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Abstract We construct a family of self-similar solutions with fat tails to a quadratic kinetic
equation.This equationdescribes the long timebehaviour ofweak solutionswithfinitemass to
the weak turbulence equation associated to the nonlinear Schrödinger equation. The solutions
that we construct have finite mass, but infinite energy. In Kierkels and Velázquez (J Stat Phys
159:668–712, 2015) self-similar solutions with finite mass and energy were constructed.
Here we prove upper and lower exponential bounds on the tails of these solutions.

Keywords Self-similar solutions · Fat tails · Exponential tails · Weak turbulence · Long
time asymptotics
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1 Introduction

The theory of weak turbulence is a physical theory which describes the transfer of energy
between different wavelengths in a large class of wave systems. This theory can be applied
to homogeneous problems that can be approximated to leading order by a system of linear
waves that interact by means of weak nonlinearities. The basic mathematical model in the
theory of weak turbulence is a kinetic equation that describes the transfer of energy between
different wavelengths. Contrary to the starting wave equations, the kinetic equations arising
in weak turbulence theory exhibit irreversible behaviour. Examples of applications of the
theory of weak turbulence to specific physical systems can be found in [3], [4], [8,9], [13],
[17], [22] and [23].
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One of the most extensively studied systems in the setting of weak turbulence theory is
the one associated to the nonlinear Schrödinger equation

iut = −�u + ε|u|2u, (1.1)

with ε > 0 small (cf. [4,13,24]). Denoting F(t, k) = |û(t, k)|2, where û is the space Fourier
transform of the solution of (1.1), then restricting to isotropic solutions one obtains up to
rescaling the following equation for f (t, ω) := F(t, k) with ω := |k|2:

∂t f1 = 1

2

∫∫
[0,∞)2

W
[
( f1 + f2) f3 f4 − ( f3 + f4) f1 f2

]
dω3dω4, (1.2)

where fi = f (t, ωi ) for each i ∈ {1, 2, 3, 4}, where ω2 = (ω3 + ω4 − ω1)+, and where
W = mini {√ωi }/√ω1. Themathematical theory of this equation has been studied in detail in
[6] where several properties of the solutions of (1.2) were obtained. As it is more convenient
to study the evolution of the mass density function g(t, ω) = √

ω f (t, ω), we reformulate
(1.2) as

∂t g1 = 1

2

∫∫
[0,∞)2

W̃

[(
g1√
ω1

+ g2√
ω2

)
g3g4√
ω3ω4

−
(

g3√
ω3

+ g4√
ω4

)
g1g2√
ω1ω2

]
dω3dω4,

(1.3)

where now gi = g(t, ωi ) for each i ∈ {1, 2, 3, 4}, where ω2 = (ω3 + ω4 − ω1)+ and where
W̃ = mini {√ωi }. Formally this equation has two conserved quantities, namely the mass,
which is the integral of g, and the energy, which is the first moment of g.

For a class of weak solutions to (1.3) with finite mass, it was proved in [6] that all solutions
converge, as t → ∞, to a Dirac mass supported at a well-defined point a ≥ 0, which depends
only on the support of the initial distribution. It turns out that unless the initial distribution is
contained in a periodic lattice, there holds a = 0. In this last case, it is possible to formally
derive an equation that describes the behaviour of the fraction of mass that is not supported
near the origin, which we denote by G. Formally this equation reads as

∂tG(ω) = 1

2

∫ ω

0

G(ω − ξ)G(ξ)dξ√
(ω − ξ)ξ

− G(ω)√
ω

∫ ∞

0

G(ξ)dξ√
ξ

−1

2

G(ω)√
ω

∫ ω

0

[
G(ω − ξ)√

ω − ξ
+ G(ξ)√

ξ

]
dξ +

∫ ∞

0

G(ω + ξ)√
ω + ξ

[
G(ω)√

ω
+ G(ξ)√

ξ

]
dξ. (1.4)

in which one may recognize a coagulation-fragmentation equation with nonlinear fragmen-
tation. Note that many terms in (1.4) are singular and the meaning of this equation has to
be precised. A more elaborate discussion on the sense in which G describes the asymptotic
behaviour of g can be found in [6] and [10]. It is known that solutions to (1.3) can contain
Dirac masses at the origin. If that is the case, then (1.4) can be obtained by only considering
those collisions which are mediated by an interaction with the condensate.

Notice that if we assume that g = Mδ0 + G, then the energy of g is contained in G.
Therefore the analysis of the long time behaviour of G is relevant, even though the mass ofG
becomes negligible compared to the mass supported at the origin as t → ∞. As conjectured
in [6], we expect a self-similar distribution of the energy among the different wavelengths as
t → ∞, provided that g has initially finite energy. In [10] we have proved the existence of a
family of self-similar solutions G to (1.4) with finite energy. These solutions are the natural
candidates for describing the long time asymptotics of solutions g to (1.3) with finite mass
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and energy. Note however, that stability of these self-similar solutions is an open problem,
even at the linearised level.

Of course, the assumption of finite energy is not really needed to have self-similar
behaviour for the solutions g of (1.3). Long time self-similarity can be expected
if the initial data has a power law tail as ω → ∞. This gives a natural scal-
ing law relating the energy density and ω. Actually, long time self-similarity can
only be expected if either the initial distribution has a power law tail, or if the
energy is finite. This is because otherwise the behaviour of the solutions is not stable
for large values of ω under the evolution equations (1.3) and (1.4). This is remi-
niscent of the situation for the coagulation equation with constant kernel, where in
order to have self-similarity the power law behaviour for the initial data is needed
(cf. [12]).

Let us briefly discuss the expected self-similar behaviour of a solution g to (1.3) if we
assume the initial distribution to behave like ω−ρ for large values of ω, where ρ > 0. Given
that for ρ ≤ 1

2 it is not clear whether the collision terms in (1.3) can be given a meaning,
we restrict ourselves to the case ρ > 1

2 . A particularly relevant exponent is ρ = 2
3 , which is

the so called Kolmogorov–Zakharov exponent for (1.3). The interpretation of this exponent
is the existence of a constant flux of particles from large values of ω to smaller ones in the
space of frequencies (cf. [22]).

If we suppose that ρ > 1, then g has finite mass and the heuristic derivation of (1.4) is
valid (cf. [6,10]). As discussed before, we thus expect the self-similar solutions G of (1.4) to
describe the long time asymptotics of solutions g to (1.3). One of themain results of this paper
will be the proof of existence of self-similar solutions to (1.4) with tail behaviour ω−ρ for
1 < ρ < 2. If ρ > 2, then the solutions have finite energy. Existence of self-similar solutions
with finite energy has been proved in [10]. In this paper we prove that these solutions decay
exponentially as ω → ∞.

The case 1
2 < ρ < 1 is different, since the mass of g is infinite. We therefore expect the

amount of mass located at the origin to grow without limit. Dimensional analysis suggests
that the long time asymptotics of solutions to (1.3) then cannot be approximated by solutions
to a simpler quadratic equation, similar to (1.4), where all the collisions are mediated by
interaction with one particle placed at the origin. More precisely, if we suppose that g =
Mδ0 +G, where M = M(t) is the amount of mass located at the origin, then there are terms
that are cubic in G that cannot be ignored, and we expect self similar solutions to be of the
form

G(t, ω) = 1

t
ρ

2ρ−1
	

(
ω

t
1

2ρ−1

)
.

We further note that dimensional analysis alone is insufficient to determine the exact scaling
law for M . However, it suggests that M ∼ tα for α ≤ 1−ρ

2ρ−1 .

Seemingly the first paper to consider the asymptotics of solutions of (1.3) in connection
with solutions to the nonlinear Schrödinger equation is [18]. In particular, that paper describes
the scaling properties of solutions g to (1.3) in the cases where either the energy is finite, or
where g behaves for large frequencies according to the Kolmogorov–Zakharov power law.
These two cases correspond to assuming that the spectral distribution F(t, k) = |û(t, k)|2
has either finite energy or decays according to the Kolmogorov–Zakharov exponent for large
|k|. However, in the case of infinite energy there is no particular reason for the exponent of
the power law to be restricted to this one. Hence, it makes sense to study solutions g to (1.3)
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where g initially has arbitrary power law behaviour at infinity, at least from a mathematical
point of view.

This paper is a continuation of the study of self-similar solutions to (1.4), which was
initiated in [10]. We refer to that paper for a more extensive discussion of the connection
of (1.2) to particle models, as well as other equations in mathematical physics such as the
Boltzmann–Nordheim equation.

The structure of the paper is as follows. In Sect. 2 we introduce our notation, and we give
the statements of the main results. Section 3 contains the proof of existence of self-similar
profiles, while in Sect. 4 regularity is proven. In Sect. 5 we then demonstrate unique power
law behaviour of the self-similar profiles in the case of infinite energy. Lastly, in the case of
finite energy we prove a pointwise exponential upper bound and an exponential lower bound
in averaged sense in Sect. 6.

2 Notation and Results

We start with some definitions and notations that we use throughout the paper.

Definition 2.1 We write M([0,∞)), M+([0,∞)), and M+([0,∞]) for the spaces of
signed, nonnegative, and finite nonnegative Radon measures respectively.

Remark 2.2 Note that the notation for measure spaces as introduced in Definition 2.1 differs
from the one in [10]. In that paper M+([0,∞)) was used to denote the space of finite
nonnegative Radon measures μ on [0,∞] for which μ({∞}) = 0.

Remark 2.3 For an integral with respect to a measure μ we will always use the notation
μ(x)dx , even if μ is not absolutely continuous with respect to Lebesgue measure.

Definition 2.4 Given an interval I ⊂ [−∞,∞], we write C(I ) = C0(I ) for the set of
functions that are continuous on I . Given further k ∈ N, we write Ck(I ) for the subset of
these functions in C(I ) whose derivatives of order up to k exist and are in C(I ), and Ck

c (I ),
or Cc(I ), for the set of functions in Ck(I ), or C(I ), supported in a compact K ⊂ I . Given
finally k ∈ N0 = {0, 1, . . .} and α ∈ (0, 1), we writeCk,α(I ) for the set of functions inCk(I )
for which the k-th derivative is α-Hölder continuous on any compact K ⊂ I .

Remark 2.5 Given ϕ ∈ C(I ), we write ‖ϕ‖∞ = ‖ϕ‖C(I ).

Remark 2.6 Note that if f ∈ Ck([0,∞]), then not only are the functions f (�), with
� = 0, 1, . . . , k, bounded on the interval [0,∞], but also limx→∞ f (x) exists, and
limx→∞ f (�)(x) = 0 for � = 1, . . . , k.

Definition 2.7 Given k ∈ N0, we denote by Bk the subspace of those functions ϑ ∈
Ck([0,∞]) for which

‖(1 + x)ϑ(x)‖Ck ([0,∞]) =: ‖ϑ‖Bk < ∞.

Remark 2.8 SinceB0 is a separable Banach space, the unit ball in the dual spaceB′
0 endowed

with the weak-∗ topology is metrizable (cf. [1, Theorem 3.28]). Consequently, the properties
of the weak-∗ topology restricted to the unit ball in B′

0 can be characterized by means
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convergence of sequences. We recall that a sequence {μn} in B′
0 converges to μ ∈ B′

0 with
respect to the weak-∗ topology (denoted μn ⇀∗ μ in B′

0) if and only if
∫

[0,∞)

ϑ(x)μn(x)dx →
∫

[0,∞)

ϑ(x)μ(x)dx for all ϑ ∈ B0.

Remark 2.9 We use the notations a ∨ b = max{a, b} and a ∧ b = min{a, b}.
A robust characterization of the power law behaviour of measures μ near infinity will be

achieved by means of the functionals

Rρ−2
∫

[0,∞)

(
1 ∧ R

x

) |μ(x)|dx . (2.1)

More precisely, we will make extensive use of the following normed spaces.

Definition 2.10 Given ρ ∈ (1, 2], we defineXρ to be the subset of those nonnegative Radon
measures μ ∈ M+([0,∞)) for which

sup
R>0

{
Rρ−2

∫
[0,∞)

(
1 ∧ R

x

) |μ(x)|dx
}

=: ‖μ‖ρ < ∞. (2.2)

Remark 2.11 Even though the space Xρ only contains nonnegative Radon measures, the
norm ‖ · ‖ρ is defined for arbitrary signed Radon measures by (2.2).

Also, since ‖μ‖2 = ∫
[0,∞)

μ(x)dx we can identify any μ ∈ X2 with a unique element
in M+([0,∞]) ∩ {μ({∞}) = 0}, and we will henceforth use the abbreviated notation
X2 = M+([0,∞]) ∩ {μ({∞}) = 0}.

Note lastly that if ρ ∈ (1, 2), then for all μ ∈ Xρ there holds μ({0}) = 0, since 0 ≤
μ({0}) ≤ Rρ−2

∫
[0,∞](1 ∧ R

x )μ(x)dx × R2−ρ ≤ ‖μ‖ρR2−ρ for all R > 0.

Lemma 2.12 Given ρ ∈ (1, 2), there holds Xρ ⊂ B′
0, and {‖μ‖ρ ≤ 1} ∩ Xρ is weakly-∗

closed in B′
0.

Proof Since for ϑ ∈ B0 with ‖ϑ‖B0 = 1 there holds |ϑ(x)| ≤ 1
1+x ≤ 1 ∧ 1

x for x > 0, we
find for μ ∈ Xρ , which are nonnegative, that

‖μ‖B′
0

def= sup
‖ϑ‖B0=1

∫
[0,∞)

ϑ(x)μ(x)dx ≤
∫

[0,∞)

(
1 ∧ 1

x

)
μ(x)dx ≤ ‖μ‖ρ, (2.3)

which proves the inclusion. Given further a sequence {μn} in {‖μ‖ρ ≤ 1} ∩ Xρ such that
μn ⇀∗ μ in B′

0, then clearly μ ≥ 0. Furthermore, for all R > 0 there holds by definition of
weak-∗ convergence that

ζn(R) = Rρ−2
∫

[0,∞)

(
1 ∧ R

x

)
μn(x)dx → Rρ−2

∫
[0,∞)

(
1 ∧ R

x

)
μ(x)dx,

and since for all R > 0 the sequence {ζn(R)} is bounded by one, we conclude that ‖μ‖ρ ≤ 1.
��

Definition 2.13 By the weak-∗ topology onXρ we mean the restriction of the weak-∗ topol-
ogy of B′

0 to Xρ .

Lemma 2.14 Given ρ ∈ (1, 2), the unit ball in Xρ is weakly-∗ compact.
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Proof Using (2.3), there holds {‖μ‖ρ ≤ 1}∩Xρ ⊂ {‖μ‖B′
0

≤ 1}, so by weak-∗ closedness it
suffices to check that {‖μ‖B′

0
≤ 1} is weakly-∗ compact, which follows by Banach–Alaoglu

(cf. [1, Theorem 3.16]). ��
Remark 2.15 Notice that for any function ϕ ∈ C([0,∞]) there exists a unique ϑ ∈ B0 such
that ϕ(x) = (1 + x)ϑ(x), and vice versa. Therefore

‖μ‖B′
0

= sup
‖ϑ‖B0=1

∫
[0,∞)

ϑ(x)μ(x)dx

= sup
‖ϕ‖C([0,∞])=1

∫
[0,∞)

ϕ(x)μ(x)
1+x dx =

∥∥∥μ(x)
1+x

∥∥∥
(C([0,∞]))′ ,

and B′
0 and M([0,∞]; dx

1+x ) are isomorphic.

Definition 2.16 For ρ ∈ (1, 2), we define for any R0 > 0 the subsetYρ = Yρ(R0) to contain
those elements μ ∈ Xρ that satisfy both ‖μ‖ρ ≤ 1 and∫

[0,∞)

(
1 ∧ R

x

)
μ(x)dx ≥ R2−ρλρ

( R
R0

)
for all R > 0, (2.4)

with λρ(x) = (1 − |x |−(2−ρ)/2)+.

Remark 2.17 For any R0 > 0, the set Yρ(R0) is a nonempty ((2− ρ)(ρ − 1)x1−ρdx ∈ Yρ),
convex and weakly-∗ compact subset of the unit sphere {‖μ‖ρ = 1}.

We now state the notion of weak solution to (1.4), which is analogous to the one that was
introduced in [10].

Definition 2.18 A function G ∈ C([0,∞) : X2) that for all t ∈ [0,∞) and all ϕ ∈
C1([0,∞) : C1

c ([0,∞))) satisfies∫
[0,∞)

ϕ(t, x)G(t, x)dx −
∫

[0,∞)

ϕ(0, x)G(0, x)dx

=
∫ t

0

[∫
[0,∞)

ϕs(x)G(x)dx + 1

2

∫∫
[0,∞)2

G(x)G(y)√
xy

D2[ϕ](x, y)dxdy
]
ds, (2.5)

where D2 for ϕ ∈ C([0,∞)) is defined by

D2[ϕ](x, y) = ϕ(x + y) + ϕ(|x − y|) − 2ϕ(x ∨ y),

will be called a weak solution to (1.4).

Remark 2.19 The use of the spaceX2 = M+([0,∞])∩{μ({∞}) = 0}might seem artificial.
We only impose the restriction to {μ({∞}) = 0} to avoid trivial nonuniqueness due to the
fact that (2.5) does not give any information about G(·, {∞}), which could be an arbitrary
function since we are using test functions that are compactly supported in [0,∞).

