which we

now explain. We will define a new law for the random environment, which shifts down the
expectation of ω j,x at sites, where the random walk S visits with relatively high probability,

to a negative value. This can significantly decrease the expectation of Ẑβ,ω

(y1,...,ym ) under the
new law of ω, and the cost of the change of measure can be chosen to be small.

For any Y = (y0, . . . , ym−1), we introduce the set

JY = {(kn + i, ykan + z) : k = 0, . . . ,m − 1, i = 1, . . . , n, |z| ≤ C1an}, (3.19)

where y0 = 0 for convenience and C1 is a large integer to be determined later. Note that
|JY | = 2C1anmn, where |A| denote the cardinality of a set A. We can consider the choice
of JY in the following way: suppose that the random walk S reaches ykan at time kn. Then
for the next n steps of this random walk, its path will probably fall in the set

Bk = {(kn + i, ykan + z) : i = 1, . . . , n, |z| ≤ C1an}. (3.20)

Note that (Bk)0≤k≤m−1 are disjoint and JY =
m−1⋃

k=0
Bk . According to argument above (3.19),

we will perform the change of measure on JY (see Fig. 1 in the next page).
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Fig. 1 This figure represents the coarse-grained version of a trajectory of the random walk S. We investigate
the random walk S at time in, i = 1, . . . ,m. The bold vertical line segments mean that at time in, the random
walk S falls in the interval Iyi , where yi is the vertical coordinate of the lower endpoint of the i + 1-th bold
vertical line segments. The rectangles Bk containing n × 2C1an sites are defined in (3.20), on which we will
make change of measure

We define the new measure PY , under which (ωi,x )i≥0,x∈Z are independent Gaussian
random variables with variance 1 and expectation EY [ω1,0] = −δ(n)1(i,x)∈JY , where δ(n)

is a small number and will be determined later. Some direct computation shows that

dPY

dP
= exp

⎧
⎨

⎩
−

∑

(i,x)∈JY

(
δ(n)ωi,x + δ(n)2

2

)
⎫
⎬

⎭
. (3.21)

Then by Hölder’s inequality,

E[(Ẑβ,ω

(y1,...,ym ))
θ ] = EY

[
dP
dPY

(Ẑβ,ω

(y1,...,ym ))
θ
]

≤
(
EY

[(
dP
dPY

) 1
1−θ

])1−θ (
EY [Ẑβ,ω

(y1,...,ym )]
)θ

.
(3.22)

Here
(

EY

[(
dP

dPY

) 1
1−θ

])1−θ

= exp

( |JY |θδ(n)2

2(1 − θ)

)
= exp

(
C1anmnθδ(n)2

1 − θ

)
. (3.23)

To make this term independent of n, we can set δ(n) = (C1nan)−
1
2 .

To estimate

EY [Ẑβ,ω

(y1,...,ym )] = E[exp(−βδ(n)|{i : (i, Si ) ∈ JY }|)1{Skn∈Iyk ,1≤k≤m}], (3.24)

we define

J = {(i, x) : i = 1, . . . , n, |x | ≤ (C1 − 1)an}, (3.25)

J̄ = {(i, x) : i = 1, . . . , n, |x | ≤ (C1 − 2)an}, (3.26)
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Recall that JY =
m−1⋃

k=0
Bk and Bk ∩ Bl = ∅ for k �= l by (3.20). We have

E
[
exp(−βδ(n)|{i : (i, Si ) ∈ JY }|)1{Skn∈Iyk ,1≤k≤m}

]

= E
[

m∏

k=1
exp(−βδ(n)|{i : (i, Si ) ∈ Bk−1}|)1Skn∈Iyk

]

≤
m∏

k=1
max

x∈Iyk−1

Ex
[
exp(−βδ(n)|{i : (i + (k − 1)n, Si ) ∈ Bk−1}|)1Sn∈Iyk

]

≤
m∏

k=1
max
x∈I0

Ex
[
exp(−βδ(n)|{i : (i, Si ) ∈ J }|)1Sn∈Iyk−yk−1

]
,

(3.27)

where the first inequality is due to the Markov property and the last inequality is due to our
definition of Ik and J . Combine (3.14), (3.17), (3.18), and (3.23), it follows that

logE[(Ẑω
N ,β )θ ]

≤ log
∑

y1,...,ym∈Z
exp

(
θm
1−θ

) (
EY [Ẑω

N ,β ]
)θ

≤ θm
1−θ

+ log
∑

y1,...,ym∈Z

(
m∏

k=1
max
x∈I0

Ex [exp(−βδ(n)|{i : (i, Si ) ∈ J }|)1Sn∈Iyk−yk−1
]
)θ

= m

[
θ

1−θ
+ log

∑

z∈Z
(max
x∈I0

Ex [exp(−βδ(n)|{i : (i, Si ) ∈ J }|)1Sn∈Iz ])θ
]

