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Abstract We extend the duality of Kipnis et al. (J Stat Phys 27:65–74, 1982) to inhomo-
geneous lattice gas systems where either the components have different degrees of freedom
or the rate of interaction depends on the spatial location. Then the dual process is applied to
prove local equilibrium in the hydrodynamic limit for some inhomogeneous high dimensional
systems and in the nonequilibrium steady state for one dimensional systems with arbitrary
inhomogeneity.

Keywords Nonequilibrium steady state · Local thermodynamic equilibrium ·
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1 Introduction

Describing the emergence of local equilibrium in systems forced out of equilibrium is one
of the main challenges of nonequilibrium statistical mechanics. Most mathematical works
concern stochastic interacting particle systems as they are generally more tractable than the
deterministic ones. Despite the big amount of recent work in this field, little is known for
systems with spatial inhomogeneity.

The present paper extends the classical duality result of Kipnis et al. [15] to inhomoge-
neous systems, where the inhomogeneity means that either (A) the components of the system
have different degrees of freedom or (B) the interaction rate between the components depends
on their location. The dual process is roughly speaking a collection of biased randomwalkers
that interact with one another once their distance is not bigger than 1, and are completely
independent otherwise. We leverage the dual process to prove the existence of local equilib-
rium in systems forced out of equilibrium under various assumptions. Some of these results
were announced in [17].
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1.1 Informal Description

To fix notation, we denote by �(α, c) the probability distribution with density xα−1 exp(−x/c)
cα�(α)

for x > 0, where α > 0 is the shape parameter and c > 0 is the scale parameter (� is the
usual Gamma function). The kth moment of the Gamma distribution is

∫ ∞

0

xk+α−1 exp(−x/c)

cα�(α)
dx = ck�(α + k)

�(α)
. (1)

The Beta(α, β) distribution with parameters α, β > 0 has density �(α+β)
�(α)�(β)

xα−1(1− x)β−1

for x > 0. For brevity, we will write B(α, β) = �(α)�(β)
�(α+β)

.

Ourmodel can be informally described as follows. First consider two systemswith degrees
of freedom ωi and energy ξi for i = 1, 2. Now let the two systems exchange energies by a
microcanonical procedure: redistribute the total energy according to the law of equipartition.
Representing the energy per the j th degree of freedom by X2

j for j = 1, . . . , ω1 + ω2, �X is

thus uniformly distributed on the sphere (ξ1 + ξ2)Sω1+ω2−1. Writing �X = (ξ1 + ξ2) �Y/‖ �Y‖,
where �Y has ω1 + ω2 dimensional standard normal distribution, the first system’s energy is
updated to

ξ ′1 = X2
1 + · · · + X2

ω1
= (ξ1 + ξ2)(Y 2

1 + · · · + Y 2
ω1

)

Y 2
1 + · · · + Y 2

ω1+ω2

,

which is well known to have (ξ1 + ξ2)Beta(ω1/2, ω2/2) distribution.
In the simplest case, our model consists of a one dimensional chain of systems located at

sites 1, 2, . . . , L−1 and possibly having different degrees of freedom. Then we choose pairs
of nearest neighbors randomly and update their energies by the above rule. Furthermore, the
systems at site 1 and L− 1 are coupled to heat baths of different temperature. Then we study
the macroscopic energy propagation and the emergence of local equilibrium for L large. We
also consider two more generalizations: (i) to higher dimensions and (ii) to inhomogeneity
in the rate of interaction.

1.2 Related Works

Here, we briefly mention some previous related works although we do not intend to provide
a complete review. For general introduction to interacting particle systems and their macro-
scopic scaling limits, see [14,18,24]. Two classical important references for dual Markov
processes are [18,23].

The present paper is an extension of [15]: our one dimensional case with constant 2
degrees of freedom and homogeneous rate of interaction is the KMP model. Some earlier
extensions of the KMP, relevant to the present work are the following. The paper [21] pro-
vides a one dimensional model where a tracer is liable for the transportation of energy. The
authors apply certain martingale techniques (suggested by SRS Varadhan) to derive local
equilibrium. We will use similar techniques in Sect. 7, note however that the adaptation to
our non homogeneous setup is far from being obvious. The thermalized Brownian energy
process, introduced in [6], corresponds to our model with constant (not necessarily 2) degrees
of freedom, dimension 1, homogeneous rate of interaction. Next, [7] defines an asymmetric
version of the thermalized Brownian energy process (roughly speaking, the system on the
left is preferred in the redistribution of energies). Finally, [17] is a homogeneous model with
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tracers but in arbitrary dimension. All the papers mentioned in this paragraph have some dual
process similar to ours.

The moral of our proof is to show that in the dual process, the particles behave asymp-
totically as if they were independent. If this can be verified, then the local equilibrium is an
elementary consequence. An early application of this idea is in [12], see also [10,11,19],
etc.

A chain of alternating billiard particles (2 degrees of freedom) and pistons (1 degree of
freedom), has been proposed in [2]. It is expected that here the mathematically rigorous study
of the rare interaction limit (at least on a mesoscopic level) is easier than that of the more
realistic chain of interacting hard spheres (all having 2 degrees of freedom, [4,13]). Note
however that in deterministic systems the energies are updated by a much more complicated
rule.

1.3 Random Walks End Electrical Networks

Here, we review the connection between one dimensional random walks and electrical net-
works as we will need them in the study of the dual process. The connection extends to much
more general graphs than Z

1, see e.g., ([16], Sect. 19). Assume that the weights (conduc-
tances) wi+1/2, i = A, A + 1, . . . , B, are given and a random walker Sk is defined on the
set {A, A + 1, . . . , B} by S(0) = I and

P (Sk = i + 1|Sk = i) = wi+1/2

wi−1/2 + wi+1/2
, P (Sk = i − 1|Sk = i) = wi−1/2

wi−1/2 + wi+1/2
,

for all i = A + 1, . . . , B − 1 (the states A and B are absorbing). Then the resistances
Ri+1/2 = 1/wi+1/2 and the hitting probability

p = P (min {k:Sk = 0} < min {k:Sk = N }) ,

are connected by the well known formula

p =
∑B−1

i=I Ri∑B−1
i=A Ri

. (2)

Finally, to fix terminology, we denote by SSRW the simple symmetric random walk, i.e.,
a random walk with independent steps, uniformly distributed on the neighbors of the origin
in Z

d .

1.4 Organization

The rest of the paper is organized as follows. We define our model precisely in Sect. 2. In
Sect. 3, the dual process is defined and the duality relation is proved. In Sect. 4 the main
results, namely local equilibrium in the hydrodynamic limit in dimension ≥2 and in the
nonequilibrium steady state in dimension 1, are formulated. Section5 contains the proofs
of the theorems concerning the hydrodynamic limit, namely Theorems1 and 2, except for
the proof of Proposition6. Then Proposition6 is proved in Sect. 6 (except for the proof of
Lemma6). Section7 is the proof of Theorem3, which is the case of nonequilibrium steady
state. Finally, the Appendix contains the proof of Lemma6.
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2 The Model

Let us fix a dimension d ≥ 1, andD ⊂ R
d , a bounded, connected open set for which ∂D is a

piecewiseC2 submanifoldwith no cusps.Weprescribe a continuous function T :Rd\D → R+
to be thought of as temperature. For L 	 1, the physical domain of our system is

DL = LD ∩ Z
d .

At each lattice point z ∈ DL (which will be called a site) there is a physical system of
ωz degrees of freedom. The rate of interaction along the edge e = (u, v) ∈ E(DL) is
denoted by re = r(u,v) (here, E(DL) is the set of edges of the lattice Z

d restricted to DL ).
Finally, we also fix rates of interaction between boundary sites and the heat bath: r(u,v) for
u ∈ DL , v ∈ Z

d \DL with ‖u − v‖ = 1.
Throughout this paper, | · | denotes the cardinality of a finite set, and for v ∈ R

d , 〈v〉 is
its closest point in Z

d .

The time evolution of the energies X(t) = X (L)(t) = (ξ
(L)
v (t))v∈DL is a Markov process

with generator

(G f )(ξ) = (G1 f ) (ξ) + (G2 f ) (ξ),

where G1 describes interactions within DL and G2 stands for interaction with the bath. We
define G1 as follows. There is an exponential clock at each edge e = (u, v) ∈ E(DL) of rate
e(u,v). When it rings, the energies of the two corresponding systems (ξu and ξv) are pooled
together and redistributed according to a Beta(ωu/2, ωv/2) distribution. Thus

(G1 f ) (ξ) =
∑

(u, v)∈E(DL )

r(u,v)

∫ 1

0

1

B
(

ωu
2 , ωv

2

) p ωu
2 −1(1− p)

ωv
2 −1[ f (ξ ′) − f (ξ)]dp,

where

ξ ′w =
⎧⎨
⎩

ξw if w /∈ {u, v},
p(ξu + ξv) if w = u,

(1− p)(ξu + ξv) if w = v.

Every edge e = (u, v) where u ∈ DL and v ∈ Z
d \DL provides connection to the heat bath

of temperature T (v/L): with rate r(u,v), ξu is updated to �
(

ωu
2 , T

(
v
L

))
. That is,

(G2 f ) (ξ) =
∑

u∈DL , v∈Zd\DL , ‖u−v‖=1

r(u,v)

∫ ∞

0

η
ωu
2 −1 exp

[
− η

T ( v
L )

]
[
T
(

v
L

)] ωu
2 �

(
ωu
2

) [ f (ξ ′′) − f (ξ)]dη,

where

ξ ′′w =
{

ξw if w �= u,

η if w = u.

