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Abstract In stochastic systems with weak noise, the logarithm of the stationary distrib-
ution becomes proportional to a large deviation rate function called the quasi-potential.
The quasi-potential, and its characterization through a variational problem, lies at the core
of the Freidlin–Wentzell large deviations theory (Freidlin and Wentzell, Random pertur-
bations of dynamical systems, 2012). In many interacting particle systems, the particle
density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation
Theory (Bertini et al., arXiv:1404.6466, 2014),which formallyfitswithinFreidlin–Wentzell’s
framework with a weak noise proportional to 1/

√
N , where N is the number of particles.

The quasi-potential then appears as a natural generalization of the equilibrium free energy
to non-equilibrium particle systems. A key physical and practical issue is to actually com-
pute quasi-potentials from their variational characterization for non-equilibrium systems for
which detailed balance does not hold. We discuss how to perform such a computation per-
turbatively in an external parameter λ, starting from a known quasi-potential for λ = 0. In
a general setup, explicit iterative formulae for all terms of the power-series expansion of
the quasi-potential are given for the first time. The key point is a proof of solvability con-
ditions that assure the existence of the perturbation expansion to all orders. We apply the
perturbative approach to diffusive particles interacting through a mean-field potential. For
such systems, the variational characterization of the quasi-potential was proven by Dawson
and Gartner (Stochastics 20:247–308, 1987; Stochastic differential systems, vol 96, pp 1–10,
1987). Our perturbative analysis provides new explicit results about the quasi-potential and
about fluctuations of one-particle observables in a simple example of mean field diffusions:
the Shinomoto–Kuramoto model of coupled rotators (Prog Theoret Phys 75:1105–1110,
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[74]). This is one of few systems for which non-equilibrium free energies can be computed
and analyzed in an effective way, at least perturbatively.

Keywords Large deviations theory · Freidlin-Wentzell theory · Macroscopic Fluctuation
Theory · Mean-field diffusions · Perturbation theory · Fluctuating Hydrodynamics ·
Stochastic PDEs

1 Introduction

Large deviations theory studies the exponential decay of probabilities of large fluctuations
in stochastic systems. Such probabilities are important in many fields, including physics,
statistics, finance or engineering, as they often yield valuable information about extreme
events far from the most probable state or trajectory of the system [23,29,82].

Weak noise large deviation theory has been developed in the 1970s by Freidlin and
Wentzell [32] in a mathematical framework and by Graham and collaborators [36] with
physicists’ perspective. It concerns the study of large fluctuations in dynamical systems sub-
ject to weak random noise. In this framework, the stationary probability to observe some
state x of the system obeys a large deviation asymptotics

P∞(x) � exp

(
− F(x)

ε

)
, (1.1)

where ε denotes the noise strength squared. The function F is called the quasi-potential. It
generalizes the notion of (free) energy to general finite-dimensional systems where detailed
balance does not hold.but noise is weak. If known, the quasi-potential permits to calculate,
at leading order in ε, important statistical quantities such as the probability to observe an
arbitrary large fluctuation of the system or the mean residence time that the system spends
close a metastable state.

In the last 15 years, Jona-Lasinio and coworkers developed a framework to study large
deviations of macroscopic quantities (like particle density or current) in a class of many-
body systems. Their approach, known as the Macroscopic Fluctuation Theory, was mainly
applied to stochastic lattice gases, see [6] for a recent review.Without stress on mathematical
rigor, the MFT can be understood as a generalization of the Freidlin–Wentzell theory to the
fluctuating diffusive hydrodynamics where a weak noise is added to non-linear diffusion
equations. Indeed, it is easily obtained by employing a saddle-point approximation in a path
integral formalism. Even if this approach is only formal because a mathematical meaning
of non-linear fluctuating hydrodynamics is still lacking, the results obtained are in complete
agreement with the ones obtained through rigorous probabilistic methods in all cases where
a comparison is possible. In this paper, a further example of such an agreement will be
discussed in Chapter 4.

The Freidlin–Wentzell theory provides a variational characterization of the quasi-potential
through dynamical large deviations. However, its explicit computation is typically very dif-
ficult and this strongly restricts the practical applicability of the theory. This is true both for
finite-dimensional and infinite-dimensional systems. Only in few cases the quasi-potential
can be evaluated analytically, themost important one being, of course, the casewhere detailed
balance holds.

The main focus of the present paper is to answer a very natural but still open question.
Let us consider a system depending on a control parameter λ and suppose that we are able to
calculate the quasi-potential for λ = 0. Can we build a perturbation theory to calculate the
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quasi-potential for small but finite λ? Surprisingly, only few works in the literature discuss
this question [26,33,38–41,51,62,72,80]. All of them focus on specific examples, perform
only the 1st-order analysis and most of them consider only finite-dimensional dynamical
systems (see however [75] for an example where an infinite dimensional system is analyzed,
and the case of transition rates between two basins of attraction is studied). We obtain here a
precise answer to the above question, giving an explicit iterative formula for computing each
order in the power series expansion of the quasi-potential in λ.

We first analyze the perturbation theory for finite dimensional systems, where the dis-
cussion can be made quite precise. It is well known that, given the quasi-potential function,
one can deduce a simple 1st-order equation for the instanton (the corresponding variational
problem minimizer). The converse is also obviously true: the values of the quasi-potential
(the minima) can be easily computed from the minimizers. It is however often difficult to
compute either the instantons or the quasi-potential without the knowledge of the other. We
show that this loop can be broken in a perturbative setting: the quasi-potential at any order
may be computed just from the knowledge of the instanton dynamics of the unperturbed
problem and the quasi-potential at previous orders. This gives a very natural iterative proce-
dure. We also explain that an equivalent simple recursive scheme appears when starting from
the perturbative expansion for solutions of the Hamilton–Jacobi equation. A key point is to
prove that solvability conditions hold at each order, assuring the existence of the perturbative
expansion to all orders. We show that such conditions are related to the behavior close to the
attractor, which gives a simple proof that they are satisfied at all orders.

In the second part of the paper, we consider a particular class of non-equilibrium many-
body systems described by the Macroscopic Fluctuation Theory [6], namely diffusive
particles interacting through mean-field potential and driven by an external non-conservative
force. Our approach is based on the fact that for such diffusions, it is possible to derive a
fluctuating hydrodynamics describing the evolution of the empirical density for large but
finite number of particles N . This evolution equation was first obtained by Dean in [22] and
it was thereafter called the Dean equation. Although its mathematical status is uncertain,
the Dean equation allows to treat the mean-field diffusions, at least at a formal level, as a
dynamical system in an infinite dimensional space perturbed by a weak noise whose strength
is proportional to 1/

√
N . In the N → ∞ limit, similarly to the law of large numbers, the

dynamical system becomes a deterministic equation known under the name of the McKean–
Vlasov or the Vlasov–Fokker–Planck one, as was proven together with the propagation of
chaos in [66,67,79].

We subsequently move our attention to the large deviations around the N → ∞ behavior.
The Dean equation is a formal random dynamical system to which we apply the Martin-
Siggia-Rose formalism [65]. Using the saddle point approximation we then end up with
an infinite-dimensional generalization of the Freidlin–Wentzell theory. This result has been
previously obtained rigorously in themathematical literature byDawson andGartner [18,19].
The formal approach based on the Dean equation makes an explicit connection with the
Macroscopic Fluctuation Theory and adds another class of systems to the ones covered by
the latter theory.

Explicit results, original to the best of our knowledge, are discussed in the case of the
Shinomoto–Kuramoto model, a specific stochastic system describing coupled planar rotators
[74]. This model may be also viewed as a non-equilibrium version of the dynamical mean-
field XY model. We discuss in detail both its N → ∞ behavior and the large deviations
around it. For what concern the N → ∞ limit, we are able to fully describe analytically the
phase diagram of the Shinomoto–Kuramoto model, deriving self-consistent equations for the
stationary states that are easily solved numerically.
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The perturbation theory developed in the first part of the paper is subsequently applied to
the Dean equation corresponding to the Shinomoto–Kuramoto model, resulting in an explicit
calculation of the quasi-potential close to the known cases: around the free particle dynamics
and in the vicinity of stationary states of the N = ∞ theory. This turns out to be a rather
simple numerical task. We show that explicit results could be obtained to any order but, for
the sake of brevity, we only present, the 1st order calculations of the quasi-potential.

The paper is organized as follows. After Introduction, we begin with a review of Freidlin–
Wentzell theory results in Sect. 2. Our aim is to present the known results that can be found
in [32] with a physicist perspective, but nevertheless being precise on many important points
that are typically overlooked in the physics literature. In particular, we discuss under which
hypothesis the quasi-potential can be seen as a solution of the Hamilton–Jacobi equation that
forms the basis for the perturbative treatment that is developed in Sect. 3. In the context of
finite-dimensional systems, the discussion of the perturbation theory for quasi-potential is
made quite precise. We also show that the Taylor expansion of the quasi-potential close to an
attractor of the deterministic dynamics is a particular case of our perturbative analysis. We
conclude the section by observing that close to a codimension-one bifurcation of the deter-
ministic dynamics, fluctuations diverge with the mean-field critical exponent. Final Sect. 4 is
about N -body systems and is central to this paper. It concentrates on the case of overdamped
diffusions with mean-field interaction that are introduced in Sect. 4.1. In Sect. 4.2, we discuss
the fluctuating hydrodynamics for such diffusions, deriving the Dean equation making the
original argument [22] more precise. The McKean-Vlasov equation is described as the limit
of the Dean equation when N → ∞. In Sect. 4.3, we introduce the Shinomoto–Kuramoto
model [74] as a particular example of the mean-field diffusions and we analyze its McKean–
Vlasov limit and the corresponding phase diagram. Sect. 4.4 derives formally, starting from
the Dean equation, an extension of the Freidlin–Wentzell theory to the case of mean-field
diffusions, and discusses the infinite-dimensional version of the Hamilton–Jacobi equation
for the quasi-potential and, briefly, the large deviations for empirical currents. In Sect. 4.5, we
adapt the perturbative approach developed for finite dimensional systems to the diffusions
withmean-field interaction, concentrating on the power series in themean-field coupling con-
stant and the Taylor expansion close to stationary solutions of theMcKean–Vlasov dynamics.
A discussion of explicit results for the Shinomoto–Kuramoto model obtained by combining
analytical and numerical treatments is presented. Sect. 5 summarizes the results and discusses
the perspectives for future work. Two Appendices contain some additional material.

2 Freidlin–Wentzell Theory: A Brief Summary

We consider in this section a finite dimensional random dynamical system defined by the Ito
stochastic differential equation1

ẋ = K (x) + √
2ε g(x) ηt , (2.1)

where x ∈ R
d , g is a d × m matrix and ηt ∈ R

m is a vector of white in time Gaussian noises
ηi

t with zero mean and covariance

E[ηi
t η

j
t ′ ] = δi jδ(t − t ′). (2.2)

1 Here and below, we use physicists’ notation for stochastic equations rather than mathematicians’ one with
differentials.
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Throughout the paper it is supposed that K and g are smooth and the Ito stochastic convention
is employed, if not stated otherwise. We use the notation Q(x) = g(x) gT (x) with the
superscript T indicating thematrix transposition andwedemand that Q(x)be positive definite
for all x . Generalizations to the case in which Q is semi-positive definite are possible but we
do not consider this situation here.

We assume that the stochastic process solving Eq. (2.1) has a unique invariant measure.
Then its density P∞(x) is smooth and solves the stationary Fokker–Planck equation

d∑
i=1

∂

∂xi

⎡
⎣
⎛
⎝−K i (x) + ε

d∑
j=1

∂

∂x j
Qi j

⎞
⎠ P∞(x)

⎤
⎦ = 0. (2.3)

We are interested in the behavior of the above stochastic dynamical system in the small noise
limit ε � 1. In this limit, the stationary measure obeys the large deviation principle (1.1)
[32], where the symbol � stands for the asymptotic logarithmic equivalence:

F(x) = − lim
ε→0

ε ln P∞(x). (2.4)

The rate function F(x) is called quasi-potential associated to the random dynamical system
(2.1). It is of central importance to this paper that F , under suitable hypothesis that will be
specified in Sect. 2.3, is the unique solution of the Hamilton–Jacobi equation

∇F · [Q · ∇F + K ] (x) = 0. (2.5)

At an informal level, this can be guessed by looking for solutions of the stationary Fokker–
Planck equation (2.3) obeying Ansatz

P∞(x) 
 exp

[
− F(x)

ε
+ Z(x) + . . .

]
(2.6)

and retaining only terms of order 1/ε. The readermay consult [36] where also the lower-order
equation for Z(x) is derived.

The present introductory section is devoted to an informal discussion of the Freidlin–
Wentzell theory, with the particular emphasis on how the quasi-potential can be described
from different points of view. This knowledge will be used in the subsequent section. We
refer the reader to [32] for a mathematical presentation, to Chapter 6 of [36] for a treatment
more oriented towards the physics community and to [48] for a general review oriented
to computational aspects. In Sect. 2.1, we discuss dynamical large deviations, that is, the
probability that a solution of Eq. (2.1) is close to a given path in the limit ε → 0. This permits
to define quasi-potential FA relative to an attractor A of the deterministic dynamics ẋ = K (x).
In Sect. 2.2, we describe the properties of solutions of the Hamilton–Jacobi equation (2.5)
that we denote FH J . The connection between FH J , FA, and F and the conditions under
which they coincide are discussed in Sect. 2.3, concentrating on the case of attractive points.
A proof of the local existence and uniqueness of FH J around a stable fixed point of the
deterministic dynamics ẋ = K (r), and of its local regularity, is sketched in Sect. 2.4.

2.1 Freidlin–Wentzell Action and Quasi-Potential Relative to an Attractor

Freidlin and Wentzell considered the probability for a trajectory of the stochastic process
x(·) defined by Eq. (2.1) to be arbitrarily close to a given continuous path x̂(·) on the time
interval [ti , t f ]. They showed rigorously that
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lim
δ↓0 lim inf

ε↓0 ε ln P
[

sup
ti ≤t≤t f

|x(t) − x̂(t)|<δ
]

= lim
δ↓0 lim sup

ε↓0
ε ln P

[
sup

ti ≤t≤t f

|x(t) − x̂(t)|< δ
]

= −A[x̂(·)], (2.7)

where | · | denotes the norm of a vector in Rd and

A[x(·)] = 1

4

∫ t f

ti
[ẋ(t) − K (x(t))] · Q(x(t))−1 [ẋ(t) − K (x(t))] dt (2.8)

is the so-called Freidlin–Wentzell action functional, see Theorem 2.3 in Chapter 3 of [32].
Observe that such a functional vanishes on solutions of the deterministic equation

ẋ = K (x). (2.9)

Itmeasures the difficulty for a trajectory to deviate, due to aweak noise, from the deterministic
behavior.

The above result may be elucidated in the framework of the formal path-integral approach
going back to Onsager and Machlup [27,54,61,65,77]. In this approach, the transition prob-
ability from a state xi at time t = ti to a state x f at time t = t f is written as the path
integral

P[xi , ti ; x f , t f ] � 1

Z A

∫
exp

[
−A[x(·)]

ε

]
D[x(·)], (2.10)

where the functional integration is restricted to the paths [ti , t f ]  t �→ x(t) such that x(ti ) =
xi and x(t f ) = x f . Z A is the normalization factor. The exponential factor exp

[
−A[x(·)]

ε

]
plays then for small ε the role of the probability density in the space of paths.

Let us now consider an attractor A of the deterministic dynamical system (2.9) and a point
x0 ∈ A. The quasi-potential relative to x0 is defined as

Fx0(x) = min
{x̂(·) | x̂(−∞)=x0, x̂(0)=x}

A[x̂(·)], (2.11)

where the minimum is over all absolutely continuous paths starting from x0 at time t = −∞
and ending in x at time t = 0. The choice of the time interval [−∞, 0] is arbitrary and any
semi-infinite interval [−∞, t f ] would give the same result. It is easy to see that Fx0 does not
depend on the choice of x0 ∈ A and is constant on attractors. Indeed, given two points on the
attractor, one can alwaysfind trajectories starting and ending arbitrarily close to themonwhich
the action is arbitrarily small. As an example, the reader may consider a limit cycle where
any two points of the attractor can be connected by a solution of the deterministic evolution
ẋ = K (x). For an attractor A, we shall denote by FA the quasi-potential relative to any
x0 ∈ A. For the sake of simplicity,we shallmainly consider in this paper single point attractors
referring the reader to [36] and references therein for explicit calculations of quasi-potentials
with respect to non-trivial attractors, for example, limit cycles or the Lorentz attractor.

The quasi-potential F can be built from the quasi-potentials relative to the attractors of ẋ =
K (x). In the case where a fixed point x̄ is the only attractor of the deterministic dynamics ẋ =
K (x) for any initial condition, Fx̄ coincides with the quasi-potential F defined through the
invariantmeasure in (2.4). Formally, thismaybe understood byobserving thatP[xi , ti ; x f , t f ]
is actually independent of xi in the t f → ∞ limit and thus P∞(x) = P[xi , ti ; x,∞]. Then,
one obtains the stated result by applying the saddle point approximation to the right hand side
of (2.10). The reader may consult Theorem 4.3 in Chapter 4 of [32] for the rigorous result.

If more attractors {Ai }1≤i≤I are present then the quasi-potential F may still be constructed
once the quasi-potentials relative to each attractor FAi is known. One has

123



Perturbative Calculation of Quasi-Potential in Non-equilibrium. . . 1163

F(x) = min
i

(
FAi (x) + Ci

)− min
i

Ci (2.12)

where constants Ci describe the “height” of each attractor Ai . More precisely, one has to
consider the i-graphs G(i) on the set {A1, . . . , AI } of attractors composed of arrows j → k
such that j �= i , from every A j �= Ai starts exactly one arrow and there are no closed cycles.
Constants Ci are then defined as

Ci = min
G(i)

∑
{ j→k}

FA j (Ak), (2.13)

where the minimum is over all i-graphs and the sum over all the arrows of an i-graph and
FA j (Ak) = FA j (x) for any x ∈ Ak . This rigorous result is discussed in detail in Chapter 6 of
[32]. Equation (2.12) balances the contributions from different attractors with the use of the
invariant measure of the Markov chain with transition probabilities describing the passages
between different attractors. This point was discussed in [43] from physicist’s perspective.
In that reference, a computation of constants Ci for few explicit examples was also carried
out. In the present paper, we concentrate on the calculation of quasi-potentials Fx̄ relative to
attractive points x̄ and thus we do not enter into further details on how the heights Ci may
be practically found.