(3.28)

If we can show that the quantity in the square brackets is smaller than −1, then p(β) ≤ − 1
θn

by (3.15), which will imply very strong disorder. It suffices to show that
∑

z∈Z
max
x∈I0

Ex [exp(−βδ(n)|{i : (i, Si ) ∈ J }|)1Sn∈Iz ]θ (3.29)

can be made sufficiently small.
Observe that

∑

z∈Z
max
x∈I0

Ex [exp(−βδ(n)|{i : (i, Si ) ∈ J }|)1Sn∈Iz ]θ

≤ ∑

|y|≥K
maxx∈I0 Px (Sn ∈ Iy)θ + 2K max

x∈I0
Ex [exp(−βδ(n)|{i : (i, Si ) ∈ J }|)]θ . (3.30)

For the first term,

∑

|y|≥K
max
x∈I0

Px (Sn ∈ Iy)θ ≤ 2
∞∑

y=K−2
P
(
y ≤ Sn

an
< y + 2

)θ

≤ 2
∞∑

y=K−2

(
1
yγ E

∣∣∣ Snan

∣∣∣
γ )θ

≤ 2C
∞∑

y=K−2
y−γ θ .

(3.31)

The last inequality follows from [25, Theorem 2.14] by choosing some γ ∈ (1, α). Therefore,
we can fix θ such that γ θ > 1 and then choose K large enough such that (3.31) is small
enough.

For the second term,

2K max
x∈I0

Ex
[
exp(−βδ(n)|{i : (i, Si ) ∈ J }|)]θ

≤ 2KE
[
exp(−βδ(n)|{i : (i, Si ) ∈ J̄ }|)]θ

≤ 2K [exp(−nβδ(n)) + P{the random walk goes out of J̄ }]
(3.32)
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By choosing a large C1, the second term in the square brackets can be made small by the
analogue of invariance principle for heavy-tailed random walks. For the first term, notice
that

nβδ(n) = β√
C1

√
n

an
= βn

α−1
2α√

C1l(n)
. (3.33)

We can choose the smallest n = n(β) such that βn
α−1
2α l(n)− 1

2 ≥ C2, where C2 is a large
constant so that exp(− C2√

C1
) is small enough. By our choice of n, if follows that

lim
β→0

βn
α−1
2α l(n)−

1
2 = C2. (3.34)

Therefore,

n
α−1
2α

1√
l(n)

∼ C2

β
, as β → 0. (3.35)

Define

lα(x) := 1
√
l(x

2α
α−1 )

. (3.36)

Then lα(x) is also a slowly varying function. We then have

n
α−1
2α lα(n

α−1
2α ) ∼ C2

β
, as β → 0. (3.37)

By [7, Theorem 1.5.13], we can find a slowly varying function l#α(x), such that

l#α(xlα(x)) ∼ 1

lα(x)
, as x → ∞. (3.38)

Therefore,

1

lα(n
α−1
2α )

∼ l#α

(
C2

β

)
, as β → 0, (3.39)

that is,

√
l(n) ∼ l#α

(
C2

β

)
, as β → 0. (3.40)

Combine (3.35) and (3.40), and recall that if l(x) is a slowly varying function, then l(ax)
and (l(x))γ are both slowly varying functions for any a > 0 and γ ∈ R (see[7]). By setting

ϕ = (l#α)
α−1
2α , we then obtain

1

n
∼ C2β

2α
α−1 ϕ

(
1

β

)
, (3.41)

where ϕ is some slowly varying function. Then for some constant C

p(β) ≤ − 1

θn
≤ −Cβ

2α
α−1 ϕ

(
1

β

)
, (3.42)