Remark 2.20 We frequently use the following notation for the second difference:

�2
y f (x) = f (x + y) + f (x − y) − 2 f (x)

Also, for notational convenience we introduce

D∗
2[ϑ](x, y) = D2[ϕ](x, y) with ϕ(z) = zϑ(z)

= (x + y)ϑ(x + y) + |x − y|ϑ(|x − y|) − 2(x ∨ y)ϑ(x ∨ y). (2.6)
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Lemma 2.21 For f ∈ C2(R) and x ∈ R there hold

�2
y f (x) =

∫
R

(|y| − |w − x |)+ f ′′(w)dw for y ∈ R, (2.7)

∂y

[
�2

y f (x)
]

=
∫ x+y

x−y
f ′′(w)dw for y ≥ 0. (2.8)

Proof By the fundamental theorem of calculus we observe that

�2
y f (x) =

∫ x+|y|

x
f ′(z)dz −

∫ x

x−|y|
f ′(z)dz

=
∫ x+|y|

x

∫ z

x
f ′′(w)dwdz +

∫ x

x−|y|

∫ x

z
f ′′(w)dwdz.

Applying Fubini to the right hand side and rearranging terms, we find (2.7). The proof of
(2.8) is similar. ��
Remark 2.22 For any f, g ∈ C([0,∞)), we write f (x) ∼ g(x) as x → ∞ if there holds
limx→∞ f (x)

g(x) = 1.

2.1 Statement of Main Results

In this sectionwe state themain results of this paper. Thefirst result gives a sufficient condition
for existence of a self-similar solution.

Proposition 2.23 Given ρ ∈ (1, 2], if 	ρ ∈ L1(0,∞) is a nonnegative function that for all
ϕ ∈ C1

c ([0,∞)) satisfies

1

ρ

∫
(0,∞)

(
xϕ′(x) − (ρ − 1)(ϕ(x) − ϕ(0))

)
	ρ(x)dx

=
∫∫

{x>y>0}
	ρ(x)	ρ(y)√

xy
�2

yϕ(x)dxdy, (2.9)

then the function G ∈ C([0,∞) : X2) that is given by

G(t, x)dx =
(
M − ‖	ρ‖L1(0,∞)

(t + t0)(ρ−1)/ρ

)
δ0(x)dx + 	ρ

(
x

(t + t0)1/ρ

)
dx

t + t0
,

with t0 ∈ (0,∞) and M ∈ [0,∞) such that Mt (ρ−1)/ρ
0 ≥ ‖	ρ‖L1(0,∞), is a weak solution

to (1.4) in the sense of Definition 2.18.

Proof Making the necessary changes, this is identical to the proof of [10, Proposition 4.1],
in which the case ρ = 2 was considered. ��

The rest of this paper is devoted to the proof of the following results.

Theorem 2.24 (Existence) Given ρ ∈ (1, 2], there exists at least one 	ρ ∈ X2 that for all
ϕ ∈ C1

c ([0,∞)) satisfies

1

ρ

∫
[0,∞)

(
xϕ′(x) − (ρ − 1)(ϕ(x) − ϕ(0))

)
	ρ(x)dx

= 1

2

∫∫
[0,∞)2

	ρ(x)	ρ(y)√
xy

D2[ϕ](x, y)dxdy. (2.10)
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Proposition 2.25 (Regularity) Given ρ ∈ (1, 2], if 	ρ ∈ X2 satisfies (2.10) for all ϕ ∈
C1
c ([0,∞)), then 	ρ is absolutely continuous with respect to Lebesgue measure, and its

Radon–Nykodim derivative is smooth on (0,∞) and satisfies

− 1
ρ
x	′

ρ(x) − 	ρ(x) =
∫ x/2

0

	ρ(y)√
y

[
	ρ(x + y)√

x + y
+ 	ρ(x − y)√

x − y
− 2

	ρ(x)√
x

]
dy

+
∫ ∞

x/2

	ρ(y)	ρ(x + y)√
y(x + y)

dy − 2
	ρ(x)√

x

∫ x

x/2

	ρ(y)√
y

dy. (2.11)

Actually,	ρ thus satisfies (2.9) for all ϕ ∈ C1
c ([0,∞)), and furthermore,	ρ is either strictly

positive or identically zero on (0,∞).

Proposition 2.26 Given ρ ∈ (1, 2], if	ρ ∈ X2 satisfies (2.10) for all ϕ ∈ C1
c ([0,∞)), then

x	ρ(x) ∈ Xρ . Furthermore, for any c > 0 the rescaled measure 	∗(x)dx = 	ρ(cx)dx
also satisfies (2.10) for all ϕ ∈ C1

c ([0,∞)), and there holds ‖x	∗(x)‖ρ = c−ρ‖x	ρ(x)‖ρ .
Remark 2.27 The statements in Theorem2.24 and Proposition 2.26 have already been proven
for the case ρ = 2 in [10, Section 4]. In the proofs in this paper we will thus restrict ourselves
to the case ρ ∈ (1, 2).

Theorem 2.28 (Power law asymptotics) Given ρ ∈ (1, 2), if 	ρ ∈ X2 satisfies (2.10) for
all ϕ ∈ C1

c ([0,∞)), and if furthermore ‖x	ρ(x)‖ρ = 1, then

	ρ(r) ∼ (2 − ρ)(ρ − 1)r−ρ as r → ∞.

Theorem 2.29 (Exponential bounds) If 	2 ∈ X2 satisfies (2.10) with ρ = 2 for all ϕ ∈
C1
c ([0,∞)), and if	2 is not identically zero on (0,∞), then there exist constants a, c ∈ (0, 1)

such that

	2(r) ≤ e−ar

c
for all r ≥ 1, and

∫
(R,R+1)

	2(x)dx ≥ ce− R
a for all R ≥ 0.

3 Existence of Self-Similar Profiles

The proof of Theorem 2.24 for the case ρ = 2 was already given in [10], and the obtained
profiles	2 turned out to have finite energy. Due to this finiteness of the energy the existence
result for self-similar solutions to (1.4) in [10] can be seen as the analogue to the existence
result for self-similar solutions with finite mass to the coagulation equation obtained in [5]
and [7].

For the coagulation equation, self-similar solutions with infinite mass, i.e. with fat tailed
behaviour at infinity, have been obtained in [14] for locally bounded kernels, and in [16] for
a class of singular kernels, which in particular includes the classical Smoluchowski kernel
for Brownian coagulation.

In this paper we construct self-similar solutions with fat tailed behaviour at infinity to
(1.4), adapting the methods of [14]. The main idea in the construction made in that paper,
is that for fat tailed solutions the linear terms in the equation for the self-similar profile are
dominant for large values of x . The effect of the nonlinear collision kernels can be seen as a
nonlocal diffusive effect for large particles, which gives a lower order correction. Due to the
fact that in coagulation equations the size of the particles is always increasing, the resulting
diffusive effect is directed towards larger values. Conversely, in our case the collision kernel
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can transport particles to both larger or smaller values, and the resulting nonlocal diffusive
effect is no longer directed. However, the operator describing this diffusive effect is more
symmetric than in the case of coagulation. This has two main consequences. Firstly, the
natural test functions required to study the transport of particles are those that are either
convex or concave, while in the case of the coagulation equation the natural test functions
were the monotone ones. Secondly, due to the symmetry of our collision kernel the singular
terms in (1.4) have a weaker effect, and many of the technicalities that had to be introduced
in [16] can be avoided.

We would like to mention that large parts of our construction below also work in the case
ρ = 2. However, technicalities aside, it is not a priori clear that this construction yields a
nontrivial solution where not all the mass is concentrated in the origin.

We now restrict ourselves to ρ ∈ (1, 2). Introducing as in [10] the notations �ρ(x) =
x	ρ(x) and ϑ(x) = 1

x (ϕ(x) − ϕ(0)), we can rewrite (2.10) as

1

ρ

∫
[0,∞)

(
xϑ ′(x)+(2−ρ)ϑ(x)

)
�ρ(x)dx= 1

2

∫∫
[0,∞)2

�ρ(x)�ρ(y)

(xy)3/2
D∗
2[ϑ](x, y)dxdy,

(3.1)

where we recall the notation (2.6). Now, we would like to prove existence of a solution to
(3.1) by showing that there exists a stationary solution to∫

[0,∞)

ϑ(t, x)�ρ(t, x)dx −
∫

[0,∞)

ϑ(0, x)�ρ(0, x)dx

=
∫ t

0

[ ∫
[0,∞)

(
ϑs(s, x) − 1

ρ
(xϑx (s, x) + (2 − ρ)ϑ(s, x))

)
�ρ(s, x)dx

+ 1

2

∫∫
[0,∞)2

�ρ(s, x)�ρ(s, y)

(xy)3/2
D∗
2[ϑ(s, ·)](x, y)dxdy

]
ds. (3.2)

In order to avoid technical difficulties due to the singularity of the kernel, we will consider a
regularized version of (3.2). We then prove existence of stationary solutions to that equation
by a Schauder type fixed point theorem, and finally show by a compactness result that by
removing the regularization we obtain a solution to (3.1).

Assumption 3.1 Let ρ ∈ (1, 2) and ε > 0 be fixed arbitrarily, let a ∈ (0, ε
2 ) be arbitrary,

and let φ ∈ C∞
c ((−1, 1)) be a fixed even function such that φ ≥ 0 and ‖φ‖L1(R) = 1. For

any b > 0 we define φb(x) = 1
bφ( xb ) for all x ∈ R.

Proposition 3.2 Under Assumption 3.1, there exist R0 > 0 and a weakly-∗ continuous semi-
group (Sa(t))t≥0 onYρ = Yρ(R0) such that if given�0 ∈ Yρ , then�a(t, ·) = Sa(t)�0 ∈ Yρ

satisfies ∫
[0,∞)

ϑ(t, x)�a(t, x)dx −
∫

[0,∞)

ϑ(0, x)�0(x)dx

=
∫ t

0

[∫
[0,∞)

(
ϑs(s, x) − 1

ρ
(xϑx (s, x) + (2 − ρ)ϑ(s, x))

)
�a(s, x)dx

+
∫∫

{x>y>0}
�a(s, x)(φa ∗ �a(s, ·))(y)

((x + ε)(y + ε))3/2
D∗
2[ϑ(s, ·)](x, y)dxdy

]
ds (3.3)

for all t ≥ 0 and all ϑ ∈ C1([0,∞) : B1).
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3.1 Construction of the Semigroup

To prove existence of an evolution semigroup for (3.3), it is useful to consider a reformulation
where the transport term is removed. Introducing the variables

Ha(s, X) = �a(s, x), ψ(s, X) = e−s/ρϑ(s, x), X = xes/ρ, (3.4)

we can write (3.3) as∫
[0,∞)

ψ(t, X) Ha(t, X)dX −
∫

[0,∞)

ψ(0, X)Ha(0, X)dX

=
∫ t

0

[∫
[0,∞)

(
ψs(s, X) + ρ−1

ρ
ψ(s, X)

)
Ha(s, X)dX

+
∫∫

{X>Y>0}
es/ρHa(s, X)(φaes/ρ ∗ Ha(s, ·))(Y )

((X + εes/ρ)(Y + εes/ρ))3/2

×D∗
2[ψ(s, ·)](X, Y )dXdY

]
ds. (3.5)

To construct the evolution semigroup for (3.3) we thus construct a solution to (3.5). To this
end we prove existence and uniqueness for suitable mild solutions, which turn out to be weak
solutions in the sense of (3.5).

Lemma 3.3 Under Assumption 3.1, then given H0 ∈ Xρ , there exist T > 0, depending on ε

and ‖H0‖ρ , and a unique function Ha ∈ C([0, T ] : Xρ) that is a fixed point for the operator
Ta, from C([0, T ] : Xρ) to itself, defined by

Ta[H ](t, X) = H0(X)e− ∫ t
0 Aa(s)[H(s,·)](X)ds

+
∫ t

0
e− ∫ t

s Aa(σ )[H(σ,·)](X)dσ Ba(s)[H(s, ·)](X)ds, (3.6)

where Aa(s) : Xρ → C([0,∞]), for s ∈ [0, T ], is given by

Aa(s)[H ](X) = 2Xes/ρ

(X + εes/ρ)3/2

∫ X

0

(φaes/ρ ∗ H)(Y )

(Y + εes/ρ)3/2
dY − ρ − 1

ρ
, (3.7)

and where Ba(s) : Xρ → Xρ , again for s ∈ [0, T ], is such that for all ψ ∈ B0 we have
∫

[0,∞)

ψ(X)Ba(s)[H ](X)dX =
∫∫

{X>Y>0}
es/ρH(X)(φaes/ρ ∗ H)(Y )

((X + εes/ρ)(Y + εes/ρ))3/2

× [(X + Y )ψ(X + Y ) + (X − Y )ψ(X − Y )] dXdY.

Moreover, for initial data in {‖μ‖ρ ≤ E0} ∩ Xρ , the constant T > 0 depends only on ε and
E0.

Lemma 3.4 The fixed point Ha ∈ C([0, T ] : Xρ), obtained in Lemma 3.3, satisfies (3.5) for
all t ∈ [0, T ] and ψ ∈ C1([0, T ] : B0).

Proof of Lemma 3.3 To check that Ta is well-defined fromC([0, T ] : Xρ) to itself, it suffices
to check that Ba(s) maps Xρ into itself. To that end we note that

‖Ba(s)[H ]‖ρ = sup
R>0

Rρ−2
∫

[0,∞)

(
1 ∧ R

X

)
Ba(s)[H ](X)dX
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≤ 2

ε

∫
(0,∞)

(
sup
R>0

Rρ−2
∫
(Y,∞)

(
1 ∧ R

X

)
H(X)dX

)
(φaes/ρ ∗ H)(Y )

Y + εes/ρ
dY

≤ 2

ε
‖H‖ρ

∫
[0,∞)

(∫
(0,∞)

φaes/ρ (Y − Z)

Y + εes/ρ
dY

)
H(Z)dZ ,

so using further that |Y − Z | ≤ aes/ρ < 1
2εe

s/ρ for all Y − Z ∈ supp(φaes/ρ ), we have

‖Ba(s)[H ]‖ρ ≤ 2

ε
‖H‖ρ

∫
[0,∞)

(∫
(0,∞)

φaes/ρ (Y − Z)

Z + (ε − a)es/ρ
dY

)
H(Z)dZ

≤ 2

ε
‖H‖ρ

∫
[0,∞)

1
1
2 εe

s/ρ

(
1 ∧ 1

2 εe
s/ρ

Z

)
H(Z)dZ ≤ 2ρ

ερ
e−s(ρ−1)/ρ‖H‖2ρ.

(3.8)

Using this estimate and exploiting the nonnegativity of the first term on the right hand side
of (3.7), we find for any t ∈ [0, T ] that

‖Ta[H ](t, ·)‖ρ ≤ et (ρ−1)/ρ‖H0‖ρ +
∫ t

0
e(t−s)(ρ−1)/ρ‖Ba(s)[H(s, ·)]‖ρds

≤ et (ρ−1)/ρ

(
‖H0‖ρ + 2ρ

ερ

∫ t

0
e−2s(ρ−1)/ρds × sup

s∈[0,t]
‖H(s, ·)‖2ρ

)
,

implying that Ta maps the subset

S :=
{
H ∈ C([0, T ] : Xρ)

∣∣∣ sup
t∈[0,T ]

‖H(t, ·)‖ρ =: ‖H‖T,ρ ≤ 2‖H0‖ρ
}

into itself, provided that T > 0 is small enough. Note that for ε > 0 fixed, T > 0 can be
chosen uniformly for H0 ∈ {‖μ‖ρ ≤ E0} ∩ Xρ .

