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Abstract We illustrate how the notion of asymptotic coupling provides a flexible and intu-
itive framework for proving the uniqueness of invariant measures for a variety of stochastic
partial differential equations whose deterministic counterpart possesses a finite number of
determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in
detail. In the later situation we also present a simple framework for establishing the existence
of invariant measures when the usual approach relying on the Krylov–Bogolyubov procedure
and compactness fails.
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1 Introduction

The goal of this work is to give a simple exposition, distillation and refinement of methods
developed over the last decade and a half to analyze ergodicity in nonlinear stochastic PDEs
with an additive forcing. To this end,we detail a number of exampleswhich highlight different
difficulties and help clarify the domain of applicability and flexibility of the core ideas. For
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each example, we provide a simple proof of unique ergodicity with a presentation which
should be adaptable to other settings. Though our calculations often lay the ground work for
stronger results such as convergence of transition measures, exponential mixing or spectral
gaps, we resist the urge to expand the discussions here, and opt to make the uniqueness
arguments as simple as possible. Although some of our examples are close to those in the
existing literature, many are not and require an involved analysis to develop the required PDE
estimates. For all the situations considered we present a relatively succinct proof of unique
ergodicity, particularly when compared with existing expositions.

The feature common to all of our examples is the existence of a finite number of deter-
mining modes in the spirit of [24] and a sufficiently rich stochastic forcing structure to
ensure that all determining modes are directly excited. There has been a larger body of work
in these directions in recent years beginning with [3,39,64] and continuing with [17,21,31–
35,40,41,52,53,65] to name a few. Very roughly speaking, the presence of noise terms allows
for the ‘coupling’ of all the relevant large scales of motion, which contain any unstable direc-
tions. The small scales, which are then provably stable, contract asymptotically in time.

The heart of the calculations presented below are very much in the spirit of [6,53,64]
although the approach here does not pass through a reduction to an equation with memory.
In that sense our presentation is closer to [52,53] which decomposes the future starting from
an initial condition and proves a coupling along a subset of futures of positive probability.
There however, the analysis was complicated by an attempt at generality and the desire to
prove exponential convergence. In [31], which followed [52], the control used to produce the
coupling drove all of themodes together only asymptotically.1 In particular, [31] did not force
the large scales (“lowmodes”) to match exactly as was the case in previous works. While this
leads to slightly weaker results, it can be conceptually simpler in some settings. In parallel to
these works, two other groups developed their own takes on these same questions. One vein
of work is contained in [3,4] and the other beginning in [39,40] is nicely summarized in [41].

We proceed through the lens of a variation on the ‘asymptotic coupling’ framework from
[35] (and equally in the spirit of [31,53,64]). This formalism allows us to highlight the
underlying flexibility and the wide range applicability of the above mentioned body of work
by treating a number of interesting systems simply and without extraneous complications
dictated byprevious abstract frameworks. Indeed, the examples selected belowwere chosen to
underline a variety of commonly encountered difficultieswhich can be surmounted, including
the lack of exponential moments of critical norms, the lack of well-posedness in the space
where the convergence analysis is performed, or, as in the case of weakly damped hyperbolic
systems, situations in which the dissipative mechanism is uniform across (spatial) scales.

Our first example is the most classical: the 2-D Navier–Stokes equations (NDEs) posed
on a domain. Here the presence of boundaries prevents a closed vorticity-formulation and
hence interferes with higher order constraints of motion resulting in a ‘critical’ problem.
This criticality makes attaining the gradient bounds on theMarkov-semigroup difficult. Such
bounds are central to the infinitesimal approach of Asymptotic Strong Feller developed in
[32,34] to address the hypoelliptic setting. As currently presented, the Asymptotic Strong
Feller approach does not localize easily. However the analysis presented in [52,53,64] was
localized from the start, through the estimates used there do not apply to this setting directly
due to the lack of a vorticity formulation. Our presentation is simplified in comparison to
previous works, producing an immediate and transparent proof of unique ergodicity.

We then turn to address two other interesting dissipative equations arising from fluid
systems which have received much less attention in the SPDE literature. The first example

1 [31] also coined the term ‘asymptotic coupling’ which was later defined more generally in [34].
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is provided by the so-called hydrostatic Navier–Stokes (or simplified Primitive Equations)
arising for fluids spanning geophysical scales and therefore of interest in climate and weather
applications. See [59] and Sect. 3.2 for extensive further references. Our second example pro-
vides a streamlined analysis of the so-called fractionally dissipative stochastic Euler equation,
introduced recently in [8]. The theme shared by these examples is that the non-linearity is
relatively stronger than the dissipative structure in comparison to the 2D NSEs. This leads
to a situation in which the continuous dependence of solutions, and hence the Foias-Prodi
estimate, is tractable only when carried out in a weaker topology. As made explicit in Corol-
lary 2.1 (see below), performing this convergence analysis in a weaker topology is sufficient
to provide a suitable asymptotic coupling.

The last two examples are illustrative of the difficulties encountered in studying weakly
damped hyperbolic systems. The first equation is a variation of the damped Euler–Voigt equa-
tion, a hyperbolic regularization of the Euler equations. As a second example we address the
weakly damped stochastic Sine–Gordon equations.Here rather than using the parabolic struc-
ture to produce an effective large damping at small scales, higher-order regularity constraints
restrict the strength of transfer to high frequencies and allow us to obtain stronger control on
the non-linear terms.

Regarding the Euler–Voigt equation, it is notable that the existence of solutions also
requires special consideration. For this stage in the analysis, the lack of any obvious finite
time smoothing mechanism or alternatively of any invariant quantities in spaces more regular
than those for which the equations are well posed suggest that the usual approach relying on
the Krylov–Bogolyubov procedure and compactness may fail. To address this difficulty we
show how a limiting procedure involving a parabolic regularization can be used to guarantee
the existence of stationary states. This stage of the analysis makes use of another abstract
criteria which we think will prove useful in other future applications in hyperbolic SPDEs.

Note that in all of these exampleswewill focus our attention exclusively on the “effectively
elliptic” settingwhere all of the “determiningmodes”, or “presumptively unstable directions”,
are directly forced stochastically. The hypoelliptic setting, where most of the determining
modes are not directly forced and the drift is used to spread the noise to all of the determining
modes, remains unexplored for all of the examples we discuss and will almost certainly
require significantly more machinery, though much is provided by [32,34]. We emphasize
that while we may extend our analysis in many of the examples to obtain convergence rates
or possibly spectral gaps, we only explicitly address the question of unique ergodicity here
in order to keep the exposition minimal and to maintain the broadest range of applicability.
That being said, the analysis here lays the framework for obtaining convergence rates using
the ideas outlined in [31,52,53].

The manuscript is organized as follows. In Sect. 2, we recall the asymptotic coupling
framework and introduce several refinements which were not made explicit in previous work.
We conclude this section by recalling a specific form the Girsanov theorem which will be
crucially used to apply the abstract asymptotic coupling in each of the examples and give a
general recipe for building asymptotic couplings. In Sect. 3, we successively treat each of
the SPDE examples described, proving the existence and uniqueness of an ergodic invariant
measure in each case. The appendix is devoted to proving some abstract lemmata which
we use to prove the existence of an invariant measure for Euler–Voigt system considered in
Sect. 3.4.
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2 An Abstract Framework for Unique Ergodicity

Wenow introduce the simple abstract frameworkwhichwe use for proving unique ergodicity.
After briefly recalling some generalities about Markov processes and ergodic theory we
present a refinement of the asymptotic coupling arguments developed in [35]. The approach
is very much in the spirit of the general results given in this previous work but the packaging
here is a little different. We emphasize the exact formulation we will use and make explicit
the ability to establish convergence in a different topology than the one associated to the
space on which the Markov dynamics are defined (see Corollary 2.1 and Remark 2.2 below).
Furthermore, to better illuminate the connection of these ideas to those in [38], we weaken
the condition for convergence at infinity to one only involving time averages (even if we will
not make direct use of this generalization here). The proof given is essentially the same one
given in [35] which in turn closely mirrors the proofs in [64] and [53].

In the following section, we also recall a form of the Girsanov theorem which is crucially
used to apply our abstract results. In particular this formulation is convenient for establishing
the absolute continuity on path space required by the abstract framework. In the final section,
we giving a general recipe for building an asymptotic coupling leveraging the discussions of
the preceding two sections.

2.1 Generalities

Let P be a family of Markov transition kernels on a Polish space H with a metric ρ. Given a
bounded, measurable function φ : H → R, we define a new function Pφ on H by Pφ(u) =∫

H φ(v)P(u, dv). For any probability measure ν on H , we take ν P to be the probability
measure on H defined according to ν P(A) = ∫

H P(u, A)ν(du) for anymeasurable A ⊂ H .2

Then ν Pφ is simply the expected value of φ evaluated on one step of the Markov chain
generated by P when the initial condition is distributed as ν.

An invariant measure for P is a probability measure μ which is a fixed point for P in
that μ = μP . Since starting the Markov chain with an initial condition distributed as μ

produces a stationary sequence of random variables, μ is also called a stationary measure for
the Markov Chain generated by P . An invariant measure μ is ergodic if any set A which is
invariant for P relative to μ has μ(A) ∈ {0, 1}.3 Notice that the set I of invariant measures
for P is a convex set. It is classical that an invariant measure is ergodic if and only if it is an
extremal point of I. Furthermore, different ergodic measures are mutually singular. In this
sense, the ergodic invariant measures form the “atoms” for the set of invariant measures as
each invariant measure can be written as a convex combination of ergodic invariant measures
and the ergodic invariant measures cannot be decomposed as a convex combination of other
invariant measures.

We now lift any probability measure μ on H to a canonical probability measure on the
pathspace representing trajectories of the Markov process generated by P . We denote the
pathspace over H by

HN = {u : N → H} = {u = (u1, u2, . . . ) : ui ∈ H}
2 These left and right actions of P are consistent with the case when H is the finite set {1, . . . , n} and P
is a n × n matrix given by Pik = P( transition i → j). Then φ ∈ R

n is a column vector and ν ∈ R
n is a

row vector whose nonnegative entries sum to one. As such, Pφ and ν P have the standard meaning given my
matrix multiplication.
3 Recall that a measurable set A is invariant for P relative to μ if P(u, A) = 1 for μ-a.e. u ∈ A and if
P(u, A) = 0 for μ-a.e. u /∈ A. More compactly this say that A is invariant for P relative μ if P11A = 11A ,
μ-a.e.
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622 N. Glatt-Holtz et al.

where N = {1, 2, . . . }. The suspension of any initial measure ν on H to HN is denoted by
ν PN. This pathspacemeasure ν PN is defined in the standardway from theKolmogorov exten-
sion theorem by defining the probability of the cylinder sets {U1 ∈ A1, U2 ∈ A2, . . . , Un ∈
An} where n is arbitrary. Here An are any measurable subsets of H whereas U0 is distributed
as ν and given Uk−1, the Uk’s are distributed as P(Uk−1, · ). The measure ν PN should be
understood as the measure on the present state and the entire future trajectory of the Markov
chain P starting from the initial distribution ν. The canonical action of the left shift map
θ(u) j = u j+1 on HN corresponds to taking one step under P . Hence under θ , the state
tomorrow becomes the state today and all other states shift one day closer to the present.