which completes the proof. ��
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Remark 3.6 In [26, Proposition 1.5], Lacoin also gave a lower bound for the free energy of
1-dimensional nearest-neighbor directed polymerwith an extra logarithmic term. Later in [1],
the authors proved that one can actually remove the logarithmic term so that the lower bound
and the upper bound are consistent (differ up to some prefactor). The proof of the lower bound
involves the site percolation. To extend their lower bounds to the long-range model, some
property of the long-range percolation may be needed, which has not been systematically
studied, however. Besides, the negativity of the upper bound implies very strong disorder,
which reflects the qualitative behavior of the polymer chain. Therefore, the upper bound is
more significant than the lower bound and we just leave out the lower bound in this paper.
Recently, in [10], the authors identified the sharp high temperature asymptotic behavior of
the shift of the critical point for the pinning model with exponent α ∈ ( 12 , 1). We expect that
their approach is also applicable to the long-range directed polymer with α ∈ (1, 2].
Remark 3.7 We continue the discussion in Remark 1.14. Although we have given some
equivalent conditions for recurrence of heavy-tailed random walks in Proposition 3.1, for
stable exponent α = 1, we have not deduced very strong disorder for all β > 0 from the
recurrence of the random walk S. The reason is that the slowly varying function L(x) is
subtle and the tail distribution of the random walk S has much slower decay than that of a
simple random walk. Therefore, some more delicate techniques are needed. In Berger and
Lacoin’s recent papers [3,4], they developed a more elaborate change of measure procedure.
By that method, the authors identified the sharp high temperature asymptotic behavior for the
nearest-neighbor directed polymer in Z2+1 in [3], and the sharp asymptotics on the critical
point shift for the pinning of one dimensional simple random walk. Note that d = 2 is
the critical dimension for the existence of the weak disorder regime in the nearest-neighbor
directed polymer model on Zd+1, and the case α = 1

2 for pinning model is critical for
whether the disorder is relevant. Hence, we believe that their newmethod can also be applied
to provide the asymptotic behavior of the free energy for long-range directed polymer model
in the critical case α = 1. This paper does not include that case because it is quite involved
and hence should be treated separately.

4 Proof of Theorem 1.17

Wewill first extend the key lemma [32, Lemma 5.3] so that it holds not only for finite (ηi )
n
i=1,

but also for countable many (ηi )i≥1.

Lemma 4.1 Denote � = {(λi )i≥1 ⊂ [0, 1]N :
∞∑
i=1

λi = 1}, and let (ηi )i≥1 be an

i.i.d.sequence of positive random variables such thatE[| log η1|] < ∞. Then for any positive
integer k, we have

inf
(λi )∈�

sup(λi )≤ 1
k

E

[

log

( ∞∑

i=1

λiηi

)]

= E

[

log

(
1

k

k∑

i=1

ηi

)]

. (4.1)

Proof We prove the lemma by contradiction. Assume that

inf
(λi )∈�

sup(λi )≤ 1
k

E

[

log

( ∞∑

i=1

λiηi

)]

< E

[

log

(
1

k

k∑

i=1

ηi

)]

, (4.2)
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then we can find a sequence (λ̄i ) such that

E

[

log

( ∞∑

i=1

λ̄iηi

)]

< E

[

log

(
1

k

k∑

i=1

ηi

)]

. (4.3)

Note that there are only finite many λ̄i ’s that equal to 1
k , and by continuity, we can adjust

those λ̄i ’s if necessary such that supi λ̄i = ε < 1
k and (4.3) still holds. For any fixed integer

n which is large enough such that �n =
n∑

i
λ̄i > εk, we set λ̃i = λ̄i

�n
for 1 ≤ i ≤ n. Then,

E

[

log

( ∞∑

i=1

λ̄iηi

)]

≥ E

[

log

(
n∑

i=1

λ̃iηi

)]

+ log�n ≥ E

[

log

(
1

k

k∑

i=1

ηi

)]

+ log�n,

(4.4)

where the first inequality is due to the positivity of ηi and the second inequality holds by [32,

Lemma 5.3] since sup
1≤i≤n

λ̃i ≤ 1
k and

n∑

i=1
λ̃i = 1. Let n tend to infinity, then log�n tends to 0

and (4.4) contradicts (4.3). ��
Proof of Theorem 1.17 We follow the same strategy of proof as that for [32, Theorem 3.7]
in the nearest-neighbor case. We will decompose N−1 log Ẑω

N ,β to construct a martingale by
successively conditioning on GN , which is the σ -field generated by (ωi,x )1≤i≤N ,x∈Z. First,
define

Aε
N ,β = {ω : sup

x∈Z
Pω
N−1,β(SN = x) > ε}. (4.5)

Then

log Zω
N ,β

N = 1
N

N∑

j=1
log

Zω
j,β

Zω
j−1,β

= 1
N

N∑

j=1
1Aε

j,β
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)

+ 1
N

N∑

j=1
1(Aε

j,β )c log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)
(4.6)

Note that in the second term of the right-hand side of (4.6), sup
x∈Z

Pω
N−1,β(SN = x) ≤ ε.