To check that the operator is actually strongly contractive onS for sufficiently small T > 0,
and thereby proving the lemma, we now first observe for H∗

1 , H
∗
2 ∈ Xρ and σ ∈ [0, T ] that∥∥Aa(σ )[H∗

1 ](·) − Aa(σ )[H∗
2 ](·)∥∥∞

≤ sup
X>0

2Xeσ/ρ

(X + εeσ/ρ)3/2

∣∣∣∣
∫ X

0

(φaeσ/ρ ∗ (H∗
1 − H∗

2 ))(Y )

(Y + εeσ/ρ)3/2
dY

∣∣∣∣
≤ 2

ε

∫
[0,∞)

(∫ ∞

0

φaeσ/ρ (Y − Z)

Y + εeσ/ρ
dY

)
|H∗

1 − H∗
2 |(Z)dZ

≤ 2ρ
ερ
e−σ(ρ−1)/ρ‖H∗

1 − H∗
2 ‖ρ

hence for H1, H2 ∈ S and 0 ≤ s ≤ t ≤ T we have∥∥∥e− ∫ t
s Aa(σ )[H1(σ,·)](·)dσ − e− ∫ t

s Aa(σ )[H2(σ,·)](·)dσ
∥∥∥∞

≤ e(t−s)(ρ−1)/ρ
∫ t

s
‖Aa(σ )[H1(σ, ·)](·) − Aa(σ )[H2(σ, ·)](·)‖∞ dσ

≤ 2ρ
ερ

(t − s)e(t−s)(ρ−1)/ρ‖H1 − H2‖T,ρ . (3.9)

Again for H∗
1 , H

∗
2 ∈ Xρ we next note that

∫
(0,∞)

(
1 ∧ R

X

) |Ba(s)[H∗
1 ] − Ba(s)[H∗

2 ]|(X)dX
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≤
∫∫

{X>Y>0}
es/ρ |H∗

1 (X)(φaes/ρ ∗ H∗
1 )(Y ) − H∗

2 (X)(φaes/ρ ∗ H∗
2 )(Y )|

((X + εes/ρ)(Y + εes/ρ))3/2

× ((X + Y ) ∧ R + (X − Y ) ∧ R) dXdY,

so analogous arguments as used to obtain (3.8) give us that

‖Ba(s)[H∗
1 ] − Ba(s)[H∗

2 ]‖ρ
≤ 2ρ

ερ
e−s(ρ−1)/ρ (‖H∗

1 ‖ρ + ‖H∗
2 ‖ρ

) ‖H∗
1 − H∗

2 ‖ρ. (3.10)

Combining finally (3.8), (3.9) and (3.10), we find for H1, H2 ∈ S the estimate

‖Ta[H1] − Ta[H2]‖T,ρ ≤ K (T )‖H1 − H2‖T,ρ,
with

K (T ) = 2ρ

ε2
T eT (ρ−1)/ρ‖H0‖ρ

(
1 + 4

(
2ρ
ερ
T ‖H0‖ρ + e−T (ρ−1)/ρ

))
T→0−−−→ 0,

and noting again that for ε > 0 fixed we can again choose T > 0 uniformly for H0 ∈
{‖μ‖ρ ≤ E0} ∩ Xρ , the proof is complete. ��
Proof of Lemma 3.4 By construction there holds Ha = Ta[Ha], so multiplying this identity
by ϕ ∈ C1([0, T ] : B0) and integrating with respect to X , we obtain for all t ∈ [0, T ] that∫

[0,∞)

ϕ(t, X)Ha(t, X)dX

=
∫

[0,∞)

ϕ(t, X)H0(X)e− ∫ t
0 Aa(s)[Ha(s,·)](X)dsdX

+
∫ t

0

∫
[0,∞)

ϕ(t, X)e− ∫ t
s Aa(σ )[Ha(σ,·)](X)dσ Ba(s)[Ha(s, ·)](X)dXds. (3.11)

If now ψ ∈ C1([0, T ] : B0) is arbitrary, then taking the time derivative of (3.11) with ϕ

replaced by ψ , we get

∂t

[∫
[0,∞)

ψ(t, X)Ha(t, X)dX

]

=
∫

[0,∞)

ψ(t, X)Ba(t)[Ha(t, ·)](X)dX

+
∫

[0,∞)

(
ψt (t, X) − ψ(t, X)Aa(t)[Ha(t, ·)](X)

)
Ha(t, X)dX, (3.12)

where the last term on the right hand side is obtained by combining two terms, using the
identity obtained from (3.11) with ϕ(t, X) = ψ(t, X)Aa(t)[Ha(t, ·)](X). Integrating (3.12),
we then obtain (3.5). ��

We are now able to show local in time existence of solutions to (3.3) by construction, as
well as an estimate of the norm ‖ · ‖ρ for these solutions.

Proposition 3.5 Under Assumption 3.1, suppose for �0 ∈ Xρ that T > 0 and Ha ∈
C([0, T ] : Xρ) are as obtained in Lemma 3.3 with H0 = �0. Then the function �a ∈
C([0, T ] : Xρ), defined via

�a(t, x) = Ha(t, X) and x = Xe−t/ρ, (3.13)
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1362 A. H. M. Kierkels, J. J. L. Velázquez

satisfies (3.3) for all ϑ ∈ C1([0, T ] : B1) and all t ∈ [0, T ], and for all t ∈ [0, T ] there
holds ‖�a(t, ·)‖ρ ≤ ‖�0‖ρ .
Proof To check that�a satisfies (3.3) is an elementary computation [use (3.4)], so we restrict
ourselves to proving the estimate of the norm. We observe that

‖�a(t, ·)‖ρ = e−t (ρ−1)/ρ‖Ha(t, ·)‖ρ,
so it suffices to check that

‖Ha(t, ·)‖ρ ≤ et (ρ−1)/ρ‖H0‖ρ for all t ∈ [0, T ]. (3.14)

By Lemma 3.4, now Ha satisfies (3.5) for all t ∈ [0, T ] andψ ∈ C1([0, T ] : B0), andwe note
for any R > 0 that ψ(X) = 1 ∧ R

X satisfies ψ ∈ B0. Moreover, the mapping X �→ Xψ(X)

is concave, so D∗
2[ψ] ≤ 0, and there thus holds

∫
[0,∞)

(
1 ∧ R

X

)
Ha(t, X)dX ≤

∫
[0,∞)

(
1 ∧ R

X

)
H0(X)dX

+ ρ − 1

ρ

∫ t

0

∫
[0,∞)

(
1 ∧ R

X

)
Ha(s, X)dXds.

By Gronwall’s lemma and multiplying by Rρ−2 we then get

Rρ−2
∫

[0,∞)

(
1 ∧ R

X

)
Ha(t, X)dX ≤ et (ρ−1)/ρRρ−2

∫
[0,∞)

(
1 ∧ R

X

)
H0(X)dX,

and (3.14) follows by taking the supremum over all R > 0. ��
We are now able to construct a family of operators on the unit ball of Xρ , which will turn

out to be the semigroup required in Proposition 3.2.

Definition 3.6 Under Assumption 3.1, we define the family (Sa(t))t≥0 of operators from the
unit ball inXρ into itself as follows. Let T > 0 be as obtained in Lemma 3.3, depending only
on the parameters ε > 0 and E0 = 1. Then for all�0 ∈ {‖μ‖ρ ≤ 1}∩Xρ there exists a unique
function Ha ∈ C([0, T ] : Xρ) that is a fixed point for the operator Ta , given by (3.6) with
H0 = �0. For t ≥ 0 we now set Sa(t)�0 = �a(t, ·) if t ≤ T , where �a ∈ C([0, T ] : Xρ)

is defined via (3.13), and

Sa(t)�0 = Sa(t − nT ) (Sa(T ))n �0 if t ∈ (nT, (n + 1)T ]for n ∈ N, (3.15)

which is possible since S(T )�∗ is in the unit ball for all �∗ ∈ {‖μ‖ρ ≤ 1} ∩ Xρ (cf. Propo-
sition 3.5).

Proposition 3.7 Under Assumption 3.1, the family of operators (Sa(t))t≥0, as defined in
Definition 3.6, has the semigroup property, i.e.

Sa(t1 + t2) = Sa(t1)Sa(t2) for all t1, t2 ≥ 0. (3.16)

Moreover, given�0 ∈ {‖μ‖ρ ≤ 1}∩Xρ , then the function defined as�a(t, x) = Sa(t)�0(x)
satisfies (3.3) for all t ≥ 0 and all ϑ ∈ C1([0,∞) : B1).

Proof For any�0 ∈ {‖μ‖ρ ≤ 1} ∩Xρ , let Ha ∈ C([0, T ] : Xρ) be the unique fixed point to
Ta with H0 = �0. Using then (3.13), we find by careful computation that
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Aa(s)[Ha(s, ·)](X) = 2Xes/ρ

(X + εes/ρ)3/2

∫ X

0

(φaes/ρ ∗ Ha(s, ·))(Y )

(Y + εes/ρ)3/2
dY − ρ − 1

ρ

= 2Xe−s/ρ

(Xe−s/ρ + ε)3/2

∫ Xe−s/ρ

0

(φa ∗ �a(s, ·))(y)
(y + ε)3/2

dy − ρ − 1

ρ

= Aa(0)[�a(s, ·)](Xe−s/ρ), (3.17)

and similarly we can check that

Ba(s)[Ha(s, ·)](X) = Ba(0)[�a(s, ·)](Xe−s/ρ). (3.18)

Using now (3.17) and (3.18), it follows by the definition of Ha as the fixed point of Ta that
for t ∈ [0, T ] and X ≥ 0 there holds

Ha(t, X) = �0(X)e− ∫ t
0 Aa(0)[�a(s,·)](Xe−s/ρ )ds

+
∫ t

0
e− ∫ t

s Aa(0)[�a(σ,·)](Xe−σ/ρ)dσ Ba(0)[�a(s, ·)](Xe−s/ρ)ds,

hence by again (3.13) for t ∈ [0, T ] and x ≥ 0 there holds

�a(t, x) = �0(xe
t/ρ)e− ∫ t

0 Aa(0)[�a(s,·)](xe(t−s)/ρ )ds

+
∫ t

0
e− ∫ t

s Aa(0)[�a(σ,·)](xe(t−σ)/ρ )dσ Ba(0)[�a(s, ·)](xe(t−s)/ρ)ds.

For any t1, t2 ≥ 0 with t1 + t2 ≤ T we then use the following decomposition

�0(·)e
∫ t1+t2
0 [··· ]ds +

∫ t1+t2

0
e
∫ t1+t2
s [··· ]dσ [· · · ]ds

=
(
�0(·)e

∫ t2
0 [··· ]ds +

∫ t2

0
e
∫ t2
s [··· ]dσ [· · · ]ds

)
e
∫ t1+t2
t2

[··· ]ds

+
∫ t1+t2

t2
e
∫ t1+t2
s [··· ]dσ [· · · ]ds

and after performing the changes of variables s → t2 + s and σ → t2 + σ in the integrals
on the right hand side we obtain

�a(t1 + t2, x) = �a(t2, xe
t1/ρ)e− ∫ t1

0 Aa(0)[�a(t2+s,·)](xe(t1−s)/ρ )ds

+
∫ t1

0
e− ∫ t1

s Aa(0)[�a(t2+σ,·)](xe(t1−σ)/ρ )dσ Ba(0)[�a(t2+s, ·)](xe(t1−s)/ρ)ds.

We now see that H∗(s, xes/ρ) = �∗(s, x) := �a(t2 + s, x) is a fixed point for the operator
Ta with H0 = �a(t2, ·), and by the short time uniqueness of fixed points, obtained in Lemma
3.3, we thus find that

Sa(t1 + t2)�0 = �a(t1 + t2, ·) = Sa(t1)�a(t2, ·) = Sa(t1)Sa(t2)�0,

which proves the semigroup property for t1, t2 ≥ 0 with t1 + t2 ≤ T .
Next we use the local semigroup property as derived above to observe for t1, t2 ∈ [0, T ]

with t1 + t2 > T that

Sa(t1 + t2 − T )Sa(T ) = Sa(t1 + t2 − T )Sa(T − t2)Sa(t2) = Sa(t1)Sa(t2),

so since the left hand side equals Sa(t1 + t2) by definition [cf. (3.15)], we have

Sa(t1 + t2) = Sa(t1)Sa(t2) = Sa(t2)Sa(t1) for all t1, t2 ∈ [0, T ]. (3.19)
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Using lastly (3.15) and (3.19) for arbitrary t1, t2 ≥ 0, and writing ni for the integer part of
ti
T , we find that

Sa(t1)Sa(t2) = Sa(t1 − n1T )(Sa(T ))n1 Sa(t2 − n2T )(Sa(T ))n2

= Sa(t1 − n1T )Sa(t2 − n2T )(Sa(T ))n1+n2

= Sa(t1 + t2 − (n1 + n2)T )(Sa(T ))n1+n2 . (3.20)

If t1+ t2 < (n1+n2+1)T , then the right hand side of (3.20) equals Sa(t1+ t2) by definition.
On the other hand, if t1 + t2 ≥ (n1 + n2 + 1)T , then by again (3.19) we have

Sa(t1 + t2 − (n1 + n2)T )(Sa(T ))n1+n2

= Sa(t1 + t2 − (n1 + n2 + 1)T )(Sa(T ))n1+n2+1,

and here the right hand side equals Sa(t1 + t2) by definition. We therefore conclude that
(3.16) holds. ��
3.2 Two Useful Lemmas

In this subsection we give two lemmas that will be useful for obtaining the lower bound in
our proof of existence of a set Yρ = Yρ(R0) that is invariant under the previously defined
evolution. These results will also be used in the final section of this paper.

Lemma 3.8 For any α ∈ (0, 2) the fundamental solution uα to the integro-differential equa-
tion

ut (t, x) =
∫
R+

y−α−1�2
y[u(t, ·)](x)dy, (3.21)

i.e. the solution to (3.21) with initial datum u(0, ·) = δ0, is given by uα(t, x) =
t−1/αvα(xt−1/α), where vα ∈ C∞(R) is the probability density function that has characteris-
tic function exp(−cα|k|α), with cα = −2�(−α) cos( απ2 ) if α �= 1 and c1 = π . In particular,
vα is positive, symmetric, nonincreasing on R+, and it satisfies lim|z|→∞ |z|α+1vα(z) = 1.

Proof Taking the Fourier transform of (3.21) gives us

ût (t, k) = −cα|k|α û(t, k),
hence uα is the inverse Fourier transform of exp(−cα|k|αt):

uα(t, x) = 1

2π

∫
R

eikx e−cα |k|α tdk = 1

t1/α
vα

( x

t1/α

)

with vα(z) = 1

2π

∫
R

eikze−cα |k|αdk

Smoothness and symmetry of vα are immediate, while for the remaining properties of vα
we note that exp(−cα|k|α) is the characteristic function of a symmetric stable probability
distribution (cf. [11, Theorem 5.7.3]). Now, [11, Theorem 5.10.1] states that all stable dis-
tributions are unimodal, so since by symmetry the maximum of vα is located at zero we
have that Vα(x) = ∫ x

−∞ vα(z)dz is concave for x ≥ 0. Therefore v′
α ≤ 0 on R+ and it is

shown that vα is nonincreasing on R+. The asymptotics of vα follow by a standard contour
deformation argument, and strict positivity follows from combining the decay behaviour of
vα with the monotonicity result. ��

Since wewill frequently use solutions to (3.21) with odd initial data, we give the following
lemma.
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Lemma 3.9 For α ∈ (0, 2), let uα be the fundamental solution to (3.21), let u0 ∈ C(R) ∩
L1(R; |x |−α−1dx) be odd, and for t > 0 let u(t, ·) := [u0 ∗ uα(t, ·)](·). Then the following
hold.

• For all t > 0, u(t, ·) is odd and smooth.
• Maximum principle. If u0 ≥ 0 [ ≤ 0 ] on R+, then u(t, ·) ≥ 0 [ ≤ 0 ] on R+ for all t > 0.
• If u0 is concave [convex] on R+, then u(t, ·) is concave [convex] on R+ for all t > 0,

and in particular

�2
y[u(t, ·)](x) ≤ 0 [ ≥ 0 ] for all x ≥ 0, y ∈ R and t ≥ 0. (3.22)

Proof For all t > 0, u0(t, ·) is odd since it is the convolution of an odd and an even function,
while smoothness follows from the fact that uα(t, ·) is smooth for all t > 0. Suppose now
that u0 ≥ 0 [ ≤ 0 ] on R+. For x ≥ 0 we then find, by the facts that u0 is odd and that uα(t, ·)
is even for all t > 0, that we can write

u(t, x) =
∫
R+

u0(y)
(
uα(t, x − y) − uα(t, x + y)

)
dy,

and it follows that u(t, ·) ≥ 0 [ ≤ 0 ] on R+ for all t > 0, since uα(t, ·) is even and monoton-
ically decreasing on R+ (uα(t, x − z) − uα(t, x + z) ≥ 0 for x, z ≥ 0). We next restrict
ourselves to the case where u0 is concave on R+, since the other case is similar. Then, for all
y ∈ R there holds�2

yu0 ≤ 0 onR+. For |y| ≤ x this follows immediately from the definition
of concavity, while for |y| > x > 0 we note, using that u0 is odd, that

�2
yu0(x) = �2

xu0(|y|) + 2
(
u0(|y|) − u0(|y| − x) − u0(x)

) ≤ 0.

Here the first term on the right hand side of the equality is nonpositive by the previous
argument, and the remaining terms are nonpositive by

u0(|y| − x) + u0(x) = u0
(

x
|y| × 0 + |y|−x

|y| |y|
)

+ u0
( |y|−x

|y| × 0 + x
|y| |y|

)

≥
(

x
|y| + |y|−x

|y|
)
u0(0) +

( |y|−x
|y| + x

|y|
)
u0(|y|) = u0(|y|),

wherewe have used that u0(0) = 0 since u0 is odd. Next, since the second difference operator
is linear, it commutes with the integral operator on the right hand side of (3.21), and since
further the second difference of an odd function is odd, we find by the maximum principle
proven above that (3.22) holds. Additionally we then find that u(t, ·) is concave on R+ since
for all x ≥ 0 we have uxx (t, x) = limy→0

1
y2
�2

y[u(t, ·)](x) ≤ 0, where we recall that we
may take two derivatives by smoothness of uα(t, ·). ��
3.3 Invariance of Yρ(R0)

Our goal in this subsection is to show that, for some suitable R0 > 0, the semigroup intro-
duced in Definition 3.6 maps the set Yρ(R0) (cf. Definition 2.16) into itself. The proof of
invariance of the lower bound [cf. (2.4)] shows strong similarities with the approach in [14].
As mentioned before, the main difference here compared with the approach in that paper is
that because of the form of the nonlocal diffusion operator in our collision kernel [cf. (2.5)]
it is convenient to use test functions that are concave, while in [14] it was natural to use
monotone test functions. A consequence of this is that in order to measure the size of �a it
is now natural to use the functionals given by (2.1), as opposed to the functionals

∫ R
0 h(x)dx

which were used in [14].
We first derive the following estimate.
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Lemma 3.10 Under Assumption 3.1, let (Sa(t))t≥0 be the semigroup on the unit ball of Xρ

as defined in Definition 3.6. Let further ϑ ∈ C(R) be such that the mapping z �→ zϑ(z) is
odd, bounded, and concave on R+. Then for all t ≥ 0 and all �0 ∈ {‖μ‖ρ ≤ 1} ∩ Xρ it
holds that ∫

[0,∞)

ϑ(x)Sa(t)�0(x)dx

≥ et (ρ−1)/ρ
∫

[0,∞)

(∫
R

yϑ(y)

(ρt)1/ρ
vρ

(
xe−t/ρ − y

(ρt)1/ρ

)
dy

)
1
x�0(x)dx, (3.23)

where vρ is the self-similar profile associated to the fundamental solution of (3.21) with
α = ρ, which was obtained in Lemma 3.8.