This completes the definition of X (L)(t).

3 The Dual Process

As mentioned in the Sect. 1, we want to understand the asymptotic behavior of X(t) by
switching to a dual process. This section is devoted to the discussion of duality.
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414 P. Nándori

For D ⊂ R
d and L as in Sect. 2, we now introduce a Markov process Y (L)(t) =

((n(L)
v (t))v∈DL , (n̂(L)

v (t))v∈BL ) designed to carry certain dual object, which we call particles,
from sites in DL to

BL =
{
v ∈ Z

d \DL : ∃v ∈ DL : ‖u − v‖ = 1
}

.

Here, nv the number of particles at site v ∈ DL and n̂w the number of particles permanently
drooped off to the storage at w ∈ BL . The generator of the process Y(t) is given by

(A f )(n) = (A1 f ) (n) + (A2 f ) (n),

where A1 corresponds tomovements insideDL and A2 corresponds to the process of dropping
off the particles to the storage. That is,

(A1 f ) (n) =
∑

(u, v)∈E(DL )

r(u,v)

nv+nw∑
k=0

(
nu + nv

k

)
B
(
k + ωu

2 , nu + nv − k + ωv

2

)
B
(

ωu
2 , ωv

2

) [ f (n′) − f (n)],

where

n′w =
⎧⎨
⎩
nw if w /∈ {u, v},
k if w = u,

nv + nw − k if w = v,

and n̂′w = n̂w∀w ∈ BL . (3)

Recall that in case of the process X, the energies are redistributed according to a beta
distribution with parameters ωu/2, ωv/2. In case of the dual process Y , we redistribute
the particles with the so called beta binomial distribution: first we choose a p according to
Beta(ωu/2, ωv/2), then we choose n′u with binomial distribution of parameters nu + nv, p
and n′v = nu + nv − n′u . The second part of the generator is given by

(A2 f ) (n) =
∑

u∈DL , v∈BL , ‖u−v‖=1

r(u,v)[ f (n′) − f (n)],

where

n′w =
{
nw if w �= u,

0 if w = u,
and n̂′w =

{
n̂w if w �= v,

n̂v + nu if w = v.

This completes the definition of Y (L)(t).
Now we turn to the duality. Let us define the function with respect to which the duality

holds

F(n, ξ) =
∏
u∈DL

ξ
nu
u �(ωu/2)

�(nu + ωu/2)

∏
v∈BL

[
T
( v

L

)]n̂v

. (4)

The duality with respect to F means that

Proposition 1 For any ξ any n and any t > 0,

E

(
F(n, X(t))|X0 = ξ

)
= E

(
F(Y(t), ξ)|Y0 = ξ

)
.

Proof Clearly it is enough to prove that for any ξ and n,

GF(ξ , n) = AF(ξ , n).

To prove this, we consider the following two cases, where Case i corresponds to Gi and Ai

for i = 1, 2.
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Case 1 the clock on the edge (u, v) rings. The term corresponding to u and v in G1F
can be written as r(u,v) · I · I I, where

I = � (ωu/2) � (ωv/2)
∏

w∈DL\{u, v}

ξ
nw
w �(ωw/2)

�(nw + ωw/2)

∏
w∈BL

[
T
(w

L

)]n̂w

,

and

I I =
∫ 1
0 pnu+

ωu
2 −1(1− p)nv+ ωv

2 −1 1
B( ωu

2 , ωv
2 )

(ξu + ξv)
nu+nv dp − ξ

nu
u ξ

nv
v

�
(
nu + ωu

2

)
�
(
nv + ωv

2

) .

Then we compute

I I + ξ
nu
u ξ

nv
v

�
(
nu + ωu

2

)
�
(
nv + ωv

2

)

= 1

B
(

ωu
2 , ωv

2

) 1

�
(
nu + nv + ωu+ωv

2

) (ξu + ξv)
nu+nv

= 1

B
(

ωu
2 , ωv

2

) 1

�
(
nu + nv + ωu+ωv

2

)
nu+nv∑
k=0

(
nu + nv

k

)
ξnuu ξnv

v

= 1

B
(

ωu
2 , ωv

2

)
nu+nv∑
k=0

(
nu+nv

k

)
B
(
k+ωu

2
, nu+nv−k+ωv

2

) ξ
nu
u

�
(
k+ ωu

2

) ξ
nv
v

�
(
n−k+ ωv

2

) .

Thus r(u,v) · I · I I is the term corresponding to u and v in A1F.

Case 2 the energy at site u ∈ DL is updated by the heat bath at v ∈ BL (where ‖u−v‖ =
1). As before, we write the term corresponding to (u, v) in G2F as r(u,v) · I · I I, where

I =
∏

u′∈DL\{u}

ξ
nu′
u′ �(ωu′/2)

�(nu′ + ωu′/2)

∏
v′∈BL\{v}

[
T

(
v′

L

)]n̂v′
,

and

I I = �
(

ωu
2

)
�
(
nu + ωu

2

)
⎡
⎢⎣
∫ ∞

0

ηnu+
ωu
2 −1 exp

[
− η

T ( v
L )

]
[
T
(

v
L

)] ωu
2 �

(
ωu
2

) dη − ξnuu

⎤
⎥⎦
[
T
( v

L

)]n̂v

.

By (1), we obtain that

I I + ξ
nu
u �

(
ωu
2

)
�
(
nu + ωu

2

) [T ( v

L

)]n̂v =
[
T
( v

L

)]n̂v+nu
.

Thus r(u,v) · I · I I is the term corresponding to v in A2F. ��

Note that the process Y preserves the total number of particles, which will be denoted be
N . We conclude this section with the following simple lemma.

Lemma 1 The restriction of the process Y to arbitrary subset of K particles (with K < N )

is also a Markov process and satisfies the definition of Y with N replaced by K .
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416 P. Nándori

Proof Without loss of generality, we can consider a system with K = N − 1 particles,
assume that the clock attached to the edge (v, w) rings and the union of the particles at sites
u and v prior to the mixing are labeled {1, . . . , n}.

Then the probability that after the mixing, the set of particles at site u is exactly
{ j1, . . . , jl} ⊂ {1, 2, . . . , n} is given by

p ( j1, . . . , jl) =
(
n

l

)
�(l + ωu/2)�(n − l + ωv/2)

�(n + ωu/2+ ωv/2)

�(ωu/2+ ωv/2)

�(ωu/2)�(ωv/2)

1(n
l

) . (5)

Now assume we add a new particle (of index N ). If this new particle is not at sites u or v,

then clearly the situation is not disturbed. If it is there, we compute

p ( j1, . . . , jl) + p ( j1, . . . , jl , N + 1) (6)

= �(l + ωu/2)�(n + 1− l + ωv/2)

�(n + 1+ ωu/2+ ωv/2)

�(ωu/2+ ωv/2)

�(ωu/2)�(ωv/2)

+�(l + 1+ ωu/2)�(n − l + ωv/2)

�(n + 1+ ωu/2+ ωv/2)

�(ωu/2+ ωv/2)

�(ωu/2)�(ωv/2)
.

An elementary computation shows that (5) is equal to (6). The lemma follows. ��

4 Local Equilibrium

Let d, D and L be as before such that DL is connected.
First we state the existence and uniqueness of invariant measure in the equilibrium case.

Proposition 2 Fix arbitrary functions ω:DL → Z+ and r: E(DL) → R+. If T is constant,
then

μ(L)
e =

∏
v∈DL

�

(
ωv

2
,
1

T

)
,

is the unique invariant probability measure of the process X (L)(t).

Proof The discussion in Sect. 1.1 implies the following statement (which is actually well
known, see, e.g., Lemma 3 in [5]). Let ξ1 and ξ2 be independent Gamma distributed random
variables with shape parameter k and l, respectively and with the same scale parameter. Let Z
be independent from X and Y and have Beta distribution with parameters k/2 and l/2. Then
the pair (Z(ξ1 + ξ2), (1− Z)(ξ1 + ξ2)) has the same distribution as (ξ1, ξ2). Proposition2
follows. ��

Our primary interest is in the out-of-equilibrium settings where the bath temperature is
non constant:

Proposition 3 Let ω:DL → Z+ and r: E(DL) → R+ be arbitrary. The process X (L)(t)
has a unique invariant probability measure μ(L). Furthermore, the distribution of X (L)(t)
converges to μ(L) as t →∞ for any initial distribution of X (L)(0).

We skip the proof of Proposition 3 since it is very similar to the analogous propositions
in earlier similar models, see Proposition1.2 in [21], Proposition 2 in [17].
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4.1 Hydrodynamic Limit

In order to discuss the local equilibrium in the hydrodynamic limit, we need some definitions.
First we introduce some properties of the initial measures.

Definition 1 We say that X(0) is associated with f if for any fixed δ and any k

E

(
k∏

i=1

ξ (L)
vi

(0)

)
∼

k∏
i=1

ωvi

2
f (vi/L) , (7)

as L → ∞ uniformly for every v1, . . . , vk ∈ DL satisfying ‖vi − v j‖ ≥ δL for i �= j and
with some fixed continuous function f :Rd → R+ such that f |

Rd\D = T .

Definition 2 We say that X(0) satisfies the uniform moment condition if there are constants
Ck such that E(ξ kv (0)) < Ck for every L and for every v ∈ DL .

Recall that the Lévy-Prokhorov distance is the metrization of weak convergence of mea-
sures.