Hence, we can apply Lemma 4.1 to this term later.
Define GN -martingales

MN :=
N∑

j=1
1(Aε

j,β )c log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)

−
N∑

j=1
1(Aε

j,β )cE

[
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)∣∣∣∣G j−1

]
,

(4.7)

and

LN :=
N∑

j=1
1Aε

j,β
log

(
∑

x∈Z
Pε
j−1,β(S j = x) exp(βω j,x )

)

−
N∑

j=1
1Aε

j,β
E

[
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)∣∣∣∣G j−1

] (4.8)
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Then

1
N

N∑

j=1
1Aε

j,β
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)

= LN
N + 1

N

N∑

j=1
1Aε

j,β
E

[
log

(
∑

x∈Z
Pε
j−1,β(S j = x) exp(βω j,x )

)∣∣
∣
∣G j−1

]

≥ LN
N + βE[ω1,0] · 1

N

N∑

j=1
1
Aε,β
j

= LN
N .

(4.9)

by Jensen’s inequality. And

1
N

N∑

j=1
1(Aε

j,β )c log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)

= MN
N + 1

N

N∑

j=1
1(Aε

j,β )cE

[
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)∣∣
∣
∣G j−1

]

≥ MN
N + 1

N

N∑

j=1
1(Aε

j,β )cE

⎡

⎣log

⎛

⎝ε

1
ε∑

i=1
exp(βωi,0)

⎞

⎠

⎤

⎦

(4.10)

by (4.1) with (exp(βω j,x )) j≥0,x∈Z and (Pω
j−1,β(S j = x))x∈Z playing respectively the role

of (ηi )i≤1 and (λi )i≥1 in (4.1). We obtain

log Zω
N ,β

N
− MN

N
− LN

N
≥

⎛

⎝ 1

N

N∑

j=1

1(Aε
j,β )c

⎞

⎠E

⎡

⎢
⎣log

⎛

⎜
⎝ε

1
ε∑

i=1

exp(βωi,0)

⎞

⎟
⎠

⎤

⎥
⎦ . (4.11)

We will then prove that MN
N and LN

N tend to 0 as N tends to infinity by applying the following
theorem [22, Theorem 2.19]

Theorem 4.2 (Hall-Heyde [22])Let (Yn)n≥1 be a sequence of randomvariables and (Fn)n≥1

an increasing sequence of σ -fields with Yn measurable with respect toFn for each n. Let Y be
a random variable and c a constant such that E|Y | < ∞ and P(|Yn | > x) ≤ cP(|Y | > x)
for each x > 0 and n ≥ 1. Then

n−1
n∑

i=1

[Yi − E[Yi |Fi−1]] P→ 0 as n → ∞. (4.12)

If E[|Y | log+ |Y |] < ∞, then the convergence in probability in (4.12) can be strengthen to
almost sure convergence.

First, by Jensen’s inequality, we have

β
∑

x∈Z
Pω
j−1,β(S j = x)ω j,x ≤ log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)

. (4.13)

And by using that log x ≤ x
1
θ for 1 < θ ≤ e, we have

log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)

≤
(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

) 1
θ

. (4.14)
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Then, by applying (4.13) when log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)
< 0 and (4.14) when

log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)
> 0, it follows that for all j ,

E

∣
∣
∣
∣
∣
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)∣∣
∣
∣
∣

θ

≤ βθE

(
∑

x∈Z
Pω
j−1,β(S j = x)|ω j,x |

)θ

+ E

[
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

]

≤ βθE|ω1,0|θ + exp(λ(β)) = C. (4.15)

Let 1(Aε
j,β )c log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp(βω j,x )

)
and 1Aε

j,β
log

(
∑

x∈Z
Pω
j−1,β(S j = x) exp

(βω j,x )
)
play the role Y j in Theorem 4.2, and define a random variable Y such that for all

x > C
1
θ ,

P(|Y | > x) = C

xθ
, (4.16)

where C is the same as that in (4.15). Then,

lim
N→∞

MN

N
= lim

N→∞
LN

N
= 0, in P-probability. (4.17)

Note that, recalling θ > 1 and by the definition (4.16),E[|Y | log+ |Y |] < ∞. Therefore, the
convergence in (4.17) can be strengthened to almost sure convergence. By taking limits on
both sides of (4.11), we have

lim
N→∞

1

N

N∑

j=1

1(Aε
j,β )c ≤ F(β)

E

⎡

⎣log

⎛

⎝ε

1
ε∑

i=1
exp(βωi,0)

⎞

⎠

⎤

⎦

, P-a.s., (4.18)

where F(β) is the free energy of the system by (1.10). Let ε tend to 0 along the sequence
( 1k )k≥1. By Jensen’s inequality, the law of large numbers and Fatou’s lemma, it is not hard
to see

lim
ε→0

E

⎡

⎢
⎣log

⎛

⎜
⎝ε

1
ε∑

i=1

exp(βωi,0)

⎞

⎟
⎠

⎤

⎥
⎦ = λ(β) > F(β). (4.19)