In general a measure M on HN is invariant under the shift θ if Mθ−1 = M , where Mθ−1

is defined by Mθ−1(A) = M(θ−1(A)) for all measurable A ⊂ HN. 4 As in the previous
setting, an invariant measure is ergodic if and only if it is an extremal point of the set of
invariant measures for θ on HN.

The notions of ergodic and extremal measures on H and HN are self consistent in that
the following statements are equivalent:

(i) a measure μ on H is an ergodic invariant measure for P
(ii) μPN is an ergodic invariant measure on HN relative to the shift map θ

(iii) μPN is an extremal point for the set of θ -invariant measures on HN

(iv) μ is an extremal point for the set of P-invariant measures on H .

For further discussion of all these ergodic theory generalities see [18,23,36]

2.2 Equivalent Asymptotic Couplings and Unique Ergodicity

We say that a probability measure � on HN × HN is an asymptotically equivalent coupling
of two measures M1 and M2 on HN if ��−1

i � Mi , for i = 1, 2, where �1(u, v) = u and
�2(u, v) = v . We will write C̃(M1, M2) for the set of all such asymptotically equivalent
couplings.

Given any bounded (measurable) function φ : H → R, we define D̄φ ⊂ HN × HN by

D̄φ :=
{
(u, v) ∈ HN × HN : lim

n→∞
1

n

n∑

k=1

(φ(uk) − φ(vk)) = 0
}

. (2.1)

On the other hand a set G of bounded, real-valued, measurable functions on H is said to
determine measures if, whenever μ1, μ2 ∈ Pr(H) are such that

∫
φdμ1 = ∫

φdμ2 for all
φ ∈ G, then μ1 = μ2.

Theorem 2.1 Let G : H → R be collection of functions which determines measures. Assume
that there exists a measurable H0 ⊂ H such that for any (u0, v0) ∈ H0 × H0 and any φ ∈ G
there exists a � = �(u0, v0, φ) ∈ C̃(δu0 PN, δv0 PN) such that �(D̄φ) > 0. Then there exist
at most one ergodic invariant measure μ for P with μ(H0) > 0. In particular if H0 = H,
then there exists at most one, and hence ergodic, invariant measure.

Remark 2.1 At first glance it might be surprising that equivalence is sufficient to determine
the long time statistics. However since the Birkhoff Ergodic theorem implies that time aver-
ages along typical trajectories converge to the integral against an ergodic invariant measure,
one only needs to draw typical infinite trajectories. From this it is clear that absolutely con-
tinuity on the entire future trajectory indexed by N is critical and can not be replaced with

4 Here ameasurable set A is invariant for θ relative to a probabilitymeasure M on HN if θ−1(A) = A mod M ,
which is to say the symmetric difference θ−1(A)	A is measure zero for M .
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absolutely continuity on {1, 2, . . . , N } for all N ∈ N. Since absolutely continuous measures
have the same paths, only with different weights, we see that absolutely continuous measures
are sufficient to ensure one is drawing typical trajectories.

Proof of Theorem 2.1 Assume that there are two ergodic invariant probability measures μ

and ν on H such that both μ(H0) > 0 and ν(H0) > 0. Fix any φ ∈ G. By Birkhoff’s ergodic
theorem there exists sets Aμ

φ , Aν
φ ⊂ HN such that μPN(Aμ

φ ) = ν PN(Aν
φ) = 1 and such that

if u ∈ Aμ
φ and v ∈ Aν

φ then

lim
n→∞

1

n

n∑

k=1

φ(uk) =
∫

H
φdμ and lim

n→∞
1

n

n∑

k=1

φ(vk) =
∫

H
φdν . (2.2)

Define Aμ
φ (u0) = {ũ = (ũ0, ũ1, . . .) ∈ Aμ

φ : ũ0 = u0} and Aν
φ(u0) analogously. Notice that

δu0 PN(Aμ
φ (u0)) = δu0 PN(Aμ

φ ) for any u0 ∈ H . Hence, by Fubini’s theorem we have, for

μ-a.e. u0 ∈ H , that δu0 PN(Aμ
φ (u0)) = δu0 PN(Aμ

φ ) = 1, and that δv0 PN(Aν
φ(v0)) = 1 for

ν-a.e. v0 ∈ H .
Since we have presumed that H0 is non-trivial relative to both μ, ν, we may now select a

pair of initial conditionsu0, v0 ∈ H0 such that δu0 PN(Aμ
φ (u0)) = δv0 PN(Aν

φ(v0)) = 1. Let�

be themeasure in C̃(δu0 PN, δv0 PN)given in the assumptions of theTheoremcorresponding to
these initial points u0, v0 and the test functionφ. Since��−1

1 � δu0 PN and��−1
2 � δv0 PN,

where again �1(u, v) = u and �2(u, v) = v, we have that �(Aμ
φ (u0) × Aν

φ(v0)) = 1.

Defining D̄′
φ = D̄φ ∩ (

Aμ
φ (u0) × Aν

φ(v0)
)
, one has �(D̄′

φ) > 0 and thus we infer that D̄′
φ

is nonempty. Observe that for any (u, v) ∈ D̄′
φ , in view of (2.1), (2.2) and the definition of

D̄′
φ , we have

∫

H
φ dμ −

∫

H
φ dν = lim

n→∞
1

n

n∑

k=1

(φ(uk) − φ(vn)) = 0.

Since φ was an arbitrary function in G, whichwas assumed to be sufficiently rich to determine
measures, we conclude that μ1 = μ2 and the proof is complete. 	


We next provide a simple corollary of Theorem 2.1 to be used directly in the examples
provided below. To this end, we consider a possibly different distance ρ̃ on H and define

Dρ̃ :=
{

(u, v) ∈ HN × HN : lim
n→∞ ρ̃(un, vn) = 0

}

.

We also consider the class of test functions

Gρ̃ =
{

φ ∈ Cb(H) : sup
u �=v

|φ(u) − φ(v)|
ρ̃(u, v)

< ∞
}

.

The corollary is as follows:

Corollary 2.1 Suppose that Gρ̃ determines measures on (H, ρ) and assume that Dρ̃ is a
measurable subset of HN × HN. If H0 ⊂ H is a measurable set such that for each pair
u0, v0 ∈ H0 there exists an element � ∈ C̃(δu0 PN, δv0 PN) with �(Dρ̃ ) > 0, then there exists
at most one ergodic invariant measure μ with μ(H0) > 0.

Proof With the observation that

Dρ̃ ⊂ D̄φ for every φ ∈ Gρ̃ ,

the desired result follows immediately from Theorem 2.1. 	
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624 N. Glatt-Holtz et al.

Remark 2.2 The conditions imposed on ρ̃, Gρ̃ and Dρ̃ in Corollary 2.1 are easily verified in
practice. For instance, consider H = H1(Td) with the usual topology and take ρ̃(u0, v0) =
‖u0−v0‖L2 , the L2(Td) distance. Since ρ̃ is continuous on H1 we see that Dρ is measurable.
Furthermore, a simple mollification argument allows one to show that Gρ̃ is determining.
Similar considerations will allow us to directly apply Corollary 2.1 in each of the examples
below.

2.3 Girsanov’s Theorem Through a Particular Lens

Let {Wk(t) : k = 1, . . . , d} be a collection of independent one-dimensional Brownian
motions and define W (t) = (W1(t), . . . , Wd(t)). Take h(t) to be an R

d -valued stochastic
process adapted to the filtration generated by W (t) such that

∫ ∞

0
|h(s)|2ds ≤ C almost surely, (2.3)

for some finite (deterministic) constant C . Now define W̃ by

W̃ (t) = W (t) +
∫ t

0
h(s)ds

for all t ≥ 0. The following result is a restating of the Girsanov theorem (see e.g. [60] for
further details):

Theorem 2.2 In the above setting, the law of W̃ is equivalent to that of W as measures on
C([0,∞),Rd). Furthermore if 
 is a measurable map from C([0,∞),Rd) into HN for some
Polish space H, then the law of 
(W̃ ) is equivalent to that of 
(W ) as measures on HN.

Remark 2.3 The assumption given in (2.3) is an overkill, as Girsanov’s Theorem holds under
much less restrictive assumptions. However, in all of our applications (2.3) will hold.

2.4 A Recipe for Asymptotic Coupling

We now outline the basic logic used to in all of our examples. To avoid technicalities arising
in the infinite dimensional setting such as the domain of various operators, we begin with
an example in finite dimensions. However, as we will see, these arguments directly apply to
infinite dimensional SPDEs when all of the objects involved are well defined.

Consider the stochastic differential equation given by

dx = F(x)dt + σdW with x(0) = x0 ∈ R
d , (2.4)

where F : Rd → R
d , W is an n-dimensional BrownianMotion, and σ is a d ×n-dimensional

matrix chosen so that (2.4) has global solutions. Fundamentally, the question of unique
ergodicity turns on showing that (2.4) and a second copy

dy = F(y)dt + σdW̃ with y(0) = y0 ∈ R
d , (2.5)

have identical long time statistics evenwhen x0 �= y0. Sincewe are only interested in showing
that the marginals of (x, y) have the same statistics, we are free to couple the two Brownian
motions (W, W̃ ) in anywaywewish, building in correlations which are useful in the analysis.
The essence of Corollary 2.1 is that we can even replace W̃ with another process as long as
it is absolutely continuous with respect to a Brownian Motion on the infinite time horizon,
namely C([0,∞);Rn). To this end, we use ỹ to represent a solution to (2.5) driven by this
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modified process W̃ , and take W̃ to be a Brownian Motion shifted with a feedback control
G which depends on the current state of (x, ỹ) and is designed to send |x(t) − ỹ(t)| → 0
as t → ∞. One could consider more general adapted controls (or even non-adapted as in
[32,34]5 ) but this class has proven sufficient for all of the problems we present here. In
addition to the control G, we will introduce a stopping time τ which will turn off the control
should (x(t), ỹ(t)) separate too much. This stopping time ensures that (2.3) holds and hence
guarantees that our shifted process ỹ is absolutely continuous with respect to y.