Definition 3 We say that X(L)(t) approaches local equilibrium in the hydrodynamic limit at
x ∈ D and t > 0 if for any finite set S ⊂ Z

d the Lévy–Prokhorov distance of the distribution
of X (L)(t L2) restricted to the components (ξ〈xL〉+s)s∈S and∏

s∈S
�
(
ω〈xL〉+s/2, u(t, x)

)

converges to zero as L →∞.

We will choose the initial distributions, i.e., the distributions of X (L)(0), which are asso-
ciated with a continuous function f. The interesting question is that what kind of equation
defines u for different choices of ω and r. In any case, we expect that the initial condition is
given by f and the boundary condition by T . We will consider the two simplest cases here.

Theorem 1 Assume d ≥ 2 and ωv = ω0 ∈ Z+ for every site v. Assume furthermore that
r(u,v) = R

( u+v
2L

)
for every u ∈ DL and v ∈ Z

d with ‖u − v‖ = 1, where R ∈ C2(Rd , R+).

Also assume that X (L)(0) is associated with f, a continuous function f : D̄ → R+, and
satisfy the uniform moment condition. Then X(L)(t) approaches local equilibrium in the
hydrodynamic limit for all x ∈ D and t > 0 with u the unique solution of the equation⎧⎪⎨

⎪⎩
ut = ∇(R∇u),

u(0, x) = f (x),

u(t, x)|∂D = T (x).

Remark about the initial conditions note that f represents the energy per degrees of
freedom at time zero, that is why we need the multiplier ωv/2 on the right hand side of
(7). We do not have to assume local equilibrium at zero, which would correspond to the
special choice of X(0): the product of Gamma distributions [with shape parameter ωv/2,
and scale parameter f (v/L)]. One interesting consequence of Theorem1 (and similarly
that of Theorem2) is that the system satisfies the local equilibrium for arbitrary positive
macroscopic time even if it only satisfies the given weaker condition at time zero. Since we
want to leverage the duality via moments, we also need to assume some condition on the
higher moments. The simplest one is the uniform moment condition. Most probably, neither
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condition (7) nor the uniform moment condition is optimal, but we do not pursue the most
general case here.

Our next choice is the simplest non-continuous environment: we consider D = [−1, 1]d
with one of the functions ω and r being constant on D and the other one is constant on
[−1, 0] × [−1, 1]d−1 and [0, 1] × [−1, 1]d−1. Thus we have the following.

Theorem 2 Let d ≥ 2, D = [−1, 1]d . Assume that X (L)(0) is associated with f, a contin-
uous extension of T to D̄, and satisfies the uniform moment condition

(a) Let ωv = ω−1 if v1 < 0 and ωv = ω1 if v1 ≥ 0 with some positive integers ω−1, ω1

and let r be constant. Then X (L)(t) approaches local equilibrium in the hydrodynamic
limit for all x ∈ D with x1 �= 0 and all t > 0 with u the unique solution of the equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = r
u for x ∈ Dwith x1 �= 0,

ω1
∂

∂x1+u(t, (0, x2, . . . , xd)) = ω−1
∂

∂x1−u(t, (0, x2, . . . , xd)),

u(0, x) = f (x),

u(t, x)|∂D = T (x).

(b) Let r(u,v) = r−1 if u1 + v1 < 0 and r(u,v) = r1 otherwise, where r−1, r1 are fixed
positive numbers. Similarly, rw = r−1 if w1 < 0 and rw = r1 otherwise. Let ω be
constant. Then X(L)(t) approaches local equilibrium in the hydrodynamic limit for all
x ∈ D with x1 �= 0 and all t > 0 with u the unique solution of the equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = rsign(x1)
u for x ∈ Dwith x1 �= 0,

r1
∂

∂x1+u(t, (0, x2, . . . , xd)) = r−1
∂

∂x1−u(t, (0, x2, . . . , xd)),

u(0, x) = f (x),

u(t, x)|∂D = T (x).

4.2 Nonequilibrium Steady State

Now we are interested in the invariant measure of the Markov chains for finite (but large) L .

Specifically,we are looking for a functionu(x), x ∈ D such that in the limit limL→∞ limt→∞
the local temperature exists and is given by u(x). In case the hydrodynamic limit is known,
u(x) is expected to be equal to limt→∞ u(t, x).Wewill choose arbitrary environment (r and
ω), that is why we define the local equilibrium in a little more general form, namely with an
L dependent u. Of course in all natural examples, one expects u(L) to converge.

Definition 4 We say that X(L)(t) approaches local equilibrium in the nonequilibrium steady
state if for any x ∈ D and any finite set S ⊂ Z

d the Lévy–Prokhorov distance of the invariant
measure of X(L)(t) restricted to the components (ξ〈xL〉+s)s∈S and

∏
s∈S

�
(
ω〈xL〉+s/2, u

(L)(x)
)

,

converges to zero as L →∞.

Let us fix d = 1 and D = (0, 1). To simplify notation, we will write rm+1/2 :=
r(m,m+1), ω0 := ω1 and ωL := ωL−1. Furthermore, we will need the following two defini-
tions:

ψ(m) = ωm−1 + ωm

rm−1/2ωm−1ωm
for 1 ≤ m ≤ L ,
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Local Equilibrium in Inhomogeneous… 419

and

A(L)(x) =
∑�xL�

m=1 ψ(m)∑L
m=1 ψ(m)

.

Theorem 3 Let d = 1 and D = (0, 1). Assume that the functions r and ω are bounded
away from zero and infinity uniformly in L and the temperature on the boundary is given by
T (0), T (1) ∈ R+ ∪ {0}. Then X (L)(t) approaches local equilibrium in the nonequilibrium
steady state with

u(L)(x) =
(
1−A(L)(x)

)
T (0) +A(L)(x)T (1).

Clearly, u(L)(x) can easily diverge in this generality. That is why we consider two special
cases. In case (a), r is constant and ω is random. In this case, we prove the quenched local
equilibrium in the nonequilibrium steady state, i.e., the almost sure convergence of u(L)(x)
to a deterministic limit. In case (b), ω is constant but r is prescribed by a non-constant
macroscopic function. We also prove that u(L)(x) converges in this case.

Proposition 4 (a) Let r be constant, K be the maximal degrees of freedom and let us fix
some continuous function

�: [0, 1] →
{
p ∈ R

K : p ≥ 0,
K∑
i=1

pi = 1

}
.

For each L , let us choose ω
(L)
v randomly and independently from one another with

P

(
ω(L)

v = i
)
= �i (v/L).

Then for almost every realization of the random functions ω(L),

lim
L→∞A(L)(x) =

∑K
i=1

1
i

∫ x
0 �i (y)dy∑K

i=1
1
i

∫ 1
0 �i (y)dy

.

(b) Let ω be constant, : [0, 1] → R+ is a continuous function. For each L and v =
0, 1, . . . , L − 1 define r (L)

v+1/2 = (v/L). Then

lim
L→∞A(L)(x) =

∫ x
0 1/(y)dy∫ 1
0 1/(y)dy

.

Before turning to the proofs of the above results, we briefly comment on some possibilities
of extension.

4.3 Possible Extensions

As we will see, the proof of Theorems1 and 2 also provides the local equilibrium in the
nonequilibrium steady state.

Corollary 4 Consider the setup of either Theorem1 or 2. Then X(L)(t) approaches local
equilibrium (assuming x1 �= 0 in case of Theorem2) in the nonequilibrium steady state with
U (x) = limt→∞ u(t, x).
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Indeed, for δ > 0 fixed one can find some t large such that with probability at least
1− δ, all processes in Proposition6 have arrived at the boundary before t L2. In such cases,

Ỹ
(L)

i (t L2) = Ỹ
(L)

i (∞), and the latter can be used to prove local equilibrium in the nonequi-
librium steady state (cf. the proof of Theorem3).

Furthermore, it seems likely that our proof could be adapted to a version of Theorem2
with more general domains and with piecewise constant r and ω (see [20] for the extension
of skew Brownian motion to such scenarios).

However, the case of more general inhomogeneity in either high dimensions or in the
hydrodynamic limit can be difficult. For example, if � is constant in Proposition4(a), then in
order to verify the hydrodynamic limit, one would have to compute the scaling limit of some
interacting random walkers among iid conductances, whereas even the case of one random
walker is non obvious (see [22]). Clearly, the case of high dimensions or non iid environments
are even much harder.

5 Proof of Theorems 1 and 2

Since the proofs of Theorems1 and 2 are very similar, we provide one proof and distinguish
between cases Theorems1, 2(a) and 2(b) if necessary. Let us fix some t > 0, a point x ∈ D
and a finite set S ⊂ Z

d . We need to show that the (joint) distribution of (ξ〈xL〉+s(t L2))s∈S
converges to the product of gamma distributions with the scale parameter u(t, x). As it is
well known, any product of Gamma distributions is characterized by its moments (see [26]).
Thus it is enough to prove that the moments of (ξ〈xL〉+s)s∈S converge to the product of the
moments of gamma distributions (convergence of second moments implies tightness). When
computing the moments of order n∗s ∈ N, s ∈ S, we can use Proposition1 to switch to the
dual process.

We need to introduce some auxiliary processes. Let us denote by Ỹ the slight variant of Y
where the position of distinguishable particles are recorded. More precisely, the phase space

of Ỹ = (Ỹ
(L)

i (t))0≤t, 1≤i≤N is (DL ∪ BL)N , where N = ∑
s∈S n∗s and the initial condition

is given such that for all s ∈ S,

#
{
i : Ỹ i (0) = 〈xL〉 + s

}
= n∗s .