The last inequality is due to our very strong disorder assumption.
Hence, we can choose ε small enough such that

E

⎡

⎢
⎣log

⎛

⎜
⎝ε

1
ε∑

i=1

exp(βωi,0)

⎞

⎟
⎠

⎤

⎥
⎦ > F(β). (4.20)
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Then by (4.14), for P-a.s.,

lim
N→∞

1

N

N∑

j=1

1(Aε
j,β )c < 1 ⇔ lim

N→∞
1

N

N∑

j=1

1(Aε
j,β ) > 0 (4.21)

Recall the definition of Aε,ω
N ,β and Aε

N ,β in (1.24) and (4.5), and then (4.21) implies
(1.25). ��

5 Proof of Theorem 1.18

The basic idea of the proof is to compare the entropy cost and the energy gain when a heavy-

tailed random walk introduced by (1.26) and (1.27) stays in a distance of O
(

N
(log N )2

)
away

from the origin. It can be seen that

Zω
N ,β =

∑

S

exp(−βHω
N (S))P(S), (5.1)

where Hω
N (S) is the energy introduced by (1.7). For technical feasibility, we may study the

second half of the trajectory of the random walk, i.e., (SN/2, . . . , SN ). On one hand, if the

second half of SN stays in a distance N/(log N )2, which is 	 N
1
α for α ∈ (1, 2] and makes

P(S) very small, then there is a significant entropy cost. On the other hand, with some random
variable Y , we may write exp(−βHω

N (S)) ≈ exp(−√
NY ), which fluctuates dramatically.

Therefore, it is possible that we can find some block with very high energy onZ in a distance

of O
(

N
(log N )2

)
away from the origin, and if the energy gain wins the entropy cost, then the

random walk is likely to stay in that block instead of somewhere near the origin.
Our proof consists of two parts.Wewill first investigate the energy gain. However, we will

not estimate the energy directly. Instead, we will compare the contribution to the partition
function from the environment on different blocks. In order to do that, we will use a change of
measure argument developed in [27], since it is more likely to extend to the model with some
general environment and it is much shorter than the method used in [5]. Then we need to
compute the entropy cost, which will be done by an estimate on a Radon-Nikodym derivative,
although it is not as accurate as the Girsanov Theorem used in [5,27].

Proof of Theorem 1.18 Without loss of generality, we can assume that the integer N is always
even throughout the proof, such that we can omit many “�·�” symbols to make the proof more
readable.

For any given ε > 0, to be consistent with (1.28), we denote

JN =
(

− β2N

4(α + 1 + ε)2(log N )2
,

β2N

4(α + 1 + ε)2(log N )2

)
∩ Z. (5.2)

Then we can define a change of measure fromP to a new probability measure P̂with Ladon-
Nikodym derivative

dP̂

dP
:= exp

(
−W − 1

2

)
, (5.3)
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where

W =

N∑

n= N
2 +1

∑

x∈JN

ωn,x

√
N
2 |JN |

. (5.4)

It is not hard to check that ω̂ := (ω̂i,x )(i,x)∈N×Z defined by

ω̂i,x = ωi,x + 1{
(i,x)∈

[
N
2 +1,N

]
×JN

}
(
N

2
|JN |

)− 1
2

(5.5)

is a family of i.i.d. standard Gaussian random variables under P̂. Probability measure P̂ has
some important property. Firstly, it makes the random environment on

[ N
2 , N

]× JN become
less attractive to the random walk. Secondly, it does not differ from P too much, which can
be seen by the following application of the Hölder inequality:

P(A) = Ê

[
dP

dP̂
1A

]
≤

√

E

[
dP

dP̂

]√
P̂(A) ≤

√
eP̂(A). (5.6)

Then for any p ∈ (0, 1], we have

P

(
Pω
N ,β

(
max

1≤n≤N
|Sn | < 1

2 |JN |
)

≥ p

)
≤

√

eP̂

(
Pω
N ,β

(
max

1≤n≤N
|Sn | < 1

2 |JN |
)

≥ p

)

=

√√√√√√√eP̂

⎛

⎜⎜
⎝

E

[

exp

(

β
N∑

n=1
ωn,Sn

)

1{|Sn |< 1
2 |JN |, ∀n∈[1,N ]}

]

E

[

exp

(

β
N∑

n=1
ωn,Sn

)] ≥ p

⎞

⎟⎟
⎠.