In light of this discussion, consider the system

dx = F(x)dt + σdW with x(0) = x0 ∈ R
d ,

d ỹ = F(ỹ)dt + G(x, ỹ)11t≤τ dt + σdW with y(0) = ỹ0 ∈ R
d ,

where G : Rd × R
d → R

d is our feedback control and τ is a stopping time adapted to the
filtration generated by {(xs, ỹs) : s ≤ t}. We assume that G and τ are such that the system
(x, ỹ) has global solutions. Furthermore, we assume that everything is constructed so that
P(τ = ∞) > 0 and |x(t) − ỹ(t)| → 0 on the event {τ = ∞}. If in addition,

∫ ∞

0
|σ−1G(x(t), ỹ(t))|211t≤τ dt < C a.s., (2.6)

for some deterministic (finite) C > 0, then by Theorem 2.2

W̃ (t) = W (t) +
∫ t

0
σ−1G(x(s), ỹ(s))11s≤τ ds

is equivalent to aBrownianmotion onC([0,∞),Rn). Implicit in equation (2.6) is the assump-
tion that the range of G is contained in the range of σ .6 Moreover, by Theorem 2.2 and (2.6),
we also see that ỹ is equivalent to the solution of (2.5) on C([0,∞),Rd). In summary, if
Pφ(x0) = Eφ(x(t, x0)) for some t > 0 where x(t, x0) solves (2.4) (starting from the initial
condition x0 ∈ R

d ), H0 = H = R
d , and δx0 PN is defined as in Sect. 2.1, then the law

induced by {(x(nt, x0), ỹ(nt, y0)) : n = 1, 2 . . . } is an element of C̃(δx0 PN, δỹ0 PN) which
charges D|·| with positive probability. And hence by Corollary 2.1, we know that (2.4) has
at most one invariant measure.

The question remains, which G and τ do we choose? There is no unique choice. One
only needs to ensure that the range of G is contained in the range of σ , that (2.6) holds,
and that |x(t) − ỹ(t)| → 0 on the event τ = ∞. Typically, we will take τ = inf{t > 0 :∫ t
0 |σ−1G(xs, ỹs)|2ds ≥ R} for some R > 0. To explore this question informally, we define

ρ(t) = x(t) − ỹ(t) and observe that

d

dt
ρ(t) = F(x) − F(ỹ) − G(x, ỹ)11t≤τ ,

provided σ−1G is well defined on the interval [0, τ ]. If σ is invertible, one choice is to take
G(x, ỹ) = F(x) − F(ỹ) + λ(x − ỹ) which results in

d

dt
ρ(t) = −λρ

5 Of course, non-adapted controlsmake things significantlymore technical. In particular, the classicalGirsanov
Theorem can not be used.
6 σ need not be invertible. As long as the range of G is contained in the range of σ then σ−1 can be taken to
be the pseudo-inverse.
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for t < τ , so that |x(t) − ỹ(t)| clearly decays towards zero on [0, τ ) with a rate independent
of R. Furthermore, (2.6) holds provided F does not grow too fast and has some Hölder
regularity, and τ = ∞ almost surely provided R > 0 is chosen sufficiently large. Often
taking G(x, ỹ) = λ(x − ỹ) is sufficient for a λ large enough (see [31,35] for example). If
only part of F leads to instability, say �F for some projection �, then we can often take
G(x, ỹ) = �(F(x) − F(ỹ)) + λ�(x − ỹ) or even simply G(x, ỹ) = λ�(x − ỹ), and only
assume that the range of σ contains the range of �. This loosening of the assumptions on
the range of σ is one of the principle advantages of this point of view for SPDEs.7

3 Examples

3.1 Navier–Stokes on a Domain

Our first example is the 2D stochastic Navier–Stokes equation

du + u · ∇udt = (ν	u − ∇π + f)dt +
d∑

k=1

σkdW k, ∇ · u = 0, (3.1)

for an unknown velocity field u = (u1, u2) and pressure π evolving on a bounded domain
D ⊂ R

2 where we assume that ∂D is smooth and u satisfies the no-slip (Dirichlet) boundary
condition

u|∂D = 0. (3.2)

Here, in addition to the given vector fields σ j ∈ L2(D) and a corresponding collection of
W = (W1, . . . , Wd) independent standard Brownian motions, the dynamics of (3.1)–(3.2)
are also driven by a fixed, deterministic f ∈ L2(D). We refer to e.g. [7,62] and to [1] for
further details on themathematical setting of theNavier–Stokes equations in the deterministic
and stochastic frameworks respectively.

Remark 3.1 If either f or any of the σk are not divergence free, they can be replaced with their
projection onto the divergence free vector fields without changing the dynamics as this only
changes the pressure which acts as a Lagrange multiplier in this setting, keeping solutions
on the space of divergence free vector fields.

3.1.1 Mathematical Preliminaries

We consider (3.1) on the phase space

H := {u ∈ L2(D)2 : ∇ · u = 0,u · n = 0},
where n is the outward normal to ∂D. Denote PL as the orthogonal projection of L2(D)2

onto H . The space of vector fields whose gradients are integrable in L2(D)2 are also relevant
and we define V := {u ∈ H1(D)2 : ∇ · u = 0,u|∂D = 0}. We denote the norms associated
to H and V respectively as | · | and ‖ · ‖.
7 Taking G(x, ỹ) = F(x) − F(ỹ) + λ

x−ỹ
|x−ỹ| leads to ρ dynamics which converge to zero in finite time.

This can be used to prove convergence in total variation norm. However it is less useful when one takes
G(x, ỹ) = �(F(x) − F(ỹ) + λ

x−ỹ
|x−ỹ| ) as the remaining degrees of freedom only contract asymptotically at

t → ∞. Nonetheless, such a control can simplify the convergence analysis in some cases.
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The Stokes operator is defined as Au = −PL	u, for any vector field u ∈ V ∩ H2(D)2.
Since A is self-adjoint with a compact inverse we infer that A admits an increasing sequence
of eigenvalues λk ∼ k diverging to infinity with the corresponding eigenvectors ek forming
a complete orthonormal basis for H . We denote by PN and QN the projection onto HN =
span{ek : k = 1, . . . N } and its orthogonal complement, respectively. Recall the generalized
Poincaré inequalities

‖PNu‖2 ≤ λN |PNu|2 |QNu|2 ≤ λ−1
N ‖QNu‖2 (3.3)

hold for all sufficiently smooth u and any N ≥ 1.
Recall that for all u0 ∈ H and any fixed, finite d , (3.1) admits a unique solution

u( · ) = u( · ,u0) ∈ L2(�; C([0,∞); H) ∩ L2
loc([0,∞); V )),

which depends continuously in H on u0 for each t ≥ 0. As such the transition functions
Pt (A,u0) = P(u(t,u0) ∈ A) are well defined for any u0 ∈ H , t ≥ 0 and any Borel subset
A of H , and define an associated Feller Markov semigroup {Pt }t≥0 on Cb(H).

We next recall some basic energy estimates for (3.1). Applying the Itō lemma to (3.1) we
find that

d|u|2 + 2ν‖u‖2dt = 2〈f,u〉dt + |σ |2dt + 2〈σ,u〉dW

where, for any v ∈ H , 〈σ, v〉 : R
d → R is the linear operator defined by 〈σ, v〉w :=∑d

k=1〈σk, v〉wk ,w ∈ R
d and |σ |2 := ∑n

k=1 |σk |2L2 is the mean instantaneous energy injected

into the system per unit time. Thus, for R ≥ 0, using exponential martingale estimates8 we
infer that, for α = α(|σ |, ν) = ν

|σ |2 , independent of R

P

(
sup
t≥0

|u(t)|2 + ν

∫ t

0
‖u‖2ds − (|σ |2 + |A− 1

2 f |2
2ν )t − |u0|2 ≥ R

)
≤ exp(−αR). (3.5)

Note that (3.5) implies that time averaged measures νT (A) = 1
T

∫ T
0 P(u(s) ∈ A)ds are

a tight sequence since V is compactly embedding into H . Since u0 �→ Eφ(u(t,u0)) is
continuous and bounded in L2 whenever φ is (namely the Markov semigroup is Feller), the
Krylov–Bogolyubov theorem implies the collection of invariant measures corresponding to
(3.1) is non-empty.

3.1.2 Asymptotic Coupling Arguments

Having now reviewed the basic mathematical setting of (3.1), the uniqueness of invariant
measures corresponding to (3.1) is established using the asymptotic coupling framework
introduced above. Fix any u0, ũ0 ∈ H and consider u( · ) = u( · ,u0) solving (3.1) with
initial data u0, and ũ solving

dũ + ũ · ∇ũdt = (ν	ũ + 11{τK >t}λPN (u − ũ)

8 Recall that for any continuous martingale {M(t)}t≥0,

P

(

sup
t≥0

M(t) − γ 〈M〉(t) ≥ R

)

≤ e−γ R (3.4)

for any R, γ > 0 where 〈M〉(t) is the quadratic variation of M(t).
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+∇π̃ + f )dt +
d∑

k=1

σkdW k, ∇ · ũ = 0, ũ(0) = ũ0, (3.6)

where

τK := inf
t≥0

{∫ t

0
|PN (u − ũ)|2ds ≥ K

}

and K , λ > 0 are fixed positive parameters which we will specify below as a function of
u0, ũ0. In the context of the framework presented in Sect. 2.4, G(u, ũ) = λPN (u − ũ) and
the stopping time is τK .

We now make the connection with Corollary 2.1 explicit. Fix T > 0 and take tn = nT .
Define the measures m and n on HN to be, respectively, the laws of the random vectors

(
u(t1, ũ0),u(t2, ũ0), . . .

)
and

(
ũ(t1, ũ0), ũ(t2, ũ0), . . .

)
.

The Girsanov theorem as presented in Theorem 2.2, implies that n is mutually absolutely
continuous with respect to m. Indeed, let h(t) = 11{τK >t}λσ−1PN (u − ũ), where σ−1 is the
psuedo-inverse of σ . Thanks to the definition of the stopping times τK , we have, for any
choice of λ > 0 and K > 0, that h satisfies the condition (2.3). We again emphasize that
the equivalence of the measuresm and n holds on the entire infinite trajectory sampled at the
times {T, 2T, . . . }which is significantly stronger than absolute continuity for the trajectories
sampled at finite number of times {T, 2T, . . . , nT } for all n > 0.

We now define the measure � on the space HN × HN as the law of the random vector
(
u(tn,u0), ũ(tn, ũ0)

)
n∈N .

In view of the discussions in the previous paragraph, for any λ, K > 0, � is an element of
C̃(δu0 PN, δv0 PN). The uniqueness of invariant measures corresponding to (3.1) therefore
follows immediately from Corollary 2.1 if, for each u0, ũ0 ∈ H , we can find a corresponding
λ, K > 0 (which may well depend on u0, ũ0 ∈ H ) such that u(t) − ũ(t) → 0 in H as
t → ∞ on a set of nontrivial probability.

Take v = u − ũ and q = π − π̃ . We have that

∂tv − ν	v + 11{τK >t}λPNv = −∇q − v · ∇u − ũ · ∇v, ∇ · v = 0 . (3.7)

Taking λ = νλN , the Poincaré inequality, (3.3) implies that

11{τK >t}λN ν|PNv|2 + ν‖v‖2 ≥ 11{τK >t}(νλN |PNv|2 + ν‖QNv‖2) ≥ 11{τK >t}νλN |v|2 .

(3.8)

Multiplying (3.7) with v, integrating over D, using that v,u, ũ are all divergence free and
(3.8) we obtain

d

dt
|v|2 + ν‖v‖2 + λN ν11{τK >t}|v|2 ≤

∣
∣
∣
∣

∫

D
v · ∇u · vdx

∣
∣
∣
∣ ≤ C |v|‖v‖‖u‖ ≤ ν‖v‖2 + C1|v|2‖u‖2

where C1 depends only on ν and universal quantities from Sobolev embedding. Rearranging
and using the Grönwall lemma we obtain

|v(t)|2 ≤ |u0 − ũ0|2 exp
(

− λN νt + C1

∫ t

0
‖u‖2ds

)
, (3.9)

for any t ∈ [0, τK ].
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Now, for any R > 0, consider the sets

ER :=
{

sup
t≥0

(
|u(t)|2 + ν

∫ t

0
‖u‖2ds − (|σ |2 + |A− 1

2 f |2
2ν )t − |u0|2

)
< R

}

.