2.2 Transverse Decomposition, Fluctuation and Relaxation Dynamics

In the previous section we saw that the quasi-potential F can be obtained by solving the
variational problem given by Eqs. (2.11), (2.12) and (2.13). In this section, we discuss a
different approach that will permit to obtain F as a solution of the Hamilton–Jacobi equation
(2.5) of Sect. 2.3.

Consider an open set D ⊆ R
d and its closure D̄ = D ∪ ∂ D, where ∂ D denotes the

boundary of D assumed to be smooth. We suppose in this section that the vector field K
admits a transverse decomposition in D̄ in the following sense: there exists a smooth function
FH J (x) such that

K (x) = −(Q ∇FH J )(x) + G(x) (2.14)

and

∇FH J (x) · G(x) = 0 (2.15)

for all x ∈ D̄. The existence of a transverse decomposition is equivalent to demanding that
FH J solves the Hamilton–Jacobi equation (2.5). Indeed, if K admits a transverse decompo-
sition, then ∇FH J · K = −∇FH J · Q ∇FH J . Conversely, we can define G = K + Q ∇FH J

and from Eq. (2.5) we obtain the transversality condition. The term Q∇FH J may be viewed
as the gradient of FH J in the Riemannian metric defined by the matrices Q(x)−1 and then
Eq. (2.15) states its orthogonality to G with respect to the corresponding scalar product of
the vector fields. Such an interpretation is often employed in the mathematical literature but
we shall not pursue it here.

The deterministic dynamics (2.9) with K (x) = −(Q ∇FH J )(x) + G(x) is called relax-
ation dynamics. The reason for this name is that as the Freidlin–Wentzell action vanishes
on its trajectories, they are in the small noise limit the most probable trajectories relaxing
to an attractor. The presence of a transverse decomposition permits to define the so-called
fluctuation or instanton dynamics

ẋ = 2(Q∇FH J )(x) + K (x) = (Q∇FH J )(x) + G(x) ≡ Kr (x) (2.16)
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which plays a fundamental role in what follows. We shall also be interested in the Freidlin–
Wentzell action functional corresponding to the stochastic dynamics

ẋ = Kr + √
2ε g(x) ηt , (2.17)

which is

Ar [x(·)] = 1

4

∫ t f

ti
[ẋ(t) − Kr (x(t))] · Q(x(t))−1 [ẋ(t) − Kr (x(t))] dt. (2.18)

The fluctuation dynamics is connected to time-reversal of the stochastic equation (2.1). To
understand this point, let us consider the diffusion process defined by (2.1) in the time interval
[0, T ]. It was shown in [47] that its time-reversal corresponds to the stochastic dynamics

ẋ = −K̃ (x) + √
2ε g(x) ηt , (2.19)

where K̃ (x) = K (x) − 2ε P(x, T − t)−1∇ · [Q(x)P(x, T − t)] and P(x, t) is the solution
to the time-dependent Fokker–Planck equation associated to (2.1). If we consider Eq. (2.1)
with initial condition distributed accordingly to P∞(x) then it follows from Eq. (1.1) that
limε→0 K̃ (x) = K (x) + 2(Q ∇F)(x). Under suitable hypothesis given in Sect. 2.3, F and
FH J coincide and then limε→0 K̃ (x) = Kr (x).

Wenowdiscuss someproperties of FH J in connection to relaxation andfluctuation dynam-
ics. The stationary points of FH J correspond to zeros of the vector field K . Indeed

(K · Q−1K )(x) = (∇FH J · Q ∇FH J )(x) + (G · Q−1G)(x) ≥ 0, (2.20)

as it can be directly proven by inserting Eq. (2.14) into the left hand side and using the
transverse decomposition. Then, if x̄ is such that K (x̄) = 0, the above expressions imply
that ∇FH J (x̄) = 0 = G(x̄). The converse is also true if we suppose that the Hessian
matrix of FH J , denoted by (∇∇FH J ), is invertible at x̄ . Indeed, by taking the gradient of the
transversality condition and evaluating it at x̄ , we infer that

(∇∇FH J G)(x̄) = 0. (2.21)

By invertibility of the Hessian matrix, this implies that G(x̄) = 0 and hence K (x̄) = 0.
Moreover, FH J is a Lyapunov function for both the relaxation dynamics and the time-reverse
of the fluctuation dynamics

ẋ = −Kr (x). (2.22)

Indeed, if ẋ = K (x) then

d FH J (x)

dt
= −(∇FH J · Q ∇FH J )(x) ≤ 0, (2.23)

and analogously for Eq. (2.22). From the above properties, we conclude that the relaxation
and fluctuation dynamics have the same stationary points but attractors are transformed into
repellers and vice-versa. Thus the relaxation and the time-reversal of the fluctuation dynamics
have the same attractors and FH J as a Lyapunov function.

One could be led to an incorrect conclusion that basins of attraction of those two dynamics
are the same which, however, is not true because the transverse parts of dynamics can push
the systems to different attractors. This can be checked, for example, in a very simple two-
dimensional bistable system, see Fig. 1.
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Fig. 1 Example showing a simple case where the basins of attraction of the relaxation and of the time-

reversal of the fluctuation dynamics do not coincide. Here, FH J (x1, x2) = − x21
2 + x41

4 + x22
2 , Q = I,

G = (∂ FH J /∂x2, −∂ FH J /∂x1), where I is the 2 × 2 unit matrix. The dashed blue arrows indicate the
direction of the relaxation dynamics ẋ = K (x) = −Q ∇FH J (x) + G(x) and the continuous red lines the
direction of the time-reversal of the fluctuation dynamics ẋ = −Kr (x) = −Q ∇FH J (x)−G(x) (Color figure
online)

2.3 Quasi-Potential as a Solution of the Hamilton–Jacobi Equation

Let us suppose that FH J is a smooth solution of the Hamilton–Jacobi equation

∇FH J · [Q ∇FH J + K ] (x) = 0, (2.24)

in D̄ = D ∪ ∂ D ⊆ R
d containing in the interior a fixed point x̄ such that FH J (x̄) = 0 and

FH J (x) > 0, ∇FH J (x) �= 0 for x ∈ D̄, x �= x̄ . We shall assume that D is bounded and
connected. We want to understand the relation between Fx̄ and FH J , see Theorem 3.1 in
Chapter 4 of [32] for more details.

For any path [−∞, 0]  t �→ x̂(t) ∈ D̄ subjected to the boundary conditions x̂(−∞) = x̄
and x̂(0) = x , a simple manipulation shows that

A[x̂(·)] = Ar [x̂(·)] +
∫ 0

−∞
dx̂(t)

dt
· ∇FH J (x̂(t)) dt = Ar [x̂(·)] + FH J (x) ≥ FH J (x)

(2.25)

whereAr [x̂(·)]was defined in (2.18) andwe used the transversality condition. The inequality
A[x̂(·)] ≥ FH J (x) (2.26)

still holds if we allow the trajectory x̂(·) to go out of the closed set D̄ provided that x ∈ D̄H J ,
the closure of the open set

DH J = {x ∈ D
∣∣ FH J (x) < min

y∈∂ D
FH J (y)

}
. (2.27)

Indeed, writing the inequality (2.25) for the trajectory x̂(·) restricted to [−∞, τ ], where τ is
the first exit time from D, we obtain the lower bounds

A[x̂(·)] ≥ FH J (x̂(τ )) ≥ FH J (x) (2.28)

with the second one resulting from the condition x ∈ D̄H J . Action Ar [x̂(·)] attains its
minimum equal to zero on the trajectory of the fluctuation dynamics ẋ = Kr (x). It is easy to
see that for x ∈ D̄H J there exists a unique such trajectory [−∞, 0]  t �→ x̃(t, x) for which
x̃(−∞, x) = x̄ and x̃(0, x) = x . Besides, such trajectory lies entirely in D̄H J . This follows
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from the fact, that on each solution of the fluctuation dynamics that ends at x , function FH J

decreases backward in time and such a solution may be infinitely extended in negative time
direction until it reaches x̄ at t = −∞. The resulting trajectory saturates the inequality (2.25).
One infers that for x ∈ D̄H J ,

FH J (x) = min
{x̂(·) | x̂(−∞)=x̄, x̂(0)=x}

A[x̂(·)] = Fx̄ (x), (2.29)

see (2.11). DH J is again a bounded open connected neighborhood of x̄ . Its boundary ∂ DH J

is composed of points of x ∈ D̄ for which FH J (x) = miny∈∂ D FH J (y). It is smooth since
∇FH J �= 0 at such points.

Wehave just obtained two results. First, a smooth solution of theHamilton–Jacobi equation
(2.5) on D̄, with the properties stated at the beginning of the section, coincides with Fx̄ on
D̄H J where DH J is the sub-domain of D containing x̄ defined by (2.27). Second, on D̄H J ,

FH J (x) = Fx̄ (x) = A[x̃(·, x)], (2.30)

where [−∞, 0]  t �→ x̃(t, x) ∈ D̄H J is the solution to the instanton dynamics, i.e. the
unique trajectory joining x̄ to x and satisfying Eq. (2.16).

2.4 Hamiltonian Picture

Above we have assumed the local existence of a smooth solution of the Hamilton–Jacobi
equation around an attractive point x̄ of the relaxation dynamics (2.9). The linearization of
such dynamics around x̄ has the form

ẋ = Ax, (2.31)

where A = (∇K (x̄))T is the matrix with entries Ai
j = ∇ j K i (x̄). We shall assume that all

eigenvalues of A have negative real parts, which ensures the exponential convergence to x̄
in the vicinity of the attractor. Such attractive points will be called non-degenerate. We shall
sketch below a proof of the fact that around non-degenerate attractive point x̄ there exists
a unique local smooth solution of the Hamilton–Jacobi equation, The argument we present
here is based on the analysis of the dynamics of extremal trajectories of the Freidlin–Wentzell
action functional, see [21] for a more global discussion.

Let us start by considering the Hamiltonian H(x, p) related by the Legendre transform
to the Lagrangian

L(x, ẋ) = 1
4 (ẋ − K (x)) · Q(x)−1(ẋ − K (x)) (2.32)

appearing in the Freidlin–Wentzell action (2.8). One has

H(x, p) = p · ẋ − L(x, ẋ) = p · Q(x)p + p · K (x) (2.33)

for p = 1
2 Q(x)−1(ẋ − K (x)). The Euler-Lagrange equations for the extremal trajectories of

the Freidlin–Wentzell action correspond to the Hamilton equations

ẋ =∇p H(x, p)=2Q(x)p + K (x), ṗ=−∇x H(x, p)= −∇x (p · Q(x)p + p · K (x)).

(2.34)

The dynamical system (2.34) in the phase space R
2d possesses a hyperbolic fixed point

with (x, p) = (x̄, 0). Indeed, the right hand sides of Eq. (2.34) vanish at this point and the
linearization of (2.34) around (x̄, 0) has the form

ẋ = 2Q(x̄)p + Ax, ṗ = −AT p. (2.35)
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Fig. 2 Hamiltonian flow around
(x̄, 0) with the stable and
unstable manifolds

Phase space R2d may be split in a unique way into as a direct sum Vs ⊕ Vu of the stable and
unstable invariant subspaces of the linearized flow (2.35),

Vs = {(x, 0) | x ∈ R
d}, Vu = {(x, Bx) | x ∈ R

d}, (2.36)

where

B−1 = 2

∞∫
0

et A Q(x̄) et AT
dt. (2.37)

is the unique positive definite matrix satisfying the relation

B A + AT B = −2B Q(x̄)B. (2.38)

On Vs and Vu the linearized flow reduces to

(ẋ, 0) = (Ax, 0), (ẋ, Bẋ) = (−B−1AT Bx,−AT Bx) (2.39)

and is, respectively, exponentially contracting and exponentially expanding (the eigenvalues
of −B−1AB are the negatives of those of A and have positive real parts). The subspaces Vs

and Vu are Lagrangian, i.e. the symplectic form ω = dp ·dx vanishes when restricted to each
of them. It follows from a general theory of hyperbolic fixed points, see e.g. [50,81], that in the
vicinity of (x̄, 0) there exist unique stable and unstable smooth d-dimensional submanifolds
Ms and Mu composed of close points tending to (x̄, 0) under, respectively, flow (2.34) and
its time-reversal. Ms is a local piece of Vs around x̄ and Mu has Vu as the tangent space at
(x̄, 0), see Fig. 2. Besides, if K and Q are (real) analytic then the submanifolds Ms and Mu

are also analytic, see Theorem 7.1 in [49].
Both Ms and Mu are Lagrangian submanifolds of the phase space (i.e. 2-form ω vanishes

when restricted to their tangent subspaces). This follows from the Hamiltonian nature of the
flow (2.34) which preserves ω. Besides the Hamiltonian H (conserved by the flow (2.34))
has to vanish both on Ms and on Mu since it vanishes at (x̄, 0). We may now define for x in
a small ball D around x̄

F(x) =
∫ x

x̄
p · dx (2.40)
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with the result independent of the integration path (x(t), p(t)) in Mu such that x(t) lies
in D. Then Mu is given locally by the equation p(x) = ∇F(x), where (x, p(x)) ∈ Mu .
Clearly, F is a smooth function on D (which is analytic if K and Q are). The vanishing of
the Hamiltonian H on Mu implies now that F satisfies the Hamilton–Jacobi equation (2.5)
so that we may set FH J = F . Note that for such FH J , the Hamiltonian dynamics on the
stable manifold Ms projects to the position space to the relaxation dynamics and the one on
the unstable manifold Mu to the fluctuation dynamics. FH J and ∇FH J vanish at x̄ and the
Hessian ∇∇FH J (x̄) = B is positive definite.

Conversely, if FH J is a local solution of the Hamilton–Jacobi equation around x̄ with
the latter properties then, for a small ball D around x̄ , the sets {(x, 0) | x ∈ D} and
{(x,∇FH J (x)) | x ∈ D} form, respectively, the local stable and unstable manifolds of the
fixed point (x̄, 0) of the Hamiltonian flow (2.34) so that FH J = F .

The above argument shows also the local existence of a transverse decomposition (2.14)
and (2.15) of the vector field K around its non-degenerate stable zeros x̄ . The decomposition
has positive definite Hessian ∇∇FH J (x̄) and is uniquely determined by this property.

The results discussed here, together with the local equality FH J = Fx̄ , show that the
quasi-potential relative to x̄ is smooth (or analytic for K and Q analytic) in the vicinity of a
non-degenerate attractive fixed point x̄ of the deterministic dynamics (2.9). It is however well
known that Fx̄ does not have to be smooth everywhere, see e.g. [37,42,55,63] and references
therein. Such non-smoothness occurs if the unstable manifold of the fixed point (x̄, 0) of the
Hamiltonian dynamics (2.34) has tangent vectors perpendicular to Vs leading to the caustics
in its projection on Vs , see Fig. 2. In recent literature, such situations were connected to the so
called Lagrangian phase transitions [6]. Non-smooth quasi-potentials may be treated using
viscous solutions of Hamilton–Jacobi equations [12,31]. We leave such situations to a future
investigation.

3 Perturbative Expansions of Quasi-Potentials

Let us consider a finite-dimensional stochastic dynamics depending smoothly on a real exter-
nal parameter λ,

ẋ = K λ(x) + √
2ε gλ(x) ηt . (3.1)

We shall use the notation Qλ = gλ(gλ)T for the noise covariance and Fλ for the quasi-
potential relative to the attractor x̄λ of the dynamics ẋ = K λ(x) (dropping the subscript
indicating the attractor). For simplicity, we only consider fixed points as attractors, even if
all the results in this section can be generalized to other kinds of attractors.

An explicit calculation of the quasi-potentials Fλ for the dynamics of the form (3.1) is usu-
ally an impossible task. However, it is feasible in particular situations, as for example in the
caseswhen (3.1) respects detailed balance. It is thus very natural to ask the following question.
Supposing that we are able to calculate the quasi-potential for a given value of λ, say λ = 0,
canwe perturbatively calculate Fλ for smallλ? Someworks are available in the literature con-
taining the first-order analysis [33,38–41,51,62] and concentrating mainly on specific exam-
ples. In [80], the first-order theory is presented in a general fashion and, recently, a rigorous
1st order analysis has been obtained in [72].We extend here the approach of [80] to any order.

Before discussing in details how the perturbative approach is built in the rest of the section,
we first summarize themain ideas. The strategy is to consider the quasi-potential as a solution
to the Hamilton–Jacobi equation
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∇Fλ · [Qλ∇Fλ + K λ
]
(x) = 0, (3.2)

which holds under the hypotheses discussed in Sect. 2.3. In particular, we shall assume that
the vector field K 0 has a non-degenerate stable zero x̄0. From the Implicit Function Theorem,
it follows that for sufficiently small |λ| there exists a smooth family x̄λ of non-degenerate
zeros of K λ. By a slight modification of the arguments in Secs. 2.3 and 2.4, invoking the
dependence on a parameter of the unstable manifold of a hyperbolic fixed point, we infer
that there exists a smooth family of solutions Fλ

H J (x) of the Hamilton–Jacobi equation (3.2)
defined in a neighborhood of λ = 0 and x̄0 and that those solutions coincide with the quasi-
potentials Fλ for the stochastic dynamics (3.1) relative to the attractors x̄λ on the set D0

H J
for a sufficiently small neighborhood D of x̄0. D0

H J is given by Eq. (2.27) for λ = 0. Besides
Fλ(x̄λ) = 0, ∇Fλ(x̄λ) = 0 and the Hessians ∇∇Fλ(x̄λ) are positive definite. For K λ(x)

and Qλ(x) analytic in λ and x , both x̄λ and Fλ
H J (x) will be analytic for sufficiently small

|λ|.
For x̄0 + y ∈ D0

H J , we shall expand the function λ �→ Fλ(x̄λ + y), well defined and
smooth for sufficiently small |λ|, into the infinite Taylor series around λ = 0, writing

Fλ(x̄λ + y) =
∞∑

n=0

λn F (n)(y). (3.3)

Such aTaylor expansion is asymptotic in the smooth case but has a finite radius of convergence
in the analytic case. An analogous notation will be used for the expansions of K λ and
Qλ centered at x̄λ. We suppose that F (0) is explicitly known and attempt to calculate the
perturbative coefficients F (n)(y). Inserting the above expansion into the Hamilton–Jacobi
equation (3.2), one obtains a hierarchy of equations expressing F (n) in terms of functions
F (k) with k < n so that they may be solved iteratively. We stress that in Eq. (3.3) we have
moved attractors x̄λ to the origin. This may seem just a detail but it is important in order to
get a simple proof that the equations for F (n) admit a unique solution for x̄0 + y ∈ D0

H J .
Recall from Sect. 2.3 that x̄0 may be connected to each x ∈ D0

H J by a unique trajectory of
the λ = 0 fluctuation dynamics which, after the shift by −x̄0, takes the form

ẏ = K (0)
r (y) = 2

(
Q(0)(y)∇F (0)(y)

)
+ K (0)(y). (3.4)

The solution for each F (n) can be obtained with the method of characteristics by integrating
along the trajectories of (3.4), see Eq. (3.16) below for the explicit expression for F (n). Such
observation is of practical importance: to compute F (n), the only difficulty is to compute
solutions of Eq. (3.4). This might not be doable analytically, but it is a simple problem for a
numerical treatment.