(5.7)

In order to deal with the last term in (5.7), we partition all integer Z by

I kN = [(2k − 1)L , (2k + 1)L) ∩ Z, ∀k ∈ Z, (5.8)

where

L =
⌊

β2N

4(α + 1 + ε0)2(log N )2

⌋
(5.9)

with some ε0 ∈ (0, ε) so that when N is large enough, JN ⊂ I 0N . Note that under this
partition, only those ωi,x ’s with (i, x) ∈ [ N2 +1, N ]× I 0N is influenced by changing measure

from P to P̂. We define

Zω
N ,β(k) := E

[

exp

(

β

N∑

n=1

ωn,Sn

)

1{
Sn∈I kN , ∀n∈

[
N
2 +1,N

]}

]

(5.10)

and

Ẑω
N ,β := E

[

exp

(

β

N∑

n=1

ωn,Sn

)

1{|Sn |< 1
2 |JN |, ∀n∈[1,N ]}

]

. (5.11)

Since I kN and I jN are disjoint for k �= j , we have for any positive integer M ,

Zω
N ,β ≥

∑

k∈{−M,...,M}\{0}
Zω
N ,β(k). (5.12)
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Then we can bound the last term in (5.7) by

P̂

⎛

⎜
⎜
⎝

E

[

exp

(

β
N∑

n=1
ωn,Sn

)

1{|Sn |< 1
2 |JN |, ∀n∈[1,N ]}

]

E

[

exp

(

β
N∑

n=1
ωn,Sn

)] ≥ p

⎞

⎟
⎟
⎠

≤ P̂

(
Ẑω
N ,β∑

k∈{−M,...,M}\{0}
Zω
N ,β (k) ≥ p

)

= P̂

(

exp

(
−β N

2

( N
2 |JN |)−

1
2

)
Ẑ ω̂
N ,β∑

k∈{−M,...,M}\{0}
Zω
N ,β (k) ≥ p

)

= P

(

exp

(
−β N

2

( N
2 |JN |)−

1
2

)
Ẑω
N ,β∑

k∈{−M,...,M}\{0}
Zω
N ,β (k) ≥ p

)

,

(5.13)

where in the first equality, we change ω to ω̂ and the last equality results from the property
LP(ω) = L

P̂
(ω̂). The proof will be completed by the following proposition, whose proof

will be given later.

Proposition 5.1 For any ε > 0, there exists some constant C > 0, such that for any positive
integer M and large enough even integer N, we have

∑

k∈{−M,...,M}\{0}
Zω
N ,β(k) ≥ C(MN )−(α+1+ ε

2 )Zω
N ,β(0) (5.14)

with P-probability greater than 1 − 1
2M .

By JN ⊂ I 0N and Proposition 5.1,

Ẑω
N ,β∑

k∈{−M,...,M}\{0}
Zω
N ,β(k)

≤ Zω
N ,β(0)

∑

k∈{−M,...,M}\{0}
Zω
N ,β(k)

≤ C(MN )α+1+ ε
2 (5.15)

with P-probability greater than 1 − 1
2M . Note that by our choice of JN ,

exp

(

−β
N

2

(
N

2
|JN |

)− 1
2
)

∼ N−(α+1+ε). (5.16)

Combine (5.7), (5.13), (5.16), (5.17) and choosing p = N− ε
4 in (5.7), and then we have

P

(
Pω
N ,β

(
max

1≤n≤N
|Sn | <

1

2
|JN |

)
≥ N− ε

4

)
≤

√
e

2M
(5.17)

when N is large enough. Thus

E

[
Pω
N ,β

(
max

1≤n≤N
|Sn | <

1

2
|JN |

)]
≤

√
e

2M
+ N− ε

4 . (5.18)

By sending N to infinity and then sending M to infinity, we finish the proof of Theorem 1.18.
��

Now we prove Proposition 5.1, which gives an estimate on the entropy cost for a random
walk staying in the blocks which are far away from the origin.
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Proof of Proposition 5.1 For all k ∈ {−M, . . . , M}, by recalling L in (5.9) and I kN in (5.8),
we define

hN (n, k) =
{
0, for 1 ≤ n ≤ N

2 ,

2kL , for N
2 + 1 ≤ n ≤ N ,

(5.19)

and

Z
ω

N ,β(k) := E

[

exp

(

β

N∑

n=1

ωn,Sn+hN (n,k)

)

1{
Sn∈I 0N , ∀n∈

[
N
2 +1,N

]}

]

. (5.20)

When Sn ∈ I 0N for all n ∈ [ N
2 + 1, N

]
,

{
(ωn,Sn+hN (n,k))n∈

[
N
2 +1,N

]
}

k∈{−M,...,M}
are inde-

pendent families for different k. Hence, it is easy to show that P(Z
ω

N ,β(k) = Z
ω

N ,β( j)) = 0

for k �= j and (Z
ω

N ,β(k))k∈{−M,...,M} is an exchangeable sequence. Therefore,

P

(
Z

ω

N ,β(0) = max
k∈{−M,...,M} Z

ω

N ,β(k)

)
= 1

2M + 1
(5.21)

Note that Z
ω

N ,β(0) = Zω
N ,β(0) and we need to compare Z

ω

N ,β(k) with Zω
N ,β(k) for k �= 0.