Notice that, in view of (3.5), these sets have nonzero probability for every R = R(ν, |σ |) > 0
sufficiently large. On the other hand, on ER , (3.9) implies

|v(t)|2 ≤ |u0 − ũ0|2 exp
(C1

ν
(R + |u0|2)

)
exp

(
− λN νt + C1

ν
(|σ |2 + |A− 1

2 f |2
4ν )t

)
.

for each t ∈ [0, τK ]. Note carefully that the constant C1 is independent of N , λ, K > 0 and
u0, ũ0. By picking N such that

νλN

2
− C1

ν

(|σ |2 + |A− 1
2 f |2
2ν

)
> 0,

we infer, for λ = νλN ,

|v(t)|2 ≤ |u0 − ũ0|2 exp
(C1

ν
(R + |u0|2)

)
exp

(
− λ

2
t
)
, (3.10)

on ER for every t ∈ [0, τK ] and where we again emphasize that C1 does not depend on K in
(3.6). By now choosing K = K (ν, |σ |2) sufficiently large we are forced to conclude from
(3.10) that {τK = ∞} ⊃ ER and hence on the non-trivial set ER we infer that

u(t) − ũ(t) −→ 0 in H.

as t → ∞.
In conclusion we have proven that

Proposition 3.1 For every ν > 0 there exists N = N (ν, |σ |2, |A− 1
2 f |) such that if

Range(σ ) ⊃ HN = PN H then (3.1) has a unique ergodic invariant measure.

Remark 3.2 It is worth emphasizing here that the above analysis shows that unique ergodicity
results can be easily obtained in the presence of a deterministic forcing. This observation
applies to each of the examples considered below, but we omit its explicit inclusion for brevity
and clarity of presentation. Of course, the addition of a body forcing f in the hypo-elliptic
setting can bring extra complications, primarily in proving topological irreducibility which
is often required to prove unique ergodicity.

3.2 2D Hydrostatic Navier–Stokes Equations

We next consider a stochastic version of the 2D Hydrostatic Naver-Stokes equations

du + (u∂x u + w∂zu + ∂x p − ν	u)dt =
d∑

k=1

σkdW k (3.11)

∂z p = 0 (3.12)

∂x u + ∂zw = 0, (3.13)

for an unknown velocity field (u, w) and pressure p evolving on the domain D = (0, L) ×
(−h, 0). The boundary ∂D is decomposed into its vertical sides �v = [0, L] × {0,−h} and
lateral sides �l = {0, L} × [−h, 0], and we impose the boundary conditions

u = 0 on �l , ∂zu = w = 0 on �v. (3.14)
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The system is driven by a collection of independent Brownian motions (W 1, . . . , W d) acting
in directions σk ∈ L2(D) to be specified below.

The hydrostatic Navier–Stokes equations serve as a simple mathematical model which
maintains some of the crucial anisotropic structure present in the more involved Primitive
equations of the oceans and atmosphere. This latter system forms the numerical core of
sophisticated general circulation models used in climate and weather prediction [58,63].
The Primitive equations have been studied extensively in the mathematics literature in both
deterministic [12,37,44,49–51,59] and stochastic [13,14,19,25–28] settings.

Note that, in contrast to the Navier–Stokes equations, global existence of strong solutions
to the Primitive equations has been proven in 3D [12,37,44], but the uniqueness of weak
solutions in 2-D remains an outstanding open problem. Indeed, for the hydrostatic Navier–
Stokes equations,we rely on H1 well-posedness results [27,29] to provide suitableMarkovian
dynamics associated to (3.11)–(3.13). The existence of invariant measures follows from
H2-moment bounds (see [25] and (3.21) below) and the Krylov-Bogoliubov Theorem. For
uniqueness of the invariant measure we invoke another asymptotic coupling argument. In
comparison to the previous example, this argument will invoke the flexibility of Corollary
2.1 by proving convergence in the (weaker) L2 topology. The more involved cases of other
boundary conditions, couplings with proxies for density (temperature and salinity), and three
space dimensions, will be pursued in future work.

3.2.1 The Mathematical Setting

We begin with some observations about the structure of (3.11)–(3.13) when subject to (3.14).
Firstly notice that, in view of (3.13) and (3.14):

∫ 0
−h ∂x u(x, z)dz = − ∫ 0

−h ∂zw(x, z)dz = 0
for x ∈ [0, L]. It follows that

∫ 0

−h
u(x, z)dz ≡ 0.

The divergence free condition (3.13) coupled with (3.14) also allows us to write w as a
functional of u, namely w(x, z) = − ∫ z

−h ∂x u(x, z̄)dz̄. In the geophysical literature w is
referred to as a ‘diagnostic variable’ and we define

w(u)(x, z) =
∫ z

−h
∂x u(x, z̄)dz̄

Consider the spaces

H =
{

u ∈ L2(D) :
∫ 0

−h
udz ≡ 0

}

and V =
{

u ∈ H1(D) :
∫ 0

−h
udz ≡ 0, u|�l = 0

}

and the projection operator PH : L2(D) → H ,

PH (v) = v − 1

h

∫ 0

−h
vdz.

As in the previous example we use | · | and ‖ · ‖ to denote the L2 and H1 norms, respectively.
We define A = −PH 	, and identify its domain as

D(A) =
{

u ∈ H2(D) :
∫ 0

−h
udz ≡ 0, u|�l = 0, ∂zu|�v = 0

}

.
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Then for fixed u0 ∈ V , and σk ∈ D(A) with finite d (or sufficently fast decay in ‖σk‖H2 ),
the system (3.11)–(3.14) possesses a unique solution

u(·) = u(·, u0) ∈ L2(�; C([0,∞); V ) ∩ L2
loc([0,∞); D(A))),

which depends continuously on u0 ∈ V ; see [27,29]. Moreover, the dynamics of (3.11)–
(3.14) generate a Feller Markov semigroup {Pt }t≥0 on Cb(V ).

3.2.2 A Priori Estimates

We proceed to establish some estimates on solutions needed for existence and uniqueness
of invariant measures. The energy estimate is standard. In view of (3.13) the pressure and
nonlinear terms drop and Itō’s lemma gives

d|u|2 + 2ν‖u‖2dt = |σ |2dt + 〈u, σ 〉dW. (3.15)

From the exponential martingale bound, cf. (3.4), we infer that

P

(

sup
t≥0

|u(t)|2 + ν

∫ t

0
‖u‖2ds − |σ |2t − |u0|2 > R

)

≤ e−γ R, (3.16)

for every R > 0 where γ = γ (ν, |σ |2) does not depend on R or the number of forced modes.
We will also require bounds on ‖∂zu‖, and appeal to the ‘vorticity form’ of (3.11)–(3.14)

defined by taking ∂z of (3.11). In view of (3.12) the pressure p is independent of z, and we
obtain

d∂zu + ∂z(u∂x u + w∂zu)dt − ν	∂zudt =
N∑

k=1

∂zσkdW k .

Notice that in view of the boundary conditions (3.14), − ∫
	∂zu∂zudxdz = ‖∂zu‖2, and

moreover we have the cancelation
∫

∂z(u∂x u + w∂zu)∂zudxdz =
∫

(∂zu∂x u + u∂xzu + ∂zw∂zu + w∂zzu)∂zudxdz

= 1

2

∫
(∂x u(∂zu)2 + ∂zw(∂zu)2)dxdz = 0.

Combining these observations we obtain

d|∂zu|2 + 2ν‖∂zu‖2dt = |∂zσ |2 + 2〈∂zσ, ∂zu〉dW, (3.17)

and hence, for every R > 0,

P

(

sup
t≥0

|∂zu(t)|2 + ν

∫ t

0
‖∂zu‖2ds − |∂zσ |2t − |∂zu0|2 > R

)

≤ e−γ R, (3.18)

for some γ = γ (ν, |∂σ |) > 0 independent of R.

3.2.3 Existence of Invariant States

We can now prove existence of invariant measures for (3.11)–(3.13) by considering the
evolution equation for ‖u‖2. Here we follow an approach similar to [25]. By applying the Itō
lemma to a Galerkin truncation of (3.11)–(3.14), and passing to a limit, we obtain

d‖u‖2 + ν‖u‖2H2dt ≤ C(|∂x u|4 + |∂x u|2|∂zu|‖∂zu‖) + ‖σ‖2dt + 2〈σ, u〉H1dW. (3.19)
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Here we have used the anisotropic estimate

∣
∣
∣

∫ L

0

∫ 0

−h
w(v)∂zu1u2dzdx

∣
∣
∣ ≤ h1/2

∫ L

0
|∂xv|L2

z
|∂zu1|L2

z
|u2|L2

z
dx

≤ h1/2|u2||∂xv|
(

sup
x∈[0,L]

∫ 0

−h
(∂zu1)

2dz

)1/2

≤ h1/2|u2||∂xv|
(

sup
x∈[0,L]

∫ x

0
∂x̄

∫ 0

−h
(∂zu1)

2dzdx̄

)1/2

≤ 2h1/2|u2||∂xv||∂zu1|1/2‖∂zu1‖1/2 (3.20)

for all suitably regular v, u1, u2. With (3.20) and the Sobolev embedding of H1/3 into L3 in
dimension 2 we infer that

∣
∣
∣
∣

∫
(u∂x u + w∂zu)∂xx udxdz

∣
∣
∣
∣ ≤ C(|∂x u|3L3 + |∂x u|‖∂x u‖|∂zu|1/2‖∂zu‖1/2)
≤ C(|∂x u|2‖∂x u‖ + |∂x u|‖∂x u‖|∂zu|1/2‖∂zu‖1/2)
≤ ν‖u‖2H2 + C(|∂x u|4 + |∂x u|2|∂zu|‖∂zu‖),

and from here the derivation of (3.19) is straightforward. From (3.19) we now compute
log(1 + ‖u‖2) and observe

d log(1 + ‖u‖2) + ν
‖u‖2

H2

1 + ‖u‖2 dt ≤ C(‖u‖2 + |∂zu|‖∂zu‖)dt + ‖σ‖2dt + 2
〈σ, u〉H1

1 + ‖u‖2 dW.

Hence from this bound and (3.15), (3.17) we infer
∫ T

0
E‖u‖H2ds ≤ 1

2
E

∫ T

0

(

1 + ‖u‖2 + ‖u‖2
H2

1 + ‖u‖2
)

ds ≤ C(T + 1), (3.21)

for a constant C = C(‖u0‖2, ‖σ‖2, ν) independent of T > 0. The existence of invari-
ant measures associated to (3.11)–(3.13) now follows by applying the Krylov–Bogolyubov
Theorem.