From the practical point of view it may be more convenient to implement a modified
version of perturbative expansion where we replace Eq. (3.3) with a Taylor expansion of the
function λ �→ Fλ(x) at λ = 0 for x ∈ D0

H J :

Fλ(x) =
∞∑

n=0

λn F̂ (n)(x). (3.5)

We shall see an example where expansion (3.5), that we shall call direct, is simpler to
implement than Eq. (3.3). The difference between the two expansions comes from the fact
that herewe do notmove theλ-attractors to the origin. In this case, however, the simplest route
to prove that functions F̂ (n) may be again found iteratively with themethod of characteristics,
is to reduce expansion (3.5) to (3.4), see Sect. 3.2.
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Finally we shall show in Sect. 3.3 that, for a suitable choice of K λ and Qλ, the expansion
of Eq. (3.3) reduces to the Taylor expansion of the quasi-potential F associated to Eq. (2.1)
around the attractor x̄ .

3.1 Expansion Centered on Attractors of the Perturbed Dynamics

This section discusses the perturbative solution of the Hamilton–Jacobi equation (3.2) in the
form (3.3). We iteratively construct functions F (n) obtaining, in such a way, two results: first,
we prove that the equations obeyed by F (n) admit a unique solution and, second, we give an
explicit recursive formula that may be used to practically calculate F (n).

As already mentioned, we assume that x̄0 is a non-degenerate fixed point of the relaxation
dynamics at λ = 0. This means that K 0(x̄0) = 0 and the eigenvalues of ∇K 0(x̄0) have
negative real parts. The assumption ensures that quasi-potential F0 relative to x̄0 (recall
that we have dropped the subscript indicating the attractor) is given by the solution to the
Hamilton–Jacobi equation in the neighborhood D0

H J of x̄0, that F0(x̄0) and∇F0(x̄0) vanish,
and that the Hessian ∇∇F0(x̄0) is positive definite and F0(x) > 0 for x ∈ D0

H J , x �= x̄0,
see Sect. 2.3.

Let us expand the drift and the noise covariance in powers of λ after shifting the attractor
x̄λ of the perturbed deterministic dynamics to the origin:

K λ(x̄λ + y) =
∞∑

n=0

λn K (n)(y), Qλ(x̄λ + y) =
∞∑

n=0

λn Q(n)(y). (3.6)

Several properties that will be used below follow simply. Because x̄λ is a fixed point for the
deterministic dynamics, K (n)(0) = 0. Similarly, since Fλ(x̄λ) = 0 and ∇Fλ(x̄λ) = 0, the
relations F (n)(0) = 0 and ∇F (n)(0) = 0 must hold for every n. Moreover, the eigenvalues
of ∇K (0)(0) have negative real parts and ∇∇F (0)(0) and Q(0) are positive definite.

Inserting expansions (3.3) and (3.6) into the Hamilton–Jacobi equation (3.2), we obtain
the power-series identity

∞∑
n=0

λn
n∑

k=0

[
n−k∑
l=0

∇F (n−k−l) · Q(k)∇F (l) + ∇F (n−k) · K (k)

]
(y) = 0. (3.7)

Upon equating to zero order by order, this gives a hierarchy of relations

∇F (0) ·
[

Q(0)∇F (0) + K (0)
]

= 0 for n = 0, (3.8)

∇F (n) · K (0)
r = S(n)[F (0), . . . , F (n−1)] for n > 0, (3.9)

where

K (0)
r = 2 Q(0)∇F (0) + K (0) (3.10)

and S(n) is a functional of F (0), . . . , F (n−1) given by
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S(n)[F (0), . . . , F (n−1)] = −
n−1∑
k=1

[
∇F (n−k) ·

(
Q(0)∇F (k) + K (k)

)

+
n−k∑
l=0

∇F (n−k−l) · Q(k)∇F (l)
]

−∇F (0) ·
[

Q(n)∇F (0) + K (n)
]
. (3.11)

We have arranged Eq. (3.9) in such a way that F (n) appears only on the left hand side. Equa-
tion (3.8) is nothing else but the Hamilton–Jacobi equation corresponding to the dynamics
(3.1) with λ = 0, once we have moved the attractor to the origin.We assumed that its solution
F (0)(y) is known. In the following, we prove that solutions to Eq. (3.9) for n > 0 exist and
are unique. An explicit formula will permit to obtain F (n) given F (k) for k < n. We start by
looking at the properties of the 0th order fluctuation dynamics ẏ = K (0)

r (y) when the norm
|y| is small. These results will be useful to prove the existence of solutions to Eq. (3.9).

3.1.1 Fluctuation Dynamics: Exponential Escape from Attractor

Let us consider Eq. (3.4) describing the 0th order fluctuation dynamics after the shift of
attractor to the origin. From the results of Sect. 2.3 about the trajectories of the fluctuation
dynamics it follows that for y ∈ D0

H J − x̄0 ≡ D0 there exists a unique solution [−∞, 0] 
t �→ ỹ(t, y) of Eq. (3.4) such that ỹ(−∞, y) = 0 and ỹ(0, y) = y. Besides, ỹ(t, y) belongs
to D0 for all t .

We now show that ỹ(t, y) escapes from the attractor y = 0 exponentially fast. Indeed, we
can write for |y| small

ỹ(t, y) = et (2Q(0) B+A) y + o
(∣∣∣et (2Q(0) B+A) y

∣∣∣) . (3.12)

In the above expressions, A and B are defined through the small |y| expansion of K (0) and
F (0):

K (0)(y) = Ay + o(|y|), F (0)(y) = 1
2 y · By + o

(|y|2) , (3.13)

i.e. A = (∇K (0)(0))T and B = ∇∇F (0)(0). One should recall from the properties listed
above for K (0) and F (0) that the eigenvalues of A have negative real parts and B = BT is
positive definite. We have encountered matrices A and B already before when studying the
Hamiltonian dynamics in Sect. 2.4. They are related by the identity

B A + AT B + 2B Q(0) B = 0 (3.14)

imposed by the 2nd order in y contribution to the 0th order Hamilton–Jacobi equation (3.8).
Note that identity (3.14), which implies that

2Q(0) B + A = −B−1AT B, (3.15)

coincideswithEq. (2.38) solved by (2.37) ifwe replace in the latter Q(x̄)by Q(0)(0). Behavior
(3.12) is dictated by the spectrum of (2Q(0) B + A). Indeed, as already noticed before, the
eigenvalues of −B AT B have positive real parts. Thus the 0th-order fluctuation dynamics
escapes exponentially fast from the attractor. This agrees with the analysis of Sect. 2.4 where
we showed that the fluctuation dynamics on the position space corresponds to theHamiltonian
dynamics on the unstable manifold of the hyperbolic fixed point.

123



1172 F. Bouchet et al.

3.1.2 Iterative Solution

We shall prove that the unique solution of Eq. (3.9) on D0 = D0
H J − x̄0 that satisfies

F (n)(0) = 0 is

F (n)(y) =
∫ 0

−∞
S(n)[F (0), . . . , F (n−1)](ỹ(t, y)) dt, (3.16)

where ỹ(t, y) is the trajectory of the 0th-order fluctuation dynamics (3.4) joining the origin
to y that was discussed above. Moreover, the expression (3.16) is well-defined, as we show
that the integral in this expression is convergent whenever y belongs to D0. Equation (3.16)
gives an iterative solution of (3.9).

Let us start by proving that if a solution of Eq. (3.9) such that F (n)(0) = 0 exists, it has to
have the form (3.16). This is easily seen by taking the total time derivative of F (n)(ỹ(t, y)),

d

dt
F (n)(ỹ(t, y)) = ∇F (n)(ỹ(t, y)) · d ỹ(t, y)

dt
=
(
∇F (n) · K (0)

r

)
(ỹ(t, y))

= S(n)[F (0), . . . , F (n−1)](ỹ(t, y)), (3.17)

and by integrating over time.
In the next step, we shall show that, assuming that the integral on the right hand side of

(3.16) converges, the latter equation gives a function F (n)(y) that solves Eq. (3.9). Indeed,
on the fluctuating dynamics trajectory,

F (n)(ỹ(s, y)) =
∫ 0

−∞
S(n)[· · · ](ỹ(t, ỹ(s, y))) dt =

∫ 0

−∞
S(n)[· · · ](ỹ(t + s, y)) dt

=
∫ s

−∞
S(n)[· · · ](ỹ(t, y)) dt, (3.18)

where we used the relation ȳ(t, ȳ(s, y)) = ȳ(t + s, y) that holds because of the uniqueness
of the solutions of Eq. (3.4). Now, deriving the previous expression with respect to s and
evaluating at s = 0, we obtain Eq. (3.9). This means that expression (3.16) solves Eq. (3.9)
provided that it is well defined.

To complete the proof, we need to show that the integral appearing in Eq. (3.16) is conver-
gent and vanishes at y = 0. To show this, we have to analyze the behavior of the integrand
when t → −∞. This corresponds to studying the behavior of the integrand for small |y|.
One completes the prove combining Eq. (3.12) with the observation that the expression S(n)

defined in Eq. (3.11) is at least quadratic in y for |y| small if F (k) for k < n have the same
property. Under this assumption, that is true for F (0), the integrand on the right hand side of
Eq. (3.16) converges exponentially to zerowhen t → −∞ so that the time integral converges.
Besides, it determines function F (n)(y) that is at least quadratic in y for small |y| so that it
may be shown inductively that F (n) starts at worst quadratically.

Let us summarize our results: we described an iterative scheme to calculate perturbatively
the quasi-potential Fλ of Eq. (3.1) as a power series (3.3). Once we know the terms F (k) of
that expansion for k < n then F (n) may be obtained using Eq. (3.16). In that formula, S(n) is
defined by Eq. (3.11) and ỹ(t, y) is the solution to the 0th-order fluctuation dynamics (3.4)
that starts at the origin at t = −∞ and arrives at y at time zero. Finally, we proved that this
procedure is well defined (F (n) are finite quantities and depend smoothly, or analyticaly in the
analytic case, on y ∈ D0). More generally, one could define this way F (n)(y) for y belonging
to the basin of attraction of the origin for the time-reversal of the fluctuation dynamics (3.4).
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Let us conclude this section observing that the procedure described here may be very
easily implemented numerically. Indeed, to calculate F (n) at all the orders, one only needs to
compute the solution to the 0th-order fluctuation dynamics (3.4). The scheme just described
gives a powerful practical tool to compute quasi-potentials perturbatively.

3.2 Direct Expansion

In Sect. 3.1 we have presented an expansion in power of λ centered on the attractors of the
perturbed dynamics. We discuss in this section a direct expansion, which does not depend on
the knowledge of the attractors of the perturbed dynamics. The main point we want to stress
in that case is the appearance of non-trivial solvability conditions.

There are several reason why, in some cases, this new expansion may be simpler or more
relevant than the one centered on the attractors. The main one is that the attractors of the
perturbed dynamics may not be known explicitly and should then be computed themselves
by a perturbative expansion. In that case, as the definition of K (n) and Q(n) given in Eq. (3.6)
involves the attractor x̄λ of the perturbed dynamics ẋ = K λ(x), then matrices Q(n) may be
non-zero at all orders even if the covariance Qλ is independent of λ. An example of this kind
will be encountered in Sect. 4.5.

We assume power series expansions for K λ and Qλ

K λ(x) =
∞∑

n=0

λn K̂ (n)(x), Qλ(x) =
∞∑

n=0

λn Q̂(n)(x). (3.19)

Observe that K̂ (0)(x̄0) = 0 and ∇ F̂ (0)(x̄0) = 0. By assumption all the eigenvalues of
∇ K̂ (0)(x̄0) have negative real part, and Q(0)(x̄0) is a positive definitematrix. This implies that
∇∇F (0)(x̄0) is a positive definitematrix. As∇ K̂ (0)(x̄0) is invertible, the identity K λ(x̄λ) = 0
permits to solve iteratively for the coefficients of the Taylor expansion

x̄λ =
∞∑

n=0

λn x̂ (n). (3.20)

for the perturbed attractor, where x̂ (0) = x̄0.
Inserting Eq. (3.5) and (3.19) into the Hamilton–Jacobi equation (3.2), we obtain a hierar-

chy identical to (3.8) and (3.9). The only differences are, of course, that y has to be replaced
with x and F (n), K (n) and Q(n) by F̂ (n), K̂ (n) and Q̂(n). Explicitly, we have

∇ F̂ (0)(x) ·
[

Q̂(0)(x)∇ F̂ (0)(x) + K̂ (0)(x)
]

= 0 for n = 0, (3.21)

∇ F̂ (n)(x) · K̂ (0)
r (x) = Ŝ(n)[F̂ (0), . . . , F̂ (n−1)](x) for n �= 0, (3.22)

where

K̂ (0)
r = 2 Q̂(0)∇ F̂ (0) + K̂ (0) (3.23)

and Ŝ(n) is the functional of F̂ (0), . . . , F̂ (n−1) given by Eq. (3.11) with F (n), K (n) and Q(n)

replaced by the hatted quantities.
We first remark that, as K̂ (0)

r (x0) = 0, Eq. (3.22) implies

Ŝ(n)[F̂ (0), . . . , F̂ (n−1)]
∣∣∣
x=x̄0

= 0, (3.24)
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which appears as a solvability condition for Eq. (3.22). It is possible to prove directly this
solvability condition by induction, however this involves subtle cancellations that are tedious
to prove to all orders. In order to bypass this proof, we rather argue that we know a priori that
the series expansion exists. Then Eq. (3.22) is a consequence of the existence of the series
expansion and this implies that the solvability condition (3.24) is satisfied. The existence of
the series expansion follows from the existence of the series expansion around the attractors
of the perturbed dynamics, discussed in the previous section. Indeed, F̂ (n)(x)may be directly
found using the expansion from the previous section by comparing order by order both sides
of the identity

∞∑
n=0

λn F̂ (n)(x) = Fλ(x) =
∞∑

n=0

λn F (n)(x − x̄λ), (3.25)

where on the right hand side one inserts the Taylor expansion (3.20).
We now explain how to solve Eq. (3.22) using (3.24). Let us consider the 0th-order fluc-

tuation dynamics

ẋ = K̂ (0)
r (x), (3.26)

and its trajectory x̃(t, x) lying in D0
H J such that x̃(−∞, x) = x̄0 and x̃(0, x) = x . With the

same argument as in Sect. 3.1.2, we can show that

F̂ (n)(x) = C (n) +
∫ 0

−∞
Ŝ(n)[F̂ (0), . . . , F̂ (n−1)](x̃(t, x)) dt. (3.27)

has to hold for a solution of Eq. (3.22), where C (n) are (for the moment arbitrary) constants.
This is analogous to Eq. (3.16). To obtain F̂ (n)(x) from this equation, we have to prove the
convergence of the integral on the right hand side of (3.27) and to fix the constants C (n). The
first task requires the control of the behavior of Ŝ(n)[F̂ (0), . . . , F̂ (n−1)](x) around x = x̄0.
It may be achieved by induction using (3.24) and the exponential relaxations of x̃(t, x) to
x0 when t goes to −∞. The second task is easier and may be accomplished iteratively since
the normalization Fλ(x̄λ) = 0 leads upon Taylor expending to the relations that allow to
express C (n) = F̂ (n)(x̄0) by the values at x̄0 of functions F̂ (k) and their derivatives and by
the coefficients x̂ (k) of the Taylor expansion (3.20), all for k < n. Note, however, that the
choice of C (k) for k < n in not relevant for the calculation of F̂ (n), except when it comes to
the choice of C (n). Indeed, these are the gradients of F̂ (k) for k < n that enter Ŝ(n).

3.3 Taylor Expansion of the Quasi-Potential Around the Attractor of the
Unperturbed Dynamics

Consider now the stochastic evolution (2.1) without an external parameter. Let x̄ be a non-
degenerate attractive point of the deterministic dynamics (2.9). We shall be interested here
in the Taylor expansion of the quasi-potential in a neighborhood of x̄ :

F(x̄ + y) =
∞∑

n=2

(
∇(n)F

)
y(n), (3.28)

where ∇(n)F and y(n) are rank-n tensors with the components

(
∇(n)F

)
i1···in

= 1

n!
∂(n)F(x̄)

∂xi1 · · · ∂xin
, (y(n))i1···in = yi1 · · · yin (3.29)
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and on the right hand side of (3.28) the contraction of all indices is implied. We shall show
here that expansion (3.28) can be viewed as a particular case of the perturbative expansion
considered in Sect. 3.1. Then, all the results obtained there may be applied to (3.28) providing
a method to calculate tensors ∇(n)F .

With the same notation as in (3.28), we introduce the expansions of K and Q around x̄ :

K (x̄ + y) =
∞∑

n=1

(
∇(n)K

)
y(n), Q(x̄ + y) =

∞∑
n=0

(
∇(n)Q

)
y(n). (3.30)

Since x̄ is a non-degenerate attractivefixedpoint of the relaxation dynamics,∇(1)K = ∇K (x̄)

has eigenvalues with negative real parts and∇(2)F = 1
2∇∇F(x̄) is a positive definite matrix.