By writing Sn = Sn − hN (n, k), we have

Zω
N ,β = E

[

exp

(

β

N∑

n=1

ωn,Sn+hN (n,k)

)

1{
Sn∈I 0N , ∀n∈

[
N
2 +1,N

]}

]

. (5.22)

We can complete the proof with the help of the following lemma.

Lemma 5.2 Define a sequence of random variables (Xn)1≤n≤N by

X :=
{
Xn, for n �= N

2 + 1,

Xn − hN (n, k), for n = N
2 + 1.

(5.23)

We change the measure from P to a new probability measure P by Ladon-Nikodym Theorem
such that LP((X)1≤n≤N ) = LP((X)1≤n≤N ). Then for any δ > 0, we can find a constant
C > 0, such that for any k ∈ {−M, . . . , M} and large enough integer N, we have

dP

dP
≥ C(|k|N )−(α+1+δ). (5.24)

Proof of Lemma 5.2 It is obvious that P and P only differ on the distribution of X N
2 +1. We

use the notations

P
(
X N

2 +1 = x
)

= px , ∀x ∈ Z (5.25)

and h = hN (n, k) for short. Then

P
(
X N

2 +1 = x
)

= P
(
X N

2 +1 = x − h
)

= px−h . (5.26)

The Radon-Nikodym derivative can be written explicitly by

dP

dP
=

∑

x∈Z\{0,h}
1{

X N
2 +1

=x

} px
px−h

+ 1{
X N

2 +1
=0

} p0
p−h

+ 1{
X N

2 +1
=h

} ph
p0

. (5.27)
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The summand in the summation on the right hand side of (5.27) is

L(|x |)
L(|x − h|)

∣
∣
∣
∣1 − h

x

∣
∣
∣
∣

α+1

. (5.28)

By Potter’s bound (see [7, Theorem 1.5.6]), given a slowly varying function L(x), for any
δ > 0, A ≥ 1, there exists some constant C = C(δ, A), such that

L(x)

L(y)
≥ C min

x≥A,y≥A

{(
x

y

)δ

,

(
x

y

)−δ
}

. (5.29)

We can partition the summation range by (−∞, 1], [1, h − 1], [h + 1,∞) to get rid of the
absolute value in (5.28) and then apply (5.29) to achieve (5.24). Note that the term (log N )2

in L can be ignored by some adjustment in the power δ, since it is a slowly varying function.
��

Now by (5.22) and Lemma 5.2, for δ = ε
2 and some constant C , we have

Zω
N ,β(k) = E

[
dP
dP

exp

(
β

N∑

n=1
ωn,Sn+hN (n,k)

)
1{

Sn∈I 0N , ∀n∈
[
N
2 +1,N

]}
]

≥ C(MN )−α+1+ ε
2 Z

ω

N ,β(k),
(5.30)

where in the last inequality, we use the property that LP((X)1≤n≤N ) = LP((X)1≤n≤N ).
Combine (5.21) and (5.30) and then we finish the proof of Proposition 5.1. ��
Remark 5.3 In [27], the author also showed that for a Brownian polymer Bt in a continuous

Gaussian field, Bt cannot fluctuate on a scale larger thanO(N
3
4 ). However, in Theorem 1.16,

we have shown that if the one step distribution of the random walk has polynomial decay,
then even though it is in the domain of attraction of the Gaussian law, it will fluctuate on a

scale larger than O(N 1−ε) for arbitrarily small ε > 0, which is much larger than N
3
4 . This

is a remarkable difference between the long-range model and the short-range model, which
is comparable to the nearest-neighbor model.

Acknowledgments I would like to acknowledge support from AcRF Tier 1 Grant R-146-000-220-112. I am
deeply indebted to my supervisor Prof. Rongfeng Sun, who introduced this topic to me, provided suggestions
and discussed with me and I am grateful to my classmate Jinjiong Yu for helpful discussion. I also want to
thank two referees, whose comments help me add the super-α-stable result and correct some mistakes, which
improve an early version of this paper.