3.2.4 Asymptotic Coupling Arguments

Similar to the previous example and again following Sect. 2.4, we fix any u0, ũ0 ∈ V and
consider u a solution of (3.11)–(3.13) starting from u0 and ũ solving the same system with
an additional control G given as

G(u, ũ) = λ11{τK >t} PN (u − ũ)dt, with τK := inf
t≥0

{∫ t

0
‖PN (u − ũ)‖2ds ≥ K

}

,

and starting from ũ0; cf. (3.6). Once again, the parameters λ, K > 0 and N will be specified
below. As above ũ is subject to a Girsonov shift of the form σ−1G and Theorem 2.2 applies.

Subtracting ũ from u and taking v = u − ũ, q = p − p̃ we obtain

∂tv − ν	v + λ11{τK >t} PN v = −ũ∂xv − w(ũ)∂zv − v∂x u − w(v)∂zu − ∂x q.

It follows, as in (3.8) for suitably large N , that on [0, τK ]
1

2

d

dt
|v|2 + ν

2
‖v‖2 + λ|v|2 ≤

∣
∣
∣
∣

∫
(v∂x u + w(v)∂zu)vdxdz

∣
∣
∣
∣
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≤ C |v|‖v‖(‖u‖ + |∂zu|1/2‖∂zu‖1/2),
where we have applied the anisotropic estimate (3.20) in the last line. On the interval [0, τK ]
this gives

|v(t)|2 ≤ exp

(

−2λt + C
∫ t

0
(‖u‖2 + |∂zu|‖∂zu‖)ds

)

|v(0)|2, (3.22)

where, to emphasize, the constantC is independent of K . Thus, following the strategy of Sect.
3.1 above, we can combine (3.16), (3.18) and (3.22) to apply Corollary 2.1 with H0 = H1(D)

and ρ̃ corresponding to the L2(D)-topology. We have proven the following result:

Proposition 3.2 For every ν > 0 there exists N = N (ν, |σ |2, |∂zσ |2) such that if
Range(σ ) ⊃ VN = PN V then (3.11)–(3.13) has a unique ergodic invariant measure.

3.3 The Fractionally Dissipative Euler Model

Our next example considers the fractionally dissipative Euler equations introduced in [8].
This system takes the form

dξ + (�γ ξ + u · ∇ξ)dt =
d∑

k=1

σkdW k, u = K ∗ ξ, (3.23)

for any unknown vorticity field ξ . Here �γ = (−	)γ/2 is the fractional Laplacian which we
consider for any γ ∈ (0, 2], K is the Biot-Savart kernel, so that ∇⊥ · u = ξ and ∇ · u = 0,
and we suppose that (3.23) is posed on the periodic box T

2 = [−π, π]2. Conditions on the
forced directions σk will be specified below.

In [8] it was demonstrated that with “effectively elliptic” forcing, the system (3.23) pos-
sesses a unique ergodic invariant measure, and in the course of the proof, significant effort
was made to establish arbitrary order polynomial moment bounds in high order Sobolev
spaces (Hr for any r > 2). These bounds are interesting and hold significance for questions
regarding the rate of convergence to the invariant measure. However, we show here that much
less effort is required if one simply wishes to prove existence and uniqueness of the invari-
ant measure. As in the last example, the argument is significantly simplified by invoking
Corollary 2.1 and proving convergence in the L2-topology.

3.3.1 Mathematical Preliminaries

We consider (3.23) in its velocity formulation

du + (�γ u + u · ∇u + ∇π)dt =
d∑

k=1

ρkdW k, ∇ · u = 0. (3.24)

Here the unknowns are the velocity field u = (u1, u2) and pressure π both posed on the
periodic box T2. One may show using a Galerkin regularization argument, that for any r > 2
and u0 ∈ Hr , there exists a unique u = u( · ,u0) solving (3.24), with u ∈ C([0,∞), Hr ).
As in [8] we may infer that for any such r > 2 and any t > 0, u(t,un

0) → u(t,u0) almost
surely in Hr whenever un

0 → u0 in Hr . It follows that the transition function Pt (u0, A) =
P(u(t,u0) ∈ A), u0 ∈ Hr , A ∈ B(Hr ) defines a Feller Markovian semigroup.
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To prove the existence of an invariant measure for (3.23) we argue as follows. Applying
�r for any r > 2 to (3.24) and then integrating we find that

d‖u‖2Hr + 2‖u‖2
Hr+ γ

2
dt = −2

∫

T2
(�r (u · ∇u) − u · ∇�ru)�rudx

+‖ρ‖2Hr dt + 2〈ρ,u〉Hr dW,

where we have used that u is divergence free to eliminate the pressure and rewrite the
nonlinear terms. In order to estimate these nonlinear terms we recall the Kenig-Ponce-Vega
commutator estimate

‖�s( f · ∇g) − f · ∇�s g‖L p ≤ C(‖�s f ‖Lq1 ‖∇g‖Lr1 + ‖∇ f ‖Lq2 ‖�s g‖Lr2 ),

valid for any suitably regular f, g, s > 1 and any trios p, qi , ri with 1 < p, qi , ri < ∞ and
p−1 = q−1

j + r−1
j , j = 1, 2; see [56]. With this bound we obtain

∣
∣
∣
∣

∫

T2
(�r (u · ∇u) − u · ∇�ru)�rudx

∣
∣
∣
∣ ≤ C‖∇u‖L4/δ‖�ru‖L4/(2−δ) |�ru|, (3.25)

valid for any δ ∈ [0, 1). Next recall the Gagliardo-Nirenberg interpolation inequality

‖�α f ‖L p ≤ C‖ f ‖θ
Lq ‖�β f ‖1−θ

Lm ,

which holds for any 1 < p, q, m ≤ ∞, 0 < α < β < ∞ such that

1

p
= θ

q
+ 1 − θ

m
, where θ = 1 − α

β
.

Taking p = 4/(2− δ), m = 2, α = r − 1 and β = r − 1+ γ
2 in this inequality we infer that

for every δ <
2γ

γ+2r−2 ,

‖�ru‖L4/(2−δ) ≤ C‖∇u‖
γ

2r−2+γ

Lq |�r+ γ
2 u| 2r−2

2r−2+γ with q = 4γ

2γ − δ(γ + 2r − 2)
.

Hence by choosing δ = γ
γ+2r−2 and combining this bound with (3.25) we find

∣
∣
∣
∣

∫

T2
(�r (u · ∇u) − u · ∇�ru)�rudx

∣
∣
∣
∣ ≤ C‖ξ‖L4/δ‖ξ‖

γ
2r−2+γ

L4 ‖u‖
2r−2

2r−2+γ

Hr+ γ
2

‖u‖Hr

≤ C‖ξ‖2L4/δ‖u‖2
(

2r−2+γ
2r−2+2γ

)

Hr + ‖u‖2
Hr+ γ

2
.

With this estimate in mind we now compute a differential for (1+ ‖u‖2Hr )
κ with κ ∈ (0, 1).

This yields

d(1 + ‖u‖2Hr )
κ +κ‖u‖2

Hr+ γ
2
(1+‖u‖2Hr )

κ−1dt ≤ C‖ξ‖2L4/δ‖u‖2
(

2r−2+γ
2r−2+2γ

)

Hr (1 + ‖u‖2Hr )
κ−1dt

+ κ‖ρ‖2Hr (1 + ‖u‖2Hr )
κ−1dt + 2κ〈ρ,u〉Hr (1 + ‖u‖2Hr )

κ−1dW.

By taking κ = γ
2r−2+2γ we infer

∫ t

0
E‖u‖κ+1

Hr+ γ
2

ds ≤ C

(

(1 + ‖u0‖2Hr )
κ +

∫ t

0
(‖ρ‖2Hr + E‖ξ‖2L4/δ + 1)ds

)

, (3.26)
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for each t ≥ 0 where the constant C = C(γ, r) is independent of u0 and t . The existence of
an invariant measure now follows once we establish a suitable bound on ξ in L p(T2) for any
p ≥ 2.

To this end, we next observe that from (3.23) we have for any p ≥ 2,

d‖ξ‖p
L p + p

∫

T2
�γ ξξ p−1dxdt = p(p − 1)

2

d∑

k=1

∫
σ 2

k ξ p−2dxdt+ p
d∑

k=1

∫
σkξ

p−1dxdW k .

Recalling the nonlinear Poincaré inequality from [8]

p
∫

T2
�γ ξξ p−1dx ≥ 1

Cγ

‖ξ‖p
L p ,

where the constant Cγ depends only on γ > 0, we infer

d‖ξ‖p
L p + 1

Cγ

‖ξ‖p
L p dt ≤ p(p − 1)

2
‖σ‖2L p ‖ξ‖p−2

L p dt + p
d∑

k=1

∫
σkξ

p−1dxdW k . (3.27)

The existence of an (ergodic) invariant measure follows immediately by combining (3.27)
with (3.26).

3.3.2 Asymptotic Coupling Arguments

Fix any u0, ũ0 ∈ Hr and let u = u( · ,u0) be the corresponding solution of (3.23) while we
suppose that ũ solves

dũ + (�γ ũ − 11τK >tλPN (u − ũ) + ũ · ∇ũ + ∇π̃)dt =
d∑

k=1

σkdW, ũ(0) = ũ0,

where

τK := inf
t≥0

{∫ t

0
|PN (u − ũ)|2ds ≥ K

}

.

The parameters K , λ > 0 are to be determined presently. It is easy to see from Theorem 2.2
that, for any choice of λ, K > 0, the law of ũ is absolutely continuous with respect to the
solution u(·, ũ0) of (3.23) corresponding to ũ0. As previous examples, unique ergodicity
follows from Corollary 2.1 once we can find some λ, K > 0 (where K may depend on
u0, ũ0) such that u(t)− ũ(t) → 0 in L2(T2) on a set of non-trivial measure. Take v = u− ũ
and q = π − π̃ . We find

∂tv + �γ v + 11τK >tλPNv + v · ∇u + ũ · ∇v + ∇q = 0.

Hence, using that ũ is divergence free and the generalized Poincaré inequality (similarly to
(3.8) above) we have

d

dt
|v|2 + 2λ|v|2 + ‖v‖2Hγ /2 ≤ 2

∣
∣
∣
∣

∫
v · ∇u · vdx

∣
∣
∣
∣

for every t ∈ [0, τK ]. Here λ = λ(N , γ ) can be chosen as large as desired by decreeing the
space HN spanned by the forced modes to be commensurately big. By choosing p = p(γ ) >

0 sufficiently large we infer

2

∣
∣
∣
∣

∫
v · ∇u · vdx

∣
∣
∣
∣ ≤ C‖ξ‖L p |v|‖v‖Hγ /2
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and hence the bound

d

dt
|v|2 + (2λ − C‖ξ‖2L p )|v|2 ≤ 0

holds on [0, τK ]. Grönwall’s inequality implies that, on this same interval [0, τK ],

|v(t)|2 ≤ |v(0)|2 exp ( − 2λt + C
∫ t

0
‖ξ‖2L p ds

)
. (3.28)

Here we again emphasize that the constant C appearing in the exponential depends only on
universal quantities and in particular is independent of K in the definition of τK .