Proof Throughout this proof we let t ≥ 0 and �0 ∈ {‖μ‖ρ ≤ 1} ∩ Xρ be fixed, and for all
s ∈ [0, t] we write �a(s, x) = Sa(s)�0(x).

For ϑ ∈ C(R) fixed as in the statement of the lemma, we define

u(s, x) = e(t−s)(ρ−1)/ρ[ϕ ∗ uρ(ρ(t − s), ·)](xe(s−t)/ρ) × 1
x ,

for s ∈ [0, t] and x ∈ R, and withϕ(y) := yϑ(y), (3.24)

where uρ is the fundamental solution of (3.21) with α = ρ as obtained in Lemma 3.8. We
then note that u(t, ·) = ϑ , and that u(0, x) is equal to the integral with respect to y in the
right hand side of (3.23). Therefore (3.23) can be written as∫

[0,∞)

u(t, x)�a(t, x)dx ≥
∫

[0,∞)

u(0, x)�0(x)dx,

so, using u as a test function in (3.3), we see that (3.23) is equivalent to
∫ t

0

[ ∫
[0,∞)

(
us(s, x) − 1

ρ
(xux (s, x) + (2 − ρ)u(s, x))

)
�a(s, x)dx

+
∫

[0,∞)

(∫ x

0

(φa ∗ �a(s, ·))(y)
((x + ε)(y + ε))3/2

D∗
2[u(s, ·)](x, y)dy

)
�a(s, x)dx

]
ds ≥ 0, (3.25)

where we recall that D∗
2 is defined in (2.6).

Next, for x ≥ y ≥ 0 we note that (x + ε)−3/2 ≤ 1
x (y + ε)−1/2, and, defining U (s, x) :=

xu(s, x), that D∗
2[u(s, ·)](x, y) = �2

y[U (s, ·)](x). Further, since U (s, ·) is odd, bounded
and concave on R+ for all s ≥ 0 (cf. Lemma 3.9), by (3.22) it holds for all x, y ≥ 0 that
�2

y[U (s, ·)](x) ≤ 0, which together yields the estimate
∫ x

0

(φa ∗ �a(s, ·))(y)
((x + ε)(y + ε))3/2

D∗
2[u(s, ·)](x, y)dy

≥ 1

x

∫
R+

(φa ∗ �a(s, ·))(y)
(y + ε)2

�2
y[U (s, ·)](x)dy. (3.26)

By an integration by parts, and using (2.8) for ∂y[�2
y[U (s, ·)](x)], we can nowwrite the right

hand side of (3.26) as

1

x

∫
R+

(∫ ∞

y

(φa ∗ �a(s, ·))(z)
(z + ε)2

dz

)(∫ x+y

x−y
Uww(s, w)dw

)
dy, (3.27)

where we note that the integral with respect to w on the right hand side is nonpositive for
x, y ≥ 0, since U (s, ·) is odd and concave on R+ (note that

∫ a
−a U

′′(w)dw = 0 for a ≥ 0).
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To find a lower bound for (3.27) we thus need an upper bound for the integral with respect
to z. We thereto note for z ≥ y that (z + ε)−2 ≤ 1

y2
(1∧ y

z+ε
), and by expanding the domain

of integration we find
∫ ∞

y

(φa ∗ �a(s, ·))(z)
(z + ε)2

dz ≤ 1

y2

∫
[0,∞)

(
1 ∧ y

z+ε

)
(φa ∗ �a(s, ·))(z)dz

= 1

y2

∫
[0,∞)

(∫
[0,∞)

(
1 ∧ y

z+ε

)
φa(z − x)dz

)
�a(s, x)dx,

(3.28)

where the equality holds by Fubini. Now, since for all z− x ∈ supp(φa) there holds |z− x | ≤
a < ε

2 , we have for all x ≥ 0 that
∫

[0,∞)

(
1 ∧ y

x+(z−x+ε)

)
φa(z − x)dz ≤

(
1 ∧ y

x+ ε
2

) ∫
R

φa(z − x)dz ≤ (
1 ∧ y

x

)
,

which, using the definition of the norm, we can use to estimate the right hand side of (3.28)
by

1

y2

∫
[0,∞)

(
1 ∧ y

x

)
�a(s, x)dx ≤ 1

y2
‖�a(s, ·)‖ρ y2−ρ ≤ y−ρ.

Combining then the previous estimates, and recalling the nonpositivity of the integral with
respect to w in (3.27), we obtain

∫
[0,∞)

(∫ x

0

(φa ∗ �a(s, ·))(y)
((x + ε)(y + ε))3/2

D∗
2[u(s, ·)](x, y)dy

)
�a(s, x)dx

≥
∫

[0,∞)

(∫
R+

y−ρ ×
∫ x+y

x−y
Uww(s, w)dw dy

)
1
x�a(s, x)dx, (3.29)

where, by an integration by parts in the integral with respect to y, the right hand side of (3.29)
can be rewritten as∫

[0,∞)

(
ρ

∫
R+

y−ρ−1�2
y[U (s, ·)](x)dy

)
1
x�a(s, x)dx . (3.30)

Also, since uρ is the fundamental solution of (3.21), we note that U (s, x) = xu(s, x) by
construction satisfies [cf. (3.24)]

Us(s, x) + ρ−1
ρ

U (s, x) − 1
ρ
xUx (s, x) = −ρet−s

∫
R+

y−ρ−1�2
y[U (s, ·)](x)dy. (3.31)

Checking then that the left hand side of (3.31) can be rewritten as

x
(
us(s, x) − 1

ρ
(xux (s, x) + (2 − ρ)u(s, x))

)
,

we find that the first integral between square brackets on the left hand side of (3.25) equals
∫

[0,∞)

(
−ρet−s

∫
R+

y−ρ−1�2
y[U (s, ·)](x)dy

)
1
x�a(s, x)dx . (3.32)

Concluding, since the first and second integral between square brackets on the left hand
side of (3.25) can be estimated from below by (3.32) and (3.30) respectively, the left hand
side of (3.25) can be bounded from below by
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∫ t

0

(∫
[0,∞)

(
ρ(1 − et−s)

∫
R+

y−ρ−1�2
y[U (s, ·)](x)dy

)
1
x�a(s, x)dx

)
ds,

which is nonnegative since both 1− et−s and �2
y[U (s, ·)](x) are nonpositive on the domain

of integration, while all other terms are nonnegative. This proves that (3.25) holds, and since
(3.23) and (3.25) are equivalent the proof is complete. ��

The following two lemmas will be useful in the actual proof of invariance of (2.4) under
the evolution (3.3), where we will use a suitable function ϑ in (3.23).

Lemma 3.11 For ρ ∈ (1, 2) and � ∈ Xρ , it holds for all odd � ∈ C2([−∞,∞]) that
satisfy limx→∞ �′(x)x2−ρ = 0 that∫

[0,∞)

�(x) · 1
x�(x)dx = −

∫
[0,∞)

�′′(x)
(∫

[0,∞)

(
1 ∧ x

z

)
�(z)dz

)
dx . (3.33)

Proof Observing that∫
[0,∞)

(
1 ∧ x

z

)
�(z)dz =

∫ x

0

∫ ∞

y

1
z�(z)dzdy,

it is clear that (3.33) follows by integrating by parts twice, provided that the boundary values
vanish. Since � is odd with bounded first derivative, we have �(x) = �′(0)x + o(x2) as
x → 0, so ∣∣∣∣�(x)

∫ ∞

x

1
z�(z)dz

∣∣∣∣ ≤ 2|�′(0)|
∫

[0,∞)

(
1 ∧ x

z

)
�(z)dz

≤ 2|�′(0)|‖�‖ρ · x2−ρ → 0 as x → 0,

where the second inequality holds by definition of the norm. Notice further that by our choice
of �, and using again the definition of the norm, we have∣∣∣∣�′(x)

∫
[0,∞)

(
1 ∧ x

z

)
�(z)dz

∣∣∣∣ ≤ ‖�‖ρ · |�′(x)|x2−ρ → 0 as x → ∞.

The claim then follows as the remaining boundary values vanish trivially. ��
Lemma 3.12 For ρ ∈ (1, 2), let vρ be the self-similar profile associated to the fundamental
solution of (3.21) with α = ρ. Then for all θ1, θ2 > 0 the function

�(x) =
∫
R

y
(
1 ∧

∣∣∣ θ1y
∣∣∣
)
vρ

(
x−y
θ2

)
dy
θ2

(3.34)

is odd, smooth, and satisfies limx→∞ �′(x)x2−ρ = 0 and

− �′′(x) =
(
vρ

(
x−θ1
θ2

)
− vρ

(
x+θ1
θ2

))
1
θ2

≥ 0 for x ≥ 0. (3.35)

Proof That � is odd follows from the fact that it is the convolution of an odd and an even
function, while smoothness follows since vρ ∈ C∞(R). We now note that ∂x f (x − y) =
−∂y f (x − y), so differentiating (3.34) we obtain

�′(x) = −
∫
R

y
(
1 ∧

∣∣∣ θ1y
∣∣∣
) [

vρ

(
x−y
θ2

)]
y

dy
θ2

=
∫ θ1

−θ1

vρ

(
x−y
θ2

)
dy
θ2

, (3.36)

where the second equality follows by integration by parts. Differentiating (3.36) once more,
we then obtain the equality in (3.35), while the nonnegativity follows from the symmetry
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and monotonicity properties of vρ . Finally, by symmetry and using the tail behaviour of vρ
(cf. Lemma 3.8), we find that

�′(x) =
∫ (x+θ1)/θ2

(x−θ1)/θ2

vρ(z)dz ≤
∫ ∞

(x−θ1)/θ2

vρ(z)dz ∼ 1

ρ

θ
ρ
2

xρ
as x → ∞,

hence �′(x)x2−ρ ≤ 1
ρ
θ
ρ
2 · x2(1−ρ) → 0 as x → ∞. ��

We are now able to prove the following.

Proposition 3.13 Under Assumption 3.1, there exists some R0 > 0, independent of a and ε,
such that the set Yρ = Yρ(R0) is invariant under the evolution of the semigroup (Sa(t))t≥0

as defined in Definition 3.6.

Proof Since the semigroup (Sa(t))t≥0 maps the unit ball of Xρ into itself, we only need to
prove preservation of the lower bound [cf. (2.4)] for some R0 > 0. Let thus R0 > 0 be
arbitrary for now, and fix any�0 ∈ Yρ = Yρ(R0). We will then write�a(t, x) = S(t)�0(x)
for all t ≥ 0.

Now, for any R > 0 the function ϑ(z) = 1 ∧ | Rz | satisfies the assumptions from
Lemma3.10, so by (3.23) and the change of variables y → ye−t/ρ we find for all t ∈ [0, T ]
and all R > 0 that∫

[0,∞)

(
1 ∧ R

x

)
�a(t, x)dx

≥ et (ρ−2)/ρ
∫

[0,∞)

⎛
⎝
∫
R

y
(
1 ∧ | Ret/ρy |

)

(ρtet )1/ρ
vρ

(
x − y

(ρtet )1/ρ

)
dy

⎞
⎠ 1

x�0(x)dx, (3.37)

where we recall that vρ is the self-similar profile associated to the fundamental solution of
(3.21) with α = ρ (cf. Lemma 3.8). Multiplying then (3.37) by Rρ−2, and using Lemmas
3.11 and 3.12, we obtain

Rρ−2
∫

[0,∞)

(
1 ∧ R

x

)
�a(t, x)dx

≥ (
Ret/ρ

)ρ−2
∫

[0,∞)

(
vρ

(
x−Ret/ρ

(ρtet )1/ρ

)
− vρ

(
x+Ret/ρ

(ρtet )1/ρ

))

×
(∫

[0,∞)

(
1 ∧ x

z

)
�0(z)dz

)
dx

(ρtet )1/ρ
, (3.38)

which, by the inequality in (3.35) and using the lower bound on �0 ∈ Yρ (cf. Definition
2.16), we can bound from below by

(
Ret/ρ

)ρ−2
∫

[0,∞)

(
vρ

(
x−Ret/ρ

(ρtet )1/ρ

)
− vρ

(
x+Ret/ρ

(ρtet )1/ρ

))
x2−ρλρ

( x
R0

) dx
(ρtet )1/ρ

= (
Ret/ρ

)ρ−2
∫
R

vρ

(
x−Ret/ρ

(ρtet )1/ρ

)
x |x |1−ρλρ

( x
R0

) dx
(ρtet )1/ρ

=
(
Ret/ρ
R0

)ρ−2
u
(

ρtet

Rρ
0
, Ret/ρ

R0

)
, (3.39)

where u is the solution to (3.21) with α = ρ and u(0, x) = x |x |1−ρλρ(x). In view of the fact
that the left hand side of (3.38) is nonnegative for all R > 0, and since the right hand side of
(3.39) does not depend on �0 any more, it now only remains to show that, for all R > R0,
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with R0 > 0 chosen appropriately, the left hand side of (3.39) is bounded from below by
λρ(

R
R0

) as t → 0, or equivalently that

(
ξet/ρ

)ρ−2
u
(

ρtet

Rρ
0
, ξet/ρ

)
≥ λρ(ξ) as t → 0, for all ξ > 1. (3.40)

Let now u∗ be the solution to (3.21) with α = ρ and

u∗(0, x) = x |x |1−ρ
(
1 − |x |−(2−ρ)/2

)
∈ C(R) ∩ L1(R; |x |−ρ−1dx).

We then observe that u∗(0, ·) ≤ u(0, ·) on R+, so by the maximum principle in Lemma 3.9
we have that u∗(τ, ·) ≤ u(τ, ·) on R+ for all τ > 0, and in particular

(
ξet/ρ

)ρ−2
u
(

ρtet

Rρ
0
, ξet/ρ

)
≥ (

ξet/ρ
)ρ−2

u∗ ( ρtet

Rρ
0
, ξet/ρ

)
(3.41)

for ξ > 1 and t > 0. Now, for x ≥ 0 and τ > 0, we expand the convolution of u∗(0, ·) with
the fundamental solution to (3.21) to obtain

xρ−2u∗(τ, x) = xρ−2
∫
R

(x − y) |x − y|1−ρ
(
1 − |x − y|−(2−ρ)/2

)
vρ

(
y

τ 1/ρ

)
dy
τ 1/ρ

=
∫
R

(
1 − y

x

) ∣∣1 − y
x

∣∣1−ρ
(
1 − x−(2−ρ)/2

∣∣1 − y
x

∣∣−(2−ρ)/2
)
vρ

(
y

τ 1/ρ

)
dy
τ 1/ρ

,

which, using the notation

W (x, ζ ) := (1 − ζ ) |1 − ζ |1−ρ
(
1 − x−(2−ρ)/2 |1 − ζ |−(2−ρ)/2

)
,

and the facts that
∫
R
vρ(z)dz = 1 and

∫
R
zvρ(z)dz = 0, yields

xρ−2u∗(τ, x) = W (x, 0)

+
∫
R

(
W

(
x, y

x

) − W (x, 0) − y
x Wζ (x, 0)

)
vρ

(
y

τ 1/ρ

)
dy
τ 1/ρ

, (3.42)

Next, we estimate vρ by its tail behaviour (cf. Lemma 3.8), to find that we can bound the
absolute value of the second term on the right hand side of (3.42) by∫

R

∣∣W (
x, y

x

) − W (x, 0) − y
x Wζ (x, 0)

∣∣ ∣∣∣ y
τ 1/ρ

∣∣∣−1−ρ dy
τ 1/ρ

≤ τ

xρ

∫
R

∣∣W (x, ζ ) − W (x, 0) − ζWζ (x, 0)
∣∣ |ζ |−1−ρ dζ =: τ

xρ
K (x),

so noticing then that K (x) can be uniformly bounded for x ≥ 1 by a constant κ > 0, we
obtain that

xρ−2u∗(τ, x) ≥
(
1 − x−(2−ρ)/2

)
− τκ

xρ
for all x ≥ 1 and all τ > 0. (3.43)

Combining thus (3.41) and (3.43) we find for ξ > 1 and t > 0 that

(
ξet/ρ

)ρ−2
u
(

ρtet

Rρ
0
, ξet/ρ

)
≥

(
1 − (

ξet/ρ
)−(2−ρ)/2

)
−

ρtet

Rρ
0

· κ
(
ξet/ρ

)ρ
=

(
1 − ξ−(2−ρ)/2

)
+
(
1 − e−t (2−ρ)/(2ρ)

)
ξ−(2−ρ)/2 − t ρκ

Rρ
0
ξ−ρ,

(3.44)
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where we note that the first term on the right hand side equals λρ(ξ) for ξ > 1 (since it is
positive). Expanding then finally the exponential in the second term, we can bound the right
hand side of (3.44), for t → 0, from below by

λρ(ξ) + t
(
2−ρ
4ρ ξ−(2−ρ)/2 − ρκ

Rρ
0
ξ−ρ

)
,

where, provided that R0 > 0 is such that Rρ
0 ≥ 4ρ2κ

2−ρ
, the second term is nonnegative for

ξ > 1, which implies that (3.40) holds, and thus proves the claim. ��
3.4 Proof of Proposition 3.2

Proof of Proposition 3.2 Let (Sa(t))t≥0 be the semigroup on the unit ball in Xρ that was
defined in Definition 3.6. Following Proposition 3.13 there then exists some R0 > 0 such
that the set Yρ = Yρ(R0) (cf. Definition 2.16) is invariant under the evolution of (Sa(t))t≥0.
It thus remains to check, for any fixed t > 0, that the mapping �0 �→ �a(t, ·) := Sa(t)�0

is weakly-∗ continuous, which by continuity of the change of variables (3.13) is equivalent
to checking weak-∗ continuity of �0 �→ Ha(t, ·).