For any t ≥ 0 we define Ỹ(t) so that

#
{
i : Ỹ i (t) = v ∈ DL

}
= nv (tk) , #

{
i : Ỹ i (t) = v ∈ BL

}
= n̂v (tk) , (8)

and for all t,

#
{
i : Ỹ i (t−) �= Ỹ i (t+)

}
≤ 1.

We want to show that the diffusively rescaled version of Ỹ converges weakly to N inde-
pendent copies of some (generalized) diffusion processesY.Then the Kolmogorov backward
equation associated with these processes will provide the function u. Clearly, the process Y
will have to be stopped on ∂D. So as to shed light on the main component of the proof,
namely the convergence to the diffusion process, we introduce a further simplification by not
stopping the particles.

We can assume that R is bounded in case of Theorem1 (possibly by multiplying with a
smooth function which is constant on D and decays quickly) and extend the definition of
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ωv, r(u,v) in case of Theorem2 for any u, v ∈ Z
d . Then we consider the process Z(t) =

(nv(t))v∈Zd on the space

zv ∈ Z+,
∑
v∈Zd

zv = N ,

with the generator A′1, obtained from A1 by replacing
∑

(u,v)∈E(DL ) with
∑

(u,v)∈E(Zd ).Then

we define Z̃ from Z the same way as we defined Ỹ from Y . Observe that by construction
(and with the natural coupling) for N = 1 we have

Ỹ
(L)

(s) = Z̃
(
s ∧ τDL

)
where τDL = min

{
s: Z̃(s) /∈ DL

}
. (9)

Now we define the limiting process (Z(s))0≤s≤t with Z(0) = x and with the generator

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑d
i=1 R(x) ∂2

∂x2i
+∑d

i=1
∂R
∂xi

∂
∂xi

in Theorem 1,∑d
i=1 r

∂2

∂x2i
in Theorem 2(a),∑d

i=1 rsign(x1)
∂2

∂x2i
in Theorem 2(b),

acting on

(1) functions φ ∈ C20 in case of Theorem1,
(2) compactly supported continuous functions φ which admit C2 extensions on (R− ∪ 0)×

R
d−1 and (R+ ∪ 0) × R

d−1 and
{

ω−1
∂

∂x1−φ(0, x2, . . . , xd) = ω1
∂

∂x1+φ(0, x2, . . . , xd) in case of Theorem 2(a),

r−1
∂

∂x1−φ(0, x2, . . . , xd) = r1
∂

∂x1+φ(0, x2, . . . , xd) in case of Theorem 2(b).

Note that Z is a diffusion process in case of Theorem1 and a generalized diffusion process
in case of Theorem2 (see [20] for a survey on generalized diffusion processes and [1] for
an early proof of the existence of Z in case of Theorem2(b)). Now let us stop Z on ∂D and
define

Y(s) = Z (s ∧ τD) where τD = min{s:Z(s) ∈ ∂D}. (10)

The connection between the processes Ỹ and the PDE’s defining u is most easily seen in
the simplest case of one particle.

Let ⇒ denote weak convergence in the Skorokhod space D[0, T ] with respect to the
supremummetric andwith some T to be specified. (Althoughwe need the Skorokhod space as
the trajectories of Z̃ are not continuous, but the limitingmeasures will always be supported on
C[0, T ] andwe can use the supremummetric. Alternatively, one could smooth the trajectories
of Z̃ and only use the space C[0, T ].)

Lemma 2 If N = 1, then
(
Z̃(sL2)

L

)

0≤s≤t
⇒ (Z(s))0≤s≤t .

Proof In the setup of Theorem1, this follows from Theorem 11.2.3 in [25]. More precisely,
as we can neglect events of small probability, we can assume that (A) the particle jumps less
than L3 times before t L2 and consequently (B) the smallest time between two consecutive
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jumps before t L2 is bigger than L−4. Now choosing h = L−4, Z̃ can only jump at most
once on the interval [kh, (k + 1)h] for all k < t L6. Now we choose

�h

(
z

L
,
z + ei
L

)
= L−2R

(
x + ei/2

L

)
, �h

( z

L
,
z

L

)
= 1− L−2

∑
ei

R

(
x + ei/2

L

)
,

for any z ∈ Z
d and any unit vector ei . With this choice, we easily see that aii (x) = 2R(x)

and bi (x) = ∂
∂xi

R(x) at the end of p. 267 in [25]. Applying Theorem 11.2.3, the lemma
follows.

In case of Theorem2(a), we consider the first coordinate of Z̃ and the other d − 1 coor-
dinates separately. Under diffusive scaling, the former one converges to a skew Brownian
motion by e.g., [8], while the latter one converges to a d − 1 dimensional Brownian motion
by Donsker’s theorem. A slight technical detail is that we need to switch to discrete time so
as to apply the result of [8]. Let us thus define Z′1(k) = Z̃1(τ1,k) for non-negative integers
k, where τ1,0 = 0 and τ1,k = min{t > τ1,k−1: Z̃1(t−) �= Z̃1(t+)}. Then by [8] we have that

(
Z′1(sL2)

L

)

0≤s≤4r t
⇒ (

SBMω1/(ω−1+ω1)(s)
)
0≤s≤4r t , (11)

where SBMω1/(ω−1+ω1) is the skew Brownian motion with parameterω1/(ω−1+ω1),which
is by definition equal to Z1(s)/

√
2r . Now observe that by the law of large numbers, the

functions s �→ 2rτ1,sL2/(sL2) converge in probability to the identity function on D[0, t].
Hence the statement of the lemma, restricted to the first component, follows. Finally, the other
components are independent from the first one and under diffusive scaling, they converge to
Brownian motion by Donsker’s theorem.

In case of Theorem2(b) we use a similar argument to the one in the previous paragraph.
Namely, we still have the analogue of (11) and by independence

(
Z′(sL2)

L

)
0≤s≤T

⇒ (
SBMr1/(r−1+r1)(s/d), Wd−1(s/d)

)
0≤s≤T , (12)

where

T = 4d max {r−1, r1} t,
Wd−1 is a d−1 dimensional standard Brownian motion and Z′(k) = Z̃(τk) with τ0 = 0 and
τk = min{t > τk−1: Z̃(t−) �= Z̃(t+)} for positive integers k. The difference from the case
of Theorem2(a) is that now in order to recover the convergence of Z̃, we need a nonlinear
time change (and consequently have to work with all coordinates at the same time). To do
so, let us introduce the local time the first coordinate spends on the negative and positive
halfline:

τ−(s) =
∫ s

0
1 f1(y)<0dy, τ+(s) =

∫ s

0
1 f1(y)>0dy,

for f = ( f1, . . . , fd) ∈ D([0, T ], R
d). Now we can define

ρ(s) = min

{
y:

τ−(y)

2dr−
+ τ+(y)

2dr+
≥ s

}
,

and

�:D([0, T ]) → D([0, 3t/2]),
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by

(�( f ))(s) =
{
f (ρ(s)) if τ−(T ) + τ+(T ) ≥ 3T/4,

0 otherwise.

The function � is well defined because of the choice of T . Let us denote by QL and Q the
measure on D[0, T ] given by the left and right hand sides of (12). Next, we observe that

Q (τ−(T ) + τ+(T ) = T ) = 1,

and � is continuous on the set {τ−(T ) + τ+(T ) = T }. Now we can apply the continuous
mapping theorem (see, e.g., Theorem 5.1 in [3]) to conclude �∗QL ⇒ �∗Q. Here, �∗QL

is the distribution of a process (Ẑ(s))0≤s≤3t/2 obtained from (Z′(s))0≤s≤T by rescaling time
with �. Since �∗Q is the distribution of Z(s), it suffices to show that(

Z̃(sL2) − Ẑ(sL2)

L

)

0≤s≤t
⇒ 0. (13)

Let us introduce the notations zk = Z′(k)− Z′(k − 1), Ti = τi − τi−1. By an elementary
estimate on the local time of random walks, we have

P
(
#
{
k < t L2: Z′(k)1 = 0

}
> L3/2) = o(1).

Since we prove weak convergence, we can neglect the above event and subsequently assume
that z1, . . . , zt L2 is such that the first coordinate’s local time at zero is smaller than L3/4.

Especially, we use the first line of the definition of � when we construct Ẑ for L large. Thus
with the notation

ĩs = max

⎧⎨
⎩i :

i∑
j=1

T j < s

⎫⎬
⎭ îs = max

⎧⎨
⎩i :

i∑
j=1

E
(
T j1{Z′( j)1 �=0}|z1, . . . , zt L2

)
< s

⎫⎬
⎭ ,

we have Z̃(s) = Z′(ĩs) and Ẑ(s) = Z′(îs). Now with some fixed small δ let us write

k∑
=

∑
i∈[kδL2, (k+1)δL2]

and
k∗∑

=
∑

i∈[kδL2, (k+1)δL2], Z(i)1 �=0

,

for k = 1, 2, . . . , T/δ. Then by Chebyshev’s inequality,

P

⎛
⎝
∣∣∣∣∣∣
k∗∑

Ti −
k∗∑

E
(
Ti |z1, . . . , zt L2

)
∣∣∣∣∣∣ > δ3L2|z1, . . . , zztL2

⎞
⎠

<
δL2

4d2 min{r21 , r2−1}
1

δ6L4 < δ10,

for L large enough. Furthermore, by our assumption on z1, . . . , zt L2 ,

P

⎛
⎝
∣∣∣∣∣∣
k∗∑

Ti −
k∑

Ti

∣∣∣∣∣∣ > δ3L2|z1, . . . , zt L2

⎞
⎠ < δ10,

also holds for L large. Consequently the random times s̃l = ∑l
k=1

∑k∗
E(Ti |z1, . . . , zt L2)

and ŝl =∑l L2/δ
i=1 Ti satisfy

123



424 P. Nándori

• 0 = s̃0 < s̃1 < s̃2 · · · < s̃T , s̃T ≥ 3t/2 and s̃l − s̃l−1 < Cδ,

• for all l with s̃l < t, P(|ŝl − s̃l | > 2δ2) < δ8 and Ẑ(ŝl L2) = Z̃(s̃l L2).