Let us introduce a new λ-dependent system defined by

K λ(x̄ + y) ≡ 1
λ

K (x̄ + λy) , Qλ(x̄ + y) ≡ Q (x̄ + λy) (3.31)

that reduces for λ = 1 to the previous one and depends smoothly on real λ. Note that point
x̄ is a non-degenerate stable attractive zero of K λ for all λ and that

Fλ(x̄ + y) ≡ 1

λ2
F (x̄ + λy) (3.32)

satisfies the Hamilton–Jacobi equation (3.2) for all λ including λ = 0. The scaling with λ

was introduced in such a way that the λ = 0 case gives a non-trivial contribution. It allows
to align the notations to those of Sect. 3.1. With our choice, we indeed have

K 0(x̄ + y) = (y · ∇)K (x̄) ≡ Ay, Q0(x̄ + y) = Q(x̄), (3.33)

F0(x̄ + y) = 1
2 (y · ∇)2F(x̄) ≡ 1

2 y · By . (3.34)

Moreover

K (n)(y) =
(
∇(n+1)K

)
y(n+1), Q(n)(y) =

(
∇(n)Q

)
y(n), F (n)(y)

=
(
∇(n+2)F

)
y(n+2) (3.35)

in the notation of Eq. (3.6) and (3.3). It is worth stressing that, in this context, the role of the
unperturbed λ = 0 stochastic dynamics is played by the linear dynamic

ẏ = Ay + √
2ε g(x̄) ηt (3.36)

with matrix A given by (3.33), for which the unperturbed quasi-potential is the quadratic
approximation of F around the attractor. This is not surprising since the stochastic equation
(3.36) defines a Gaussian process of the Orstein-Uhlenbeck type whose invariant measure
is Gaussian with the covariance equal to εB−1, where B is the Hessian matrix of F at x̄ ,
see (3.34). The Hamilton–Jacobi equation reduces for λ = 0 to the identity (2.38) with the
solution given by (2.37). The relaxation and the fluctuation dynamics are (after the shift of
the attractor to the origin), respectively,

ẏ = Ay and ẏ = −B−1AT By. (3.37)

In particular, for λ = 0 the trajectories of the fluctuation dynamics that start at t = −∞ from
the origin have a particularly simple form:

ỹ(t, y) = e−t B−1 AT B y (3.38)
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and Eq. (3.16) reduces to the iterative solution

F (n)(y) =
∫ 0

−∞
S(n)[F (0), . . . , F (n−1)](e−t B−1 AT B y) dt (3.39)

for the Taylor coefficients of F at x̄ with S(n) given Eq. (3.11).

3.4 Codimension-One Bifurcations: The Critical Exponent

Let us return to a family of dynamical systems parameterized by λ as in Eq. (3.1) and let us
suppose that the deterministic dynamics ẋ = K λ(x) has an attractive fixed point x̄λ forλ ≤ λc

that is non-degenerate for λ < λc and undergoes a codimension-one bifurcation at λ = λc.
Large deviations for normal forms corresponding to codimension-one and codimension-
two bifurcations were discussed in a series of papers in the 1970s and 1980s. We refer to
[27,28,44,57,64] and to the review [80] for a detailed analysis. Here we want only to remark
that the critical exponent in this framework is equal to that of the mean-field theory.

The assumed scenario implies that ∇K λ(xλ) has a simple real eigenvalue αλ that is
negative for λ < λc such that

αλc = 0 and
dαλ

dλ

∣∣∣
λ=λc

�= 0 (3.40)

(the saddle-node bifurcation) or a complex eigenvalue αλ with negative real part for λ < λc,
and its conjugate, such that

Re αλc = 0, Im αλc �= 0 and
dαλ

dλ

∣∣∣
λ=λc

�= 0 (3.41)

(the Hopf bifurcation). Moreover all the other eigenvalues of∇K λ(x̄λ) have strictly negative
real parts for λ ≤ λc.

Let us consider the covariance

(Cλ)i j =
∫

xi x j Pλ∞(x) dx −
(∫

xi Pλ∞(x) dx

)(∫
x j Pλ∞(x) dx

)
(3.42)

of the invariant measure of the stochastic dynamics (3.1). If the minimum of the quasi-
potential Fλ describing the behavior (1.1) of Pλ∞ in the limit of small noise is attained at x̄λ

then the saddle-point analysis of (3.42) implies that

lim
ε→0

1
ε

Cλ = (Bλ)−1 = 2
∫ ∞

0
et Aλ

Qλ(x̄λ) et (Aλ)T
dt (3.43)

where Bλ is the Hessian matrix of Fλ at x̄λ and the last equality with Aλ = (∇K λ(x̄λ))T

follows from Eq. (2.37). Hence (Bλ)−1 may be viewed as the small-noise limit of the station-
ary equal-time connected 2-point function of the stochastic process solving Eq. (3.1). Let us
examine the behavior of the latter limiting quantity when λ ↗ λc. Any vector y ∈ R

d may
be decomposed as

y = βλvλ + βλvλ + yλ (3.44)

where βλ ∈ C, vλ is the eigenvector of (Aλ)T with the eigenvalue αλ and yλ ∈ R
d belongs

to the invariant subspace of (Aλ)T corresponding to the other eigenvalues so that

|et (Aλ)T
yλ| ≤ e−δt (3.45)
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in the vicinity of λc for some δ > 0. Then the 2-point function

y · (Bλ)−1y = −2|βλ|2(Re αλ)−1vλ · Qλ(x̄λ)vλ

−2Re
[
(βλ)2(αλ)−1vλ · Qλ(x̄λ)vλ

]+ O(1) (3.46)

where O(1) term is regular when λ ↗ λc. Assume that βλc �= 0 which holds for generic y.
Then, when λ ↗ λc, the first term on the right hand side diverges like (λc − λ)−1 and the
second term is regular if the purely imaginary eigenvalue αλc �= 0, and both terms have the
same divergence when αλc = 0.

This completes the simple proof that, in the framework of a dynamical systems in the
low noise limit undergoing a codimension-one bifurcation, critical exponent for two-points
correlator is equal to 1, the mean field theory value of the susceptibility exponent γ .

4 Mean-Field Systems and the Shinomoto–Kuramoto Model

Weconsider in this section systems composed ofmany diffusive particles, interacting through
a mean-field type two-body potential and driven out of equilibrium by external forces. Most
of our analysis is valid for any model in this class (the two-body interaction could even
be non-potential). However, in order to go beyond formal results, we discuss in detail the
example of Shinomoto–Kuramoto system, a simple 1-Dmodel first introduced in [74], which
has recently attracted some attention in the mathematical literature [6,34,35,60] as well as
in the physical one [70,71,83].

It is known since the 60s that the evolution of the empirical measure of N diffusions with
mean-field interaction is described, for N → ∞, by a non-linear Fokker–Planck equation
known in the mathematics literature as the McKean–Vlasov equation [66], see also [67,79]
for more modern presentations. We refer to this limit as the mean-field behavior of the N
particle system. For the Shinomoto–Kuramoto model, the mean-field behavior exhibits a
rich phase diagram with stationary and periodic phases separated by bifurcation lines, as first
observed in [73].

In [18,19], Dawson and Gartner studied the large deviations of the empirical measure for
the mean-field diffusions through a generalization of the Freidlin–Wentzell theory to such
questions. Extensions to cases where quenched disorder is present, as for example in the
Kuramoto model [16,24] or in mean-field spin glasses [4,5,45], were considered too. Also
some large deviation results on a mean-field model for active matter were obtained in the
physics literature [3].

In this chapter, we first discuss how the mathematical results [18,19] can be obtained
formally (i.e., without mathematical rigor) by writing an effective evolution for the empirical
measure in the form of a stochastic PDE, called the Dean equation [22]. The noise term in
this equation is proportional to 1/

√
N so that it vanishes as N → ∞. In the latter limit, one

recovers the deterministic McKean–Vlasov equation.
The evolution of the empirical measure is thus formally given by a stochastic partial

differential equation with weak noise which, at variance with the cases considered in the pre-
vious sections, is infinite-dimensional. By applying functional integral techniques from field
theory (the Martin-Siggia-Rose formalism, see [65]), we can write the infinite-dimensional
analogue of the Freidlin–Wentzell theory. In the physics literature, this extension goes under
the name of Macroscopic Fluctuation Theory and it has attracted much attention in the sta-
tistical mechanics community over last years, see [6] for a review. In the present case, we
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re-obtain formally the rigorous results by Dawson and Gartner [18,19]. We also discuss a
more general large deviation result covering current fluctuations.

We then apply the infinite-dimensional analogue of the perturbative scheme discussed in
Chapter 3 to obtain explicit results about the quasi-potential for the mean-field diffusions. In
particular, we calculate the quasi-potential perturbatively close to the free particle dynamics
with no interactions between particles present. This permits also to compute perturbatively
the rate function for the fluctuations of some macroscopic observables. For the Shinomoto–
Kuramotomodel, explicit results obtained by implementing a numerical algorithm to compute
the quasi-potential to the 1st order in the coupling are presented, together with an analysis
of the fluctuations of magnetization.

We also discuss how explicit results may be obtained for the Taylor expansion of the quasi-
potential around a stationary solution of theMcKean–Vlasov equation.Within this analysis, it
is clear that the variance of density fluctuations diverges close to bifurcations when external
parameters are changed, a result rigorously obtained in [2,20]. A numerical algorithm to
evaluate explicitly the Taylor expansion is also discussed but we have not implemented it.

The structure of this part of the article is as follows. In Sect. 4.1, we introduce the class
of systems that will be considered. Sect. 4.2 derives the Dean equation, formally describ-
ing the evolution of the empirical measure for large but finite N . Then, in Sect. 4.3, the
particular case of the Shinomoto–Kuramoto model is discussed. We describe the long-time
behavior of solutions of the associated McKean–Vlasov equation. Despite its simplicity, the
model, which is a kinetic and non-equilibrium version of a mean-field ferromagnet, exhibits
a rather complex mean-field behavior that we describe concentrating on the results that can
be obtained analytically or semi-analytically. In Sect. 4.4, we discuss how a generalization
of the Freidlin–Wentzell theory may be formally obtained by applying the Martin-Siggia-
Rose formalism to the Dean equation. Finally, in Sect. 4.5, the perturbative calculation of the
quasi-potential is performed and some explicit results for the Shinomoto–Kuramoto model
are described.

4.1 Mean-Field Diffusions

Let us consider a system composed of N particles undergoing an over-damped diffusion in
R

d or in a torus Td and coupled through a mean-field 2-body potential V (x) = V (−x). The
equations of motions defining the stochastic evolution are

ẋn = b(xn) − J

N

N∑
m=1

(∇V )(xn − xm) + √
2kB T ηn, (4.1)

where ηn(t) are independent white noises with zero average and covariance E ηi
n(t) η

j
m(s) =

δi jδn,mδ(t − s), T > 0 is the temperature, and kB is the Boltzmann constant.
Thequantitieswhich are of central interest for us are the empirical density and the empirical

current, defined as

ρN (t, x) = 1

N

N∑
n=1

δ(x − xn(t)) (4.2)

jN (t, x) = 1

N

N∑
n=1

δ(x − xn(t)) ◦ ẋn(t) (4.3)

123



Perturbative Calculation of Quasi-Potential in Non-equilibrium. . . 1179

where ” ◦ ” stands for the product in the Stratonovich convention. It is straightforward to
show that the following continuity equation holds

∂tρN + ∇ · jN = 0 (4.4)

(this uses the chain rule which imposes the Stratonovich convention in the definition of the
empirical current). Moreover, substituting the equation of motion (4.1) into the definition of
jN and returning to the Ito convention, we obtain

jN (t, x) = ρN (t, x)
[
b(x) − J ∇(V ∗ ρN )(t, x)

]− kB T ∇ρN (t, x)

+
√

2kB T

N

N∑
n=1

δ(x − xn(t)) ηn(t), (4.5)

where (V ∗ ρN ) is the convolution between V and ρN (t, ·) and the term with ∇ρN was
produced by the change of the stochastic convention. Observe that Eq. (4.4) with jN given
by (4.5) is not a closed equation for ρN because the noise term explicitly depends on the
particle positions. What we would like to do, instead, is to write a closed evolution equation
for ρN into which the particle positions enter only through ρN .

4.2 Evolution of the Empirical Density: The Dean Equation

A closed equation for the evolution of the empirical density was obtained from Eqs. (4.4)
and (4.5) by Dean [22]. Dean’s argument (somewhat brief in the original paper) can be
reformulated in the following way. The last term on the right hand side of (4.5) may be
viewed as a white noise in time with values in vector fields on R

d ,

√
2kB T

N

N∑
n=1

δ(x − xn) ηi
n(t), (4.6)

parameterized by the particle positions (xn)N
n=1. White noise (4.6) has mean zero and covari-

ance

2kB T

N 2 δi j δ(t − t ′)
∑

n

δ(x − xn) δ(y − xn) = 2kB T

N
δi j δ(t − t ′) δ(x − y) ρ(x), (4.7)

where the last expression followed by using the distributional identity δ(x − xn) δ(y − xn) =
δ(x − y) δ(x − xn) and introducing the particle density ρ(x) = 1

N

∑
n δ(x − xn). Consider

now another noise,
√

2kB T
N

√
ρ(x) ξ i (t, x), (4.8)

where ξ(t, x) stands for the vector-valued white noise in space and time satisfying

E ξ i (t, x) = 0, E ξ i (t, x) ξ j (s, y) = δi j δ(t − s) δ(x − y). (4.9)

Random process (4.8) may again be viewed as a white noise in time with values in vector
fields on R

d , but now parameterized by densities ρ(x). It has a zero mean and covariance

2kB T

N
δi j δ(t − t ′) δ(x − y) ρ(x) (4.10)
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that coincides with the one of noise (4.6) if ρ is related to particle positions as above. Dean
proceeded identifying the two white noises by writing

jN (x, t) = jρN (t, x) +
√

2kB T
N

√
ρN (t, x) ξ(t, x), (4.11)

upon which the continuity equation (4.4) became a closed stochastic PDE in the space of
densities for ρ(t, x) = ρN (t, x),

∂tρ(t, x) + ∇ · jρ(t, x) +
√

2kB T
N

∇ ·
(√

ρ(t, x) ξ(t, x)
)

= 0, (4.12)

where jρ is the nonlinear functional of ρ given by

jρ(t, x) = ρ(t, x)

(
b(x) − J

∫
(∇V )(x − y) ρ(t, y) dy

)
− kB T ∇ρ(t, x). (4.13)

We shall call (4.12) the Dean equation for the empirical density.
Dean’s substitution is formal in the infinite-dimensional situation involving the space of

densities but would be legitimate in a finite-dimensional setup. To explain what we mean,
let us consider the backward Kolmogorov equation describing the evolution of averages for
functionals of the empirical density S[ρN (t, ·)]. Denoting by E the average with respect to
the noises ηn and applying the Ito calculus, we infer that2

d

dt
E S[ρN (t, ·)] =

∫
dx

δS
δρ(x)

[ρN (t, ·)] ∇ ·
(
ρN (t, x)

[− b(x) + J ∇(V ∗ ρN )(t, x)
]

+ kB T ∇ρN (t, x)
)

+ kB T

N 2

N∑
n=1

∫
dx dy

δ2S
δρ(x)δρ(y)

[ρN (t, ·)] ∇x · ∇y

×
(
δ(x − xn(t)) δ(y − xn(t))

)

=
∫

dx
δS

δρ(x)
[ρN (t, ·)] ∇ ·

(
ρN (t, x)

[− b(x) + J ∇(V ∗ ρN )(t, x)
]

+ kB T ∇ρN (t, x)
)

+ kB T

N

∫
dx
∫

dy
δ2S

δρ(x)δρ(y)
[ρN (t, ·)] ∇x · ∇y

×
(
ρN (x, t) δ(x − y)

)
, (4.14)

where the last expression was obtained proceeding as in (4.7). We thus obtain for
E [S[ρN (t, ·)]] the evolution equation

d

dt
E S[ρN (t, ·)] = E LS[ρN (t, ·)], (4.15)

where L is the generator given by

LS[ρ] =
∫

dx
δS[ρ]
δρ(x)

∇ ·
(
ρN (t, x)

[− b(x) + J ∇(V ∗ ρN )(t, x)
]+ kB T ∇ρN (t, x)

)

+kB T

N

∫
dx
∫

dy
δ2S[ρ]

δρ(x)δρ(y)
(∇ · ∇y)

(
ρ(x, t) δ(x − y)

)
. (4.16)

2 Since the densities are normalized, functional derivatives δS/δρ(x) are defined only up to a constant, but
such ambiguities drop out in all expressions below where the functional derivatives are integrated against
functions with vanishing integral.
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Observe now that the above evolution for E [S[ρN ]] is given by the same backward Kol-
mogorov equation that the one obtained assuming that ρN solves the Dean stochastic PDE
(4.12) anticipated at the beginning of the subsection. In finite dimension, it is not enough to
know that E f (X (t)) = E L f (X (t) for a generator of a diffusion process L and each f to
deduce that X (t) has the law of the diffusion process satisfying the corresponding SDE, but
this would follow if one showed that f (X (t))− f (X (0))−∫ t

0 L f (X (s)) ds are martingales
[78]. A slight extension of the previous calculation shows that the process

S[ρN (t, ·)] − S[ρN (0, ·)]] −
t∫

0

LS[ρN (s, ·)] ds (4.17)

possess this property. Nevertheless, since we are in infinite dimension, the derivation of the
Dean equation remains formal.

To complicate things further, the mathematical status of the Dean equation is unclear: it is
difficult to give sense to different terms of the equation, including the noisy one, in a function
space that would contain the (distributional) empirical densities of coupled diffusions (4.1),
not even speaking about a theory of solutions of such a stochastic PDE. Although there is a
considerable mathematical literature about non-linear stochastic PDE’s with the noise that
is delta-correlated in time and space, see [17,30,46], it does not cover the case of the Dean
equation. One may hope, however, that it is possible to give a meaning to this equation at
least in the large deviation regime for large N . Although in what follows we completely
avoid such rigorous issues and proceed formally, the fact that our results agree with those
rigorously obtained by Dawson and Gartner [18,19] gives support to this assumption.

Before proceeding further, let us observe that the Dean equation can be recast in a form
similar to that of the finite-dimensional SDE considered in the first part of the paper by
rewriting it as

∂tρ = K[ρ] +
√

2
N

η[ρ], (4.18)

where

K[ρ](t, x) = −∇ · jρ(t, x) (4.19)

is the drift and

η[ρ](t, x) = −√kB T ∇ ·
(√

ρ(x) ξ(t, x)
)

(4.20)

is the white noise in time, parameterized by density ρ, with zero mean and covariance

E η[ρ](t, x) η[ρ](s, y) = δ(t − s)Q[ρ](x, y) (4.21)

for

Q[ρ](x, y) = kB T ∇x · ∇y

(
ρ(x)δ(x − y)

)
. (4.22)

This form will be useful in the following to formally extend the large deviations results that
we described in Sect. 2 to the present case.

In the Dean equation, the noise term becomes small when N becomes large. In particular,
in the N → ∞ limit, one obtains the deterministic non-linear Fokker–Planck equation

∂tρ(t, x) + ∇ · jρ(t, x) = 0 (4.23)
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known in themathematical literature asMcKean–Vlasov equation [66]. Some authors refer to
the above equation as the Vlasov-Fokker–Planck one. In the following, we call the evolution
described by this equation the mean-field dynamics.