Now, for any two measures �1, �2 ∈ {‖μ‖ρ ≤ 1} ∩ Xρ , we write � i
a(s, ·) := Sa(s)�i ,

i ∈ {1, 2}, for all s ∈ [0, t], and we let Hi
a ∈ C([0, t] : Xρ) be defined via the change of

variables (3.13), which are functions that satisfy (3.5) for all ψ ∈ C1([0, t] : B0). What we
need to show is that for any ψ∗ ∈ B0 and any δ > 0 small, there exists a weakly-∗ open set
U = U(ψ∗, δ) such that �1 − �2 ∈ U implies∣∣∣∣

∫
[0,∞)

ψ∗(X)H1
a (t, X)dX −

∫
[0,∞)

ψ∗(X)H2
a (t, X)dX

∣∣∣∣ < δ. (3.45)

By a density argument we may restrict ourselves to ψ∗ ∈ B1, and by (3.5) we know that∫
[0,∞)

ψ∗(X)
(
H1
a (t, X) − H2

a (t, X)
)
dX

=
∫

[0,∞)

ψ(0, X) (�1(X) − �2(X)) dX, (3.46)

if ψ ∈ C1([0, t] : B1) satisfies ψ(t, ·) = ψ∗ on [0,∞], and, for all s ∈ (0, t),

0 =
∫

[0,∞)

(
ψs(s, X) + ρ−1

ρ
ψ(s, X)

) (
H1
a (s, X) − H2

a (s, X)
)
dX

+ q(H1
a , ψ, s) − q(H2

a , ψ, s)

with

q(Hi
a, ψ, s) =

∫∫
{X>Y>0}

es/ρHi
a(s, X)(φaes/ρ ∗ Hi

a(s, ·))(Y )

((X + εes/ρ)(Y + εes/ρ))3/2

×D∗
2[ψ(s, ·)](X, Y )dXdY.

Using the identity h1h∗
1 − h2h∗

2 = 1
2 (h1 − h2)(h∗

1 + h∗
2) + 1

2 (h1 + h2)(h∗
1 − h∗

2), we now
rewrite the difference q(H1

a , ψ, s) − q(H2
a , ψ, s) as

1

2

∫∫
{X>Y>0}

[
(H1

a (s, X) − H2
a (s, X))(φaes/ρ ∗ (H1

a (s, ·) + H2
a (s, ·)))(Y )

+ (H1
a (s, X) + H2

a (s, X))(φaes/ρ ∗ (H1
a (s, ·) − H2

a (s, ·)))(Y )
]
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× es/ρD∗
2[ψ(s, ·)](X, Y )

((X + εes/ρ)(Y + εes/ρ))3/2
dXdY,

which in turn equals∫
[0,∞)

(
�(H1

a , ψ; s, X) + �(H2
a , ψ; s, X) + �∗(H1

a , ψ; s, X) + �∗(H2
a , ψ; s, X)

)

× (
H1
a (s, X) − H2

a (s, X)
)
dX,

with

�(Hi
a, ψ; s, X) = 1

2

∫ X

0

es/ρ(φaes/ρ ∗ Hi
a(s, ·))(Y )

((X + εes/ρ)(Y + εes/ρ))3/2
D∗
2[ψ(s, ·)](X, Y )dY,

and

�∗(Hi
a, ψ; s, X) = 1

2

∫
[0,∞)

φaes/ρ (Y − X)

∫
[Y,∞]

es/ρHi
a(s, X

′)
((X ′ + εes/ρ)(Y + εes/ρ))3/2

×D∗
2[ψ(s, ·)](X ′, Y )dX ′dY.

We thus obtain the linear backward in time boundary value problem{
ψs = − ρ−1

ρ
ψ − (

�(H1
a , ψ) + �(H2

a , ψ) + �∗(H1
a , ψ) + �∗(H2

a , ψ)
)
,

ψ(t, ·) = ψ∗,

which can be uniquely solved in C1([0, t],B1) by a standard fixed point argument, since
�(Hi

a, ·) and �∗(Hi
a, ·) are bounded linear operators from B1 to itself. Moreover, by estimate

(3.14) we find that there exists a constantC > 0, independent ofψ∗, such that ‖ψ(0, ·)‖B1 ≤
C‖ψ∗‖B1 . Now, by compactness of ‖ · ‖B1 -bounded sets in B0, we can select finitely many
ω1, . . . , ωn ∈ B0 such that mini ‖ψ(0, ·) − ωi‖B0 < 1

3δ. For any i ∈ {1, . . . , n} we then
write the right hand side of (3.46) as∫

[0,∞)

(ψ(0, X) − ωi (X)) (�1(X) − �2(X)) dX,

+
∫

[0,∞)

ωi (X) (�1(X) − �2(X)) dX,

so defining finally

U =
{
μ ∈ M([0,∞)) : ‖μ‖ρ < ∞ and max

i

∣∣∣∣
∫

[0,∞)

ωi (X)μ(X)dX

∣∣∣∣ < 1
3δ

}
,

it follows, by choosing i ∈ {1, . . . , n} such that ‖ψ(0, ·)−ωi‖B0 isminimal, that if�1−�2 ∈
U , then (3.45) holds, which completes the proof. ��
3.5 Proof of Theorem 2.24

Proof of Theorem 2.24 In view of Remark 2.27 we restrict ourselves to the case ρ ∈ (1, 2).
For any ε > 0 fixed and a ∈ (0, ε

2 ) arbitrary, let R0 > 0 and (Sa(t))t≥0 be as obtained in
Proposition 3.2. Then, by a variant of Tychonoff’s theorem (cf. [5, Theorem 1.2]) there exists
some �ε

a ∈ Yρ for which for all t ≥ 0 there holds S(t)�ε
a = �ε

a , and which for all ϑ ∈ B1

satisfies

1

ρ

∫
[0,∞)

(
xϑ ′(x) + (2 − ρ)ϑ(x)

)
�ε

a(x)dx
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=
∫∫

{x>y>0}
�ε

a(x)(φa ∗ �ε
a)(y)

((x + ε)(y + ε))3/2
D∗
2[ϑ](x, y)dxdy. (3.47)

Further, since Yρ is compact and independent of a, there exist an → 0 and �ε ∈ Yρ such
that �ε

an ⇀∗ �ε in Xρ , and we will see that �ε satisfies

1

ρ

∫
[0,∞)

(
xϑ ′(x) + (2 − ρ)ϑ(x)

)
�ε(x)dx

= 1

2

∫∫
[0,∞)2

�ε(x)�ε(y)

((x + ε)(y + ε))3/2
D∗
2[ϑ](x, y)dxdy, (3.48)

for all ϑ ∈ B1. Indeed, writing a for an and a → 0 for an → 0, for any ϑ ∈ B1 fixed it
follows from the definition of weak-∗ convergence that the left hand side of (3.47) converges
to the left hand side of (3.48). Convergence of the right hand side is more tricky since in the
limit there might be a nontrivial contribution along the diagonal {x = y ≥ 0}. Expanding
the convolution and using Fubini, we first of all rewrite the right hand side of (3.47) as

∫
[0,∞)

�ε
a(x)

(x + ε)3/2

(∫ x

0

(∫
[0,∞)

φa(y − z)�ε
a(z)dz

) D∗
2[ϑ](x, y)
(y + ε)3/2

dy

)
dx

=
∫∫

[0,∞)2

�ε
a(x)�

ε
a(z)

((x + ε)(z + ε))3/2

(∫ x

0

φa(y − z)D∗
2[ϑ](x, y)

((z + ε)−1(y + ε))3/2
dy

)
dxdz,

which by symmetrization equals

1

2

∫∫
[0,∞)2

�ε
a(x)�

ε
a(z)

((x + ε)(z + ε))3/2
Ea(x, z)dxdz, (3.49)

with

Ea(x, z) =
∫ x

−∞
φa(y − z)D∗

2[ϑ](x, y)
((z + ε)−1(y + ε))3/2

dy +
∫ z

−∞
φa(y − x)D∗

2[ϑ](z, y)
((x + ε)−1(y + ε))3/2

dy,

where the extension of the domains of integration until −∞ is possible if we extend D∗
2[ϑ]

to a continuous function on R
2 by setting D∗

2[ϑ] = 0 on R
2 \ R

2+. Observing next that
∫ x

−∞
φa(y − z)dy +

∫ z

−∞
φa(y − x)dy =

∫ x−z

−∞
φa(y)dy +

∫ z−x

−∞
φa(y)dy

=
∫ x−z

−∞
φa(y)dy +

∫ ∞

x−z
φa(−y)dy = 1 for all x, z ∈ R,

where the last equality holds since φa is even, we then find by continuity and symmetry of
D∗
2[ϑ] that for all δ > 0 there exists some aδ > 0 such that

∣∣Ea(x, z) − D∗
2[ϑ](x, z)∣∣ < δ for all a ∈ (0, aδ) and all x, z ≥ 0.

Using then the fact that (x + ε)−3/2 ≤ ε−3/2(1 + x
ε
)−1 ≤ ε−3/2(1 ∧ ε

x ) for x ≥ 0, the
definition of the norm ‖ · ‖ρ , and the fact that ‖�ε

a‖ρ = 1 for all �ε
a ∈ Yρ , we obtain for

a ∈ (0, aδ) that∣∣∣∣12
∫∫

[0,∞)2

�ε
a(x)�

ε
a(z)

((x + ε)(z + ε))3/2

(
Ea(x, z) − D∗

2[ϑ](x, z)) dxdz
∣∣∣∣

≤ δ

2

(
ε−3/2

∫
[0,∞)

(
1 ∧ ε

x

)
�ε

a(x)dx

)2

≤ 1
2ε

1−2ρ × δ.
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1374 A. H. M. Kierkels, J. J. L. Velázquez

Further, as (x + ε)−3/2 ≤ r−1/2ε−1(1 ∧ ε
x ) for x ≥ r > 0, we similarly get that

∣∣∣∣12
∫∫

[0,∞)2\[0,r ]2
�ε

a(x)�
ε
a(z)

((x + ε)(z + ε))3/2
D∗
2[ϑ](x, z)dxdz

∣∣∣∣
≤ 4‖ϑ‖B0

(∫
[0,∞)

�ε
a(x)

(x + ε)3/2
dx

)(∫
(r,∞)

�ε
a(x)

(x + ε)3/2
dx

)

≤ 4‖ϑ‖B0ε
(3−4ρ)/2 × r−1/2,

so recalling that on compact squares the finite sums of products of single variable functions
are dense in the uniform topology in the continuous functions, it follows that in the limit
a → 0, (3.49) becomes

1

2

∫∫
[0,r ]2

�ε(x)�ε(y)

((x + ε)(y + ε))3/2
D∗
2[ϑ](x, y)dxdy + O(δ) + O(r−1/2)

as δ → 0 and r → ∞, and taking these limits we obtain that �ε indeed satisfies (3.48) for
all ϑ ∈ B1.

Before we take the limit ε → 0 we will need a further estimate: We show that there is a
constant K > 0, independent of ε, such that

∫
(0,z]

√
x�ε(x)

(x + ε)3/2
dx ≤ K · z1−ρ/2 for all z > 0. (3.50)

To that end, we note that xϑ ′(x) + (2 − ρ)ϑ(x) = [xϑ(x)]x − (ρ − 1)ϑ(x), and choosing
ϑ ∈ B1 such that the mapping z �→ zϑ(z) is nondecreasing and concave we obtain from
(3.48) that

ρ−1
ρ

∫
[0,∞)

ϑ(x)�ε(x)dx

≥ −1

2

∫∫
[0,∞)2

�ε(x)�ε(y)

((x + ε)(y + ε))3/2
D∗
2[ϑ](x, y)dxdy, (3.51)

where D∗
2[ϑ] ≤ 0. Now, by an approximation argument (3.51) also holds with ϑr (x) =

(1 ∧ r
x ), for arbitrary r > 0. We then use the definition of the norm ‖ · ‖ρ , and the fact that

‖�ε‖ρ = 1, to estimate the left hand side of (3.51) by ρ−1
ρ

r2−ρ . Noting furthermore that the
second difference of an affine function is zero, we find for x, y ≥ 0 that

D∗
2[ϑr ](x, y) = D2[zϑr (z) − r ](x, y) = −D2[(r − z)+](x, y)

= −[
(r − (x + y))+ + (r − |x − y|)+ − 2(r − (x ∨ y))+

]
= −[

(x + y − r)+ ∧ (r − |x − y|)+
]
,

and it follows from (3.51) that

ρ−1
ρ

r2−ρ ≥ 1

2

∫∫
[0,∞)2

√
x�ε(x)

(x + ε)3/2

√
y�ε(y)

(y + ε)3/2
(x+y−r)+∧(r−|x−y|)+√

xy dxdy. (3.52)

Set now α = 1
3 (

√
7+1) > 1, which solves 1−(α2−α) = 1

2α
2, and notice that (xy)−1/2(r−

|x − y|) ≥ (α2r)−1(r − (α2 − α)r) = 1
2 for x, y ∈ (αr, α2r ]. We then restrict the domain

of integration on the right hand side of (3.52) to (αr, α2r ]2 to obtain

1

4

(∫
(αr,α2r ]

√
x�ε(x)

(x + ε)3/2
dx

)2

≤ ρ−1
ρ

r2−ρ,

123



On Self-Similar Solutions to a Kinetic Equation... 1375

hence there holds∫
(α−1r,r ]

√
x�ε(x)

(x + ε)3/2
dx ≤

(
2αρ−2

√
ρ−1
ρ

)
r1−ρ/2 for all r > 0,

and using the decomposition (0, z] = ⋃∞
j=0(α

− j−1z, α− j z] we obtain (3.50).
Now, asYρ is independent of ε, there also exist εn → 0 and�ρ ∈ Yρ such that�εn ⇀∗ �ρ

in Xρ . Writing then ε for εn and ε → 0 for εn → 0, the left hand side of (3.48), by definition
of weak-∗ convergence, converges to

1

ρ

∫
[0,∞)

(
xϑ ′(x) + (2 − ρ)ϑ(x)

)
�ρ(x)dx

= 1

ρ

∫
[0,∞)

(
x[xϑ(x)]x − (ρ − 1)xϑ(x)

) 1
x�ρ(x)dx . (3.53)

We next check that (3.50) carries over to the limit. Let thereto ηδ ∈ C(R), for δ > 0, be
nondecreasing with ηδ = 0 on (−∞, δ) and ηδ = 1 on (2δ,∞). Using then (3.50), for all
z > 0 we obtain∫

(0,z]
1
x�ρ(x)dx = lim

δ→0

∫
(0,z+2δ]

1
x�ρ(x)(ηδ(x) − ηδ(x − z))dx

= lim
δ→0

lim
ε→0

∫
(0,z+2δ]

√
x�ρ(x)

(x + ε)3/2
(ηδ(x) − ηδ(x − z))dx ≤ K · z1−ρ/2.

(3.54)

Now, with ηδ as above and using (3.50), we find for any ψ ∈ C([0,∞]) that∣∣∣∣
∫

[0,∞)

ψ(x)

√
x�ε(x)

(x + ε)3/2
dx −

∫
[0,∞)

ηδ(x)ψ(x)

(1 + ε
x )

3/2

1

x
�ε(x)dx

∣∣∣∣
≤

∫
(0,2δ]

√
x�ε(x)

(x + ε)3/2
ψ(x)dx ≤ 21−ρ/2K‖ψ‖C([0,∞]) × δ1−ρ/2,

so similarly using (3.54), and since �ρ ∈ Xρ implies �ρ({0}) = 0, we obtain

lim
ε→0

∫
[0,∞)

ψ(x)

√
x�ε(x)

(x + ε)3/2
dx =

∫
[0,∞)

ψ(x) 1x�ρ(x)dx .

We thus find that the finitemeasures
√
x�ε(x)

(x+ε)3/2
dx convergewith respect to theweak-∗ topology

in (C([0,∞]))′ to some	ρ ∈ X2 that satisfies	ρ(x) = 1
x�ρ(x) for x > 0. Recall now that

|D∗
2[ϑ](x, y)| ≤ 4‖ϑ‖B0 for all x, y ≥ 0, and also |D∗

2[ϑ](x, y)| ≤ 2‖ϑ‖B1(x ∧ y). Then
(xy)−1/2D∗

2[ϑ](x, y) is bounded and continuous on [0,∞]2, and vanishes uniformly on the
boundary, and we thus obtain that the right hand side of (3.48) converges to the right hand
side of

1

ρ

∫
[0,∞)

(
x[xϑ(x)]x − (ρ − 1)xϑ(x)

)
	ρ(x)dx

=
∫∫

[0,∞)2

	ρ(x)	ρ(y)√
xy

D∗
2[ϑ](x, y)dxdy, (3.55)

which 	ρ satisfies for all ϑ ∈ B1 [cf. (3.53)]. To conclude, we note that by appropriate
approximation it can be shown that 	ρ satisfies (3.55) for all ϑ for which the mapping
z �→ zϑ(z) is differentiable and constant from a certain point onwards towards infinity. The
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1376 A. H. M. Kierkels, J. J. L. Velázquez

proof is then completed by the observation that any ϕ ∈ C1
c ([0,∞)) defines such a function

via ϕ(x) − ϕ(0) = xϑ(x). ��

4 Regularity, and a Decay Result

We start this sectionwith a useful integrability estimate, which can be seen as an improvement
on (3.50).