This together with tightness of Z′ (proved in the usual way) gives (13). We have finished the
proof of Lemma2. ��
Lemma 3 If N = 1, then

(
Ỹ

(L)
(sL2)

L

)

0≤s≤t
⇒ (Y(s))0≤s≤t .

Proof This is a consequence of the continuous mapping theorem, Lemma2, (9) and (10). ��
Next, we prove a simpler version of Theorems 1 and 2, namely the convergence of the

expectations

Proposition 5 Consider the setup of either Theorem1 or 2. Then

lim
L→∞E

(
ξ

(L)
〈xL〉

(
t L2)) = u(t, x)

ωx

2
, (14)

where ωx = ω in case of Theorems1 and 2(b) and = ωsign(x1) in case of Theorem2(a).

Proof By Proposition1, the left hand side of (14) is equal to

ω〈xL〉
2

E

(
ξ∗
Ỹ(t L2)

2

ωỸ(t L2)

1{Ỹ(t L2)∈DL } + T

(
Ỹ(t L2)

L

)
1{Ỹ(t L2)∈BL }

)
=: I + I I,

where ξ∗v = ξv(0). In case of Theorems1 and 2(b), ω is constant, thus we obtain

I =
∑

v∈DL

P

(
Ỹ
(
t L2) = v

)
E
(
ξ∗v
)
.

Recall that (7) gives E(ξ∗v ) = ω
2 f (v/L)+ o(1). Applying Lemma3 and the definition of the

weak convergence, we obtain

lim
L

I = ω

2
E
(
f (Y(t))1{Y(t)∈D}

)
.

Similarly,

lim
L

I I = ω

2
E
(
T (Y(t))1{Y(t)∈∂D}

)
.

Now the proposition follows from the fact that u(t, x) solves the Kolmogorov equation
associated with the process Y. Finally, in case of Theorem2(a), we consider the function h
on D with h(y) = 0 if y1 < 0, h(y) = y1/δ if 0 ≤ y1 < δ and h(y) = 1 if y1 > δ and
approximate I by I a + I b, where I a is obtained from I by multiplying the integrand with
h(Ỹ(t L2)/L) and I b is obtained from I by multiplying the integrand with h(−Ỹ(t L2)/L).

Clearly, I − ε < I a + I b < I for δ small enough. Then we can repeat the above argument
since ω is constant on the integration domain in both I a and I b. ��

In order to complete the proof of Theorems1 and 2, we need an extension of Lemma3
from N = 1 to arbitrary N :
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Proposition 6 The processes

(
Ỹ

(L)

i (sL2)

L

)

0≤s≤t
,

for i = 1, . . . , N converge weakly to N independent copies of (Y(s))0≤s≤t .

Now, we prove Theorems1 and 2 assuming Proposition6. By the discussion at the begin-
ning of this section and by (1), Theorems 1 and 2 will be proved once we establish

E

(∏
s∈S

ξ
n∗s〈xL〉+s

(
t L2)

)
∼ u(t, x)N

∏
s∈S

�(n∗s + ω〈xL〉+s/2)

�(ω〈xL〉+s/2)
. (15)

By Proposition6, limL P(A(L)
δ ) = oδ(1), where

Aδ = A(L)
δ =

{∥∥∥Ỹ (L)

i

(
t L2)− Ỹ

(L)

j

(
t L2)∥∥∥ ≤ δL for some i �= j

}
.

This, combined with the uniform moment condition and the Cauchy–Schwarz inequality
gives

lim
L

E

(
1Aδ F

(
Y
(
t L2) , ξ∗

))
= oδ(1),

where ξ∗v = ξv(0) and F is the duality function defined in (4). Now Proposition1 and the
fact that ξ∗ is associated with f implies that the left hand side of (15) is oδ(1) close to

∏
s∈S

�(n∗s + ω〈xL〉+s/2)

�(ω〈xL〉+s/2)
×

×E

[
1Aδ

N∏
i=1

(
ξ∗
Ỹ(t L2)

2

ωỸ(t L2)

1{Ỹ(t L2)∈DL } + T

(
Ỹ(t L2)

L

)
1{Ỹ(t L2)∈BL }

)]
.

Now we can cut this integral to 2N pieces and apply a version of the proof of Proposition5
to conclude (15).

In order to complete the proof of Theorems1 and 2 it only remains to prove Proposition6,
which is the subject of the next section.

6 Proof of Proposition 6

We are going to prove a variant of Proposition 6 obtained by replacing Ỹ i and Y with Z̃ and
Z. Proposition6 follows from this variant the same way as Lemma3 follows from Lemma2.

The idea of the proof is borrowed from ([17], Sect. 5): we show that with probability close
to 1, Z̃i (s) and Z̃ j (s) will not meet after getting separated by a distance Lγ with some γ

close to 1. Since Z̃i (s) and Z̃ j (s) move independently if their distance is bigger than 1, we
can replace Z̃(s) for s > τ = max{τi, j } by N independent copies of Z̃1(s), where τi, j is
the first time s when ‖Z̃i (s) − Z̃ j (s)‖ > Lγ . It only remains to show that Z̃i (τ ) is close to
xL and τ/L2 is negligible. We complete this strategy in the case of Theorem1, N = 2 and
d = 2 in Sect. 6.1 and for all other cases in Sect. 6.2.

123



426 P. Nándori

6.1 Case of Theorem 1, N= 2, d= 2

Recalling the notation of Sect. 5, let us write Z(k) = Z′2(k) − Z′1(k). Note that Z is not a
particularly nice process: it is neitherMarkov, nor translation invariant. As long as both Z′1(k)
and Z′2(s) are εL-close to xL , Z is well approximated by a Brownian motion. In particular,
if ‖Z‖ = M, then the probability that ‖Z‖ reaches M/2 before reaching 2M is close to 1/2
and thus ‖Z‖ performs an approximate SSRW on the circles

Cm = {
z ∈ Z

2: |‖z‖ − 2m | < 2
}
.

We will estimate the goodness of this approximation by a SSRW.
Assuming that Z(s0) ∈ Cm, denote by s1 the smallest s > s0 such that Z(s) ∈ Cm−1 or

Z(s) ∈ Cm+1. We also write

log = log2, M = 2m, EL ,M =
∣∣∣∣P (Z (s1) ∈ Cm−1)− 1

2

∣∣∣∣ .
Note that s1 is a stopping time with respect to the filtration generated by Z′2(s), Z′1(s).

We will need a series of lemmas.

Lemma 4 If ‖Z(k)‖ ≥ 2, then

P (Z(k + 1) − Z(k) = e) = 1

4
+ O

(‖Z(k)‖
L2

)
,

for e = (1, 0), (−1, 0), (0, 1), (0, −1). Here, the constants involved in O only depend on
the C2 norm of R.

Proof Using that R is a C2 function on a compact domain containing D, the lemma follows
from the definition. ��

Lemma4 enables us to couple Z(k) with a planar SSRW W (k) such that

P(Z(k) − Z(k − 1) = W (k) −W (k − 1)|Z(k)) ≥ 1− C‖Z(k)‖
L2 .

We are going to apply such a coupling several times in the forthcoming lemmas.

Lemma 5 There are constants ε0 > 0, C0 < ∞ and θ < 1 such that

P (s1 > n) < C0θ
n/M2

,

assuming ‖Z(s0)‖ = M < ε0L .

Proof To verify Lemma5, we couple Z(k), k ∈ [s0, s0 + M2] to a SSRW W (k), k ∈
[s0, s0 + M2], W (s0) = Z(s0). By Lemma4, we can guarantee that ‖Z(k) − W (k)‖ <

CM3/L2 for all k < M2 with some probability bounded away from zero. Here, C only
depends on the C2 norm of R. Thus by choosing ε0 small, we can guarantee CM3/L2 <

M/10. Since W is close to a Brownian motion, it reaches Cm−2 or Cm+2 before M2 with
some positive probability. Consequently, there is some p independent of L such that P(s1 <

M2) > p. Applying this argument in an inductive fashion gives Lemma5. ��
Let us introduce the notation

τγ = τγ (L) = min
{
k: ‖Z(k)‖ > Lγ

}
. (16)

Now we claim the following.
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Lemma 6 For every γ < 1 with 1− γ small, there exists some ξ > 0 such that for L large
enough, the following estimates hold.

(a) Tiny gap: if m < 3
5 log L , then

P
(
τ3/5 > L13/10) = O

(
L−1/10) .

(b) Small gap:

if
3

10
log L ≤ m < γ log L , then EL ,M = O

(
L−ξ

)
.

(c) Moderate gap:

If γ log L < m < log L − log log L , then EL ,M = O
(
log−3/2 L

)
.

(d) Large gap: there is some ε > 0 such that

if log L − log log L < m < log L + log ε, then EL ,M < 1/100.

As the proof of Lemma6 is slightly longer than the other lemmas, we postpone it to the
Appendix. Next, we formulate our key lemma:

Lemma 7 For any small δ > 0, there exists γ < 1 such that for L large enough,

P

(
�k: τγ < k < t L2: ‖Z(k)‖ ≤ 2

)
> 1− δ.