To finally infer the desired contraction from (3.28) we thus need a further bound on the
L p norms of ξ . For this we compute d(1 + ‖ξ‖p

L p )
2/p which with (3.27) yields

d(1 + ‖ξ‖p
L p )

2/p + 2

pCγ

‖ξ‖2L p dt

≤ (p − 1)‖σ‖2L p dt + 2(1 + ‖ξ‖p
L p )

2
p −1

d∑

k=1

∫
σkξ

p−1dxdW k . (3.29)

Observe that the martingale term in the inequality above has a quadratic variation which can
be estimated as

4
∫ t

0
(1 + ‖ξ‖p

L p )
4
p −2

d∑

k=1

( ∫
σkξ

p−1dx

)2

ds

≤ 4
∫ t

0
(1 + ‖ξ‖p

L p )
4
p −2

( ∫ ( d∑

k=1

σ 2
k

)1/2

ξ p−1dx

)2

ds

≤ 4‖σ‖2L p

∫ t

0
(1 + ‖ξ‖p

L p )
2/pds. (3.30)

By now combining (3.29), (3.30) we infer from exponential martingale bounds, (3.4), that

P

(

sup
t≥0

1

pCγ

∫ t

0
‖ξ‖2L p dt − (p + 22/p+2)‖σ‖2L p t ≥ R

)

≤ e−αR, (3.31)

for every R ≥ 0 where α = α(‖σ‖L p , p, γ ) is independent of R and does not depend on the
number of forced modes but only on the norm of ‖σ‖L p .

Combining (3.28) and (3.31) and arguing as in the previous examples we infer that, for
an appropriate choice of K > 0, |v(t)| → 0 on a set of non-trivial measure. In summary we
have proven the following:

Proposition 3.3 The system (3.23) possesses an ergodic invariant measure. When N =
N (‖σ‖Hr , γ ) is sufficiently large and Range(σ ) ⊃ PN Hr this invariant measure is unique.

3.4 The Damped Stochastically Forced Euler–Voigt Model

The next system that we will consider is an inviscid ‘Voigt-type’ regularization (see e.g.
[57] and further references below) of the damped stochastic Euler equations. This example is
significant as, in contrast to the previous equations, it illustrates a case for which the existence
and uniqueness of invariant measures can be demonstrated in the absence of a parabolic
regularization mechanism. In fact both the questions of the existence and the uniqueness of

123



On Unique Ergodicity in Nonlinear Stochastic Partial… 637

the invariant measure leads to interesting new twists in the analysis in comparison to the
previous examples. For the question of existence we make use of an inviscid limit procedure
along with an abstract result presented in Corollary 4.2 in Appendix below.

The governing equations read

du + (γu + uα · ∇uα + ∇ p)dt =
d∑

k=1

σkdW k, u(0) = u0, (3.32)

for some γ > 0 with the unknown vector field u subject to the divergence-free condition
∇ · u = 0 and where the non-linear terms are subject to an α degree regularization

(−	)α/2uα = �αuα = u. (3.33)

We suppose that (3.32) evolves on the periodic box T
n where n = 2, 3. To streamline our

presentation and in view of the fact that damping terms are more natural for two dimensional
flows, our main focus will be on the case n = 2. Here the assumed degree of regularization α

in (3.33) is greater 2/3. This lower bound is a strict inequality for the question of uniqueness.
Note however that the case n = 3 can be addressed by a similar approach when we suppose
that α ≥ 2. See Remark 3.3 at the conclusion of this section for further details.

There is a vast literature around regularizations (or mollifications) of the nonlinear terms
in the Navier–Stokes and Euler equations. In fact, it is notable that such a regularization
procedure was the basis for the first existence results for weak solutions dating back to the
seminal work of Leray, [45]. In the more recent literature a variety of related systems explore
this theme in the context of turbulence closure models, viscoelastic and non-newtonian fluids
and a variety of other applications. See, for example, [9,11,16,22,42,47,48,54,55,57] and
numerous containing references.

3.4.1 A Priori Estimates

We begin by illustrating some a-priori energy estimate for (3.32)–(3.33) which will guide us
in the sequel. Notice that if we apply �−α/2 to (3.32) we obtain from the Itō lemma that

d‖�−α/2u‖2 + 2γ ‖�−α/2u‖2dt = ‖�−α/2σ‖2 + 2〈�−α/2σ,�−α/2u〉dW, (3.34)

and hence exponential martingale bounds imply

P

(

sup
t≥0

(
‖�−α/2u(t)‖2 + γ

∫ t

0
‖�−α/2u‖2ds − ‖�−α/2σ‖2t + ‖�−α/2u0‖2

)
≥ K

)

≤ exp(−cK ),

for each K > 0 and some c = c(‖�−α/2σ‖2, γ ) independent of K .
Next observe that, by taking ξ = curlu, ρ = curl σ , we obtain the vorticity formulation

of (3.32)

dξ + (γ ξ + uα · ∇ξα − ξα · ∇uα)dt =
N∑

k=1

ρkdW k,

In n = 2, our main concern here, the ‘vortex stretching term’ ξα · ∇uα is absent and we
obtain

dξ + (γ ξ + uα · ∇ξα)dt =
N∑

k=1

ρkdW k,
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which, in this two dimensional case, implies

d‖�−α/2ξ‖2 + 2γ ‖�−α/2ξ‖2dt = ‖�−α/2ρ‖2 + 2〈�−α/2ρ,�−α/2ξ 〉dW, (3.35)

and hence yields

P

(

sup
t≥0

(
‖�−α/2ξ(t)‖2 + γ

∫ t

0
‖�−α/2ξ‖2ds − ‖�−α/2ρ‖2t + ‖�−α/2ξ0‖2

)
≥ K

)

≤ exp(−cK ),

for each K > 0 and some c = c(‖�−α/2ρ‖2, γ ) independent of K . From (3.35) we can
further prove that for η = η(‖�−α/2ρ‖2, γ )

E exp(η‖�−α/2ξ(t)‖2) ≤ exp(η(γ −1‖�−α/2ρ‖2 + e−γ t/2‖�−α/2ξ0‖2)) (3.36)

and we also have that

E exp
(
ηγ

∫ t

0
‖�−α/2ξ(t)‖2ds

)
≤ exp(‖�−α/2ρ‖2t + ‖�−α/2ξ0‖2). (3.37)

Note that the constant η appearing in (3.36), (3.37) may be taken to be less than 1.
Suppose that u, ũ solve both (3.32)–(3.33) and take v = u − ũ which satisfies

∂tv + γ v + vα · ∇uα + ũα · ∇vα + ∇q = 0, v(0) = u(0) − ũ(0)

with q the difference of the pressures. We immediately infer that

1

2

d

dt
‖�−α/2v‖2 + γ ‖�−α/2v‖2 = −

∫
vα · ∇uα · vαdx . (3.38)

When α ≥ 2/3 we have 1
3 ≥ 1

2 − α
4 and hence (in n = 2) with the Sobolev imbedding of

Hα/2 ⊂ L3 and basic properties of the Biot-Savart kernel we infer
∣
∣
∣
∣

∫
vα · ∇uα · vαdx

∣
∣
∣
∣ ≤ ‖vα‖2L3‖∇uα‖L3 ≤ C‖�−αv‖2Hα/2‖�−α∇u‖Hα/2

≤ C‖�−αv‖2Hα/2‖�−αξ‖Hα/2 ≤ C‖�−α/2v‖2‖�−α/2ξ‖. (3.39)

3.4.2 Existence and Uniqueness of Solutions and Markov Semigroup

With these observation in hand we turn now to address the well-posedness for (3.32)–(3.33).
The a priori bounds (3.34), (3.35) in combination with (3.38)–(3.39) are the basis of:

Proposition 3.4 Assume that α ≥ 2/3 and consider (3.32) in the case n = 2. Then, for all
u0 ∈ H1−α/2, there exists a unique

u ∈ L2(�; L∞
loc([0,∞); H1−α/2))

evolving continuously in L2 which is an adapted, pathwise solution of (3.32). Taking u(t,u0)
as the unique solution associated to a given u0 ∈ H1−α/2 we have that

u(t,un
0) → u(t,u0) almost surely in theH−α/2 topology

for any sequence {un
0}n≥1 ⊂ H1−α/2 converging in H−α/2.
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The existence of solutions in this class may be established with a standard Faedo-Galerkin
procedure. We omit further details.

Given Proposition 3.4wemay thus define theMarkov transition kernels {Pt }t≥0 associated
to (3.32)–(3.33) as

Pt (u0, A) = P(u(t,u0) ∈ A).

These kernels are Feller in H−α/2 namely, given any φ ∈ Cb(H−α/2), t ≥ 0, Ptφ ∈
Cb(H−α/2).

3.4.3 The Existence of an Invariant Measure (n=2)

Toprove the existence of an invariantmeasurewemakeuse of the abstract results inAppendix.
In the present concrete setting we take V = H1−α/2 and H = H−α/2. It is easy to see that
(by for example taking ρn to be the projection onto Hn , the span of the first n elements of
a sinusoidal basis) these spaces satisfy the conditions imposed on V, H in the Appendix.
Notice moreover that, as we identified in Proposition 3.4 and the surrounding commentary,
the Markov transition kernel associated to (3.32)–(3.33) is defined on V and is readily seen
to be H -Feller.

In order to apply Corollary 4.2 and hence infer the existence of invariant states we now
consider, for each ε > 0, the viscous regularizations of (3.32) given as

duε + (γuε − ε	uε + uε
α · ∇uε

α + ∇ p)dt =
N∑

k=1

σkdW k, ∇ · uε = 0, uε(0) = u0.

(3.40)

As above (3.40) has an associated vorticity form

dξε + (γ ξε − ε	ξε + uε
α · ∇ξε

α)dt =
N∑

k=1

ρkdW k .

For the same reasons as (3.32)–(3.33) these equations define a collections of Markov kernels
{Pε

t }t≥0 for each ε > 0 on V = H1−α/2.
From the Itō lemma we obtain an evolution like (3.35) for ‖�−α/2ξε‖2 but which has the

additional viscous term 2ε‖∇�−α/2ξε‖2dt . We thus obtain, for any t > 0

εE

∫ t

0
‖∇�−α/2ξε‖2ds = εE

∫ t

0
‖�2−α/2uε‖2ds ≤ ‖�1−α/2uε

0‖2 + ‖�1−α/2σ‖2t.