Lemma 4.1 Given ρ ∈ (1, 2], if	ρ ∈ X2 satisfies (2.10) for all ϕ ∈ C1
c ([0,∞)), then there

exists a constant C > 0 such that∫
(0,R]

	ρ(x)dx ≤ C · √
R for all R > 0. (4.1)

Proof Given any nonincreasing convex function ϕ ∈ C1
c ([0,∞)), we obtain from (2.10) that

there holds

ρ−1
ρ

∫
[0,∞)

(ϕ(0) − ϕ(x))	ρ(x)dx

≥ 1

2

∫∫
[0,∞)2

	ρ(x)	ρ(y)√
xy

D2[ϕ](x, y)dxdy, (4.2)

so using appropriate arguments to approximate ϕ(x) = (r − x)+, with r > 0 arbitrary, and
arguing as in the proof of (3.50), we find from (4.2) that

ρ−1
ρ

‖	ρ‖2 · r ≥ 1
2I[	ρ](r), (4.3)

with

I[	ρ](r) :=
∫∫

R
2+

	ρ(x)	ρ(y)√
xy

(x + y − r)+ ∧ (r − |x − y|)+dxdy. (4.4)

Also as in the proof of (3.50), we then restrict the domain of integration on the right hand
side of (4.3) to (αr, α2r ]2, with α = 1

3 (
√
7 + 1), to obtain

1

4

(∫
(αr,α2r ]

	ρ(x)dx

)2

≤ ρ−1
ρ

‖	ρ‖2 · r,

hence there holds∫
(α−1r,r ]

	ρ(x)dx ≤ 2
α

√
ρ−1
ρ

‖	ρ‖2 · √
r for all r > 0,

and (4.1) follows by the decomposition (0, R] = ⋃∞
j=0(α

− j−1R, α− j R]. ��

We now first show that self-similar profiles are Hölder continuous.

Lemma 4.2 Given ρ ∈ (1, 2], if 	ρ ∈ X2 satisfies (2.10) for all ϕ ∈ C1
c ([0,∞)), then it is

absolutely continuous with respect to Lebesgue measure, its Radon–Nykodim derivative is
locally α-Hölder continuous on (0,∞) for any α < 1

2 , and it actually satisfies (2.9) for all
ϕ ∈ C1

c ([0,∞)).
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Proof Given χ ∈ C∞
c ((0,∞)), we set ϕ(x) = − ∫∞

x
1
z χ(z)dz and use this function in (2.10)

to obtain ∫
(0,∞)

χ(x)	ρ(x)dx − (ρ − 1)
∫
(0,∞)

∫ x

0

1
z χ(z)dz	ρ(x)dx

= ρ

2

∫∫
[0,∞)2

	ρ(x)	ρ(y)√
xy

(∫ x+y

x∨y

1
z χ(z)dz −

∫ x∨y

|x−y|
1
z χ(z)dz

)
dxdy. (4.5)

Writing then �χ = supp(χ) and ςχ = 1
2 min(�χ), we first of all note that

∣∣∣∣
∫
(0,∞)

∫ x

0

1
z χ(z)dz	ρ(x)dx

∣∣∣∣ ≤ 	ρ([2ςχ ,∞)) ×
∫
�χ

1
z |χ(z)|dz

≤ (
	ρ([2ςχ ,∞)) × ‖ 1

z ‖Lq (�χ )

) ‖χ‖L p(�χ ),

with p ∈ [1,∞) and q = p
p−1 , and similarly we find that

∣∣∣∣∣
∫∫

[ςχ ,∞)2

	ρ(x)	ρ(y)√
xy

(∫ x+y

x∨y

1
z χ(z)dz −

∫ x∨y

|x−y|
1
z χ(z)dz

)
dxdy

∣∣∣∣∣
≤ 1

ςχ
(	2([ςχ ,∞)))2 × 2

∫
�χ

1
z |χ(z)|dz

≤
(

2
ςχ

(	2([ςχ ,∞)))2 × ‖ 1
z ‖Lq (�χ )

)
‖χ‖L p(�χ ).

Noticing now that the term between brackets in the double integral on the right hand side of
(4.5) vanishes on {x + y ≤ 2ςχ }, by symmetry it remains only to estimate the integral over
(x, y) ∈ [ςχ ,∞]× (0, ςχ ]. We thereto let p ∈ (1,∞) be arbitrary, r ∈ (

p
p−1 ,∞) large, and

q ∈ (1,∞] such that 1 = 1
p + 1

q + 1
r , and we obtain that

∣∣∣∣∣
∫∫

[ςχ ,∞)×(0,ςχ ]
	ρ(x)	ρ(y)√

xy

(∫ x+y

x

1
z χ(z)dz −

∫ x

x−y

1
z χ(z)dz

)
d(x, y)

∣∣∣∣∣
≤

∫
[ςχ ,∞)

	ρ(x)√
x

dx ×
∫
(0,ςχ ]

2‖ 1
z χ(z)‖

L
r

r−1 (�χ )
y

1
r − 1

2	ρ(y)dy,

which, using for the integral with respect to y a dyadic decomposition and Lemma 4.1, can be
bounded by a constant times ‖χ‖L p(�χ ). Note here that the dependence on χ of the constants
in the preceding estimates is limited to dependence on ςχ . Combining thus the preceding
estimates and using a density argument, we then find for any p ∈ (1,∞) and any K ⊂ (0,∞]
compact that

∣∣∣∣
∫
K
χ(x)	ρ(x)dx

∣∣∣∣ ≤ C(	ρ,min(K ), p, ρ)‖χ‖L p(K ) for all χ ∈ L p(K ), (4.6)

with C(	ρ, k, p, ρ) ≤ c(	ρ, p, ρ)O(k− 1
p 	2([k,∞))) as k → ∞. By duality it now fol-

lows that	ρ ∈ ⋂
q∈(1,∞) L

q
loc((0,∞]), and since	ρ ∈ X2 is finite we have	ρ ∈ L1(0,∞).

Moreover, from the dependence on min(K ) of the constant C in (4.6) we find for all

q ∈ [1,∞) that ‖	ρ‖Lq (r,∞) ≤ O
(
r

1
q −1‖	2‖L1(r,∞)

)
as r → ∞. Note further that the

contribution of integrals over lines to the double integral on the right hand side of (2.10) is
zero for Lebesgue integrable functions, so	ρ actually satisfies (2.9) for all ϕ ∈ C1

c ([0,∞)).
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For the remaining continuity claim we fix γ ∈ (0, 1
2 ) and [a, b] ⊂ (0,∞) arbitrarily, and

we start by showing that for any ϕ ∈ C∞
c (R) with support in [a, b] we have∣∣∣∣

∫
R

ϕ′(x) x	ρ(x)dx

∣∣∣∣ ≤ C(	ρ, a, b, γ, ρ)‖ϕ‖Hγ (R). (4.7)

Indeed, by (2.9) we immediately have∣∣∣∣
∫
(0,∞)

ϕ′(x) x	ρ(x)dx

∣∣∣∣ ≤ (ρ − 1)‖	ρ‖L2(a,b)‖ϕ‖L2(R)

+ρ

∣∣∣∣
∫∫

S1

	ρ(x)	ρ(y)√
xy

�2
yϕ(x)dxdy

∣∣∣∣ + ρ

∣∣∣∣
∫∫

S2

[
· · ·

]
dxdy

∣∣∣∣ ,
where we have split the double integral over the domains

S1 = {(y ∨ (a − y)) < x < y + b < 2b} and S2 = {
x > y >

( x
2 ∨ b

)}
.

For the integral over S1 we now first note for all y ∈ [0, b] that∣∣∣∣
∫
(y∨(a−y),y+b)

	ρ(x)�
2
yϕ(x)dx

∣∣∣∣ ≤ 2‖	ρ‖L2( a2 ,2b)
‖�2

yϕ‖L2(R),

and since ‖�2
yϕ‖L2(R) ≤ C(γ )‖ϕ‖Hγ (R) yγ (cf. [19], [20,21]) we obtain

∣∣∣∣
∫∫

S1

[
· · ·

]
dxdy

∣∣∣∣ ≤ C(	ρ, a, b)C(γ )

√
2

a

∫
(0,b)

yγ− 1
2	ρ(y)dy × ‖ϕ‖Hγ (R),

where the remaining integral with respect to y is bounded (use Lemma 4.1 and a dyadic
decomposition of the interval (0, b)). For the integral over S2 we note that the second dif-
ference of ϕ is now completely given by ϕ(x − y). Applying thus Hölder’s and Young’s
inequalities we obtain∣∣∣∣

∫∫
S2

[
· · ·

]
dxdy

∣∣∣∣ ≤ 1

b
‖	ρ‖L2(b,∞)

∥∥∥∥
∫
(b,∞)

	ρ(y)|ϕ(z − y)|dy
∥∥∥∥
L2(b,∞)

≤ C(	ρ, b)‖	ρ‖L1(0,∞)‖ϕ‖L2(R),

and it follows that (4.7) holds. We lastly fix any ζ ∈ C∞
c ((a, b)) with ζ(x) = 1

x for x ∈
Ia,b := [ 2a+b

3 , a+2b
3

]
, and we set �(x) := ζ(x)x	ρ(x). Given then any ϕ ∈ C∞(R), we

use (4.7) to get∣∣∣∣
∫
R

ϕ′(x)�(x)dx

∣∣∣∣ ≤
∣∣∣∣
∫
R

(ζϕ)′(x) x	ρ(x)dx

∣∣∣∣ +
∣∣∣∣
∫
R

ζ ′(x)ϕ(x) x	ρ(x)dx

∣∣∣∣
≤ C(	ρ, a, b, γ, ρ)‖ζϕ‖Hγ (R) + ‖zζ ′(z)‖∞‖	ρ‖L2(a,b)‖ϕ‖L2(R),

and since C∞(R) is dense in Hγ (R) we obtain∣∣∣∣
∫
R

ϕ′(x)�(x)dx

∣∣∣∣ ≤ C(	ρ, a, b, γ, ζ, ρ)‖ϕ‖Hγ (R) for all ϕ ∈ Hγ (R),

hence�′ ∈ H−γ (R) = (Hγ (R))′. Therefore� ∈ H1−γ (R) ⊂ C0, 12−γ (R) (cf. [2, Theorem
19.6(b)] and [20, Section 2.7.1, Remark 2] resp.) and since � = 	ρ on Ia,b we have

	ρ ∈ C0, 12−γ (Ia,b). We then complete the proof by observing that γ ∈ (0, 1
2 ) was chosen

arbitrarily, and that for any K ⊂ (0,∞) compact there are a, b ∈ (0,∞) such that K ⊂ Ia,b.
��
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We are now able to prove Propositions 2.25 and 2.26.

Proof of Proposition 2.25 By Lemma 4.2 we have that 	ρ ∈ ⋂
α< 1

2
C0,α((0,∞)), and 	ρ

satisfies (2.9) for all ϕ ∈ C1
c ([0,∞)). We will prove smoothness via a bootstrap argument,

for which we need to rewrite (2.9). For any δ > 0, let ηδ ∈ C([0,∞]) be a nondecreasing
function with ηδ = 0 on [0, δ) and ηδ = 1 on (2δ,∞]. For fixed ϕ ∈ C∞

c ((0,∞)) it then
holds by dominated convergence that

∫
(0,∞)

(
1
ρ
[xϕ(x)]x − ϕ(x)

)
	ρ(x)dx

= lim
δ→0

∫∫
{x>y>0}

ηδ(x)	ρ(x)ηδ(y)	ρ(y)√
xy

�2
yϕ(x)dxdy, (4.8)

and if δ < 1
4 min(supp(ϕ)), then

∫∫
{x>y>0}

ηδ(x)	ρ(x)ηδ(y)	ρ(y)√
xy

�2
yϕ(x)dxdy

=
∫
(0,∞)

(∫ x/2

0

ηδ(y)	ρ(y)√
y

[
	ρ(x + y)√

x + y
+ 	ρ(x − y)√

x − y
− 2

	ρ(x)√
x

]
dy

+
∫ ∞

x/2

	ρ(y)	ρ(x + y)√
y(x + y)

dy − 2
	ρ(x)√

x

∫ x

x/2

	ρ(y)√
y

dy

)
ϕ(x)dx . (4.9)

Using then the local Hölder regularity of 	ρ and the integral estimate from Lemma 4.1, we

find that 	ρ(y)√
y

[
	ρ(x+y)√

x+y
+ 	ρ(x−y)√

x−y
− 2	ρ(x)√

x

]
is integrable with respect to y near zero, and

we are able to take the limit δ → 0 in the right hand side of (4.9). Combining (4.8) and (4.9),
we thus obtain that 	ρ satisfies (2.11), where the derivative on the left hand is still taken in
the distributional sense.

Suppose now that 	ρ ∈ Ck,α((0,∞)) for some k ∈ N0 and α ∈ (0, 1). To show that
	ρ ∈ Ck+1,α−ε((0,∞)) for some arbitrarily small ε > 0, it then suffices to check that
the right hand side of (2.11) is in Ck,α−ε((0,∞)), and since the second and third terms
are actually even more regular it is enough to check this for the first. Moreover, writing
f (x) = 	ρ(x)√

x
we observe that

f
( 1
2 x

) [
f (�)

( 3
2 x

) + f (�)
( 1
2 x

) − 2 f (�)(x)
]

∈ Ck−�,α((0,∞)) for � = 0, 1, . . . , k,

and we can restrict ourselves to proving that f ∈ C0,α((0,∞)) implies

∫ x/2

0

	ρ(y)√
y

[
f (x + y) + f (x − y) − 2 f (x)

]
dy =: F(x) ∈ C0,α−ε((0,∞)). (4.10)

Let thereto K ⊂ [k1, k2] ⊂ (0,∞) be compact, and let κ > 0 be a constant such that
| f (x)− f (y)| ≤ κ|x − y|α for all x, y ∈ [ 12k1, 2k2]. For x1, x2 ∈ K with x1 ≤ x2 there then
holds

|F(x1) − F(x2)| ≤
∣∣∣∣
∫ x2/2

x1/2

	ρ(y)√
y

�2
y f (x2)dy

∣∣∣∣
+
∫ x1/2

0

	ρ(y)√
y

∣∣∣�2
y f (x1) − �2

y f (x2)
∣∣∣ dy,
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1380 A. H. M. Kierkels, J. J. L. Velázquez

where the first term on the right hand side is bounded by a constant times |x1 − x2|. Writing
further ξ = min{ 12 x1, x2 − x1}, we find that

∫ x1/2

0

	ρ(y)√
y

∣∣∣�2
y f (x1) − �2

y f (x2)
∣∣∣ dy

≤ 4κ

(∫ ξ

0

	ρ(y)√
y

yαdy + |x1 − x2|α
∫ x1/2

ξ

	ρ(y)√
y

dy

)
,

which, using dyadic decompositions of the domains of integration and the estimate from
Lemma 4.1, can be bounded by a constant times

|x1 − x2|α(1 + log |x1 − x2|) ≤ |x1 − x2|α−ε as |x1 − x2| → 0,

with ε > 0 arbitrarily small, and we have shown (4.10). By induction it then follows that
	ρ ∈ C∞((0,∞)).

To lastly prove our positivity claim we suppose that there is some x ∈ (0,∞) such that
	ρ(x) = 0. As we have 	ρ ≥ 0 on (0,∞) there then holds 	′

ρ(x) = 0, and it follows
from (2.11) that 	ρ(y)	ρ(x + y) = 0 for all y ∈ (0,∞), and that 	ρ(y)	ρ(x − y) = 0
for all y ∈ (0, x). As a consequence of the latter identity we find that 	ρ(

x
2 ) = 0, hence

	ρ(2−nx) = 0 for all n ∈ N by induction. From the iterated first identity we therefore have

	ρ(y)	ρ(2
−nx + y) = 0 for all y ∈ (0,∞) and all n ∈ N,

so local uniform continuity implies (	ρ(y))2 = 0 for all y ∈ K with K ⊂ (0,∞) compact,
hence 	ρ = 0 on (0,∞), and we conclude that 	ρ is indeed either strictly positive or
identically zero on (0,∞). ��
Proof of Proposition 2.26 Since the rescaling statement is an easy exercise, we restrict our-
selves to proving that x	ρ(x) ∈ Xρ . Moreover, in view of Remark 2.27 we restrict ourselves
to the case ρ ∈ (1, 2), but see also Lemma 6.1.