Proof In order to derive Lemma7 from Lemma6, recall the connection of random walks
and electrical networks from Sect. 1.1. Using the notation from there, we choose A =
3
10 log L , B = log L + log ε and I = γ log L , RI+1/2 = 1. If Ri+1/2 is defined for some
i ∈ [I, log L− log log L], then let us define Ri+3/2 = Ri+1/2(1+K log−3/2 L). If Ri+1/2 is
defined for some i ∈ [log L− log log L , B−1], then let us define Ri+3/2 = 11

10wi+1/2. Sim-
ilarly, if Ri+1/2 is defined for some i ∈ [A, I ], then we define Ri−1/2 = Ri+1/2(1−K L−ξ ).

Now by Lemma6(b–d)

P
(
min

{
k: ‖Z (k + s0)‖ < L3/10} < min {k: ‖Z (k + s0)‖ > εL} | ‖Z (s0)‖ = Lγ

)
,

is bounded from above by (2). An elementary computation shows that (2) can be made
arbitrarily small by choosing γ close to 1. Thus after τγ , ‖Z(k)‖ reaches εL before reaching
2 with probability close to 1. Finally, Lemmas1 and 2 yield that for fixed ε the two particles
do not meet after separating by a distance εL and before t L2 with probability close to 1. This
proves Lemma7. ��

As a consequence of Lemma7, we will be able to replace Z̃1(s) and Z̃2(s) with two
independent copies after time

τ̃ γ = min
{
s:
∥∥∥Z̃1(s) − Z̃2(s)

∥∥∥ > Lγ
}

.

Then Proposition6 will easily follow once we establish that (A) τ̃ γ /L2 is negligible and (B)

(Z̃i (τ γ ) − xL)/L is negligible. This is what we do in the next two lemmas.

Lemma 8 For any fixed γ < 1 and δ > 0, we have

P

(
τγ < L1+γ

)
> 1− δ,

for L large enough.
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Proof By Lemma6(a), it is enough to prove P(τα − τ 3/5 > L1+γ ) < δ. We write s0 = τ 3/5

and if Z(si ) ∈ Cm withm > 3
10 log L , then si+1 is the first time s when either Z(s) ∈ Cm−1 or

Z(s) ∈ Cm+1. If Z(si ) ∈ C� 3
10 log L�, then si+1 is the first time s when Z(s) ∈ C� 3

10 log L�+1.By

Lemma6(b), bi := log ‖Z(si )‖ can be approximated by a one dimensional SSRW (reflected
at 3

10 log L , absorbed at γ log L) with an error of O(Lξ ) at each step. In particular, if t is the
smallest i when bi ≥ γ log L , then P(t > log3 L) < δ/10 and thus bi , i ≤ t can be coupled
to a SSRW with an error <δ/5. Now if ζ = (1− γ )/2 and �m = #{i < t: bi = m}, then

P
(∃m: �m > Lζ

) ≤ log L max
m

P
(
�m > Lζ

)
< δ/10,

by the gambler’s ruin estimate P(�m > n+ 1|�m > n) < 1− log−1 L . If �m < Lζ for all m,

then

τα <

γ log L∑
m= 3

10 log L

Lζ∑
i=1

Tm,i ,

where Tm,1 is the random time s1 − s0 if ‖Z(s0)‖ = m and for fixed m, Tm,i ’s are iid.
Consequently, we have

P
(
τα > L1+γ

)
<

3δ

10
+ (log L)Lζ max

m
P
(
Tm,1 > L1+γ−ζ log−1 L

)
< δ,

by Lemmas5 and 6(a). ��
Now, with the notation

τ̃ γ = τ̃ γ (L) = min
{
k:
∥∥∥Z̃1(k) − xL

∥∥∥ > Lγ or
∥∥∥Z̃2(k) − xL

∥∥∥ > Lγ
}

,

we have

Lemma 9 For any fixed γ < 1 and δ > 0, we have

P

(
L1+γ < τ̃ γ+3

4

)
> 1− δ,

for L large enough.

Proof By Lemma1, it is enough to consider the case of one particle. A simplified version of
Lemma2 yields that

max
s<L1+γ

∥∥∥Z̃1(s) − xL
∥∥∥ < K L

1+γ
2 ,

with probability 1− δ for some K and L large. ��
The variant of Proposition6 (explained in the beginning of Sect. 6) easily follows from

Lemmas7–9. Since we can neglect an event of small probability, we can assume that all
events hold in Lemmas7–9. Note that by definition, Z̃1(s) and Z̃2(s) move independently if
their distance is bigger than 2. Thus for s > τ̃γ , we can replace (Z̃1(τ̃ γ + k))k=1,...,T L2 and

(Z̃2(τ̃ γ + k))k=1,...,T L2 with independent random walks, both of them converging to Z(s)

under the proper scaling. Finally, by Lemmas8 and 9, τγ /L2 < δ and (Z̃i (τ̃ γ )− x)/L < δ.

Proposition 6 follows in the case of Theorem 1, N = 2, d = 2.

123



Local Equilibrium in Inhomogeneous… 429

6.2 Completing the Proof of Proposition 6

The case of general N follows from Lemma1 and from the case N = 2. Indeed, Lemmas1,
7 and 8 imply that for some γ < 1,

P

(
∃s ∈ [L1+γ , t L2] , i, j ∈ {1, 2, . . . , N }:

∥∥∥Z̃i (s) − Z̃ j (s)
∥∥∥ ≤ 2

)
< δ.

Furthermore, we have the analogue of Lemma 9 with τ̃ α replaced by

min
{
k: ∃i < N :

∥∥∥Z̃i (k) − xL
∥∥∥ > Lα

}
.

Whence the case of general N follows the same way as before.
The case of dimension d > 2 is simpler than d = 2 as the particles only meet finitely

many times.

Lemma 10 In case of Theorem 1, d > 2, N = 2, there is some positive p such that
‖Z̃1(s) − Z̃2(s)‖ ≥ 2 for all k ∈ [2, t L2] with probability at least p.

Proof Consider the process Z(k) = Z′2(k) − Z′1(k) as in Sect. 6.1. Let us fix some small
ε > 0. We will show that the probability of the event {‖Z‖ reaches εL before reaching 1 } is
bounded away from zero. From this the lemma will follow by the same argument as in d = 2
(cf. the end of the proof of Lemma7).

Similarly to Lemma4, we have

1

2d
− c0ε

L
< P(Z(k + 1)− Z(k) = e) <

1

2d
+ c0ε

L
, (17)

assuming ‖Z(k)‖ ≤ εL for all unit vectors e ∈ Z
d and L large enough. Now we define a

randomwalk B(k) onZ
d with weights. Specifically B(3) = Z(3) and we choose the weights

w(u,v) =
(
1− c1ε

L

)l
, where |u|1 = l − 1, |v|1 = l and c1 	 c0 is a fixed constant.

Clearly ‖Z(3)‖ ≥ 2 holds with some positive probability. Let us write tB,l = min{k >

3: |B(k)|1 = l}, where min ∅ = ∞ and similarly t Z ,l = min{k > 3: ‖Z(k)‖ = l}. Now we
claim that

Lemma 11 Assuming c1 = c1(c0) is large enough, there exists a coupling between the
processes B and Z such that |Bi (k)| ≤ |Zi (k)| holds for all k ∈ [3, tB,1 ∧ t Z ,εL) and i ≤ d
almost surely.

By Lemma11, it suffices to prove that

P
(
tB,εL < tB,1

)
is bounded away from zero. (18)

This follows froma simple application of the connection between randomwalks and electrical
networks. Note that the weights w(u,v) are bounded away from zero in the εL neighborhood
of the origin. In such cases, (18) follows from a standard argument, see, e.g., the proof of
Theorem 19.30 in [16]. In order to complete the proof of the Lemma10, it only remains to
prove Lemma11. ��

Proof of Lemma 11. We prove by induction on k. Assume |Bi (k)| ≤ |Zi (k)| for all i ≤ d.
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Case 1 none of the coordinates of B(k) and Z(k) are zero.
If |Bi (k + 1)| = |Bi (k)| + 1, then we define Z(k + 1) by |Zi (k + 1)| = |Zi (k)| + 1. We
can do so by (17) and by the definition of B: if c1 is large enough, then

P (|Bi (k + 1)| = |Bi (k)| + 1) ≤ P (|Zi (k + 1)| = |Zi (k)| + 1) . (19)

Similarly, if |Zi (k + 1)| = |Zi (k)| − 1, then we define B(k + 1) by |Bi (k + 1)| =
|Bi (k)| − 1. We can do so as similarly to (19), we have

P (|Zi (k + 1)| = |Zi (k)| − 1) ≤ P (|Bi (k + 1)| = |Bi (k)| + 1) .

The coupling is arbitrary on the remaining set (sometimes we may have to move B and
Z in different directions to match the probabilities, i.e., to define a proper coupling). This
proves the inductive step for the case when none of the coordinates of B(k) and Z(k) are
zero.
Case 2 none of the coordinates of B(k) are zero or for all i with Bi (k) = 0, Zi (k) = 0
also holds.
The same argument works as in Case 1.
Note that the coupling of Case 1 will not work if Bi (k) = 0 and Zi (k) �= 0 as P(|Bi (k +
1)| = |Bi (k)| + 1) ≈ d−1 while P(|Zi (k + 1)| = |Zi (k)| + 1) ≈ (2d)−1. Let I denote
the set of indices i with Bi (k) = 0, Zi (k) �= 0 and let I ′ ⊂ I be the set of indices i with
Bi (k) = 0 and |Zi (k)| = 1..
Case 3 |Zi (k)| ≥ 2 for all i ∈ I. If |Bi (k + 1)| = |Bi (k)| + 1 with some i ∈ I, then
we can define Z(k+ 1) by changing the i th coordinate (either increasing or decreasing),
since we have

P (B(k + 1) = B(k) + ei or B(k) − ei )

≤ P (Z(k + 1) = Z(k) + ei or Z(k) − ei ) . (20)

The proof of (20) is similar to that of (19): the first line of (20) is

w(B(k),B(k)+ei ) + w(B(k),B(k)−ei )∑
v: ‖v−B(k)‖=1 w(B(k),v)

.