References

1. Alexander, K.S., Yıldırım, G.: Directed polymers in a random environment with a defect line. Electron.
J. Probab. 20(6), 1–20 (2015)

2. Atlagh, M., Weber, M.: Le théoreme central limite presque sûr. Expos. Math. 18(2), 097–126 (2000)
3. Berger, Q., Lacoin,H.: The high-temperature behavior for the directed polymer in dimension 1+2.Annales

de l’Institut Henri Poincaré
4. Berger, Q., Lacoin, H.: Pinning on a defect line: characterization of marginal disorder relevance and sharp

asymptotics for the critical point shift. J. Inst. Math. Jussieu (to appear)
5. Bezerra, S., Tindel, S., Viens, F., et al.: Superdiffusivity for a brownian polymer in a continuous gaussian

environment. Ann. Probab. 36(5), 1642–1675 (2008)
6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2013)
7. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, vol. 27. Cambridge University Press,

Cambridge (1989)

123



350 R. Wei

8. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math.
Phys. 123(4), 529–534 (1989)

9. F. Caravenna, R. Sun, and N. Zygouras. Polynomial chaos and scaling limits of disordered systems. J.
Eur. Math. Soc. (2015, to appear)

10. Caravenna, F., Toninelli, F.L., Torri, N.: Universality for the pinning model in the weak coupling regime.
arXiv:1505.04927 (2015)

11. Carmona, P., Hu, Y.: On the partition function of a directed polymer in a gaussian random environment.
Probab. Theory Relat. Fields 124(3), 431–457 (2002)

12. Chung, K.L.: A Course in Probability Theory. Academic Press, New York (2001)
13. Comets, F.: Weak disorder for low dimensional polymers: the model of stable laws. Markov Process.

Relat. Fields 13(4), 681–696 (2007)
14. Comets, F., Shiga, T., Yoshida, N.: Directed polymers in a random environment: path localization and

strong disorder. Bernoulli 9(4), 705–723 (2003)
15. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment:

a review. Adv. Stud. Pure Math. 39, 115–142 (2004)
16. Comets, F., Vargas, V.: Majorizing multiplicative cascades for directed polymers in random media. Alea

2, 267–277 (2006)
17. Comets, F., Yoshida, N.: Directed polymers in random environment are diffusive at weak disorder. Ann.

Probab. 34, 1746–1770 (2006)
18. Hollander, F.D.: Random Polymers: École dÉté de Probabilités de Saint-Flour XXXVII–2007. Springer,

Berlin (2009)
19. Dudley, R.M.: Real Analysis and Probability, vol. 74. Cambridge University Press, Cambridge (2002)
20. Giacomin, G., Toninelli, F., Lacoin, H.: Marginal relevance of disorder for pinning models. Commun.

Pure Appl. Math. 63(2), 233–265 (2010)
21. Gut, A.: Probability: A Graduate Course. Springer Science & Business Media, New York (2012)
22. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press, New York (2014)
23. Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in ising systems due to random

impurities. Phys. Rev. Lett. 54(25), 2708 (1985)
24. Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52(3–4),

609–626 (1988)
25. Jonsson, F.: Almost sure central limit theory. Department of Mathematics, Project Report, Uppsala Uni-

versity (2007)
26. Lacoin, H.: New bounds for the free energy of directed polymers in dimension 1+1 and 1+2. Commun.

Math. Phys. 294(2), 471–503 (2010)
27. Lacoin, H.: Influence of spatial correlation for directed polymers. Ann. Probab. 39(1), 139–175 (2011)
28. Miura, M., Tawara, Y., Tsuchida, K.: Strong and weak disorder for lévy directed polymers in random

environment. Stoch. Anal. Appl. 26(5), 1000–1012 (2008)
29. Newell, G., Gnedenko, B.V., Kolmogorov, A.N., Chung, K.L.: Limit distributions for sums of independent

random variables. JSTOR (1955)
30. Resnick, S.I.: Point processes, regular variation and weak convergence. Adv. Appl. Probab. 18, 66–138

(1986)
31. Toninelli, F.L.: Coarse graining, fractionalmoments and the critical slope of randomcopolymers. Electron.

J. Probab 14(20), 531–547 (2009)
32. Vargas, V.: Strong localization andmacroscopic atoms for directed polymers. Probab. TheoryRelat. Fields

138(3–4), 391–410 (2007)

123

http://arxiv.org/abs/1505.04927

	On the Long-Range Directed Polymer Model
	Abstract
	1 Introduction
	1.1 Long-Range Directed Polymer Model
	1.2 Main Results
	1.3 Organization and Strategy of the Proof

	2 Proof of Theorem 1.9
	2.1 Useful Preliminary Result
	2.2 End of the Proof of Theorem 1.9

	3 Proof of Proposition 1.13 and Theorem 1.15
	3.1 Proof of Proposition 1.13
	3.2 Proof of Theorem 1.15

	4 Proof of Theorem 1.17
	5 Proof of Theorem 1.18
	Acknowledgments
	References