Now, we first show that

Rρ−2
∫

[0,∞)

(
1 ∧ R

x

)
x	ρ(x)dx = ρ

2

∫ R

0
I[	ρ](r)rρ−3dr for all R > 0, (4.11)

with I given by (4.4). To that end we note that by continuity of 	ρ (cf. Proposition 2.25),
after an approximation argument we can use ϕ(x) = (r − x)+, with r > 0 arbitrary, directly
in (2.9) to obtain

1

ρ

(
(ρ − 2)

∫ r

0
x	ρ(x)dx + (ρ − 1)r

∫ ∞

r
	ρ(x)dx

)
= 1

2I[	ρ](r). (4.12)

Using then the estimate from Lemma 4.1 in a dyadic decomposition for the first integral on
the left hand side of (4.12), we find that for small r > 0 the second term is dominant and of
order O(r) as r → 0. As a consequence the product of (4.12) and rρ−3 is integrable near
zero, and for any R > 0 we find that the right hand side of (4.11) equals

∫ R

0

[
rρ−2

∫ r

0
x	ρ(x)dx + rρ−1

∫ ∞

r
	ρ(x)dx

]
r
dr,

hence (4.11) holds.
We next note that I[	ρ] ≥ 0, so the right hand side of (4.11) is nondecreasing as a

function of R, hence the supremum over R > 0 is given by the limit R → ∞. Observing
lastly that (xy)−1/2(x + y − r)+ ∧ (r − |x − y|)+ ≤ 1 for all x, y ≥ 0 and r > 0, we
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obtain the uniform bound I[	ρ] ≤ ‖	ρ‖22, hence the right hand side of (4.11) is bounded
as a function of R, and we conclude that ‖x	ρ(x)‖ρ < ∞. ��

5 Power Law Asymptotics: Theorem 2.28

The proof of Theorem 2.28 is given after the following useful result.

Lemma 5.1 Given ρ ∈ (1, 2), if 	ρ ∈ X2 satisfies (2.10) for all ϕ ∈ C1
c ([0,∞)), then the

limits

lim
R→∞

Rρ−1

2 − ρ

∫
(R,∞)

	ρ(x)dx and lim
R→∞

Rρ−2

ρ − 1

∫
(0,R)

x	ρ(x)dx

exist, and both equal ‖x	ρ(x)‖ρ .

Proof Recalling from the proof of Proposition 2.26 that	ρ satisfies (4.12) for all r > 0, we
find by a rearrangement of terms that

R
∫
(R,∞)

	ρ(x)dx − (2 − ρ)

∫
[0,∞)

(
1 ∧ R

x

)
x	ρ(x)dx = ρ

2 I[	ρ](R)

= (ρ − 1)
∫

[0,∞)

(
1 ∧ R

x

)
x	ρ(x)dx −

∫
(0,R)

x	ρ(x)dx for all R > 0. (5.1)

Also from the proof of Proposition 2.26 [cf. (4.11)], we know that
∫

[0,∞)

(
1 ∧ R

x

)
x	ρ(x)dx = R2−ρ

(
‖x	ρ(x)‖ρ − ρ

2

∫ ∞

R
I[	ρ](r)rρ−3dr

)
,

so we can rewrite the first equality in (5.1) as

Rρ−1

2 − ρ

∫
(R,∞)

	ρ(x)dx − ‖x	ρ(x)‖ρ

= ρ

2

(
I[	ρ](R)Rρ−2

2 − ρ
−

∫ ∞

R
I[	ρ](r)rρ−3dr

)
,

where the right hand side tends to zero as R → ∞. Doing the same for the second equality
in (5.1) completes the proof. ��

Proof of Theorem 2.28 Recall that 	ρ ∈ C∞((0,∞)) (cf. Proposition 2.25).
We first remark that for any r > 0 we have

∣∣∣∣ 	ρ(r)

(2 − ρ)(ρ − 1)r−ρ
− 1

∣∣∣∣ ≤
∣∣∣∣∣

r	ρ(r)

(ρ − 1)
∫
(r,∞)

	ρ(x)dx
− 1

∣∣∣∣∣
+ r	ρ(r)

(ρ − 1)
∫
(r,∞)

	ρ(x)dx

∣∣∣∣ r
ρ−1

2 − ρ

∫
(r,∞)

	ρ(x)dx − 1

∣∣∣∣ ,
(5.2)

which by Lemma 5.1 reduces the problem to showing that the first term on the right hand
side of (5.2) vanishes as r → ∞. Recall now from the proof of Proposition 2.26 that 	ρ
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satisfies (4.12) for all r > 0, and note that we may differentiate this equation with respect to
r to obtain

(ρ − 1)
∫
(r,∞)

	ρ(x)dx − r	ρ(r) = ρ
2 lim

h→0

1
h

(
I[	ρ](r + h) − I[	ρ](r))

= ρ

2

( ∫∫
{|x−y|<r,
(x∨y)>r}

	ρ(x)	ρ(y)√
xy

dxdy

−
∫∫

{x+y>r,
(x∨y)<r}

	ρ(x)	ρ(y)√
xy

dxdy
)
, (5.3)

Then, since
∫
(r,∞)

	ρ(x)dx ∼ (2 − ρ)r1−ρ as r → ∞ (cf. Lemma 5.1), we find by (5.3)
that the first term on the right hand side of (5.2) vanishes as r → ∞ if

∫∫
{x+y>r,|x−y|<r}

	ρ(x)	ρ(y)√
xy

dxdy = o(r1−ρ) as r → ∞, (5.4)

so by proving (5.4) we prove the theorem. Now, the left hand side of (5.4) can be estimated
by

4
r ‖	ρ‖2

L1
(
1
4 r,∞

) + 2
∫ 5

4 r

3
4 r

	ρ(x)√
x

(∫ 1
2 r

|r−x |
	ρ(y)√

y
dy

)
dx, (5.5)

where the first term is O(r1−2ρ), which decays sufficiently fast. For the second term of (5.5)
we use a dyadic decomposition of the interval

(|r − x |, 1
2r

)
, and Lemma 4.1, to find that the

term between brackets can be bounded up to a constant by log
(

r
|r−x |

)
. Hölder’s inequality

further gives us the estimate

∫ 5
4 r

3
4 r

	ρ(x)√
x

log
∣∣ r
r−x

∣∣dx ≤
‖	ρ‖

Lq
(
3
4 r,∞

)∥∥ log ∣∣ r
r−z

∣∣∥∥
L p
(
3
4 r,

5
4 r
)

√
3
4r

,

so recalling for q ∈ (1,∞) that ‖	ρ‖Lq (r,∞) ≤ O
(
r

1
q −1‖	ρ‖L1(r,∞)

)
= O

(
r

1
q −ρ

)
as

r → ∞ (cf. proof of Lemma 4.2), we find that the second term in (5.5) is bounded by a term

of order O(r
1
2−ρ) as r → ∞, hence (5.4) holds. ��

6 Exponential Bounds: Theorem 2.29

6.1 A Pointwise Exponential Upper Bound

Our first result gives an explicit upper bound to the moments of self-similar profiles, and can
be seen as an improvement on [10, Lemma 4.22].

Lemma 6.1 If	2 ∈ X2 satisfies (2.10) with ρ = 2 for all ϕ ∈ C1
c ([0,∞)), then there exists

a finite constant A > 0 such that
∫
(0,∞)

xγ	2(x)dx ≤ γ γ Aγ+1 for all γ > 0. (6.1)
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Proof Let r > 0 be fixed arbitrarily, and let mγ = ∫
(0,r) x

γ	2(x)dx (for γ ≥ 0). To prove
the result it suffices to show that there exists a finite constant A > 0, independent of r , such
that mγ ≤ γ γ Aγ+1 for all γ > 0.

We first recall from the proof of Proposition 2.26 that 	2 satisfies∫
(r,∞)

	2(x)dx = r−1I[	2](r), (6.2)

with I as defined in (4.4). Similar to the derivation of (4.12), for any γ > 1 we now
approximate ϕr,γ (x) = (rγ − xγ )+ by functions in C1

c ([0,∞)) to obtain

(1 − γ )

∫
(0,r)

xγ	2(x)dx + rγ
∫
(r,∞)

	2(x)dx

= 2
∫∫

{x>y>0}
	2(x)	2(y)√

xy
�2

yϕr,γ (x)dxdy. (6.3)

Introducing the notation φγ (x) = xγ , we note for x ≥ y ≥ 0 that we have

�2
yϕr,γ (x) =

{
((x + y)γ − rγ )+ − �2

yφγ (x) if x ≤ r,

(rγ − (x − y)γ )+ if x > r.

Noticing further that

((x + y)γ − rγ )+ ≥ rγ−1((x + y) − r)+,

(rγ − (x − y)γ )+ ≥ rγ−1(r − (x − y))+,

we find from (6.3), where we use (6.2) in the left hand side, that

(1 − γ )

∫
(0,r)

xγ	2(x)dx + rγ−1I[	2](r)

≥ rγ−1I[	2](r) − 2
∫∫

{0<y<x<r}
	2(x)	2(y)√

xy
�2

yφγ (x)dxdy,

hence

(γ − 1)
∫
(0,r)

xγ	2(x)dx ≤ 2
∫∫

{0<y<x<r}
	2(x)	2(y)√

xy
�2

yφγ (x)dxdy. (6.4)

Since for x ≥ y ≥ 0 there holds �2
yφ2(x) = 2y2 ≤ 2y

√
xy, (6.4) now yields

m2 ≤ 2
∫∫

{0<y<x<r}
2y	2(x)	2(y)dxdy

= 2
∫∫

(0,r)2
(x ∧ y)	2(x)	2(y)dxdy ≤ 2m0m1, (6.5)

so using Hölder’s inequality, then (6.5), and then again Hölder’s inequality, we obtain for all
γ ∈ [0, 2] that
mγ ≤ m

1− γ
2

0 m
γ
2
2 = m

1− γ
2

0 (m2)
γ m

− γ
2

2 ≤ m
1− γ

2
0 (2m0m1)

γ m
− γ

2
2

= 2γm
1+ γ

2
0 (m1)

γ m
− γ

2
2 ≤ 2γm

1+ γ
2

0

(
m

1
2
0 m

1
2
2

)γ

m
− γ

2
2 = 1

2 (2m0)
γ+1 ,

hence mγ ≤ γ γ Aγ+1 for all γ ∈ (0, 2] if A ≥ 2‖	2‖2 ≥ 2m0 (since γ γ > 1
2 ).
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For n ∈ N ∩ (2,∞) we use the binomial formula to note for x ≥ y ≥ 0 that

�2
yφn(x) =

n∑
j=2

(1 + (−1) j ) ×
(
n

j

)
xn− j y j ≤ 2

n∑
j=2

(
n

j

)
xn− j y j−1 × √

xy,

which we then use in (6.4) to obtain

mn ≤ 4

n − 1

n∑
j=2

(
n

j

)
mn− jm j−1. (6.6)

Supposing now thatmγ ≤ γ γ Aγ+1 for all γ ∈ N∩ (0, n)with some A ≥ 2‖	2‖2, and since
in particular m0 ≤ ‖	2‖2 ≤ A, we use (6.6) to find

mn ≤
⎛
⎝ 4

n − 1

n∑
j=2

(
n

j

)
(n − j)n− j ( j − 1) j−1

⎞
⎠ An+1, (6.7)

where we suppose that 00 = 1. Also by the binomial formula, we note that

(
n

j

)
(n − j)n− j j j ≤

n∑
l=0

(
n

l

)
(n − j)n−l j l = nn for j ∈ N ∩ (0, n],

hence

4

n − 1

n∑
j=2

(
n

j

)
(n − j)n− j ( j − 1) j−1 ≤ nn × 4

⎛
⎝ 1

n − 1

n∑
j=2

( j − 1) j−1

j j

⎞
⎠ . (6.8)

Noticing then that the term between brackets on the right hand side of (6.8) is actually the
average of terms that are all bounded by 1

4 , it follows that the right hand side of (6.7) is
bounded by nn An+1, hence by induction we have that mγ ≤ γ γ Aγ+1 for all γ ∈ (0, 2] ∪ N

with any A ≥ 2‖	2‖2.
Finally, suppose that γ ∈ (2,∞) \ N and let n be the smallest integer larger than γ . By

Hölder’s inequality we then have mγ ≤ m
1− γ

n
0 m

γ
n
n , so with the above estimates on mn for

n ∈ N we find that

mγ ≤ A1− γ
n
(
nn An+1) γ

n = γ γ
( n
γ

)γ
Aγ+1 ≤ γ γ

( 3
2 A

)γ+1
with any A ≥ 2‖	2‖2,

whereby mγ ≤ γ γ (3‖	2‖2)γ+1 for all γ > 0, so (6.1) holds with A ≥ 3‖	2‖2. ��
Mimicking the proof in [15], we are now able to prove the pointwise exponential upper

bound.

Proposition 6.2 If 	2 ∈ X2 satisfies (2.10) with ρ = 2 for all ϕ ∈ C1
c ([0,∞)), then there

exists a constant a ∈ (0, 1) such that ‖ear	2(r)‖L∞(1,∞) < ∞.

Proof Recall first of all that 	2 ∈ C∞((0,∞)) (cf. Proposition 2.25).
Now, let A > 1

2e be a constant such that (6.1) holds, which exists by the proof of Lemma
6.1. For any r > 0 there then holds∫

(r,∞)

	2(x)dx ≤ r−γ

∫
(0,∞)

xγ	2(x)dx ≤ A exp
(
γ log

(
γ A
r

))
for all γ > 0,
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where the right hand side is minimal if γ = r
eA , so∫

(r,∞)

	2(x)dx ≤ A exp
(− r

eA

)
for all r > 0. (6.9)

We next differentiate (4.12) with respect to r , i.e. we set ρ = 2 in (5.3), and we drop the
double integral over {|x − y| < r, (x ∨ y) > r} to find for r > 0 that

r	2(r) ≤
∫
(r,∞)

	2(x)dx +
∫∫

{x+y>r,(x∨y)<r}
	2(x)	2(y)√

xy
dxdy. (6.10)

Since the integrand in the double integral on the right hand side of (6.10) is symmetric, for
r > 1 we can now estimate that term by

2
∫∫

{x> r
2 ,y>

1
2 }

	2(x)	2(y)√
xy

dxdy + 2
∫ r

r− 1
2

	2(x)√
x

(∫ 1
2

r−x

	2(y)√
y

dy

)
dx . (6.11)

For ξ ∈ (0, 1
2 )we then let n be the smallest integer such that 2−n−1 < ξ , and we use Lemma

4.1 to obtain
∫ 1

2

ξ

	2(y)√
y

dy ≤
n∑
j=1

∫ 2− j

2− j−1

	2(y)√
y

dy ≤
n∑
j=1

C · √
2− j

√
2− j−1

≤ C
√
2

log 2 | log ξ |, (6.12)

so combining (6.10), (6.11) and (6.12), and using (6.9), we find for r > 1 that

r	2(r) ≤ e− 1
2

r
eA

(
Ae− 1

2
r
eA + 4√

r
A2

)
+

4C
log 2√
r

∫ r

r− 1
2

	2(x)| log(r − x)|dx . (6.13)

Multiplying (6.13) by 1
r e

1
2

r
eA , and choosing R � 1 sufficiently large, then yields

e
1
2

r
eA 	2(r) ≤ 1

r

(
1 +

4C
log 2√
r

∫ 1
2

0
e
1
2

x
eA | log x |dx ×

∥∥∥e 1
2

z
eA 	2(z)

∥∥∥
L∞(r− 1

2 ,r)

)

≤ 1

r

(
1 +

∥∥∥e 1
2

z
eA 	2(z)

∥∥∥
L∞(1,r)

)
for all r > R, (6.14)

so setting a = 1
2

1
eA ∈ (0, 1), using (6.14), and iterating, we obtain

‖eaz	2(z)‖L∞(1,r) ≤ ‖eaz	2(z)‖L∞(1,R) + 1
R

(
1 + ‖eaz	2(z)‖L∞(1,r)

)
≤ R

R−1

(‖eaz	2(z)‖L∞(1,R) + 1
R

)
for all r > R. (6.15)

The claim now follows since the right hand side of (6.15) is independent of r . ��
6.2 An Exponential Lower Bound in Integral Form

We will prove the following result, of which the lower bound is a corollary.

Proposition 6.3 If	2 ∈ X2 satisfies (2.10) with ρ = 2 for all ϕ ∈ C1
c ([0,∞)), and if	2 is

not identically zero on (0,∞), then there exists a finite constant B > 1 such that

inf
R≥0

{∫
(R,R+1)

eBx	2(x)dx

}
> 0.
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Supposing that 	2 ∈ X2 is as assumed in Proposition 6.3, then 	2 is smooth and strictly
positive on (0,∞), and it satisfies (2.9) in particular for all ϕ ∈ C1

c ((0,∞)), which we can
rewrite as

∫ ∞

0

[
1
2 (xϕx (x) − ϕ(x)) −

∫ x

0

	2(y)√
xy

�2
yϕ(x)dy

]
	2(x)dx = 0. (6.16)

Note that (6.16) also holds for ϕ ∈ W 1,∞
0 ((0,∞)), so given a function ϕ : (0, t) →

W 1,∞
0 ((0,∞)) with ψs(s, ·) ∈ L∞(0,∞) that satisfies

ϕs(s, x) ≤ − 1
2 (xϕx (s, x) − ϕ(s, x)) +

∫ x

0

	2(y)√
xy

�2
y[ϕ(s, ·)](x)dy (6.17)

for almost all s ∈ (0, t) and x ∈ (0,∞), there holds

∫ ∞

0
ϕ(0, x)	2(x)dx ≥

∫ ∞

0
ϕ(s, x)	2(x)dx for all s ∈ [0, t].

In the following we will construct such a function.
From this point onwards we denote by u the solution to (3.21) with α = 1

2 and initial data
u(0, x) = sgn(x). Now, this function has the following explicit self-similar form

u(s, x) = w( x
s2
) for s > 0 and x ∈ R, with w(ξ) = 2

∫ ξ

0
v 1

2
(z)dz,

where v 1
2
is the self-similar profile associated to the fundamental solution of (3.21) with

α = 1
2 (cf. Lemma 3.8). Since v 1

2
is odd, strictly positive, and nonincreasing on R+, and

since it has L1-norm equal to one, it follows that w is a bijection from R onto (−1, 1), that
is furthermore concave on R+. Consequently we can thus fix unique constants c2 > c1 > 0
such that w(c1) = 1

2 and w(c2) = 3
4 . Moreover, for all s > 0 the concave mappings

x �→ 1
2

( x
c1s2

∧ 1
)
and x �→ 3

4

( x
c2s2

∧ 1
)
then lie below u(s, ·) on R+.