The above reasoning showed that the McKean–Vlasov equation should describe the evo-
lution of the empirical density in the N → ∞ limit. This is actually corroborated by a number
of rigorous results, since the original paper of McKean [66]. More precisely, the property
of propagation of chaos was proved under mild hypothesis on the smoothness of the b and
V , see [79] and references therein. Moreover, a bound on a proper distance between the
solution to the McKean–Vlasov equation and the empirical measure at time t , depending on
the distance at t = 0 is known. Those results are the analogues in the present context of the
more famous ones due to Braun-Hepp [11] and Dobrushin [25] for deterministic particles
with mean-field interactions, see also [76].

The Dean equation suggests that the evolution of the empirical measure for finite but large
N is described by a weak random perturbation (of order 1/

√
N ) of the McKean–Vlasov

equation. We are then in a similar context to that of the Freidlin–Wentzell theory discussed in
Sect. 2, except for the fact that the stochastic dynamical system is now an infinite dimensional
one. We may, nevertheless, hope to obtain large deviation estimates in a similar manner by
working at the formal level. This will be done in Sect. 4.4. Before, however, let us further
investigate the McKean–Vlasov equation by considering a simple model system.

4.3 Shinomoto–Kuramoto Model: The Mean-Field Behavior

Models in the class of Eq. (4.1) can display a very rich mean-field dynamics. As a simple
example, we consider in this section the Shinomoto–Kuramoto model introduced in [74],
describing its mean-field behavior by focusing on results that can be obtained analytically or
semi-analytically.

TheShinomoto–Kuramotomodel is a one-dimensionalmodelwhere N particlesmoveon a
circle of unit radius and are thus identified by their angular coordinate xn = θn definedmodulo
2π , for n = 1, . . . , N . The model is obtained from Eq. (4.1) by setting b(θ) = F − h sin(θ)

and V (θ) = (1 − cos θ), where F, h, J are real constants that we shall take non-negative.
The equations of motion are

θ̇n = (F − h sin θn) − J

N

N∑
m=1

sin(θn − θm) + √
2kB T ηn, (4.24)

where ηn(t) are independent standard scalar white noises. Observe that negative F is related
to positive F and negative h to positive h by the changes of variables θn �→ −θn and
θn �→ θn +π , respectively. One of the parameters among F, h, J, T is redundant, as it can be
fixed by rescaling the other three and time. We could, for example, fix the coupling strength
J . We prefer, however, to leave all the parameters because we shall be interested in limiting
cases where one of them vanishes. The Shinomoto–Kuramoto system is related to the more
famous Kuramoto model [58] of frequency synchronization phenomena in coupled rotators,
fromwhich it is obtained by setting all the natural frequencies to the same value F and adding
white noises acting on each rotator, see [1] for a review on Kuramoto and related models.

For general value of the parameters, the Shinomoto–Kuramoto stochastic dynamics (4.24)
breaks the detailed balance. This is always true except for F = 0, where the model defines
an equilibrium dynamics and reduces to a kinetic version of the mean-field ferromagnetic
XY model, with θn describing the angles of planar spins and h the external magnetic field
h in the X direction. For F > 0, the model may be still interpreted within ferromagnetism,
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except that the planar magnetic field should be taken rotating with angular velocity F and
the spin angles described in the frame rotating with it. The case h = 0 is also special since
its dynamics only trivially breaks the detailed balance that may be restored by returning to
the original frame. Thus, the Shinomoto–Kuramoto model can be seen as a non-equilibrium
version of mean-field ferromagnets.

As discussed in Sect. 4.2, for N → ∞, the evolution of the empirical density is described
by the McKean–Vlasov equation (4.23) which, in the present case, reads:

∂tρ + ∂θ jρ = 0, (4.25)

jρ(t, θ) = ρ(t, θ)

(
F − h sin θ − J

∫
sin(θ − ϑ) ρ(t, ϑ) dϑ

)
− kB T ∂θρ(t, θ).

(4.26)

The mean-field behavior of the Shinomoto–Kuramoto model was first studied in [74], focus-
ing on long-time behavior. In this work, the authors expanded in Fourier modes the stationary
McKean–Vlasov equation (4.25) and numerically integrated the resulting coupled ordinary
differential equations.

For F = 0, the system relaxes to a stationary solution that is unique for h > 0 and for
h = 0 and kB T ≥ J/2, with ρ flat in θ (unmagnetized state) in the latter case. For h = 0
and kB T < J/2 there is a one-parameter family of stationary solutions differing by rotation,
with ρ bumped around some value of θ , a well known picture for equilibrium ferromagnets
of a magnetized state spontaneously breaking the planar rotation symmetry. This equilibrium
case, also knownunder the nameofBrownianmeanfieldmodel, is studied in detail in [13–15].

For F > 0, a more complicated phase diagram for theMcKean–Vlasov equation emerges,
however, see the left part of Fig. 3. For sufficiently high h or T , the system relaxes to a
stationary solution of Eq. (4.25), which for h = 0 and kB T > J/2 has ρ flat in θ , as before.
For sufficiently low values of h and T , the long-time behavior is, instead, periodic. For h = 0,
the periodic phase sets in for kB T < J/2, as follows from the relation to the F = 0, h = 0
system mentioned before. The periodic and stationary regions are separated by bifurcations.
The rightmost line (blue dots) is a Hopf bifurcation, while the upper line, a saddle-node one.
The two bifurcations meet forming a Takens-Bogdanov bifurcation. The careful analysis of
bifurcations occurring in this model has been performed in [73] and is confirmed here. In
particular, a tiny region where the system is bistable is found around the Takens-Bogdanov
bifurcation, see the right part of Fig. 3. Here the McKean–Vlasov equation admits two stable
stationary solutions.

A number of analytical results can be obtained. In particular, we show below that all the
stationary solutions (stable and unstable) can be studied analytically. Moreover, analyzing
their stability we can trace the bifurcation curves. On the other hand, we were not able to find
a closed form for the periodic solutions except for the trivial cases where h = 0 or T = 0.

In Sect. 4.3.1 below,we consider the casewhere the dynamics respects the detailed balance
(F = 0) or trivially breaks it (h = 0). Then, in 4.3.2, we list all the stationary solutions for
generic values of the parameters and describe how their stability may be analyzed. Finally,
we discuss the special case where the particles do not interact (J = 0), and the singular
situation of zero temperature (T = 0) in Secs. 4.3.3 and 4.3.4, respectively.

4.3.1 Equilibrium Dynamics (F = 0 or h = 0)

We analyze in this paragraph the long-time behavior of the Shinomoto–Kuramoto model for
F = 0 or h = 0.We refer the reader to [14] for a more detailed discussion on the case F = 0.
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Fig. 3 Phase diagram obtained with our semi-analytical results describing the long-time behavior of the
Shinomoto–Kuramoto model for J = 1 and F = 0.2. We have checked that the phase diagram for other
values of the parameters is similar. Our results are in agreement with those first obtained numerically in
[73,74]. Qualitatively, the long-time behavior of the Shinomoto–Kuramoto model is very different for high T
and/or h and for low T and h. In the first case, the system is stationary at long times and the empirical density
converges to the unique stationary stable solution of theMcKean–Vlasov equation. This is true except for a very
small region where two stationary stable solutions of the McKean–Vlasov equation are present, represented
by the shaded region in the inset. For low T and h, no stationary stable solutions of the McKean–Vlasov
equation exists and the empirical density converges to a periodic solution. The two regions are separated by
two lines corresponding to the Hopf (dots) and saddle-node (blue line) bifurcations. These two lines merge
in a Taken–Bodganov bifurcation. Other stationary but unstable states of the McKean–Vlasov equation exist,
and will be fully analyzed in the following (Color figure online)

Let us start with the case F = 0, J ≥ 0 and T > 0. Here, the N -body system (4.24)
with finite N respects the detailed balance with respect to the invariant measure given by the
Boltzmann-Gibbs distribution

fN (θ1, . . . , θN ) = 1

Z
exp

⎡
⎣ 1

kB T

⎛
⎝h

N∑
n=1

cos θn − J
2N

N∑
m,n=1

(1 − cos(θn − θm))

⎞
⎠
⎤
⎦
(4.27)

where Z is the canonical partition function. The system is ergodic and the mean of the empir-
ical density converges to the one in the Gibbs measure that may be easily calculated. Indeed,
applying the the Hubbard-Stratonovich transformation to Eq. (4.27), we get the identity

fN (θ1, . . . , θN ) = Ne
− N J

2kB T

2π J kB T Z

∫
e

1
kB T

(
(mx +h)

N∑
n=1

cos θn+my

N∑
n=1

sin θn − N
2J (m2

x +m2
y )

)
dmx dmy .

(4.28)

The expectation of the empirical density ρN (θ) in the Gibbs stationary state is equal to the
integral of fN (θ, θ2, . . . , θN ) over θ2, . . . , θN that gives

E ρN (x) = (2π)N−2Ne
− N J

2kB T

J kB T Z

×
∫

e
1

kB T

(
(mx +h) cos θ+my sin θ − N

2J (m2
x +m2

y )

) (
I0
(m(h)

kB T

))N−1
dmx dmy,

(4.29)
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where m(h) =
√

(mx + h)2 + m2
y and

I0
(√

z21 + z22

)
= 1

2π

2π∫
0

ez1 cos θ+z2 sin θ dθ (4.30)

is the Bessel functions of the first kind. From Eq. (4.29), we can obtain the equilibrium
stationary density in the N → ∞ limit by the saddle point calculation:

ρ
eq
inv(θ) = lim

N→∞ E ρN (θ) = e
1

kB T

(
(mx +h) cos θ+my sin θ

)

2π I0
(

m(h)
kB T

) , (4.31)

where (mx , my) minimizes

f (mx , my) = m2
x + m2

y

2JkB T
− ln I0

(m(h)

kB T

)
. (4.32)

The corresponding stationarity equations are

mx

J
= mx + h

m(h)

I1
(

m(h)
kB T

)

I0
(

m(h)
kB T

) ,
my

J
= my

m(h)

I1
(

m(h)
kB T

)

I0
(

m(h)
kB T

) (4.33)

with I1 = I ′
0. They may be rewritten as the self-consistency equations

mx = J

2π∫
0

cos θ ρ
eq
inv(θ) dθ, my = J

2π∫
0

sin θ ρ
eq
inv(θ) dθ, (4.34)

so that (mx , my) has the interpretation of the magnetization vector (in units of J ).
For h > 0, the stationarity equations (4.33) imply that my = 0 and mx > 0 solves the

equation

mx

J
= I1

(mx +h
kB T

)
I0
(mx +h

kB T

) (4.35)

which has a unique solution. In the limit h → 0, one recovers the 2nd-order phase transition
(a pitchfork bifurcation) located at kB Tc = J/2. For higher values of T , one has ρ

eq
inv = 1

2π
and the magnetization vanishes (i.e. mx = 0, my = 0) while for T < Tc the stationary state
is spontaneously magnetized (mx > 0, my = 0). Taking h = 0 directly, any rotation of the
low temperature solution in θ , with the corresponding rotation of the magnetization vector
(mx , my), provides a solution of the saddle point equations which minimizes (4.32), whereas
mx = 0, my = 0 corresponding to the flat density gives the maximum of (4.32) instead of
the minimum. The same limiting densities will be obtained as the stationary solutions of the
McKean–Vlasov equation for F = 0, see below.

Let us now consider the second case, where F, J, T > 0 and h = 0. Strictly speaking,
the dynamics does not respect here the detailed balance. However, it can be recast as an
equilibrium dynamics performing the change of variables θ ′

n = θn + Ft , which corresponds
to sitting on the comoving framewith angular velocity−F . The empirical density in this case
can thus be obtained from the equilibrium results. Indicating by ρ

eq
N the empirical density

for F = 0 and given values of T, J and by ρF
N the empirical density for the same values of
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T and J but with F �= 0, we have ρF
N (t, θ) = ρ

eq
N (t, θ − Ft). We conclude that for T > Tc,

in the limit of long times and large N , the expectation of ρF
N (t, θ) becomes stationary and

flat, while for T < Tc it becomes periodic. The pitchfork bifurcation at equilibrium is thus
modified to a Hopf bifurcation.

4.3.2 Stationary States for Generic Parameters

We now consider generic values of the parameter h, T, J, F with T > 0. To find stationary
densities ρinv at N = ∞, we consider the McKean–Vlasov equation (4.25) in the stationary
form, imposing ∂tρinv = 0. As the Shinomoto–Kuramoto model is one-dimensional, this is
equivalent to ask that the mean-field current jρ given by Eq. (4.26) be a constant, that we
shall denote c, for ρ = ρinv . We infer that for the stationary densities,

jρinv
(θ) = [F − (mx + h) sin θ + my cos θ

]
ρinv(θ) − kB T ∂θρinv(θ) = c, (4.36)

where mx and my are given by the equations

mx = J
∫ 2π

0
cos θ ρinv(θ) dθ, my = J

∫ 2π

0
sin θ ρinv(θ) dθ, (4.37)

so that (mx , my) is again the magnetization vector. As the current is constant, jρinv
(θ) =

jρinv
(θ + θ0) for any θ0 implying that

jρinv
(θ) =

{
F − [

(mx + h) cos θ0 + my sin θ0
]
sin θ

+ [my cos θ0 − (mx + h) sin θ0
]
cos θ

}
ρinv(θ + θ0)

− kB T ∂θρinv(θ + θ0) = c. (4.38)

We can now choose θ0 in such a way that

my cos θ0 − (mx + h) sin θ0 = 0, (mx + h) cos θ0 + my sin θ0 = y ≥ 0, (4.39)

so that Eq. (4.38) becomes

jρinv
(θ) = (F − y sin θ) ρinv(θ + θ0) − kB T ∂θρinv(θ + θ0) = c. (4.40)

For any y, the solution to this equation can be written as

ρinv(θ + θ0) = Z−1 e
1

kB T (Fθ+y cos θ)

θ+2π∫
θ

e
− 1

kB T (Fϑ+y cosϑ)
dϑ (4.41)

with Z the normalization factor. Clearly, for Eq. (4.41) to be a stationary solution, the
self-consistency conditions (4.37) have to be satisfied together with Eq. (4.39). Such self-
consistency condition can be made more explicit by introducing

fx (y) ≡
2π∫
0

cos θ ρinv(θ + θ0) dθ = y

J
− h

J
cos θ0,

fy(y) ≡
2π∫
0

sin θ ρinv(θ + θ0) dθ = h

J
sin θ0. (4.42)
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Fig. 4 We report here the typical curves that are obtained for the left hand side of the self-consistency condition
(4.43) that does not depend on h. Two cases are observed. If T > Ttr (on the right), whatever the value of h,
only one value of y satisfies the self-consistency condition and the McKean–Vlasov equation admits only one
stationary solution. For T < Ttr (on the left), depending on the value of h, one obtains one or three values of y
for which the self-consistency is satisfied. Thus, the McKean–Vlasov equation admits one or three stationary
solutions. Moreover, the maximum and the minimum of the curve defines two values of y for which a pair of
stationary solutions is created or destroyed corresponding to the values of h where saddle-node bifurcations
occur

from which we can eliminate θ0 to obtain an equation for y

(
fx (y) − y

J

)2 + fy(y)2 =
(

h

J

)2
. (4.43)

We have thus showed that, for any T > 0, stationary solutions of the McKean–Vlasov
equation associated to the Shinomoto–Kuramoto model (4.25) are given, up to rotation by
angle θ0, by Eq. (4.41), where y is chosen so that the self-consistency condition (4.43) is
satisfied. At the end, angle θ0 may be found from Eq. (4.42). The above self-consistency
problem can be easily solved numerically. With such procedure, we obtained the curves
reported in Fig. 4 for the left hand side of Eq. (4.43) as a function of y. Note that such a
function does not depend on h. Two cases are observed. If T > Ttr , for any value of h
only one value of y satisfies the self-consistency condition (4.43). In this case, whatever the
value of h, the McKean–Vlasov equation admits only one stationary solution. For T < Ttr ,
depending on the value of h, one obtains one or three values of y forwhich the self-consistency
is satisfied. Thus, the McKean–Vlasov equation admits one or three stationary solutions.
Observe moreover that the maximum and the minimum of the curve defines two values of
y where a pair of stationary solutions is created or destroyed. They thus indicate the values
of h where saddle-node bifurcations occur. We leave to the reader checking how the self-
consistent solutions reduce to the ones obtained in the previous section for the equilibrium
case F = 0. Let us just note that in that case, fx (y) = I1(

y
kB T )/I0(

y
kB T ) and fy(y) = 0.

To finally recover the phase diagram, we must also analyze the stability of the stationary
solutions just described. For this, it is enough to look at the linearization of the McKean–
Vlasov dynamics around a given ρinv ,

∂tδρ = Rρinv
δρ(t, ·), (4.44)

Rρinv
δρ = − ∂θ

[
δρ(θ)

(
F − h sin θ − J

∫
sin(θ − ϑ) ρinv(ϑ) dϑ

)
(4.45)

− ρinv(θ) J
∫

sin(θ − ϑ) δρ(ϑ) dϑ − kB T ∂θ δρ(θ)

]
.
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Fig. 5 Stationary states in the mean-field limit of the Shinomoto–Kuramoto model along with their stability.
In each region, we report which stationary states are present and whether they are stable or unstable, where
the letters A, B, C, D indicate from which self-consistent solution the stationary state is obtained, see Fig. 4

One should then study the spectra of the linearized Fokker–Planck operator Rρinv
. This is

possible analytically only in very special case when ρinv does not depend on θ , which holds
for h = 0.

We checked the stability of the stationary solutions by passing to the Fourier transformed
picture and truncating the resulting system to modes k ≤ K , in which way, Rρinv

is reduced
to a K × K matrix. It is then a simple numerical task to find the eigenvalues of such a
matrix. Only few modes (K ∼ 7) are enough to already obtain very accurate results. The
stationary states and their stability are summarized in Fig. 5, from which we reconstruct the
phase diagram anticipated in Fig. 3.

We conclude by observing that it is possible to calculate analytically where the shown
bifurcation lines end. Indeed, from the equilibrium solution, we know that the Hopf bifurca-
tion crosses the h = 0 axis in T = J/2. Moreover, it is simple to show that for T = 0 the
bifurcation occurs at F = h.

4.3.3 Free Particles (J = 0)

The stationary solutions for the free particle case (J = 0) can be obtained very easily directly,

ρinv(θ) = Z−1 e
1

kB T (Fθ+h cos θ)

θ+2π∫
θ

e
− 1

kB T (Fϑ+h cosϑ)
dϑ, (4.46)

or from Eq. (4.41) since in this case mx = my = 0 = θ0 and thus y = h.