Here the denominator can be bounded from below by
(
1− c1ε

L

)|B(k)|1 [
1+ (2d − 1)

(
1− c1ε

L

)]
,

which corresponds to the case when only one coordinate is nonzero (note that we have
excluded B(k) = 0 since k < tB,1). Combining this estimate with (17) gives (20)
assuming that c1 = c1(c0) is large enough. The other coordinates are treated the same
way as in Case 1.
Case 4 |I ′| �= 0 is an even integer.
Consider a perfect matching of I ′. Let (i, j) ∈ I ′2 be an arbitrary pair. If Zi (k+1) = 0,
then we define B(k + 1) such that |Bj (k + 1)| = 1. We can do so, since P(Zi (k + 1) =
0) ≈ (2d)−1 and P(|Bj (k + 1)| = 1) ≈ d−1. Analogously, if Z j (k + 1) = 0, then we
define B(k + 1) such that |Bi (k + 1)| = 1. Then, we do the coupling of movements in
other directions as discussed inCases 1–3. Finally, we couple the remaining set (including
Zi (k + 1) = 2, Z j (k + 1) = 2) arbitrarily.
Case 5 |I ′| = n is an odd integer.
Firstwe consider amatching ofn−1 elements ofI ′, and do the coupling described inCase
4. Let us denote the remaining index by i.Nowwe claim that there is some j /∈ I ′ such that
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|Z j (k)|−|Bj (k)| ≥ 1. Indeed, if there was no such j , then
∑d

m=1 |Zm(k)|−|Bm(k)| = n
would be an odd number, which is a contradiction with the fact that Z(0) = B(0) and
both processes move to nearest neighbors at each step. Now if |Z j (k+1)| = |Z j (k)|−1,
then we define B(k+1) such that |Bi (k+1)| = 1. If Zi (k+1) = 0, we define B(k+1)
by changing the j th coordinate (either decreasing or increasing). These can be done as
before. Then, we consider the cases corresponding to other coordinates as discussed in
Cases 1–3. Finally, we couple the remaining set arbitrarily. ��
Using Lemma 10, one can easily prove a much simplified version of Lemmas 7–9 with

Lγ , L
1+γ
2 , L

3+γ
4 replaced by constants K1(δ), K2(δ), K3(δ). This implies Proposition 6

for the case d > 2, N = 2. Then the case of general N follows the same way as in d = 2.
Finally, in case of Theorem 2 we have assumed that x1 �= 0. Then choosing ε < |x1|, the

proof of the case of Theorem 1 (with the choice R is the constant 1 function) applies.

7 Proof of Theorem 3 and Proposition 4

As in the proof of Theorems 1 and 2, we prove the weak convergence by showing that the
moments converge. The latter one is showed by switching to the dual process. Recalling some
notation from Sect. 5, we define Y ′ from Ỹ(t) the same way as we defined Z′ from Z̃(t). The
proof consists of two parts. First we consider the case when the number of particles is N = 2
and prove

Proposition 7

lim
L→∞E

[
T

(
Y ′(L)
1 (∞)

L

)
T

(
Y ′(L)
2 (∞)

L

)]
/
[
u(L)(x)

]2 = 1.

Then we can derive an extension of Proposition 7 to arbitrary N . The idea of the proof of
Proposition 7 is borrowed from [21] (the main difference is in Lemma 14). The extension to
arbitrary N is very similar to the argument in [15,17].

Let us write P(L)(A1) = P(Y ′(L)
1 (∞) = A1) and

P(L) (A1, A2) = P

(
Y ′(L)
1 (∞) = A1, Y ′(L)

2 (∞) = A2

)
,

for A1, A2 ∈ {0, L}. The asymptotic hitting probabilities of one particle are given by

Lemma 12 limL→∞ P(L)(L)

A(L)(x)
= 1.

Proof Although this lemma follows from the connection between random walks and elec-
trical networks, we give a direct proof as its extensions will be needed later. Note that by the
definition of ω0, ωL and ψ(m), we have for any 1 ≤ m ≤ L − 1

ωm−1

ωm−1 + ωm
rm−1/2ψ(m) = ωm+1

ωm + ωm+1
rm+1/2ψ(m + 1). (21)

Let us write �(m) = ∑m
i=1 ψ(i) for 0 ≤ m ≤ L . Then (21) means that �(Y ′

1(k)) is a
bounded martingale. After the first hitting of either 0 or L , this martingale clearly stays
constant. Then by the martingale convergence theorem,

P(L)(L)�(L) = �
(
Y ′
1(0)

)
.

Since A(L)(x) ∼ �(Y ′
1(0))/�(L), Lemma 12 follows. ��
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Now with the notation �(m) = ∑L
i=m+1 ψ(i) for 0 ≤ m ≤ L our aim is to construct

submartingales using

Sk := �
(
Y ′
1(k)

)
�
(
Y ′
2(k)

)+�
(
Y ′
1(k)

)
�
(
Y ′
2(k)

)
,

and

Tk =
max{Y ′

1(k),Y
′
2(k)}∑

i=min{Y ′
1(k),Y

′
2(k)}+1

ψ(i).

Lemma 13 There exists some constant C only depending on the upper and lower bound of
r and ω such that Sk + CTk is a submartingale and Sk − CTk is a supermartingale.

Proof Let us compute the conditional expectations with respect to (Fk)k, the filtration gen-
erated by the process Y ′. First, observe that E(Sk+1|Fk) = Sk if |Y ′

1(k)−Y ′
2(k)| ≥ 2. Next,

by definition E(Sk+1|Y ′
1(k) = Y ′

2(k) = i) is equal to

ri+1/2
ri−1/2+ri+1/2

∫ 1

0
p2
[
�(i + 1)2 +�(i + 1)2

]

+2p(1− p)[�(i)�(i + 1) +�(i)�(i + 1)]
+(1− p)2

[
�(i)2 +�(i)2

]
dBeta (ωi+1/2, ωi/2, p)

+ ri−1/2
ri−1/2+ri+1/2

∫ 1

0
p2
[
�(i − 1)2 +�(i − 1)2

]

+2p(1− p)[�(i)�(i − 1) +�(i)�(i − 1)]
+(1− p)2

[
�(i)2 +�(i)2

]
dBeta (ωi−1/2, ωi/2, p) ,

where we used the shorthand dBeta(α, β, p) = 1
B(α, β)

pα−1(1− p)β−1dp. Computing the
integrals and using (21) gives

E
(
Sk+1 − Sk |Y ′

1(k) = Y ′
2(k) = i

)

= 2[ψ(i)]2
(

ri+1/2

ri−1/2 + ri+1/2

ωi+1(ωi+1 + 2)

(ωi + ωi+1)(ωi + ωi+1 + 2)

+ ri−1/2

ri−1/2 + ri+1/2

ωi−1(ωi−1 + 2)

(ωi−1 + ωi )(ωi−1 + ωi + 2)

)
.

Similarly, E(Sk+1 − Sk |Y ′
1(k) = i, Y ′

2(k) = i + 1) is by definition equal to

ri−1/2
ri−1/2+ri+1/2+ri+3/2

ωi−1

ωi−1 + ωi
[−ψ(i)�(i + 1) + ψ(i)�(i + 1)]

+ ri+1/2
ri−1/2+ri+1/2+ri+3/2

{∫ 1

0

(
p2
[
�(i + 1)2 + �(i + 1)2

]

+2p(1− p)[�(i)�(i + 1) +�(i + 1)�(i)]
+(1− p)2

[
�(i)2 +�(i)2

]− Sk
)
dBeta (ωi−1, ωi , p)

−�(i)2 −�(i)2
}

+ ri+3/2
ri−1/2+ri+1/2+ri+3/2

ωi+2

ωi+1 + ωi+2
[�(i)ψ(i + 2) −�(i)ψ(i + 2)].
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A similar computation to the previous one gives

E
(
Sk+1 − Sk |Y ′

1(k) = i, Y ′
2(k) = i + 1

)

= −[ψ(i + 1)]2 2ri+1/2

ri−1/2 + ri+1/2 + ri+3/2

ωiωi+1

(ωi + ωi+1)(ωi + ωi+1 + 2)
.

Just like in the case of Sk, we have E(Tk+1|Fk) = Tk if |Y ′
1(k)− Y ′

2(k)| ≥ 2. Furthermore,

E
(
Tk+1 − Tk |Y ′

1(k) = Y ′
2(k) = i

) = [ψ(i + 1)] ri+1/2

ri−1/2 + ri+1/2

ωiωi+1

(ωi + ωi+1)
,

and

E
(
Tk+1 − Tk |Y ′

1(k) = i, Y ′
2(k) = i + 1

) = [ψ(i + 1)]1
3

ωiωi+1

(ωi + ωi+1 + 2)
.