(3.41)

Hence, by applying the Krylov-Bogoliubov averaging procedure we immediately infer, for
all ε strictly positive, that there existence of an invariant με for the Markov semigroup Pε

associated with (3.40). Noting that the bound (3.36) also holds for ξε with all of the constants
independent of ε > 0 and we infer

sup
ε>0

∫
exp(η‖�1−α/2u‖2)dμε(u) ≤ C < ∞. (3.42)

We have thus established the condition (4.2) for the collection of invariant measure for Pε .
The existence now follows once we establish (4.1) in our setting.
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For this purpose fix any initial condition u0 ∈ H1−α/2. Observe that vε = u(t,u0) −
uε(t,u0) satisfies

∂tvε +γ vε + vε
α · ∇uα + uε

α · ∇vε
α + ∇ p + ε	uε = 0, vε(0) = 0. (3.43)

Similarly to above in (3.39),

1

2

d

dt
‖�−α/2vε‖2 + γ ‖�−α/2vε‖2 ≤ C‖�−α/2vε‖2‖�−α/2ξ‖ + ε‖	�−α/2uε‖‖�−α/2vε‖

and hence

1

2

d

dt
‖�−α/2vε‖ ≤ C‖�−α/2vε‖‖�−α/2ξ‖ + ε‖	�−α/2uε‖

which implies

‖�−α/2vε‖ ≤ √
ε exp

(

Ct + ηγ

2

∫ t

0
‖�−α/2ξ‖2ds

) ∫ t

0

√
ε‖∇�−α/2ξε‖ds.

Taking expected values we find

E‖�−α/2vε‖ ≤ √
ε
√

t

(

E exp

(

Ct + ηγ

∫ t

0
‖�−α/2ξ‖2ds

))1/2 (

εE

∫ t

0
‖∇�−α/2ξε‖2ds

)1/2

.

(3.44)

Combining this bound with (3.37) (which holds for solution of (3.40) with constant inde-
pendent of ε > 0) and (3.41) we conclude that

E‖�−α/2(u(t,u0) − uε(t,u0))‖ ≤ √
ε exp(C(t + ‖�1−α/2u0‖2))

for a constant C independent of t, ε and u0. The condition 4.1 now follows and in conclusion
we have that

Proposition 3.5 Assume that α ≥ 2/3 and consider (3.32) in the case n = 2. Then for any
γ > 0 there exists at least one invariant measure μ of (3.32) such that

∫
exp(η‖�1−α/2u‖2)dμ(u) < ∞.

3.4.4 Uniqueness of the Invariant Measure (n=2)

In order to establish the uniqueness of the invariant measure identified in (3.5) fix any u0, ũ0.
We take u = u(t,u0) as the associated solution of (3.32) and consider ũ solving

dũ + (γ ũ + ũα · ∇ũα + ∇ p)dt = λPN (u − ũ)dt11t≤τR dt +
N∑

k=1

σkdW k, ũ(0) = ũ0,

where τR is the stopping time

τR := inf
t≥0

{∫ t

0
λ2‖PN (u − ũ)‖2dt > R

}

.

Here λ, R are parameters to be determined presently. Let v = u − ũ and observe that

∂tv + γ v + uα · ∇vα + vα · ∇uα + ∇ p = −λPNv11t≤τR ,
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so that on the interval [0, τR]
1

2

d

dt
‖�−α/2v‖2 + γ ‖�−α/2v‖2 + λ‖PN �−α/2v‖2 = −

∫
vα · ∇uα · vαdx . (3.45)

We suppose that α > 2/3 so that for some δ = δ(α) > 0 we have that Hα/2−δ ⊂ L3. As
such, cf. (3.39), we have from the inverse poincare inequality that
∣
∣
∣
∣

∫
vα · ∇uα · vαdx

∣
∣
∣
∣

≤ C(‖PN �−αv‖2Hα/2 + ‖QN �−αv‖2Hα/2−δ )‖�−αξ‖Hα/2

≤ λ‖PN �−αv‖2Hα/2 + C

λ
‖�−αv‖2Hα/2‖�−αξ‖2Hα/2 + C

N δ
‖�−αv‖2Hα/2‖�−αξ‖Hα/2 .

(3.46)

Combining this bound with (3.45) and rearranging we find that [0, τR]
1

2

d

dt
‖�−α/2v‖2 + (

γ − C(λ−1 + N−δ)(1 + ‖�−αq‖2Hα/2)
) ‖�−α/2v‖2 ≤ 0

We emphasize that C depends only on quantities coming from Sobolev embedding and
that δ only depends on α. Both quantities are independent of our choice of R > 0. Thus, by
choosing λ and N sufficiently large (depending again only on α, γ , ‖�−α/2ρ‖2 and universal
quantities), we obtain the bound

‖�−α/2v(t ∧ τR)‖2

≤ exp

(

−γ

2
t ∧ τR + γ min{γ, 1}

4max{‖�−α/2ρ‖2, 1}
∫ t∧τR

0
‖�−αξ‖2Hα/2ds

)

‖�−α/2(u0 − ũ0)‖2

This implies that on the set

EK :=
{

sup
t≥0

(

‖�−α/2ξ(t)‖2 + γ

∫ t

0
‖�−α/2ξ‖2ds − (‖�−α/2ρ‖2t + ‖�−α/2ξ0‖2)

)

≤ K

}

we have

‖�−α/2v(t ∧ τR)‖2 ≤ exp
(
−γ

4
t ∧ τR + K + ‖�−α/2ξ0‖2

)
‖�−α/2(u0 − ũ0)‖2.

By now choosing K large enough that P(EK ) > 1/2 and then taking R sufficiently large we
now obtain

Proposition 3.6 Consider (3.32) in the case n = 2. Then for any γ > 0 and any α > 2/3
there exists an N = N (α, γ, ‖�−α/2ρ‖2) such that if HN ⊂ Range(σ ) then (3.32) has at
most one invariant measure.

Remark 3.3 (The Three Dimensional Case) As already mentioned the approach taken here
also yields the existence and uniqueness of invariant measures for (3.32)–(3.33) in dimen-
sional three whenever α ≥ 2. The following modifications of the proof are required primarily
as a consequence of the fact that we are not able tomake use of the vorticity formulation in 3D
as above in (3.35). Firstlywe note thatwe consider solutions u ∈ L2(�; L∞([0,∞); H−α/2).
Taking v to be the difference of two solutions, uniqueness and continuous dependence on
data in H−α/2 follows from the estimate
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∣
∣
∣
∣

∫
vα · ∇uα · vαdx

∣
∣
∣
∣ ≤ ‖∇uα‖‖vα‖2L4 ≤ ‖�−α/2u‖‖�3/4−αv‖2 ≤ ‖�−α/2u‖‖�−α/2v‖2

(3.47)

which we may combine with (3.34) to close (3.38). The estimates leading to the existence
of an invariant measure are also a little different. Here we take V = H−α/2 and H = H−α .
The bounds (3.41) and (3.42) are replaced with

sup
ε>0,t≥1

εE
1

t

∫ t

0
‖�1−α/2uε‖2ds + sup

ε>0

∫
exp(η‖�−α/2u‖2)dμε(u) ≤ C < ∞.

and the convergence uε → u is now carried out in the H−α topology. For the convergence,
taking vε = u − uε , (3.43) leads to

1

2

d

dt
‖�−αvε‖2 + γ ‖�−αvε‖2

≤
∣
∣
∣
∣

∫
(vε

α · ∇uα + uε
α · ∇vε

α)�−2αvεdx

∣
∣
∣
∣ + ε‖	�−αuε‖‖�−αvε‖

≤ C‖�−αvε‖2(‖�−α/2u‖ + ‖�−α/2uε‖) + ε‖�1−α/2uε‖‖�−αvε‖.
so that the convergence required by the abstract condition (4.1) now follows in a similar
fashion to (3.44) above. Finally regarding the uniqueness, the strategy is essentially the same
oncewe notice that (3.47) provides the sub-criticality necessary to replace the estimate (3.46).

3.5 A Damped Nonlinear Wave Equation

Our final example is the damped Sine–Gordon equation which we write formally as

∂t t u + α∂t u − 	u + β sin(u) =
d∑

k=1

σk Ẇ k . (3.48)

Here the unknown u evolves on a bounded domain D ⊂ R
n with smooth boundary and

satisfies the Dirichlet boundary condition u∂D ≡ 0. The parameter α is strictly positive and
β is a given real number. The functions σk on D will be specified below, and Ẇ k represent a
sequence of independent white noise processes. This is written more rigorously as the system
of stochastic partial differential equations

dv + (αv − 	u + β sin(u))dt =
d∑

k=1

σkdW k,
du

dt
= v, (3.49)

which we supplement with the initial condition u(0) = u0, v(0) = v0.
The deterministic Sine–Gordon equation appears in the description of continuous Joseph-

son junctions [46], and has been studied extensively in a variety of contexts [2,5,10,15,20,
30,43,66]. For example, analysis of the existence and finite dimensionality of the attractor
for the deterministic counterpart of (3.48) can be found in [61].

3.5.1 Mathematical Preliminaries

For any given (u0, v0) ∈ X := H1
0 (D) × L2(D) there exists a unique U = (u, v) ∈

L2(�; C([0,∞), X) which is a (weak) solution of (3.49). These solutions U (t) = U (t, U0)

depend continuously on U0 = (u0, v0) ∈ X and hence Ptφ(U0) := Eφ(U (t, U0)) is a Feller
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Markov semigroup acting on Cb(X). Moreover when (u0, v0) ∈ Y := (H2(D) ∩ H1
0 (D)) ×

H1
0 (D) the corresponding solution satisfies U ∈ L2(�; C([0,∞), Y ). In what follows we

will maintain the standing convention that | · | = ‖ · ‖L2 and ‖ · ‖ = ‖ · ‖H1 with all other
norms given explicitly.

The existence of solutions may be established via standard compactness methods starting
from a Galerkin truncation of (3.49) and making use of the following a priori estimates. Take
r = v + εu with ε > 0 to be specified presently. Evidently

dr + (α − ε)rdt = (ε(α − ε)u + 	u − β sin(u)) dt +
d∑

k=1

σkdW k . (3.50)

From the Itō lemma we infer

d|r |2 + 2(α − ε)|r |2dt =
(
2ε(α − ε)〈u, r〉 + 2〈	u, r〉 − 2β〈sin(u), r〉 + |σ |2

)
dt + 2〈σ, r〉dW.

Now since

2〈	u, r〉 = − d

dt
‖u‖2 − 2ε‖u‖2,

we infer that when ε ≤ α/2

d(|r |2 + ‖u‖2) + (α|r |2 + 2ε‖u‖2)dt

≤
(

εα√
λ

‖u‖|r | + 2|β||D|1/2|r | + |σ |2
)

dt + 2〈σ, r〉dW,

where λ = λ(D) is the Poincaré constant. By now choosing

ε := min

{
λ

α
,
α

2
,

√
λ

2

}

, (3.51)

we have that

d(|r |2 + ‖u‖2) + ε
(|r |2 + ‖u‖2) dt ≤

(4|β|2|D|
α

+ |σ |2
)

dt + 2〈σ, r〉dW. (3.52)

and that

1

2
(|v|2 + ‖u‖2) ≤ |r |2 + ‖u‖2 ≤ 2(|v|2 + ‖u‖2). (3.53)

Combining the previous two inequalities and using the exponential Martingale bound, (3.4),
we conclude

P

(

sup
t≥0

[1

2
|v(t)|2 + ‖u(t)‖2 + ε

4

∫ t

0

(|v(s)|2 + ‖u(s)‖2) ds

−
(
4|β|2|D|

α
+ |σ |2

)

t − 2
(|v0|2 + ‖u0‖2

) ]
≥ K

)

≤ e−γ K ,

for every K > 0 where γ = γ (|σ |, α) > 0 is independent of K and of the solution
U = (u, v).