4.3.4 Zero Temperature

There are two kinds of stationary solutions for T = 0: delta-function-like and smooth solu-
tions. Smooth solutions are physically less relevant because they are linearly unstable in
the ferromagnetic model (J > 0) that we consider here. We discuss smooth solutions in
Appendix 1 and consider here only the delta-function-like ones.

The stationary McKean–Vlasov equation in the form (4.40) for T = 0 is solved by

ρinv(θ + θ0) = δ(θ − θ1) (4.47)
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if θ1 satisfies F − y sin θ1 = 0. Clearly, such solutions exist only for y > F . The self-
consistency condition (4.42) reduces in this case to the relation

⎛
⎝±
√
1 −

(
F

y

)2
− y

J

⎞
⎠

2

+
(

F

y

)2
=
(

h

J

)2
(4.48)

that has no solutions for y if h < F , one solution if h = F and two solutions for h >

F . They are straightforward to understand. Indeed, one may show that at such solutions,
F −h sin(θ0 + θ1) = 0, so that the delta-function stationary states describe a situation where
all particles sit in the zero of their drift F − h sin θ , which clearly provides a solution of
the equations of motion (4.24) when T = 0. Such solutions exist for all N if and only if
h ≥ F . For large N , their stability depends on the sign of h cos(θ0 + θ1), with the positive
one corresponding to stable solutions.

4.4 Large Deviations for Large But Finite N

For large but finite N , the dynamics of the empirical density ρN (t, x) deviates from themean-
field evolution given by the McKean–Vlasov equation (4.23). Formally, ρN solves the Dean
equation (4.12)which is an infinite-dimensional dynamical systemperturbed by aweak noise.
Below, starting from this equation and employing a functional integral argument, we derive
the results obtained rigorously by Dawson and Gartner [18,19] that describe the dynamical
large deviations of the empirical density for mean-field diffusions. We also formulate the
functional Hamilton–Jacobi equation for the quasi-potential describing the asymptotic form
of stationary distribution for the empirical densities. Another functional integral argument
gives the large deviations asymptotics for the distribution of dynamical fluctuations of the
empirical current. A generalization of the Freidlin–Wentzell theory to infinite dimensional
dynamical systems whose deterministic part is given by the Fokker–Planck operator with,
possibly, non-linear diffusion and drift coefficients is known in the physics literature as
the Macroscopic Fluctuation Theory. It has attracted much attention in last years in non-
equilibrium statisticalmechanicsmainly because of its applications to stochastic lattice gases,
see [6] for a review. Our results may be viewed as an application of that theory to diffusions
withmean-field interactions of the general form (4.1). It will be also straightforward to specify
the results that follow to the case of the Shinomoto–Kuramoto model.

4.4.1 Dynamical Large Deviations for the Empirical Density

Let us fix two times ti < t f and consider the probability that the empirical density ρN (t, x) is
arbitrarily close to a given trajectory ρ̂(t, x) for ti ≤ t ≤ t f . In fact we shall be interested only
in the large deviations where such probability is described by the rate functionA[ρ(·, ·)] as in
Eq. (2.7) where trajectories x(t) become those in the infinite-dimensional space of densities
equipped with an appropriate norm and the limit ε → 0 is replaced by N → ∞. Informally,

A[ρ(·, ·)] = − lim
N→∞

1

N
ln P[ρ(·, ·)], (4.49)

where P[ρ(·, ·)] is the probability distribution function(al) describing the distribution of
empirical densities in the time interval [ti , t f ]. This rate function A is a functional of the
trajectory ρ(·, ·) and will provide a generalization of the Freidlin–Wentzell action of Eq. (2.8)
to the present infinite-dimensional setup.
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We may find the form of A[ρ] by the Martin-Siggia-Rose functional integral argument
[65]. A similar derivation to the one presented below may be found in [53]. Assuming the
Dean equation, the distribution function P[ρ] is that of its random solutions and may be
written in the form

P[ρ] = E

[
δ

(
∂tρ + ∇ · jρ +

√
2kB T

N
∇ · (√ρ ξ

))
det

(
δ
(
∂t ρ +∇· jρ +

√
2kB T

N ∇·(√ρ ξ
))

δρ

)]

(4.50)

if we fix the initial value ρ(ti , x) ≡ ρi (x). The Jacobian factor can be dropped, as it will
not contribute to the large deviations. Expressing now the delta functional as an oscillatory
functional integral in the imaginary directions over fields u(t, x) such that

∫
u(t, x)dx = 0,

we obtain

P[ρ] � E

[ ∫
exp

[
N

2kB T

∫ t f

ti
dt
∫ (

∂tρ + ∇ · jρ +
√

2kB T
N

∇ · (√ρ ξ
) )

u dx

]
Du

]

(4.51)

=
∫

exp

[
N

2kB T

∫ t f

ti
dt
∫ ( (

∂tρ + ∇ · jρ
)

u + 1
2 ρ (∇u)2

)
dx

]
Du, (4.52)

where the last equality was obtained by calculating the Gaussian expectation over the white
noise ξ(t, x). The rate function A[ρ] can now be extracted by the saddle point argument:

A[ρ] = −min
u

1

2kB T

∫ t f

ti
dt
∫ ( (

∂tρ + ∇ · jρ
)

u + 1

2
ρ (∇u)2

)
dx, (4.53)

where the minimum is taken over all functions u(t, x) with ti ≤ t ≤ t f and spatial mean
zero. The minimum is easy to calculate resulting in the formula

A[ρ] = 1

4kB T

∫ t f

ti
dt
∫ ∫ (

∂tρ + ∇ · jρ
)
(t, x) (−∇ · ρ(t, ·)∇)−1(x, y)

× (∂tρ + ∇ · jρ
)
(t, y) dx dy, (4.54)

where (−∇ · ρ(t, ·)∇)−1(x, y) is the kernel of the inverse of the operator −∇ · ρ(t, ·)∇ in
the action on functions of zero mean. Eq. (4.53) may be also rewritten in the form

A[ρ] = min
u

( t f∫
ti

dt
∫ (

∂tρ + ∇ · jρ
)

u dx
)2

4kB T
t f∫
ti

dt
∫

ρ(∇u)2 dx

(4.55)

which was rigorously derived for the large deviations rate function A[ρ] by Dawson and
Gartner in [18,19]. Indeed, Eq. (4.55) results from (4.53) upon substituting u �→ λu and
minimizing over λ ∈ R. On the other hand, expression (4.54) is completely analogous to the
Freidlin–Wentzell action (2.8) as it may be rewritten as

A[ρ] = 1

4

∫ t f

ti
dt
∫ ∫

(∂tρ − K[ρ]) (t, x)Q−1[ρ(t, ·)](x, y)

× (∂tρ − K[ρ]) (t, y) dx dy, (4.56)

where K[ρ] is the drift and Q[ρ] is the noise covariance of the Dean equation that are given
by Eqs. (4.19) and (4.22), respectively.
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In our arguments, we ignored the fact that the empirical density ρN (t, x) defines a genuine
stochastic process only after integrating it against a spatial test function. The large deviations
for such stochastic processeswill, however, be governed by rate functions that are contractions
of A[ρ] obtained by minimizing it with imposed integrals against the test functions.

4.4.2 Quasi-Potential and Hamilton–Jacobi Equation

The functional Fokker–Planck equation associated to the Dean equation (4.12) describes the
evolution of the probability distribution function Pt [ρ] to observe a density profile ρ(x) at
time t and takes the form

∂t P = L†P, (4.57)

where L+ is the adjoint of the generator (4.16) calculated with the rule
(

δ
δρ

)† = − δ
δρ
.

Analogously to the case of finite-dimensional systems, we define the quasi-potential as the
functional

F[ρ] = − lim
N→∞

1

N
ln P∞[ρ], (4.58)

where P∞ denotes the stationary solution of the above Fokker–Planck equation. Proceeding
formally, all the structure of Freidlin–Wentzell theory generalizes to the present case. We are
thus very brief in what follows, as the derivation of the statements below is very similar to
the one for finite dimensional systems, albeit only formal here.

As in the case of finite dimensional systems, we only consider cases where the attractor of
the deterministic evolution ∂tρ = K[ρ] is a fixed point ρinv . The quasi-potential with respect
to ρinv can be obtained from the minimization problem

F[ρ] = min
{ρ̂(t,x) | ρ̂(−∞,x)=ρ̂inv(x), ρ̂(0,x)=ρ(x)}

A[ρ̂]. (4.59)

Alternatively, one can try to solve the Hamilton–Jacobi equation∫
δF

δρ(x)
K[ρ](x) dx +

∫ ∫
δF

δρ(x)
Q[ρ](x, y)

δF
δρ(y)

dx dy = 0 (4.60)

that can be obtained by inserting Ansatz P∞[ρ] ∼ e−NF[ρ] into the functional Fokker–
Planck equation (4.57). Equivalently, we can obtain it from the Hamilton–Jacobi equation
for finite-dimensional systems (2.24).

Finally, with the same argument as in Sect. 2.3, it is simple to show that the minimization
in Eq. (4.59) is achieved over the solution of the fluctuation or instanton dynamics

∂tρ = Kr [ρ], Kr [ρ](x) = K[ρ](x) + 2
∫

Q[ρ](x, y) dy
δF

δρ(y)

= K[ρ](x) + 2kB T (−∇ρ(x)∇)
δF

δρ(x)
. (4.61)

4.4.3 Dynamical Large Deviations for the Empirical Current

Empirical current (4.3) is a more general quantity than empirical density (4.2). Indeed, ρN

and jN satisfy the continuity equation (4.4). Given the empirical current jN in a time interval
[ti , t f ] and the initial condition for ρN (ti , x) = ρi (x), we can reconstruct the empirical
density in the same time interval as ρN (x, t) = ρi (x) − ∫ t

ti
∇ · jN (x, s) ds. The converse is
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however not true, as two empirical currents that differ by a divergent-free quantity give rise
to the same empirical density.

Let us consider the probability distribution function P[ j (·, ·)] of empirical current jN (t, x)

in the time interval ti ≤ t ≤ t f for fixed initial condition for empirical density. The corre-
sponding large deviations rate function will be denoted by Ac:

Ac[ j (·, ·)] = − lim
N→∞

1

N
ln P[ j (·, ·)]. (4.62)

It may be found using again the Martin-Siggia-Rose functional integral formalism:

P[ j] � E

[
δ

(
j − jρ −

√
2kB T

N
ρ ξ

)]
(4.63)

= E

[ ∫
exp

[
− N

2kB T

∫ t f

ti
dt
∫ (

j − jρ −
√

2kB T
N

ρ ξ

)
· A

]
DA

]
(4.64)

=
∫

exp

[
N

2kB T

∫ t f

ti
dt
∫ (

−( j − jρ) · A + 1
2 ρ A2

)
dx

]
DA, (4.65)

where A is vector valued, and evaluating the last functional integral with the saddle point
method. This gives:

Ac[ j] = 1

4kB T

∫ t f

ti
dt
∫

( j − jρ)2

ρ
dx, (4.66)

where ρ(t, x) = ρi (x) − ∫ t
0 ∇ · j (x, s) ds.

Equation (4.66) is known in the literature as the fundamental formula of Macroscopic
Fluctuation Theory. It is often viewed as giving the rate function for the joint probability of
observing a trajectory of the empirical density and of the empirical current arbitrarily close
to ρ(x, t) and to j (x, t), provided that the latter satisfy the continuity equation, and equal
to infinity otherwise. This just expresses the fact that density trajectories are completely
determined once we chose the current trajectory and the initial condition for the density.

Again, we ignored the fact that these are the integrals of the empirical currents against
test functions, now both over time and space, that make sense as random variables. The
large deviations for such random variables will, however, be governed by the rate functions
obtained by contractions of Ac[ j] that minimize it with constraints imposed for the space-
time integrals of j .

Let us conclude by observing that, to the best of our knowledge, large deviations for cur-
rents in diffusions with mean-field interactions have not been discussed in the mathematical
literature. We will devote a future publication to the investigation of current fluctuations in
the Shinomoto–Kuramoto model.

4.5 Perturbative Calculation of the Quasi-Potential

In this final section, we discuss the perturbative calculation of the quasi-potential for the
diffusions with mean-field interaction. In Sect. 3, we developed a perturbative scheme to
calculate the quasi-potential for finite dimensional systems. The first objective is then to
translate that perturbative scheme to the infinite-dimensional setting described by the Dean
equation (4.18), which we do in Sect. 4.5.1.

It is possible to obtain explicit results in two cases: close to the free-particle dynamics
J = 0, see Sect. 4.5.2, and for the Taylor expansion of the quasi-potential around stationary
solutions of theMcKean–Vlasov equation, see Sect. 4.5.5.We shall see that in these cases the

123



Perturbative Calculation of Quasi-Potential in Non-equilibrium. . . 1193

perturbative expansion of the quasi-potential reduces to solving partial differential equations
instead of functional differential equations.

For the Shinomoto–Kuramoto model, in the case of perturbations close to the free-particle
dynamics J = 0, we present explicit results at the 1st order in J , see Sect. 4.5.3. Interestingly,
the quasi-potential that is a local functional of ρ for the unperturbed J = 0 case, is shown
to become non-local already at the 1st order in J . The resulting analytical expression is
evaluated with a simple numerical scheme and we also compute the rate function for the
fluctuations of single-particle observables such as the magnetization. Moreover, we discuss
how the numerical scheme can be generalized to higher orders stressing that this does not
increase the computational complexity.

We also discuss the Taylor expansion of the quasi-potential around the fixed points of the
McKean–Vlasov dynamics. It would be possible to obtain explicit results also in this case.
We detail how an algorithm can be designed for this purpose in Appendix 2. We did not,
however, perform the corresponding calculations, leaving them to future investigations.

Although the perturbative techniques developed in Sect. 3 in the context of finite-
dimensional systems are easily transposable to the infinite-dimensional setup discussed here,
we are unable to say anything about the nature of the resulting perturbative expansions (are
they convergent? asymptotic?) as, to the best of our knowledges, the techniques used in finite
dimensions to settle such questions do not extend in a Banach space setup.

4.5.1 Perturbative Schemes in Infinite Dimensional Setting

We generalize here the perturbative schemes for calculating the quasi-potential, developed in
Sect. 3, to the case of infinite dimensional systems at hand. This can be done very easily either
by starting again from the Hamilton–Jacobi equation, now in the infinite dimensional version
(4.60), or by formally taking the limit of infinite dimensions in the expressions of Sect. 3.
Such a formal limit transforms derivatives into functional derivatives and finite-dimensional
scalar products into L2 ones.

Both the expansion centered on the attractor ρλ
inv of the perturbed system (a stable fixed

point of the McKean–Vlasov dynamics) and the direct one can be easily obtained. We only
consider here the second one, as it will be used in the following. We denote the direct
expansion of the quasi-potential as

Fλ[ρ] =
∑

n

λnF (n)[ρ], (4.67)

dropping the hats of Sect. 3.2, and analogously for Kλ[ρ] and Qλ[ρ].
With the procedures outlined above, the hierarchy (3.21) and (3.22) is now replaced in

the infinite dimensional setting by

∫
δF (0)

δρ(x)

[
K(0)[ρ](x) +

∫
Q(0)[ρ](x, y)

δF (0)

δρ(y)
dy

]
dx = 0 for n = 0,

(4.68)∫
δF (n)

δρ(x)
K(0)

r [ρ](x) dx = S(n)[F (0), . . . ,F (n−1)] for n �= 0, (4.69)

where K(0)
r is the drift of the fluctuation dynamics for the unperturbed problem:

K(0)
r [ρ] = K(0)[ρ] + 2Q(0)[ρ]δF

(0)

δρ
(4.70)
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and S(n) is given by

S(n)[F (0), . . . ,F (n−1)]=−
n−1∑
k=1

[∫
δF (n−k)

δρ(x)

[
K(k)[ρ](x)+

∫
Q(0)[ρ](x, y)

δF (k)

δρ(y)
dy

]
dx

+
n−k∑
l=0

∫ ∫
δF (n−k−l)

δρ(x)
Q(k)[ρ](x, y)

δF (l)

δρ(y)
dx dy

]

−
∫

δF (0)

δρ(x)

[
K(n)[ρ](x) +

∫
Q(n)[ρ](x, y)

δF (0)

δρ(y)
dy

]
dx .

(4.71)

As it will be clear, there is a full analogy with finite-dimensional systems and we refer the
reader to Sect. 3 for the discussion on the perturbative schemes. In particular, we recall that
the solution of these equations obtained with the methods of characteristics is unique and
an explicit expression may be written in terms of the solution for the 0th-order fluctuation
dynamics. In the actual infinite dimensional setting, this solution is given by

F (n)[ρ] = C (n) +
∫ 0

−∞
S(n)[F (0), . . . ,F (n−1)][ρ̃(t, ·)] dt, (4.72)

where ρ̃(t, x) is the solution of the fluctuation dynamics

∂tρ = K(0)
r [ρ] (4.73)

starting at t = −∞ at the stable fixed point ρ0
inv ≡ ρinv of the unperturbed McKean–Vlasov

dynamics and satisfying the final condition ρ̄(0, x) = ρ(x), compare to Eq. (3.27). It should
be clear from the discussion of Sect. 3 that the convergence of the above integral in this infinite-
dimensional setting is assured once the unperturbed fluctuation dynamics (4.73) linearized
around ρinv escapes fast enough from ρinv . This happens, for example, in the typical case
in which its generator has a spectral gap. We finally recall from Sect. 3.2 that the constants
C (n) may be iteratively fixed but do not enter the expression for S(n)[F (0), . . . ,F (n−1)] so
are largely irrelevant and may be adjusted conveniently.

4.5.2 Expansion Around the Free Particles Dynamics (J = 0)

We now consider the perturbative expansion of the quasi-potentialF around the independent
particle dynamics, choosing the perturbative parameter λ = J . In this case,

KJ [ρ](x) = −∇ ·
[
ρ(x)

(
b(x) − J

∫
(∇V )(x − y) ρ(y) dy

)
− kB T ∇ρ(x)

]
(4.74)

and

QJ [ρ](x, y) = kB T ∇x · ∇y
(
ρ(x) δ(x − y)

)
. (4.75)

For J = 0, particles do not interact. Even if for J = 0 the system breaks the detailed balance,
the quasi-potential F (0) is known here as its explicit form follows from Sanov’s theorem:

F (0)[ρ] =
∫ [

ρ(x) ln
ρ(x)

ρinv(x)
− ρ(x) + ρinv(x)

]
dx, (4.76)

where ρinv is the stable stationary solution of McKean–Vlasov’s equation which reduces
here to the linear Fokker–Planck equation for a single-particle diffusion. Hence ρinv exists
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and is unique under simple assumptions about the single-particle drift b(x). In the case of the
Shinomoto–Kuramoto model, we have explicitly calculated ρinv for J = 0, see Eq. (4.46).
We observe that, despite the fact that the dynamics breaks in general the detailed balance,
the quasi-potential for J = 0 is a local functional of ρ.