We conclude that there is some positive constant c such that

• 0 < E(Sk+1 − Sk |Y ′
1(k) = Y ′

2(k)) < 1
c ,• −1/c < E(Sk+1 − Sk ||Y ′

1(k) − Y ′
2(k)| = 1) < 0,

• c < E(Tk+1 − Tk |Y ′
1(k) = Y ′

2(k)),• c < E(Tk+1 − Tk ||Y ′
1(k) − Y ′

2(k)| = 1).

The lemma follows. ��
Lemma 14 limL→∞ P(L)(L ,L)+P(L)(0,0)

[A(L)(x)]2+[1−A(L)(x)]2 = 1.

Proof Since Mk := Sk + CTk is a bounded submartingale, we can apply the martingale
convergence theorem to deduce

M0 ≤ E (M∞) =
(
P(L)(L , L)+P(L)(0, 0)

)
�2(L)+

(
P(L)(0, L)+P(L)(L , 0)

)
C�(L).

Since �(L)/L is bounded away from zero and infinity, the lower bound follows. The upper
bound is derived similarly from the fact that Sk + CTk is a supermartingale. ��

Now we are ready to prove Proposition 7.

Proof of Proposition 7. By Lemma 1,

P(L)(L , L) = 1

2

[
P(L)(L) + P(L)(L , L) + P(L)(0, 0) − P(L)(0)

]
.

Then by Lemmas 12 and 14,

P(L)(L , L) ∼
[
A(L)(x)

]2
.

Similarly, P(L)(0, 0) ∼ [1 − A(L)(x)]2, P(L)(L , 0) ∼ P(L)(0, L) ∼ [A(L)(x)][1 −
A(L)(x)]. Proposition 7 follows. ��

Since the extension of Proposition 7 to arbitrary N can be proved the same way as its
analogues in [15], Sect. 3 and [17], Sect. 6.2, we omit the proof here. We have finished the
proof of Theorem 3.

Finally, Proposition 4(b) is elementary and Proposition 4(a) follows from the connection
between random walks and electrical networks [namely, from (2) or Lemma 12] and the law
of large numbers.
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Appendix

Here, we prove Lemma6.Wewill use the notations of Sect. 6. The proof uses similar coupling
to the one in the proof of Lemma5. This will suffice in case of (a), as ‖Z‖ is small and in
case of (d), as we only need a weak estimate. However, we need to perform the coupling on
a mesoscopic timescale to complete the proof of (b) and (c).

Proof of (d) we prove the following slightly stronger statement.
For every η > 0 there is ε = ε(η) > 0 such that if log L − log log L < m < log L + log ε

and L is large enough, then EL ,M < η.

With some fixed C1, we couple Z(k), k ∈ [s0, (s0+C1M2)∧ s1] to a SSRWW (k), k ∈
[s0, (s0 + C1M2) ∧ s1], W (s0) = Z(s0). We fix C1, as we can by Lemma5, such that
P(s1 > s0+C1M2) < η/10. Second, Lemma4 implies that by choosing C2 = C2(C1) large
enough,

P
(‖W (k) − Z(k)‖ > C2M

3/L2 for some k <
(
s0 + C1M

2) ∧ s1
)

< η/10.

Now let us define

s1 = min{k: ‖W (k)‖ < (1/2+ ζ )M or ‖W (k)‖ > (2− ζ )M},
s1 = min{k: ‖W (k)‖ < (1/2− ζ )M or ‖W (k)‖ > (2+ ζ )M},

where ζ is fixed in such a way that the following events concerning a planar Brownianmotion
W have probability at least 1− η/10:

(A) if ‖W(0)‖ = 1/2+ ζ thenW reaches B(0, 1/2− ζ ) before reaching R
2 \ B(0, 2− ζ )

and
(B) if ‖W(0)‖ = 2− ζ then W reaches R

2 \ B(0, 2+ ζ ) before reaching B(0, 1/2+ ζ ).

By the fact that log ‖W‖ is martingale and by Donsker’s theorem, we can also assume∣∣P (∥∥W (
s1
)∥∥ < (1/2+ ζ )M

)− 1/2
∣∣ < η/10,

possibly by further reducing ζ and by choosing L large. Finally, we choose ε = √
ζ/C2 so

as ζM > C2M3/L2. Lemma6(d) follows.

Proof of (a) if 2 ≤ ‖Z(k + s0)‖ for some k < L13/10 ∧ τ 3/5, then using Lemma4 we can

couple Z(k)− Z(k − 1) to a step of a SSRW W (k)−W (k − 1) with probability O(L−7/5).

Thus the probability

P
(
Z(k) − Z(k − 1) = W (k) −W (k − 1) for all k < L13/10, 2 ≤ ‖Z (k + s0)‖

)
,

is O(L−1/10). Now Lemma6(a) follows from the proof of Lemmas10 and 11 in [17].

Proof of (b) and (c) the idea of the proof of these cases is borrowed from [9]. First, we fix
some positive ξ < 3/20,write K = �Lξ � and consider the process (Z(s0+ j K )) j≥1, stopped
upon reaching B(0, M/2−K ) or R

2 \ B(0, 2M+K ). Let us denote by s̄ the corresponding
stopping time, i.e., s̄ = sK with the smallest s such that Z(s0+ sK ) is stopped. We will also
write z = Z(s0 + j K ) − Z(s0 + ( j − 1)K ) and x j = log ‖Z(s0 + j K )‖2. Now we have
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‖Z (s0 + ( j + 1)K )‖2 = ‖Z (s0 + j K )‖2 + 2 (Z (s0 + j K ) , z) + ‖z, z‖2,
and

x j+1 − x j = log

(
1+ 2(Z(s0 + j K ), z) + ‖z, z‖2

‖Z(s0 + j K )‖2
)

.

By Taylor expansion,

x j+1 − x j

= 2(Z(s0 + j K ), z)

‖Z(s0 + j K )‖2 + ‖z‖2
‖Z(s0 + j K )‖2 −

2(Z(s0 + j K ), z)2

‖Z(s0 + j K )‖4 + O
(
L3ξ M−3)

= I + I I + I I I + O
(
L3ξ M−3) .

As before, we couple z to a SSRW W (K ) by Lemma4 such that if y = z−W (K ), then for
all positive integer n,

P(‖y‖ = k) = O
(
Lnξ−2nMn) .

If Fk is the filtration generated by Z̃i (s0 + l), l ≤ k, i = 1, 2, then

E(I ) = E

(
E(2(Z(s0 + j K ), W (K ))|F j )

‖Z(s0 + j K )‖2
)
+ E

(
E(2(Z(s0 + j K ), y)|F j )

‖Z(s0 + j K )‖2
)

.

Here, the first term is zero by symmetry of the SSRW W, and the second is estimated by the
Cauchy–Schwarz inequality in cases 1 ≤ ‖y‖ ≤ 2 and ‖y‖ ≥ 3. We conclude E(I ) = Lξ−2.

A similar argument shows that

E
(‖z‖2) = K + O

(
ML3ξ−2) . (22)

The above leading term is E(‖W (K )‖2) = K , which can be easily proved by lever-
aging the fact that (W(1)(k) − W(1)(k − 1))1≤k≤K and (W(2)(k) − W(2)(k − 1))1≤k≤K

are two independent one dimensional SSRW’s, where v(1) = ((1/
√
2, 1/

√
2), v) and

v(2) = ((1/
√
2, −1/

√
2), v). Finally,

E
(
2 (Z (s0 + j K ) , z)2 |F j

)

=
2∑

i, j=1

2Z(i) (s0 + j K ) Z( j) (s0 + j K ) E
(
z(i)z( j)

)

=
2∑

i=1

2
(
Z(i) (s0 + j K )

)2
E

[(
W(i)(K )

)2]+ O
(
M2L3ξ−2)

= ‖Z (s0 + j K )‖2 K + O
(
M2L3ξ−2) .

We conclude that
E
((
x j+1 − x j

)
1s̄> j K

) = O
(
L3ξ M−3 + Lξ−2) . (23)

Thus
E
(
xmin{s̄/K ,A/K }

) = 2m + O
(
AL2ξ M−3 + AML−2) . (24)

Recall that we are given some γ < 1.

• In case of Lemma6(b), let us choose A = M2+ 1−γ
γ . Assuming, as we can that ξ < 1−γ

gives AL−2 < L−ξ . If ξ is small (say smaller than 1/20), then AL2ξ M−3 < L−ξ holds
as well.
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• In case of Lemma6(c) let us choose A = L2 log−3/2 L . Since both 1−γ and ξ are small,
we have AL2ξ M−3 + AML−2 = O(log−3/2 L).

Thus the error term in (24) can be replaced by O(E), where E = L−ξ in case of
Lemma6(b) and E = log−3/2 L in case of Lemma6(c). Next, by Lemma 5,

xmin{s̄/K ,A/K } = 2m ± 2+ O
(
Lξ M−1) = 2m ± 2+ O

(
L−ξ

)
, (25)

holds except on a set of probability O(θ A/M2
). On this exceptional set, we bound the left

hand side of (25) by O(logM). In case of Lemma6(b), θ A/M2
logM is superpolynomially

small in L . In case of Lemma6(c), θ A/M2
logM < θ

√
log L log L = O(log−3/2 L). It follows

that

P
(∥∥Zs0+s̄K

∥∥ ≤ M/2− K
) = 1

2
− O(E).

Since ‖Zs0+s̄K ‖ ≤ M/2− K implies Z(s1) ∈ Cm−1, we conclude

P (Z (s1) ∈ Cm−1) ≥ 1

2
− O(E).

An analogous argument shows

P (Z (s1) ∈ Cm+1) ≥ 1

2
− O(E).

Lemma6(b) and (c) follow.
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