In order to prove the existence of an invariant measure for {Pt }t≥0 we next establish
suitable bounds for U = (u, v) in Y = (H2(D) ∩ H1

0 (D)) × H1
0 (D). Denote −	 with
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Dirchlet boundary conditions as A. Applying A1/2 to (3.50) and then invoking the Itō lemma
we obtain

d‖r‖2 + 2(α − ε)‖r‖2dt

= (
2ε(α − ε)〈A1/2u, A1/2r〉 − 2〈	u,	r〉 − 2β〈A1/2 sin(u), A1/2r〉 + ‖σ‖2) dt

+ 2〈A1/2σ, A1/2r〉dW,

and hence estimating as above and imposing the same condition on ε we find

d(‖r‖2 + |Au|2) + ε(‖r‖2 + |Au|2)dt ≤
(

‖σ‖2 + 4|β|2
α

‖u‖2
)

dt + 2〈A1/2σ, A1/2r〉dW.

(3.54)

Combining (3.54) and (3.52) and noting that, similarly to (3.53), ‖r‖2 + ‖u‖2
H2 ≤ 2(‖v‖2 +

‖u‖2
H2) we now infer

∫ T

0
E(‖v(t)‖2 + ‖u(t)‖2H2)dt ≤ C

( ∫ T

0
(E‖u(t)‖2 + 1)dt

)

≤ CT,

for any T > 0 when u0 = v0 ≡ 0. Here the constant C = C(σ, β, α,D) but is independent
of T . The existence of an ergodic invariant measure μ ∈ Pr(X) for (3.49) now follows from
the Krylov–Bogolyubov theorem.

3.5.2 Asymptotic Coupling Arguments

To establish the uniqueness of invariant measures for (3.49) we fix arbitrary U0, Ũ0 ∈ X =
H1
0 (D) × L2(D). Take U = (u, v) to be the solution of (3.49) corresponding to U0 and let

Ũ = (ũ, ṽ) be the solution of

d ṽ + (αṽ − 	ũ + β sin(ũ) − β11τK >t PN (sin(u) − sin(ũ)))dt =
∑

k

σkdW k,
d

dt
ũ = ṽ

(3.55)

where ũ(0) = ũ0, ṽ(0) = ṽ0, and

τK := inf
t≥0

{∫ t

0
|u − ũ|2ds ≥ K

}

.

In the framework of Sect. 2.4, we have taken G(u, ũ) = PN (sin(u) − sin(ũ))) rather than
λPN (u − ũ) as in the preceding sections. It follows that h(t) = 11τK >tσ

−1β PN (sin(u) −
sin(ũ)) is a continuous adapted process in R

N which satisfies the Novikov condition (2.3).
Taking w = u − ũ and subtracting (3.55) from (3.49) we obtain

∂t tw + α∂tw − 	w = β(sin(ũ) − sin(u)) − 11τK >tβ PN (sin(ũ) − sin(u)).

Modifying slightly the method of previous examples, uniqueness of the invariant measure
will follow from showing that for N , K > 0 sufficiently large, τK = ∞ almost surely, and
moreover

|∂tw(t)|2 + ‖w(t)‖2 → 0 as t → ∞.
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To this end, we again pursue the strategy leading to (3.52), (3.54) and introduce y = ∂tw+εw

with ε as in (3.51). Similarly to (3.50) above y satisfies

∂t y + (α − ε)y − 	w = ε(α − ε)w + β(sin(ũ) − sin(u)).

This equation can be projected to low and high frequencies, giving

∂t PN y + (α − ε)PN y − 	PN w = ε(α − ε)PN w + 11τK ≤tβ PN (sin(ũ) − sin(u)).

∂t QN y + (α − ε)QN y − 	QN w = ε(α − ε)QN w + βQN (sin(ũ) − sin(u)).

Multiplying these expressions by y, and integrating over D, when t < τK this gives

d

dt
(|PN y|2 + ‖PN w‖2) + ε(|PN y|2 + ‖PN w‖2) ≤ 0,

d

dt
(|QN y|2 + ‖QN w‖2) + ε(|QN y|2 + ‖QN w‖2) ≤ β〈QN (sin(ũ) − sin(u)), QN y〉.

By Grönwall’s inequality

(|PN y|2 + ‖PN w‖2)(t ∧ τK ) ≤ e−εt∧τK (|PN y0|2 + ‖PN w0‖2), (3.56)

and using the inverse Poincaré inequality, taking N = N (β, ε) sufficiently large, we find

d

dt
(|QN y|2 + ‖QN w‖2) + ε(|QN y|2 + ‖QN w‖2)
≤ |β||w||QN y| ≤ |β||PN w||QN y| + |β||QN w||QN y|
≤ ε

4
|QN y|2 + Cε |β|2|PN w|2 + |β|

λN
‖QN w‖|QN y|

≤ ε

2
(|QN y|2 + ‖QN w‖2) + Cε |β|2|PN w|2.

Applying Grönwall once more and then making use of (3.56) we find that for for t < τK ,

(|QN y|2 + ‖QN w‖2)(t) ≤ e− ε
2 t (|QN y0|2 + ‖QN w0‖2) + Cε |β|2

∫ t

0
e− ε

2 (t−s)|PN w(s)|2ds

≤ e− ε
2 t (|QN y0|2 + ‖QN w0‖2) + C̃ε |β|2e− ε

2 t (|PN y0|2 + ‖PN w0‖2).
Combining the estimates on the high and low modes,

(|y|2 + ‖w‖2)(t ∧ τK )

≤ e− ε
2 t∧τK

(
(e− ε

2 t∧τK + C̃ε |β|2)(|PN y0|2 + ‖PN w0‖2) + |QN y0|2 + ‖QN w0‖2
)

,

and we conclude that τK = ∞ almost surely for K sufficiently large. Moreover, due to (3.53)
the convergence |∂tw|2 + ‖w‖2 ≤ 2(|y|2 + ‖w‖2) → 0 is obtained, almost surely.

In summary we have proven the following result

Proposition 3.7 For every α > 0, β ∈ R and N ≥ 0 (3.49) possesses an ergodic invariant
measure μ. Moreover for each α > 0 and β ∈ R there exists an N = N (α, |β|) such that if
Range(σ ) ⊃ PN L2(D), then μ is unique.
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Appendix: Existence of Invariant Measures by a Limiting Procedure

We now present some absotract results which are used above to infer the existence of an
invariant measure via an approximation procedure relying on invariant measures for a collec-
tion of regularized systems. It was used in Sect. 3.4.3 to prove the existence of an invariant
measure.

Let (H, ‖ · ‖H ), (V, ‖ · ‖V ) be two separable Banach spaces. The associated Borel σ -
algebras are denoted as B(H) and B(V ) respectively. We suppose that V is continuously
and compactly embedded in H . Moreover we assume that there exists continuous functions
ρn : H → V for n ≥ 1 such that

lim
n→∞ ‖ρn(u)‖V =

{
‖u‖V for u ∈ V

∞ for u ∈ H \ V .

Notice that, under these circumstances, B(V ) ⊂ B(H) and moreover that A ∩ V ∈ B(V )

for any A ∈ B(H). We can therefore extend any Borel measure μ on V to a measure μE

on H by setting μE (A) = μ(A ∩ V ) and hence we identify Pr(V ) ⊂ Pr(H). This natural
extension will be made without further comment in what follows.

By appropriately restricting the domain of elements φ ∈ Cb(H) to V we have that
Cb(H) ⊂ Cb(V ). Similarly Lip(H) ⊂ Lip(V ), etc. Furthermore, under the given conditions
on H and V , Cb(H)∩Lip(H) determines measures in Pr(V ) namely if

∫
V φ dμ = ∫

V φ dν

for all φ ∈ Cb(H) ∩ Lip(H) then μ = ν.
On V we consider a Markov transition kernel P , which is assumed to be Feller in H , that

is to say P maps Cb(H) to itself. We also suppose that {Pε}ε>0 is a sequence of Markov
transition kernels (again defined on V ) such that, for any φ ∈ Cb(H)∩Lip(H), and R > 0,

lim
ε→0

sup
u∈BR(V )

|Pεφ(u) − Pφ(u)| = 0, (4.1)

where BR(V ) is the ball of radius R in V .

Lemma 4.1 In the above setting, let {με}ε>0 be a sequence of probability measures on
V . Assume that there is an increasing continuous function ψ : [0,∞) → [0,∞) with
ψ(r) → ∞ as r → ∞ and a finite constant C0 > 0 so that

sup
ε>0

∫
ψ(‖u‖V )dμε ≤ C0. (4.2)

Then there exists a probability measure μ, supported on V , with
∫

ψ(‖u‖V )dμ(u) ≤ C0 such
that (up to a subsequence) με Pε converges weakly in H to μP that is, for all φ ∈ Cb(H),

lim
ε→0

με Pεφ = μPφ (4.3)

Proof of Lemma 4.1 From our assumption we know that

με(ψ(‖u‖V ) ≥ R) ≤ C0/ψ(R) (4.4)

for all ε > 0. We infer that the family of measures {με}ε>0 is tight on H and thus that there
exists a measure μ on H such that μεn converges weakly in H to μ for some decreasing
subsequence εn → 0. For k, m ≥ 1 define fk,m ∈ Cb(H) as fk,m(u) := ψ(‖ρm(u)‖V ) ∧ k.
Weak convergence in H implies that

∫
fk,mdμεn → ∫

fk,mdμ ≤ C0 as n → ∞ for each
fixed k, m. Fatou’s lemma then implies that

∫
ψ(‖u‖V )dμ(u) ≤ lim

k,m→∞

∫
fk,m(u)dμ(u) ≤ C0
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and in particular that μ(V ) = 1.
We now turn to demonstrate (4.3). Observe that, for any φ ∈ Cb(H) and any ε > 0,

∣
∣με Pεφ − μPφ

∣
∣ ≤ ∣

∣με Pεφ − με Pφ
∣
∣ + ∣

∣με Pφ − μPφ
∣
∣ (4.5)

Taking ε = εn , the first term is bounded as
∣
∣μεn Pεn φ − μεn Pφ

∣
∣ ≤ sup

u∈BS(V )

|Pεn φ(u) − Pφ(u)| + 2 sup
u

|φ(u)| μεn (BS(V )c) (4.6)

for any S > 0. Combining (4.5), (4.6) with (4.1), (4.4), using that μεn converges weakly in
H and that Pεφ ∈ Cb(H) we infer (4.3), completing the proof. 	


This produces the following corollary.

Corollary 4.2 In the above setting, if in addition we assume that, for every ε > 0, με is an
invariant measure for Pε then the limiting measure μ is an invariant measure of P.

Proof By the above result we may pick εn → 0 such that μεn and μεn Pεn converge weakly
in H to μ and μP respectively. However since μεn Pεn = μεn we also have that μεn Pεn

converges weakly in H to μ. Hence we conclude that μP = μ which is means the μ is an
invariant measure for P . 	
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