As anticipated, it is convenient to perform the direct perturbative expansion, for which we
have

K(0)[ρ](x) = ∇ · [− ρ(x) b(x) + kB T ∇ρ(x)] , (4.77)

K(1)[ρ](x) = ∇ ·
[
ρ(x)

∫
(∇V )(x − y) ρ(y) dy

]
, (4.78)

K(n)[ρ](x) = 0 for n ≥ 2 (4.79)

and

Q(0)[ρ](x, y) = kB T ∇x · ∇y
(
ρ(x) δ(x − y)

)
, (4.80)

Q(n)[ρ](x, y) = 0 for n ≥ 1. (4.81)

It should be clear now why, from a practical point of view, it is simpler to deal here with the
direct expansion than with the expansion centered on the attractor of the perturbed dynamics.
Indeed, in the former case, almost all K(n) and Q(n) are zero. This would not be true in the
attractor-centered expansion because the attractor of the perturbed dynamics depends on J .

The quasi-potential at the 0th order F (0) is given by Eq. (4.76). We thus have

δF (0)

δρ(x)
= ln

ρ(x)

ρinv(x)
. (4.82)

The 0th order fluctuation dynamics takes the form ∂tρ = K(0)
r [ρ], where

K(0)
r [ρ] = −∇ · (ρ b) + 2kB T ∇ · [ρ ∇ ln ρinv] − kB T ∇2ρ ≡ K (0)

r ρ. (4.83)

Note that K (0)
r is a linear operator. When detailed balance is respected (i.e. b = −∇U for

some potential U ), one can easily check that

K(0)
r [ρ] = −∇ · (ρ∇U ) − kB T ∇2ρ = −K(0)[ρ], (4.84)

where we have used that ρinv = (1/Z) exp(−U/kB T ) in this case. The above relation just
reflects the fact that the fluctuation dynamics is the time-reversal of the relaxation dynamics
for equilibrium problems.

Let us specify the hierarchy (4.69) to the present situation. The left hand side is clearly
unchanged, except that K(0)

r [ρ] takes the particular form (4.84), while the right hand side
becomes equal to

S(1)[F (0)] = −
∫

δF (0)

δρ(x)
K(1)[ρ](x) dx (4.85)

for n = 1, and to

S(n)[F (0), . . . ,F (n−1)] = −
∫

δF (n−1)

δρ(x)
K(1)[ρ](x) dx

−
n−1∑
k=1

∫ ∫
δF (n−k)

δρ(x)
Q(0)[ρ](x, y)

δF (k)

δρ(y)
dx dy (4.86)
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for n > 1. A very important point is that, in this case, the solutions F (n)[ρ] of the hierarchy
are for n ≥ 1, homogeneous polynomials of degree (n + 1) (up to constants),

F (n)[ρ] = C (n) + 1

(n + 1)!
∫

φ(n)(x0, . . . , xn) ρ(x0) · · · ρ(xn) dx0 · · · dxn, (4.87)

where the kernels φ(n) are symmetric in (n + 1) variables and the choice of constants C (n) is
essentially irrelevant. Using Eq. (4.87), we infer that the left hand side of the hierarchy (4.69)
can be written as

∫
δF (n)

δρ(x)
K(0)

r [ρ](x) dx

= 1

n!
∫ (

K (0)†
r,x0 φ(n)(x0, . . . , xn)

)
ρ(x0) . . . ρ(xn) dx0 . . . dxn

= 1

(n + 1)!
∫ (

K (0)†
r,n+1φ

(n)
)
(x0, . . . , xn)

)
ρ(x0) . . . ρ(xn) dx0 . . . dxn . (4.88)

In the above expressions, K (0)†
r,x0 denotes, in a slightly abusive notation, the adjoint operator

to K (0)
r ,

K (0)†
r = (b − 2kB T (∇ ln ρinv)

) · ∇x − kB T ∇2
x , (4.89)

seeEq. (4.83), in the action on a function of variable x0. Similarly, K (0)†
r,n+1 denotes the operator

K (0)†
r,n+1 =

n∑
m=0

K (0)†
r,xm

(4.90)

acting on functions of n-tuples (x0, . . . , xn). Note that the differential operator K (0)†
r (x) is

the generator of a diffusion process with drift −b(x) + 2kB T (∇ ln ρinv) which is the time-
reversal of the original single particle diffusion. This operator has a one-dimensional kernel
composed of constants and a one-dimensional cokernel composed of functions proportional
to ρinv . For the same reasons, the operator K (0)†

r,n+1 has also a one dimensional kernel com-
posed of constants and a one dimensional cokernel composed of functions proportional to
ρinv(x0) · · · ρinv(xn). We shall use those properties below.

In order to compute the right hand side of the hierarchy, we shall treat separately the cases
with n = 1 and with n > 1. For n = 1, we have

S(1)[F (0)] = −
∫ [

(∇2V )(x − y) + 1
2 (∇V )(x − y) · (∇ ln ρinv(x) − ∇ ln ρinv(y)

)]

×ρ(x) ρ(y) dx dy, (4.91)

where we have made the integrand symmetric under the exchange of x and y. Comparing
Eqs. (4.88) and (4.91), we obtain a differential equation for φ(1),

(
K (0)†

r,2 φ(1))(x, y) = −2(∇2V )(x − y) − (∇V )(x − y) · (∇ ln ρinv(x) − ∇ ln ρinv(y)
)
.

(4.92)
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For n > 1, the right hand side of the hierarchy can be written in terms of the kernels
φ(k)(x0, . . . , xk) as

S(n)[F (1), . . . ,F (n−1)]
= 1

n!
∫

(∇x0V )(x0 − xn) · (∇x0φ
(n−1))(x0, . . . , xn−1) ρ(x0) · · · ρ(xn) dx0 · · · dxn

−
n−1∑
k=1

kB T

k!(n − k)!
∫

(∇xk φ
(k))(x0, . . . , xk) · (∇xk φ

(n−k))(xk, . . . , xn)

×ρ(x0) · · · ρ(xn) dx0 · · · dxn . (4.93)

Then, for any n > 1, we obtain the differential equations

(
K (0)†

r,n+1φ
(n)
)
(x0, . . . , xn)

= (n + 1)! Sym
[
1

n! (∇x0V )(x0 − xn) · ∇x0φ
(n−1)(x0, . . . , xn−1)

− kB T
n−1∑
k=1

1

k!(n − k)! (∇xk φ
(k))(x0, . . . , xk) · (∇xk φ

(n−k))(xk, . . . , xn)

]
, (4.94)

where Sym [ · ] stands for the symmetrization of the argument with respect to variables
x0, . . . , xn . Eqs. (4.92) and (4.94) may be solved iteratively for the kernels φ(n)(x0, . . . , xn)

provided that their right hand sides are orthogonal to the one-dimensional cokernels of opera-
tors K (0)†

r,n+1 spanned by the product functions ρinv(x0) · · · ρinv(xn). These are the solvability

conditions S(n)[ρinv] = 0 that were discussed in Sect. 3.2 in the finite-dimensional context,
see Eq. (3.24). Such conditions are easy to check in the lower orders but are difficult to prove
order by order. They are, however, implied by the existence of the perturbative expansion
centered at the attractors, as discussed in Sect. 3.2. Observe finally that φ(n) are defined by
the above equations only up to constants that are in the kernel of K (0)†

r,n+1. This ambiguity just

leads to shifts in constants C (n) appearing in Eq. (4.87) which are not relevant (remember
that densities ρ are normalized).

We have greatly simplified the problem of calculating the quasi-potential perturbatively
around the free particles dynamics. Instead of solving the functional differential equations
(4.69) we have to solve the partial differential equations for the kernels φ(n) defined by
Eq. (4.87). These differential equations are (4.92) for the 1st order contribution and (4.94)
for the higher orders. Solving them is a rather simple numerical problem. In the next section,
we discuss the results obtained in the case of the Shinomoto–Kuramoto model.

4.5.3 Expansion Around J = 0: Results for the Shinomoto–Kuramoto Model

Let us now specify the discussion to the case of the Shinomoto–Kuramoto model introduced
in Sect. 4.3 and describe some explicit results. In this case, Eq. (4.92) for the φ(1) reduces to
the relation

(
K (0)†

r,2 φ(1))(θ, ϑ) = S(1)(θ, ϑ), (4.95)

where

S(1)(θ, ϑ) = −2 cos(θ − ϑ) − sin(θ − ϑ) · [∂θ ln ρinv(θ) − ∂ϑ ln ρinv(ϑ)] , (4.96)

123



1198 F. Bouchet et al.

and

K (0)†
r = [F − h sin θ − 2kB T (∂θ ln ρinv)] ∂θ − kB T ∂2θ . (4.97)

We observe that identity (4.95) is a Lyapunov equation and several techniques can be
employed to solve it, see for example [9,56,69]. The one we have chosen is to perform
an expansion on the eigenfunctions of operators K (0)

r and K (0)†
r .

Let us first set the notations. For k = 1, . . . , we denote by vk the eigenfunctions of K (0)
r

and by uk those of K (0)†
r . As K (0)

r is not self-adjoint with respect to the L2 scalar product,
these eigenfunctions are not connected by complex conjugation but we may assume that the
corresponding eigenvalues are:

K (0)†
r uk = αkuk and K(0)

r vk = αk vk (4.98)

where αk denotes the complex conjugate of αk . K (0)
r is a Fokker–Planck operator. Zero is its

simple eigenvalue and ρinv is the corresponding eigenfunction. We choose it to be equal to
v1. Other eigenvalues of K (0)

r have strictly positive real parts. Similarly, we choose u1 = 1.
It corresponds to the unique zero mode of K (0)†

r . We can also assume that the eigenfunctions
are mutually orthonormal3 in the following sense∫

uk(θ) vl(θ) dθ = δkl . (4.99)

It is then simple to show that

φ(1)(θ, ϑ) =
∑

(k,l)�=(1,1)

S(1)
kl

αk + αl
uk(θ) ul(ϑ), (4.100)

where

S(1)
kl =

∫
vk(θ) vl(ϑ) S(1)(θ, ϑ) dθ dϑ (4.101)

(note that αk + αl �= 0 for (k, l) �= (1, 1)). One has S11 = 0 and we have chosen φ(1) to be
orthogonal to the kernel of K (0)

r composed of v1 = ρinv . The calculation of constant C (1) of
Eq. (4.87) will be discussed afterwards.

Equation (4.100) permits to obtain numerically the quasi-potential at the 1st order in J .
One first looks for an approximation of the eigenfunctions and eigenvalues of K (0)

r and of
K (0)†

r by expanding Eq. (4.98) in the Fourier modes and truncating the hierarchy in order
to deal with matrices. The calculation of φ(1) through Eq. (4.100) is then easily performed.
We checked that very few Fourier modes have to be retained (� 20) to obtain an excellent
approximation of eigenfunctions and eigenvalues. Even less eigenfunctions (� 5) need to be
employed in the calculation in order to obtain quite accurate results.

Although the scheme proposed here is a bit more involved than other methods, such as
a direct Fourier expansion of Eq. (4.95), it is much more powerful than the latter. Indeed,
in the method proposed here, we only need to diagonalize the matrices that approximate
operators K (0)

r and K (0)†
r that act on the space of functions of one periodic variable. Instead,

attempting to directly solve Eq. (4.95) by expanding on Fouriermodes results in diagonalizing
the operator K (0)†

r,2 actingon the spaceof functions of twovariables. Evenmore important is the

3 This is possible whenever the eigenvalues αk are all distinct.We have checked numerically that this is indeed
the case.
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Fig. 6 On the left the kernel kB T φ(1)(θ, ϑ) that permits to obtain the first-order correction to the quasi-
potential of the Shinomoto–Kuramoto model in the perturbative expansion around the free particle dynamics
with J = 0. The values of parameters are F = 0.2, T = 0.3, h = 0.5. This figure was obtained by numerically
solving Eq. (4.95) as detailed in the text. On the right the same function but in a contour plot

fact that themethodproposedhere is fully generalizable,without increasing the computational
complexity to obtain higher perturbative orders (encoded in kernels φ(n)) for the quasi-
potential. In contrast, in the direct Fourier expansion, one needs to diagonalize matrices of
dimension (kmax )

n where kmax is the number of retained Fourier modes, making the problem
practically intractable already for small n.

We report the results for the 1st order correction φ(1) to the quasi-potential in Fig. 6 for
some typical choice of parameters for which the McKean–Vlasov equation has a single
stationary stable solution (namely F = 0.2, T = 0.3, h = 0.5). A rather non-trivial result
emerges. As a check of the accuracy of the perturbative expansion, we also compared the
exact stationary state of the system ρ J

inv for J > 0 to the one, ρinv,1, obtained by imposing
that the functional derivative of

F (0) + JF (1) + γ

(∫
ρ(θ) dθ − 1

)
(4.102)

vanishes. This condition implies, with the use of (4.82) and (4.87), that

ρinv,1(θ) = 1

Z
ρinv(θ) exp

[
−J
∫

ρinv,1(ϑ) φ(1)(θ, ϑ) dϑ

]
, (4.103)

where Z = eγ fixes the normalization of ρinv,1. Recall that the true mean-field stationary
density ρ J

inv minimizes the quasi-potential F J [ρ] with the value at the minimum equal to
zero. Equation (4.103) may be very easily solved numerically with an iterative scheme, once
φ(1) is known;we have verified that this procedure converges after few iterations. In Fig. 7, we
also compare ρinv,1 with the exact result obtained from Eq. (4.41), which shows that already
at the 1st order the stationary state for the system with J > 0 is much better approximated
by ρinv,1 than by the stationary state at J = 0. As for the constant C (1) from Eq. (4.87) with
n = 1, it will be convenient to fix it so that the quasi-potential calculated to the 1st order
F (0) + JF (1) has the minimal value equal to zero, as does the complete quasi-potential. This
is achieved by setting

C (1) = −J−1F (0)[ρinv,1] − F (1)[ρinv,1], (4.104)

where on the right hand side F (1) is taken homogeneous in ρ (i.e. with C (1) set to zero).
Once the quasi-potential at order J is known, we can also compute the large deviations

rate functions for the one-particle observables 1
N

∑N
n=1 g(θn) where g is a given function.
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Fig. 7 Stationary state of the Shinomoto–Kuramoto model for J = 0.3 obtained from the perturbative
expansion of the quasi-potential (blue continuous curve) compared to the exact result (red dashed dotted
curve) given by the Eq. (4.41) and to the stationary state for the system with J = 0 (green dashed curve). The
values of parameters are F = 0.2, T = 0.3, h = 0.5 on the left and F = 0.2, T = 0.2, h = 0.15 on the right.
The plots show that the 1st order correction to the stationary state strongly improves the prediction (Color
figure online)

In the following, we consider the particularly relevant examples of the magnetization along
x and y axis corresponding, respectively, to g = cos and g = sin. What follows may be
straightforwardly generalized to any choice of g. We denote by Ix (σ ) (resp. Iy(σ )) the rate
function for the probability of observing a value of magnetization mx ∼ σ (resp. my ∼ σ ).
Let us consider Ix (the case of Iy may be analyzed similarly). To the 1st order in J , we have

Ix (σ ) = min
ρ

{
F (0)[ρ] + JF (1)[ρ]

}
, (4.105)

where the minimum is taken over all positive functions ρ with unit integral respecting the
constraint

∫
cos(θ) ρ(θ) dθ = σ . The profile realizing the minimum will be called ρopt in

the following.
The minimization problem in Eq. (4.105) can be solved introducing two Lagrange multi-

pliers γ1 and γ2 associated, respectively, to the totalmass and to themagnetization constraints.
A simple calculation shows that the minimizing profile satisfies the relation

ρopt (θ) = 1

Z
ρinv(θ) exp

[
−γ2 cos θ − J

∫
φ(1)(θ, ϑ) ρopt (ϑ) dϑ

]
, (4.106)

where Z normalizes ρopt . As for the case of the most probable state, the above self-consistent
equation can be solved iteratively.We first fix γ2 and iteratively solve Eq. (4.106) normalizing
the iterated solution to unity at each step. Once the optimal profile has been obtained, we
then calculate the corresponding value of mx . As the initial condition we used the optimal
profile for J = 0. We have checked that the iterative scheme converges in few steps. The
results obtained for Ix and Iy are plotted in Fig. 8 for the same choice of parameters as those
employed in Fig. 7. In the plots, the results obtained at the 1st order in J are compared with
those obtained for J = 0 in the whole range of possible magnetizations. We observe that
the 1st order corrections are significant. Fox example, the probability of fluctuations of mx

smaller than the typical value is diminished with respect to the J = 0 case but the probability
of very rare fluctuations is instead increased.

We conclude by noting that, as already discussed, it would be simple to extend the calcula-
tions of the quasi-potential and of rate functions of observables to higher orders by computing
with the method employed in this section the higher kernels φ(n). We do not pursue, however,
this direction here, as our scope was rather to show that the perturbative approach can lead
to explicit results than to analyze in details the Shinomoto–Kuramoto model.
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Fig. 8 Rate functions for the probability of fluctuations of the x (on the left) and y (on the right) component
of magnetization. The results of our perturbative analysis to the 1st order in J (blue continuous lines) are
compared with those of the unperturbed model with J = 0 (green dashed lines). The value of parameters used
are the same as in Fig. 6 in the upper plots while they are set to F = 0.2, T = 0.2, h = 0.15 in the lower plots
(Color figure online)

4.5.4 Expansion Around the Equilibrium Dynamics (F = 0 or h = 0)

When the drift b(x) may be written as b = −∇U for some U , the quasi-potential can
be given explicitly because detailed balance holds. We note that the Dean equation (4.18)
corresponding to this case has also been derived in [13,15], where it is called stochastic
Smoluchowski equation. One has in this case

F[ρ] = 1

kB T

∫
ρ(x)

(
U (x) + J

2

∫
V (x − y) ρ(y) dy

)
dx +

∫
ρ(x) ln ρ(x) dx .