For fixed R, b > 1 we first compare the functions f 1(s, x) = ebRu(s, x − R) and
f 2(s, x) = 1

4e
bx . In particular we are interested in the solutions x(s) to f 1(s, x(s)) =

f 2(s, x(s)), which for small s > 0 are given by x(s) = R + �i (s), i = 1, 2, with
�2(s) ≥ �1(s) > 0 the solutions to u(s, �i (s)) = 1

4e
b�i (s). From Fig. 1 we then find that

as long as u(s, c1s2) = 1
2 > 1

4e
bc1s2 and u(s, c2s2) = 3

4 > 1
4e

bc2s2 hold, i.e. as long as
s2 < 1

b min
{ 1
c1
log 2, 1

c2
log 3

}
, then there exist two different solutions �i (s), and there holds

�2(s) − �1(s) > (c2 − c1)s2 > 0.
We then compare f 3(s, x) = eb(R+1)(u(s, R + 1 − x) + b(x − (R + 1))) with f 2. We

are interested in the solutions x(s) to f 3(s, x(s)) = f 2(s, x(s)), which for small s > 0
are given by x(s) = R + ri (s), i = 1, 2, where r2(s) ≤ r1(s) < 1 are the solutions to
eb(u(s, 1 − ri (s)) + b(ri (s) − 1)) = 1

4e
bri (s). Figure 2 now shows that as long as both

eb(u(s, c1s2) − bc1s2) = 1
2e

b − bebc1s2 > 1
4e

bc1s2 and eb(u(s, c2s2) − bc2s2) = 3
4e

b −
bebc2s2 > 1

4e
bc2s2 hold, i.e. as long as s2 < 1

b min
{ 1
c1
q(b, 1

2 ),
1
c2
q(b, 3

4 )
}
with q(b, α)

such that eb(α − q(b, α)) = 1
4e

q(b,α), then there exist two different solutions ri (s), and
r1(s) − r2(s) > (c2 − c1)s2 > 0. Note further that indeed r2(s) ≥ 1

b q(b, 1) = O
( 1
b

)
as

b → ∞.

123



On Self-Similar Solutions to a Kinetic Equation... 1387

1

3
4

1
2

1
4

1(s) c1s
2 c2s

2
2(s) 1

b log 4

Fig. 1 For s > 0 small and b > 1 large, we have sgn(x), u(s, x) (thick) and 1
4 e

bx (dashed), as well as
1
2
( x
c1s2

∧ 1
)
and 3

4
( x
c2s2

∧ 1
)

eb

3
4e

b

1
2e

b

1
4e

b

r1(s)
1− c1s

2
1− c2s

2r2(s)O(1b )

Fig. 2 For s > 0 small and b > 1 large, we have eb(sgn(1−x)+b(x−1)), eb(u(s, 1−x)+b(x−1)) (thick),
1
4 e

bx (dashed) and ebx (dotted), as well as eb( 12 (
1−x
c1s2

∧ 1) + b(x − 1)) and eb( 34 (
1−x
c2s2

∧ 1) + b(x − 1))

For b � 1 sufficiently large, we then define f : (0, 1
b ) → W 1,∞

0 ((0,∞)) by

f (s, ·) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f 1(s, ·) on [R, R + �2(s)),

f 2(s, ·) on [R + �2(s), R + r2(s)],
f 3(s, ·) on (R + r2(s), R + 1],
0 else.

(6.18)
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1388 A. H. M. Kierkels, J. J. L. Velázquez

The following lemma will be useful.

Lemma 6.4 Let	2 ∈ X2 be as in the statement of Proposition 6.3. Then there exists a finite
constant C > 0 such that∫ ∞

z

	2(es/2y)√
y

dy ≤ C

(
(1 + | log z|) ∧ 1√

z

)
for all z > 0 and all s ≥ 0.

Proof We first note the trivial estimate that
∫ ∞

z

	2(es/2y)√
y

dy ≤ e−s/2

√
z

∫ ∞

zes/2
	2(y)dy ≤ ‖	2‖2√

z
forz > 0 and s ≥ 0. (6.19)

For z ∈ (0, 1
2 ), let now n be the smallest integer such that 2−n−1 < z, so that using Lemma

4.1 we find
∫ 1

2

z

	2(es/2y)√
y

dy ≤
n∑
j=1

∫ 2− j

2− j−1

	2(es/2y)√
y

dy ≤
n∑
j=1

e−s/2
∫ es/22− j

0 	2(y)dy√
2− j−1

≤
n∑
j=1

e−s/2C · √
es/22− j

√
2− j−1

≤ C
√
2 n ≤ C

√
2

log 2 | log z| for all s ≥ 0.

(6.20)

The claim then follows by combining (6.19) and (6.20). ��
Lemma 6.5 Let 	2 ∈ X2 be as in the statement of Proposition 6.3. Then there exist
large constants R0, b0 � 1 such that if for R ≥ R0 and b ≥ b0 the function
f : (0, 1

b ) → W 1,∞
0 ((0,∞)) is given by (6.18), then for all s ∈ (0, 1

b ) the function
ψ(s, x) := e− log(b)s f (s, x) satisfies

ψs(s, x) ≤
∫ x

0

	2(es/2y)√
xy

�2
y[ψ(s, ·)](x)dy for almost all x ≥ 0. (6.21)

Proof Clearly, by nonnegativity of 	2 and ψ , the right hand side of (6.21) is nonnegative if
x ∈ [0, R)∪(R+1,∞), while the left hand side is identically equal to zero. For x ∈ [R, R+1]
we now set c̄ = c2 − c1 > 0, and we estimate the right hand side of (6.21) from below by

∫ c̄/b2

0

	2(es/2y)√
xy

�2
y[ψ(s, ·)](x)dy − 2ψ(s, x)

∫ ∞

c̄/b2

	2(es/2y)√
xy

dy, (6.22)

where, for sufficiently large R0 � 1, the second term is bounded from below, uniformly for
all R ≥ R0, by − log b × ψ(s, x) (use Lemma 6.4 and x ≥ R0). By the smallness of the
domain of integration in the first term of (6.22), we further find that we can bound this term
by

e− log(b)s
∫ c̄/b2

0

	2(es/2y)√
xy

�2
y[ f i (s, ·)](x)dy, (6.23)

where i = 1 if x ∈ [R, R + �2(s)), i = 2 if x ∈ [R + �2(s), R + r2(s)], and i = 3 if
x ∈ (R + r2(s), R + 1]. By the semigroup property of the exponential function this then
means that, for x ∈ (R + �2(s), R + r2(s)), (6.22) can be bounded from below by(∫ c̄/b2

0

	2(es/2y)√
xy

(
eby + e−by − 2

)
dy − log b

)
e− log(b)s 1

4e
bx
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≥ − log b × ψ(s, x) = ψs(s, x).

Note now, for x ∈ (R, R + �2(s)), that �2
y[ f 1(s, ·)](x) = ebR�2

y[u(s, ·)](x − R) ≤ 0 for
all y ∈ R (cf. Lemma 3.9), so we can estimate the integral in (6.23) with i = 1 from below
by

1√
R

∫
R+

	2(es/2y)√
y

�2
y[ f 1(s, ·)](x)dy

= 1√
R

∫
R+

(∫ ∞

y

	2(es/2z)√
z

dz

)(∫ x+y

x−y
f 1ww(s, w)dw

)
dy, (6.24)

where the equality follows by integration by parts and (2.8) for ∂y[�2
y[ f 1(s, ·)](x)], and

where the integral with respect to w in the right hand side of (6.24) is nonpositive for all
y ∈ R+ (cf. proof of Lemma 3.10). By Lemma 6.4, and choosing R0 � 1 sufficiently large,
we then bound the right hand side of (6.24) from below, uniformly for all R ≥ R0, by∫

R+

2√
y

(∫ x+y

x−y
f 1ww(s, w)dw

)
dy = ebR

∫
R+

y− 3
2�2

y[u(s, ·)](x − R)dy, (6.25)

where for the equality we have integrated by parts back again, and noting that the right hand
side of (6.25) by construction equals ebRus(s, x − R) = f 1s (s, x) it follows that (6.22) can
be estimated from below by

e− log(b)s f 1s (s, x) − log(b)e− log(b)s f 1(s, x) = ψs(s, x).

Recalling lastly that the second difference of an affine function is zero, similar arguments
show that the inequality in (6.21) also holds for x ∈ (R + r2(s), R + 1), which completes
the proof. ��

Now, for R � 1 sufficiently large, let ηR ∈ C∞(R) be such that supp(ηR) = [ 3
5 R +

1, 4
5 R

]
, such that ηR = 1 on

[ 3
5 R + 2, 4

5 R − 1
]
, and such that ηR is increasing on

( 3
5 R +

1, 3
5 R + 2

)
, and decreasing on

( 4
5 R − 1, 4

5 R
)
. For b � 1 and t ∈ (

0, 1
b

)
we then define

f 0 ∈ C∞((0,∞)) by

f 0(x) = ηR(x) × ebx

8R
inf

r∈[0, 45 R]

{∫ r+1

r
ebe

−t/2 y	2(y)dy

}
. (6.26)

Lemma 6.6 Let 	2 ∈ X2 be as in the statement of Proposition 6.3. Then there exist large
constants R0, b0 � 1 such that if for R ≥ R0 and b ≥ b0 the functions f : (0, t) →
W 1,∞

0 ((0,∞)) and f 0 ∈ W 1,∞
0 ((0,∞)), with t ∈ (0, 1

b ), are given by (6.18) and (6.26),
then the function

ψ(s, x) := e− log(b)s f (s, x) + 1
2 se

− log(b)s f 0(x) (6.27)

satisfies (6.21) for all s ∈ (0, t).

Proof By Lemma 6.5 we can restrict ourselves to x ∈ ( 35 R + 1, 4
5 R) in checking that ψ

satisfies (6.21) for all s ∈ (0, t). Similar to the first estimate in that lemma, we now note that
∫ x

0

	2(es/2y)√
xy

�2
y[ψ(s, ·)](x)dy ≥

∫ R+r1(s)−x

R+�1(s)−x

	2(es/2y)√
xy

ψ(s, x + y)dy

+
∫ c̄/b2

0

	2(es/2y)√
xy

�2
y[ψ(s, ·)](x)dy − 2ψ(s, x)

∫ ∞

c̄/b2

	2(et/2y)√
xy

dy, (6.28)
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1390 A. H. M. Kierkels, J. J. L. Velázquez

where the last term on the right hand side is bounded from below by − log b × ψ(s, x) if
R0 � 1 is sufficiently large (cf. proof of Lemma 6.5). We then estimate the first term on the
right hand side of (6.28) from below by

e− log(b)s
∫ R+r1(s)−x

R+�1(s)−x

	2(es/2y)√
xy

1
4e

b(x+y)dy

≥ e− log(b)s × ebx

4R
inf

r∈[0, 25 R]

{∫ r+(1−2c1s2)

r
eby	2(e

s/2y)dy

}

≥ e− log(b)s × ebx

8R
inf

r∈[0, 45 R]

{∫ r+1

r
ebe

t/2 y	2(y)dy

}
,

where we have used that (1 − 2c1s2)es/2 = 1 + 1
2 s + O(s2) ≥ 1 as s → 0. Note next that

the second term on the right hand side of (6.28) can be written as

1
2 se

− log(b)s
∫ c̄/b2

0

	2(es/2y)√
xy

(
ηR(x + y)eby + ηR(x − y)e−by − 2ηR(x)

)
dy

× ebx

8R
inf

r∈[0, 45 R]

{∫ r+1

r
ebe

t/2 y	2(y)dy

}
. (6.29)

Recalling now (2.7), the integral over the second difference in (6.29) can be bounded from
below by

− 1√
3
5 R

∫ c̄/b2

0

	2(es/2y)√
y

∣∣∣∣
∫
R

(y − |w|)+
[
ηR(x + w)ebw

]
ww

dw

∣∣∣∣ dy

≥ − 1√
3
5 R

∫ c̄/b2

0
y

3
2	2(e

s/2y)dy × sup
|w|< c̄

b2

∣∣∣
[
ηR(x + w)ebw

]
ww

∣∣∣ ,

which is O
(
R− 1

2 b−2
)
as R, b → ∞ (use Lemma 4.1 and a dyadic decomposition), hence

bounded from below by−1 if R0, b0 � 1 are sufficiently large. Recalling lastly that 1− 1
2 s ≥

1
2 for s ∈ (0, 1

b0
), we conclude with the above that the right hand side of (6.28) is bounded

from below by

[
1
2 se

− log(b)s
]
s
× ηR(x) × ebx

8R
inf

r∈[0, 45 R]

{∫ r+1

r
ebe

t/2 y	2(y)dy

}
= ψs(s, x),

and the proof is complete. ��

Lemma 6.7 Let	2 ∈ X2 be as in the statement of Proposition6.3. Then there exist constants
R0, b0 � 1 and c > 0 such that log(I (b0, R0)) ≥ log(b0)+ 1, and such that for all R ≥ R0

and all b ≥ b0 there holds

I (b, R) ≥ t
(
I (be−t/2, 4

5 R)
)2

for all t ∈ (0, 1
b ), (6.30)

where

I (b, R) := c × inf
r∈[0,R]

{∫ r+1

r
ebx	2(x)dx

}
. (6.31)
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Proof Let R0, b0 � 1 be as obtained in Lemma6.6, and let R ≥ R0, b ≥ b0 and t ∈ (
0, 1

b

)
be

fixed arbitrarily. We then define ϕ : (0, t) → W 1,∞
0 ((0,∞)) as ϕ(s, x) := es/2ψ(s, xe−s/2),

withψ givenby (6.27), andwenote thatϕ satisfies (6.17) for almost all (s, x) ∈ (0, t)×(0,∞)

and ϕ(0, x) ≤ ebx1(R,R+1)(x), hence
∫ R+1

R
ebx	2(x)dx ≥

∫ ∞

0
ψ(t, xe−t/2)	2(x)dx,

where the right hand side can be bounded from below by

∫ 11
15 Re

t/2

2
3 Re

t/2
ebe

−t/2x	2(x)dx ×
1
2 t

8R
inf

r∈[0, 45 R]

{∫ r+1

r
ebe

−t/2 y	2(y)dy

}

≥ R

16

t

16R

(
inf

r∈[0, 45 R]

{∫ r+1

r
ebe

−t/2 y	2(y)dy

})2

.

Taking then the infimum, (6.30) follows with c = 1
256 . We lastly note that

I (b0, R0) ≥ ce
1
2 b0 × inf

r∈[0,R0]

{∫ r+1

r+ 1
2

	2(x)dx

}
,

where the logarithm of the right hand side is linear as a function of b0, and it follows that
indeed log(I (b0, R0)) ≥ log(b0) + 1 if b0 � 1 is sufficiently large. ��
Proof of Proposition 6.3 Let R0, b0 � 1 and c > 0 be as obtained in Lemma 6.7, and let I
be given by (6.31). Now, set B = b0eπ

2/12, and for all n ∈ N define tn = n−2 ∧ B−1, bn =
bn−1etn/2 and Rn = 5

4 Rn−1. For every n ∈ N there then holds bn ≤ b0 exp( 12
∑n

j=1 j−2) <

B, hence tn ∈ (0, 1
bn

), so it follows from (6.30) that I (bn, Rn) ≥ tn(I (bn−1, Rn−1))
2 for all

n ∈ N. Taking the logarithm and multiplying by 2−n , we now find for all n ∈ N by iteration
that

2−n log(I (bn, Rn)) ≥ 2−(n−1) log(I (bn−1, Rn−1)) + 2−n log(tn)

≥ log(I (b0, R0)) +
n∑
j=1

2− j log(t j ),

from which we obtain that log(I (bn, Rn)) > 0 for all n ∈ N, since log(I (b0, R0)) ≥
log(b0) + 1 (cf. Lemma 6.7), and since

n∑
j=1

2− j log(t j ) ≥
n∑
j=1

2− j−1 (log( j−2) + log(B−1)
)

≥ − 1
2

(
log(b0) + π2

12

)
−

∞∑
j=1

2− j log( j) > − log(b0) − 1.

The proof is then completed by the observation that

inf
R≥0

{∫
(R,R+1)

eBx	2(x)dx

}
= 1

c
× inf

n∈N I (B, Rn) ≥ 1

c
× inf

n∈N I (bn, Rn),

where the right hand side is strictly positive, as the infimum is taken over terms that are
strictly larger than 1. ��
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Proof of Theorem 2.29 Corollary of Propositions 6.2 and 6.3.

Remark 6.8 To deduce a pointwise exponential lower bound on 	2, we seem to require
existence of a solution ϕ on (s, x) ∈ [0, T ) × [0,∞) to{

ϕs(s, x) = − 1
2 (xϕx (s, x) − ϕ(s, x)) + 1√

x

∫ x
0

	2(y)√
y �2

y[ϕ(s, ·)](x)dy
ϕ(0, x) = δ0(x − r)

(6.32)

for all r ≥ R0 with R0 � 1 finite. However, existence of such solutions is nontrivial due to
the possibly divergent behaviour of 	2 near zero. A better understanding of well-posedness
of (6.32) requires a more detailed analysis of the asymptotics of 	2(z) as z → 0.
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