(4.107)

We did not develop the perturbative expansion close to the detailed balance because obtaining
explicit results would be quite complex. Indeed, the equations for the quasi-potential at order
n are functional differential equations and not, as in the case of a perturbation close to
J = 0, ordinary differential equations. Even though results may be explicitly obtained by a
discretization, the problem is not computationally straightforward.

4.5.5 Taylor Expansion Close to a Stationary State

Let us discuss now the Taylor expansion of the quasi-potential F around a stable station-
ary solution ρinv of the McKean–Vlasov equation. As we have seen in Sect. 3.3 for finite
dimensional systems, this expansion may be viewed as a particular case of the perturbative
expansion of the quasi-potential for a parameter-dependent system. In this setting, the role of
the unperturbed quasi-potential is played by the quadratic approximation to F that, consis-
tently, will be denoted in the following by F (0). Then, once F (0) is known, any higher order
correction may, in principle, be calculated. After extending here the discussion of Sect. 3.3 to
a general diffusion with mean-field interaction (4.1), we discuss in Appendix 2 how explicit
results could be obtained in a similar way as for the perturbative expansion around J = 0.

We would like to calculate the quasi-potential F[ρ̃] for ρ̃ = (ρinv + ρ) as a power series
in ρ. Note ρ has then to have the vanishing integral. In order to use the same notations as in
the finite dimensional setting, see Sect. 3.3, we introduce the λ-dependent system defined by
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Kλ[ρ̃] = 1

λ
K [ρinv + λρ] (4.108)

Qλ[ρ̃] = Q [ρinv + λρ] (4.109)

Fλ[ρ̃] = 1

λ2
F [ρinv + λρ] . (4.110)

For any n we thus have

K(0)[ρ] = −∇ · [ρ b − Jρinv (∇V ∗ ρ) − Jρ (∇V ∗ ρinv)] + kB T ∇2ρ, (4.111)

K(1)[ρ] = J∇ · [ρ (∇V ∗ ρ)] , (4.112)

K(n)[ρ] = 0 for n ≥ 2. (4.113)

Clearly, K(0)[ρ] = Rρinv
ρ, where Rρinv

denotes the linearized Fokker–Planck operator.
Moreover,

Q(0)[ρ] = −kB T ∇ · ρinv∇, (4.114)

Q(1)[ρ] = −kB T ∇ · ρ∇, (4.115)

Q(n)[ρ] = 0 for n ≥ 2. (4.116)

Recall that the computation of the quadratic order ofF corresponds, in the above λ-dependent
system, to the calculation of F (0). Moreover, with these notations the hierarchy of equations
to solve in order to obtain the Taylor expansion of the quasi-potential close to ρinv is given
precisely by Eqs. (4.68) and (4.69) with K(n) and Q(n) expressed by the above formulae.

We shall search for the solution of this hierarchy in the form of homogeneous polynomials

F (n)[ρ] = 1

(n + 2)!
∫

ϕn(x0, . . . , xn+1) ρ(x0) · · · ρ(xn+1) dx0 · · · dxn+1, (4.117)

where ϕn(x0, . . . , xn+1) are symmetric kernels on which we shall impose the relations∫
ϕn(x0, . . . , xn+1) dx0 = 0. (4.118)

As in the other cases, once the quadratic order F (0) is known, the higher orders can be
obtained by using the general solution to the hierarchy, see Eq. (4.72). We thus concentrate
here only on F (0). We introduce the operator �

�[ρ](x) =
∫

ϕ0(x, y) ρ(y) dy (4.119)

that will be considered as acting in the space H0 of functions with vanishing integral and L2

scalar product. Note that � is a symmetric operator. From Eq. (4.68), we obtain the operator
identity

�Rρinv
+ R†

ρinv
� = 2kB T �(∇ · ρinv∇)�, (4.120)

where Rinv is also viewed as an operator in H0. Assuming that � is invertible, as it must be
from the fact that F (0) is positive definite, we infer that

Rρinv
�−1 + �−1R†

ρinv
= 2kB T (∇ · ρinv∇), (4.121)

which is the infinite dimensional analogue of Eq. (2.38). Its solution is given by the relation

�−1 = −2kB T
∫ ∞

0
et Rρinv (∇ · ρinv∇) et R+

ρinv dt, (4.122)
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see Eq. (2.37). Similarly to the finite-dimensional case, convergence of the integral is assured
if ρinv a non-degenerate stable stationary solution of the McKean–Vlasov equation, i.e. if
the spectrum of Rρinv

on the space of functions with vanishing integral in contained in the
complex half-plane with negative real part. Once we know the invertible operator �−1, the
function ϕ0(x0, x1) is extracted as the kernel of its inverse.

With an argument analogous to the one used in Sect. 3.4 for the finite dimensional systems,
one can show that Eq. (4.122) implies that the covariance of density fluctuations diverges with
the mean-field exponent.when approaching a codimension-one bifurcations of the McKean–
Vlasov dynamics. We note that the latter result was obtained rigorously in [2].

Let us now consider the 0th-order fluctuation dynamics. We have

K(0)
r [ρ] = Rinvρ − 2kB T ∇ · ρinv∇�ρ = −�−1R†

inv�ρ ≡ K (0)
r ρ. (4.123)

K (0)
r is again an operator in H0 that is invertible and has spectrum in the half-plane with

positive imaginary part (it should not be confused with K (0)
r considered in Sect. 4.5.2). With

Ansatz (4.117), the left hand side of Eq. (4.69) takes now the form
∫

δF (n)

δρ(x)
K(0)

r [ρ](x) dx

= 1

(n + 2)!
∫ (

K (0)†
r,n+2 ϕn)(x0, . . . , xn+1)

)
ρ(x0) · · · ρ(xn+1) dx0 · · · dxn+1 (4.124)

in the notation of (4.90). As for their right hand side, it follows from Eq. (4.71) that

S(n)[F (0), . . . ,F (n−1)]
= 1

(n + 2)!
∫

sn[ϕ0, . . . , ϕn−1](x0, . . . , xn+1) ρ(x0) · · · ρ(xn+1) dx0 · · · dxn+1,

(4.125)

where the symmetric kernels s(n)[ϕ0, . . . , ϕn−1](x0, . . . , xn+1) are expressed in terms of ϕk

with k < n and again satisfy the constraint (4.118). Thus in terms of the kernels, Eq. (4.69)
become the identities(

K (0)†
r,n+2 ϕn)(x0, . . . , xn+1) = sn[ϕ0, . . . , ϕn−1](x0, . . . , xn+1)(x0, . . . , xn+1)

(4.126)

which may be solved iteratively since the operators K(0)†
r,n+2 are invertible on H⊗(n+2)

0 (note

that the constraint (4.118) characterizes the symmetric functions in H⊗(n+2)
0 ). Further details

are left to the reader, but in Appendix 2, we briefly discuss how ϕ0, as well as higher order
kernels, could be explicitly calculated numerically, leaving out of this work the explicit
numerical implementation of the proposed algorithm.

5 Conclusions

The main aim of this paper was to discuss a perturbative approach to the calculation of the
quasi-potential in parameter dependent stochastic dynamical systems. As we have seen, the
Taylor expansion of the quasi-potential around an attractor of the deterministic dynamics
was also covered by our theory.

The approach developed in the paper may be summarized as it was already done in the
introduction. The perturbative expansion breaks the loop connecting the quasi-potential and
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the instanton dynamics, with one needed to obtain the other. At any perturbative order the
quasi-potential can be computed just from the knowledge of the instanton dynamics for
the unperturbed problem and the lower order results. Indeed, our approach gives explicit
formulae that permit to iteratively calculate any order of the power series expansion of
the quasi-potential in the perturbative parameter. Explicit results can be obtained once the
instanton dynamics for the unperturbed problem may be analytically or numerically solved.

We have first developed the theory for finite dimensional systems, where the mathematical
details can be easily handled precisely. Our strategywas to perturbatively solve theHamilton–
Jacobi equation which, as it is well known [32], has the quasi-potential as the unique non-
trivial solution under the hypothesis that the later is smooth enough. It is also known [21]
that, at least in a neighborhood of the attractor, this is indeed the case, while further away
singularities may occur, see for example [21,37,42,52,55,63]. An investigation on how
to deal practically with singularities of the quasi-potential is left for the future. We also
note that the perturbative study of transition rates between basin of attraction requires a
specific approach, as was done for instance in the reference [75], using Melnikov’s method
for perturbations of Hamiltonian systems.

In the second part of the paper,wemoved our attention tomany body systems. In particular,
we considered N particles that undergo an overdamped diffusion, interact with mean field
conservative forces, and are driven out of equilibrium by an external drift, see Eq. (4.1). In
this case it was possible to (formally) derive a fluctuating hydrodynamics, with the noise
term proportional to 1/

√
N , that describes in a closed way the evolution of the empirical

density of particles. This fluctuating hydrodynamics is known in the literature under the
name of the Dean equation [22]. In the limit when N → ∞, the empirical density obeys then
a deterministic PDE, the McKean–Vlasov equation [66]. This provided a formal but quick
way to recover the results on propagation of chaos that appeared long ago in themathematical
literature.

In the case of a specific mean-field system, the Shinomoto–Kuramoto model of coupled
rotators, we showed that such an approach can be employed to obtain explicit results. We first
discussedMacKean-Vlasov’s dynamics describing the behavior of the system in the N → ∞
limit, characterizing analytically or semi-analytically all the stationary solutions of the system
and their stability. Already this very simple out-of-equilibrium mean-field system displays
quite a complex phase diagram with bifurcation lines and several attractors (stationary states
as well as limit cycles). Albeit the Shinomoto–Kuramoto model has been studied in literature
by numerical techniques, our analytical results characterizing all its stationary states are
original.

After discussing the N = ∞ limit, we concentrated on large deviations around it. This was
done by studying the Dean equation for N large but finite. Applying formal techniques from
field theory (theMartin-Siggia-Rose representation and theWKBapproximation),we showed
that fluctuations of the empirical density are described by a generalization of the Freidlin–
Wentzell theory to infinite dimensional systems. This permitted to recover formally rigorous
results that already appeared in mathematical literature [18,19] and to make a connection
with the Macroscopic Fluctuation Theory [6].

We subsequently generalized our perturbative approach to the calculation of quasi-
potential to the case of fluctuating mean-field hydrodynamics. For the Shinomoto–Kuramoto
model, we explicitly computed the quasi-potential close to the uncoupled particle dynam-
ics to the 1st order in the mean-field coupling strength J and found the corresponding rate
function for the probability of fluctuations of single-particle observables such as the magne-
tization. Our results seem to provide the first explicit calculation of the quasi-potential for
diffusions with mean field interaction driven out of equilibrium. Higher orders in J could be
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also computed without much difficulty. As our aim here was mainly to develop the general
theory and to illustrate that it can be employed to obtain explicit results, we have not pursed
such calculations further but discussed instead how one could similarly obtain explicit results
for the Taylor expansion of the quasi-potential around the stationary states.

The perturbative approach developed in the present paper seems quite general and we
expect it to be useful in several other problems. For example, it may be employed in the
future to study other long-range interacting systems which are driven out of equilibrium by
different mechanisms, such as stochastic forces which are spatially correlated. This setting
is natural for systems whose constituents exhibit long-range interactions (such as plasmas
or gravitational systems) but are exposed to stochastic external fields (electric for example)
mainly acting on a given spatial scale. The typical behavior of this class of system was
analyzed with kinetic theory in [68,69] and numerical simulations have shown how the phase
transitions are modified when departing from the detailed balance [69]. The perturbative
approach exposed here may give an analytical insight to such problems. This direction is
presently pursued by one of the authors.

Similarly, applications of such perturbative methods could be found in the study of large
deviations for 2d turbulence problems, which are relevant for climate modelling [7–10,59].
Even though these are quite academic questions [8] because realistic models of 2d turbulence
and those arising from climate models are far from the perturbative regime, this approach can
give valuable physical insight as it is difficult to handle the rare events in realistic systems.

Finally,while large deviations for the empirical density ofmean-field interacting diffusions
appeared in literature long ago, mathematical literature does not cover fluctuations of the
empirical current. The formal approach through the Dean equation presented in this paper
clearly permits to go in this direction. Some results on the current fluctuations that we have
obtained already, as well as further explicit results on the calculation of the quasi-potential
for the Shinomoto–Kuramoto model and their comparison with results obtained from direct
numerical simulations are left for a future publication.
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Appendix 1: Smooth Stationary Solutions of the Shinomoto–Kuramoto
Model at T = 0

In Sect. 4.3.4,we have discussed simple delta-like stationary solutions of theMcKean–Vlasov
dynamics for the Shinomoto–Kuramoto model at T = 0. They described the particles accu-
mulated at the fixed point of single particle drift. These are however not the only stationary
solutions for vanishing temperature and also smooth solutions are present, which, however,
are linearly unstable in the ferromagnetic model considered in this paper (J > 0). We briefly
discuss such smooth stationary solutions at T = 0 and their stability in this appendix.

For T = 0, Eq. (4.36) implies that

ρinv(θ + θ0) =
√
1 − ( y

F

)2
2π
(
1 − y

F sin θ
) (6.1)
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provided that 0 ≤ y < F and the self-consistency relation (4.43) holds taking now the form

( y

J

)2 +
(

1−
√
1−( y

F )
2

y
F

)2
=
(

h

J

)2
. (6.2)

The left hand side of the last equation grows monotonically from 0 at y = 0 to (F/J )2 + 1
at y = F . Hence there is a unique solution for 0 ≤ y < F if and only if F2 + J 2 > h2. We
infer that there is a unique stationary smooth solution at T = 0 when the latter constraint
holds and none otherwise.

To examine the stability of such solutions, we examine the eigenfunctions δρμ(θ + θ0)

with vanishing integral of the linearized Fokker–Planck operator Rρinv
of (4.44) at T = 0.

We may write δρμ(θ + θ0) = ∂θ δ fμ(θ), where δ fμ is periodic on [0, 2π]. The eigenequation
takes the form(

Rρinv
∂θ δ fμ

)
(θ)

= −∂θ

(
(F − y sin θ) ∂θ δ fμ(θ) − Y1 ρinv(θ + θ0) sin θ + Y2 ρinv(θ + θ0) cos θ

)
= μ∂θδ fμ, (6.3)

where

Y1 = J
∫ 2π

0
sin θ δ fμ(θ) dθ, Y2 = −J

∫ 2π

0
cos θ δ fμ(θ) dθ. (6.4)

We may now define a new operator S such that

∂θ

(
S δ f

) = Rρinv
∂θ δ fλ. (6.5)

Explicitly,(
S δ f

)
(θ) = −(F − y sin θ) ∂θ δ f (θ) − Y1ρinv(θ + θ0) sin θ + Y2ρinv(θ + θ0) cos θ.

(6.6)

Clearly, the diagonalization of Rρinv
on the subspace of functions δg with vanishing integral

is equivalent to the diagonalization of S.
A direct calculation shows that the 3-dimensional subspace V3 spanned by functions

f1(θ) = ρinv(θ + θ0) sin θ, f2(θ) = ρinv(θ + θ0) cos θ, f3(θ) = ρinv(θ + θ0)

(6.7)

is invariant for S. In particular, the representation of S on such subspace is given by the
matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

J
1−
√
1−
(

y
F

)2
(

y
F

)2 F J
1−
√
1−
(

y
F

)2
y
F

−F J

(
1 − 1−

√
1−
(

y
F

)2
(

y
F

)2
)

−y

0 −y 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.8)

A little algebra shows that the above matrix has one zero eigenvalue which corresponds to
the eigenvector (−y, 0, F), i.e. to the constant function

δ f (θ) = ρinv(θ + θ0) (F − y sin θ) =
√

F2 − y2

2π
. (6.9)
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In this case δg = ∂θ δ f = 0. Consequently, the zero eigenvalue does not occur for the operator
Rρinv

. The other two eigenvalues of the matrix (6.7) are given by

λ± = J

2
±

√√√√√√
(

J

2

)2
− J 2

√
1−
(

y
F

)2
(
1+
√
1−
(

y
F

)2)2 − F2 + y2. (6.10)

of which at least one has positive real part if J > 0. It follows that for J > 0, the stationary
solution (6.1) is linearly unstable.

Appendix 2: Algorithm for the Taylor Expansion of the Quasi-Potential
Close to a Stationary State

We discuss briefly in this Appendix how the Taylor expansion of the quasi-potential of
the Shinomoto–Kuramoto model may be numerically calculated. This will be possible, in
principle, at all the orders of the Taylor expansion.

Let us first concentrate on the quadratic term F (0). In order to explicitly calculate kernel
ϕ0(θ, ϑ), we proceed similarly as in Sect. 4.5.3 and consider the eigenfunctions of operators
R†

ρinv
and Rρinv

acting in space H0:

R†
ρinv

uk = αk uk and Rρinv
vk = αk vk . (7.1)

Assuming αk to be different, we impose the orthogonality relations (4.99). Eigenfunctions uk

form a basis of H0 but they are not orthogonal. Similarly for vk . The kernel of the quadratic
term of the quasi-potential may be represented as

ϕ0(θ, ϑ) =
∑
k,l

�kl vk(θ) vl(ϑ) (7.2)

where �kl is defined by

�kl =
∫ 2π

0
uk(θ) dθ

∫ 2π

0
ϕ0(θ, ϑ) ul(ϑ) dϑ = 〈uk |�ul〉. (7.3)

The problem is thus reduced to the calculation of �kl . Now, from Eq. (4.122), we can easily
compute the matrix elements of �−1 in the basis uk . Indeed, from Eq. (4.122),

(�−1)kl ≡ 〈uk |�−1ul〉 = − 2kB T

α∗
k + αl

∫
dθ (∂θ uk)(θ) ρinv(θ) (∂θ ul)(θ) . (7.4)

Note, however, that the matrix (�−1)kl is not the inverse of �kl because the basis formed by
uk is not orthonormal. This problem can be handled with simple linear algebra. We introduce
the matrix of scalar products

Pkl = 〈uk |ul〉 (7.5)

whose inverse will be denoted by (P−1)kl . Then, we construct another matrix

(B−1)kl ≡
∑

i

(P−1)ki (�−1)il (7.6)
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with inverse Bkl . Finally,

�kl =
∑

i

Pki Bil . (7.7)

Once �kl is known, it is straightforward to write the kernel ϕ0 in the real space using
Eq. (4.126).

We conclude by observing that, once ϕ0 is known, one could also numerically evaluate the
higher order kernels ϕn of the Taylor expansion by solving Eq. (4.126) using the fact that the
basis �vk is composed of eigenstates of operators K (0)†

r = −� Rρinv
�−1, see Eqs. (4.123)

and (7.1).
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